WorldWideScience

Sample records for filaments brownian dynamics

  1. Treadmilling of actin filaments via Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2010-10-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

  2. Treadmilling of actin filaments via Brownian dynamics simulations

    DEFF Research Database (Denmark)

    Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard

    2010-01-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP / Pi, and ADP....... These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution...

  3. Self-assembly of actin monomers into long filaments: Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2009-07-01

    Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule. The simplest situation that has been studied experimentally is provided by the polymerization of ADP-actin, for which all protomers are identical. This case is used to unravel certain relations between the filament's physical properties and the model parameters such as the attachment rate constant and the size of the capture zone, the detachment rate and the probability of the detached event, as well as the growth rate and waiting times between two successive attachment/detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. The results also show that the waiting time is governed by exponential distributions and that the two ends of a filament undergo biased random walks. The filament length fluctuations are described by a length diffusion constant that is found to attain a constant value at low ADP-actin concentration and to increase linearly with this concentration. It is straightforward to apply our simulation code to more complex processes such as polymerization of ATP-actin coupled to ATP hydrolysis, force generation by filaments, formation of

  4. Self-assembly of actin monomers into long filaments: Brownian Dynamics simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP/P), and ADP molecule. The simplest situation that has been studied experimentally is provided by the polymerization of ADP-actin, for which all protomers are identical. This case is used...... attachment and detachment processes at the two ends of the filaments, we introduce a novel rescaling procedure by which we speed all dynamical processes related to actin polymerization and depolymerization up by the same factor. In general, the actin protomers within a filament can attain three different....../detachment events. When a single filament is allowed to grow in a bath of constant concentration of free ADP-actin monomers, its growth rate increases linearly with the free monomer concentration in quantitative agreement with in vitro experiments. Theresults also show that the waiting time is governed by...

  5. Efficient reactive Brownian dynamics

    Science.gov (United States)

    Donev, Aleksandar; Yang, Chiao-Yu; Kim, Changho

    2018-01-01

    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and dissociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as reaction-diffusion master equation algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction-limited and diffusion-limited irreversible association in three dimensions and compare to existing theoretical predictions at low and moderate densities. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium and compare to recent theoretical predictions. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of such systems difficult or impossible. We also find that for models in which

  6. Velocity Gradient Power Functional for Brownian Dynamics

    Science.gov (United States)

    de las Heras, Daniel; Schmidt, Matthias

    2018-01-01

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  7. Dynamics of Brownian motors in deformable medium

    Science.gov (United States)

    Woulaché, Rosalie Laure; Kepnang Pebeu, Fabrice Maxime; Kofané, Timoléon C.

    2016-10-01

    The directed transport in a one-dimensional overdamped, Brownian motor subjected to a travelling wave potential with variable shape and exposed to an external bias is studied numerically. We focus our attention on the class of Remoissenet-Peyrard parametrized on-site potentials with slight modification, whose shape can be varied as a function of a parameter s, recovering the sine-Gordon shape as the special case. We demonstrate that in the presence of the travelling wave potential the observed dynamical properties of the Brownian motor which crucially depends on the travelling wave speed, the intensity of the noise and the external load is significantly influenced also by the geometry of the system. In particular, we notice that systems with sharp wells and broad barriers favour the transport under the influence of an applied load. The efficiency of transport of Brownian motors in deformable systems remains equal to 1 (in the absence of an applied load) up to a critical value of the travelling wave speed greater than that of the pure sine-Gordon shape.

  8. Multifragmentation with Brownian one-body dynamics

    International Nuclear Information System (INIS)

    Guarnera, A.; Chomaz, PH.; Colonna, M.; Chomaz, PH.; Guarnera, A.

    1996-01-01

    A first application is made of Brownian one-body dynamics to nuclear multifragmentation. A gold nucleus is compressed to double density and then let free to evolve under the combined influence of the effective one-body field and the residual two-body collision processes, with the effects of the fluctuations included whenever local spinodal instability occurs. The system quickly expands into a hollow and unstable configuration which transforms into several intermediate-mass fragments. The analysis of the resulting fragment pattern suggests that the model provides a physically reasonable description of nuclear multifragmentation processes. (authors)

  9. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  10. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    NARCIS (Netherlands)

    Padding, J.T.; Briels, Willem J.

    2014-01-01

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally

  11. Microrheology of colloidal dispersions by Brownian dynamics simulations

    NARCIS (Netherlands)

    Carpen, I.C.; Brady, John F.; Brady, J.F.

    2005-01-01

    We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe’s motion is governed

  12. Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics

    KAUST Repository

    Franz, Benjamin

    2013-06-19

    Two algorithms that combine Brownian dynami cs (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface, which partitions the domain, and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that the overlap region is required to accurately compute variances using PBD simulations. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented. © 2013 Society for Industrial and Applied Mathematics.

  13. A First Approach to Filament Dynamics

    Science.gov (United States)

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  14. Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    KAUST Repository

    Lipková, Jana

    2011-01-01

    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-bcȳ model for irreversible bimolecular reactions which was introduced in [R. Erban and S. J. Chapman, Phys. Biol., 6(2009), 046001]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated. © 2011 Society for Industrial and Applied Mathematics.

  15. First passage Brownian functional properties of snowmelt dynamics

    Science.gov (United States)

    Dubey, Ashutosh; Bandyopadhyay, Malay

    2018-04-01

    In this paper, we model snow-melt dynamics in terms of a Brownian motion (BM) with purely time dependent drift and difusion and examine its first passage properties by suggesting and examining several Brownian functionals which characterize the lifetime and reactivity of such stochastic processes. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, for a BM with initial starting point x0, we derive analytical expressions for : (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the total fresh water availability during melting, (iii) the PDF P(M) associated with the maximum size M of the BM process before the first passage time, and (iv) the joint PDF P(M; tm) of the maximum size M and its occurrence time tm before the first passage time. These P(M) and P(M; tm) are useful in determining the time of maximum fresh water availability and in calculating the total maximum amount of available fresh water. These PDFs are examined for the power law time dependent drift and diffusion which matches quite well with the available data of snowmelt dynamics.

  16. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    Science.gov (United States)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  17. Treadmilling of actin filaments via Brownian dynamics simulations

    DEFF Research Database (Denmark)

    Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard

    2010-01-01

    . For concentrations close to the critical concentration CT = CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes...

  18. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  19. Large scale Brownian dynamics of confined suspensions of rigid particles.

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A; Donev, Aleksandar

    2017-12-28

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  20. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan

    2014-02-27

    A discrete rate theory for multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed. © 2014 Society for Industrial and Applied Mathematics.

  1. Brownian dynamics of wall tethered polymers in shear flow

    Science.gov (United States)

    Lin, Tiras Y.; Saadat, Amir; Kushwaha, Amit; Shaqfeh, Eric S. G.

    2017-11-01

    The dynamics of a wall tethered polymer in shear flow is studied using Brownian dynamics. Simulations are performed with bead-spring chains, and the effect of hydrodynamic interactions (HI) is incorporated through Blake's tensor with a finite size bead correction. We characterize the configuration of the polymer as a function of the Weissenberg number by investigating the regions the polymer explores in both the flow-gradient and flow-vorticity planes. The fractional extension in the flow direction, the width in the vorticity direction, and the thickness in the gradient direction are reported as well, and these quantities are found to compare favorably with the experimental data of the literature. The cyclic motion of the polymer is demonstrated through analysis of the mean velocity field of the end bead. We characterize the collision process of each bead with the wall as a Poisson process and extract an average wall collision rate, which in general varies along the backbone of the chain. The inclusion of HI with the wall for a tethered polymer is found to reduce the average wall collision rate. We anticipate that results from this work will be directly applicable to, e.g., the design of polymer brushes or the use of DNA for making nanowires in molecular electronics. T.Y.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  2. Dynamics of contracting surfactant-covered filaments

    Science.gov (United States)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  3. A first approach to filament dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  4. A first approach to filament dynamics

    International Nuclear Information System (INIS)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  5. Actin organization and dynamics in filamentous fungi.

    Science.gov (United States)

    Berepiki, Adokiye; Lichius, Alexander; Read, Nick D

    2011-11-02

    Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.

  6. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles.

    Science.gov (United States)

    Ilie, Ioana M; Briels, Wim J; den Otter, Wouter K

    2015-03-21

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.

  7. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles

    NARCIS (Netherlands)

    Ilie, Ioana Mariuca; Briels, Willem J.; den Otter, Wouter K.

    2015-01-01

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a

  8. Equilibrium stochastic dynamics of a Brownian particle in inhomogeneous space: Derivation of an alternative model

    Science.gov (United States)

    Bhattacharyay, A.

    2018-03-01

    An alternative equilibrium stochastic dynamics for a Brownian particle in inhomogeneous space is derived. Such a dynamics can model the motion of a complex molecule in its conformation space when in equilibrium with a uniform heat bath. The derivation is done by a simple generalization of the formulation due to Zwanzig for a Brownian particle in homogeneous heat bath. We show that, if the system couples to different number of bath degrees of freedom at different conformations then the alternative model gets derived. We discuss results of an experiment by Faucheux and Libchaber which probably has indicated possible limitation of the Boltzmann distribution as equilibrium distribution of a Brownian particle in inhomogeneous space and propose experimental verification of the present theory using similar methods.

  9. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    International Nuclear Information System (INIS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  10. Random Dynamical Systems and Stationary Solutions of Differential Equations Driven by the Fractional Brownian Motion

    Czech Academy of Sciences Publication Activity Database

    Maslowski, Bohdan; Schmalfuss, B.

    2004-01-01

    Roč. 22, č. 6 (2004), s. 1577-1607 ISSN 0736-2994 R&D Projects: GA ČR GA201/01/1197 Institutional research plan: CEZ:AV0Z1019905 Keywords : fractional Brownian motion * random dynamical systems * stationary solutions Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2004 http://www.tandfonline.com/doi/full/10.1081/ SAP -200029498

  11. Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Camargo, L. [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); Torres-Díaz, I. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Chiu-Lam, A. [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); Hernández, M. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2016-08-15

    We demonstrate how dynamic magnetic susceptibility measurements (DMS) can be used to estimate the relative contributions of Brownian and Néel relaxation to the dynamic magnetic response of a magnetic fluid, a suspension of magnetic nanoparticles. The method applies to suspensions with particles that respond through Brownian or Néel relaxation and for which the characteristic Brownian and Néel relaxation times are widely separated. First, we illustrate this using magnetic fluids consisting of mixtures of particles that relax solely by the Brownian or Néel mechanisms. Then, it is shown how the same approach can be applied to estimate the relative contributions of Brownian and Néel relaxation in a suspension consisting of particles obtained from a single synthesis and whose size distribution straddles the transition from Néel to Brownian relaxation. - Highlights: • Method to estimate the contributions of the relaxation mechanism to the magnetic response. • Method applies to cases where the Brownian and Néel peaks do not overlap. • The method applies for ferrofluids prepared with as–synthesized particles.

  12. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Science.gov (United States)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-01

    Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  13. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    Science.gov (United States)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle

  14. Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Padding, J T; Boek, E S; Briels, W J

    2005-01-01

    There is a great need for understanding the link between the detailed chemistry of surfactants, forming wormlike micelles, and their macroscopic rheological properties. In this paper we show how this link may be explored through particle simulations. First we review an existing bead-spring model. We find that shear flow enhances the formation of rings at the expense of linear chains. The shear viscosity of this model is dominated by solvent contributions, however, and the link with the chemistry of the surfactants is missing. We introduce a more realistic Brownian dynamics model, the parameters of which are measured from atomistic molecular dynamics simulations

  15. Conserved linear dynamics of single-molecule Brownian motion

    Science.gov (United States)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  16. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  17. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms.

    Science.gov (United States)

    Solano, Carlos J F; Pothula, Karunakar R; Prajapati, Jigneshkumar D; De Biase, Pablo M; Noskov, Sergei Yu; Kleinekathöfer, Ulrich

    2016-05-10

    All-atom molecular dynamics simulations have a long history of applications studying ion and substrate permeation across biological and artificial pores. While offering unprecedented insights into the underpinning transport processes, MD simulations are limited in time-scales and ability to simulate physiological membrane potentials or asymmetric salt solutions and require substantial computational power. While several approaches to circumvent all of these limitations were developed, Brownian dynamics simulations remain an attractive option to the field. The main limitation, however, is an apparent lack of protein flexibility important for the accurate description of permeation events. In the present contribution, we report an extension of the Brownian dynamics scheme which includes conformational dynamics. To achieve this goal, the dynamics of amino-acid residues was incorporated into the many-body potential of mean force and into the Langevin equations of motion. The developed software solution, called BROMOCEA, was applied to ion transport through OmpC as a test case. Compared to fully atomistic simulations, the results show a clear improvement in the ratio of permeating anions and cations. The present tests strongly indicate that pore flexibility can enhance permeation properties which will become even more important in future applications to substrate translocation.

  18. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    Science.gov (United States)

    2015-02-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 29-04-2015 Journal Article Impact of submesoscale processes on dynamics of phytoplankton ...in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a...filaments are 3 -4 times weaker. coastal processes; upwelling, submesoscale processes, phytoplankton filaments Unclassified Unclassified Unclassified UU 13 Igor Shulman (228) 688-5646 Reset

  19. Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution

    International Nuclear Information System (INIS)

    Tothova, J.; Lisy, V.

    2015-01-01

    The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)

  20. Dynamically generated patterns in dense suspensions of active filaments

    Science.gov (United States)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  1. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    Science.gov (United States)

    Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2010-04-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.

  2. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    International Nuclear Information System (INIS)

    Zhao-Wen, Duan; Wei, Li; Ping, Xie; Shuo-Xing, Dou; Peng-Ye, Wang

    2010-01-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking” interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon. (cross-disciplinary physics and related areas of science and technology)

  3. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow.

    Science.gov (United States)

    Winkler, Roland G

    2016-04-20

    The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found.

  4. Self-propelled Brownian spinning top: Dynamics of a biaxial swimmer at low Reynolds numbers

    Science.gov (United States)

    Wittkowski, Raphael; Löwen, Hartmut

    2012-02-01

    Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories.

  5. Brownian motion under dynamic disorder: effects of memory on the decay of the non-Gaussianity parameter

    Science.gov (United States)

    Tyagi, Neha; Cherayil, Binny J.

    2018-03-01

    The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.

  6. Brownian dynamics of self-regulated particles with additional degrees of freedom: Symmetry breaking and homochirality

    Science.gov (United States)

    Bhattacharyya, Debankur; Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-04-01

    We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

  7. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    Science.gov (United States)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  8. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model

    Science.gov (United States)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin

    2018-03-01

    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  9. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods

    Science.gov (United States)

    Tao, Yu-Guo; den Otter, W. K.; Padding, J. T.; Dhont, J. K. G.; Briels, W. J.

    2005-06-01

    Recently a microscopic theory for the dynamics of suspensions of long thin rigid rods was presented, confirming and expanding the well-known theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here this theory is put to the test by comparing it against computer simulations. A Brownian dynamics simulation program was developed to follow the dynamics of the rods, with a length over a diameter ratio of 60, on the Smoluchowski time scale. The model accounts for excluded volume interactions between rods, but neglects hydrodynamic interactions. The self-rotational diffusion coefficients Dr(φ) of the rods were calculated by standard methods and by a new, more efficient method based on calculating average restoring torques. Collective decay of orientational order was calculated by means of equilibrium and nonequilibrium simulations. Our results show that, for the currently accessible volume fractions, the decay times in both cases are virtually identical. Moreover, the observed decay of diffusion coefficients with volume fraction is much quicker than predicted by the theory, which is attributed to an oversimplification of dynamic correlations in the theory.

  10. Dynamical origin of non-thermal states in galactic filaments

    Science.gov (United States)

    Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo

    2018-03-01

    Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.

  11. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions

    Science.gov (United States)

    Ahuja, V. R.; van der Gucht, J.; Briels, W. J.

    2018-01-01

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different

  12. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W.; Tang, Jay X.; Stein, Derek

    2018-02-01

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  13. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    Science.gov (United States)

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  14. Simulation for Sludge Flocculation I: Brownian Dynamic Simulation for Perikinetic Flocculation of Charged Particle

    Directory of Open Access Journals (Sweden)

    Linshuang Liu

    2012-01-01

    Full Text Available To investigate sludge drying process, a numerical simulation based on Brownian dynamic for the floc with uncharged and charged particles was conducted. The Langevin equation is used as dynamical equation for tracking each particle in a floc. An initial condition and periodic boundary condition which well conformed to reality is used for calculating the floc growth process. Each cell consists of 1000 primary particles with diameter 0.1 ∼ 4 μm. Floc growth is related to the thermal force and the electrostatic force. The electrostatic force on a particle in the simulation cell is considered as the sum of electrostatic forces from other particles in the original cell and its replicate cells. It is assumed that flocs are charged with precharged primary particles in dispersion system by ionization. By the analysis of the simulation figures, on one hand, the effects of initial particle size and sludge density on floc smashing time, floc radius of gyration, and fractal dimension were discussed. On the other hand, the effects of ionization on floc smashing time and floc structure were presented. This study has important practical value in the high-turbidity water treatment, especially for sludge drying.

  15. DNA breathing dynamics: analytic results for distribution functions of relevant Brownian functionals.

    Science.gov (United States)

    Bandyopadhyay, Malay; Gupta, Shamik; Segal, Dvira

    2011-03-01

    We investigate DNA breathing dynamics by suggesting and examining several Brownian functionals associated with bubble lifetime and reactivity. Bubble dynamics is described as an overdamped random walk in the number of broken base pairs. The walk takes place on the Poland-Scheraga free-energy landscape. We suggest several probability distribution functions that characterize the breathing process, and adopt the recently studied backward Fokker-Planck method and the path decomposition method as elegant and flexible tools for deriving these distributions. In particular, for a bubble of an initial size x₀, we derive analytical expressions for (i) the distribution P(t{f}|x₀) of the first-passage time t{f}, characterizing the bubble lifetime, (ii) the distribution P(A|x₀) of the area A until the first-passage time, providing information about the effective reactivity of the bubble to processes within the DNA, (iii) the distribution P(M) of the maximum bubble size M attained before the first-passage time, and (iv) the joint probability distribution P(M,t{m}) of the maximum bubble size M and the time t{m} of its occurrence before the first-passage time. These distributions are analyzed in the limit of small and large bubble sizes. We supplement our analytical predictions with direct numericalsimulations of the related Langevin equation, and obtain a very good agreement in the appropriate limits. The nontrivial scaling behavior of the various quantities analyzed here can, in principle, be explored experimentally.

  16. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description

    OpenAIRE

    Cosseddu, Salvatore M.; Khovanov, Igor A.; Allen, Michael P.; Rodger, P. M.; Luchinsky, Dmitry G.; McClintock, Peter V. E.

    2013-01-01

    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by u...

  17. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  18. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.

    Science.gov (United States)

    Huang, Yu-Ming M; Huber, Gary A; Wang, Nuo; Minteer, Shelley D; McCammon, J Andrew

    2018-02-01

    Malate dehydrogenase (MDH) and citrate synthase (CS) are two pacemaking enzymes involved in the tricarboxylic acid (TCA) cycle. Oxaloacetate (OAA) molecules are the intermediate substrates that are transferred from the MDH to CS to carry out sequential catalysis. It is known that, to achieve a high flux of intermediate transport and reduce the probability of substrate leaking, a MDH-CS metabolon forms to enhance the OAA substrate channeling. In this study, we aim to understand the OAA channeling within possible MDH-CS metabolons that have different structural orientations in their complexes. Three MDH-CS metabolons from native bovine, wild-type porcine, and recombinant sources, published in recent work, were selected to calculate OAA transfer efficiency by Brownian dynamics (BD) simulations and to study, through electrostatic potential calculations, a possible role of charges that drive the substrate channeling. Our results show that an electrostatic channel is formed in the metabolons of native bovine and recombinant porcine enzymes, which guides the oppositely charged OAA molecules passing through the channel and enhances the transfer efficiency. However, the channeling probability in a suggested wild-type porcine metabolon conformation is reduced due to an extended diffusion length between the MDH and CS active sites, implying that the corresponding arrangements of MDH and CS result in the decrease of electrostatic steering between substrates and protein surface and then reduce the substrate transfer efficiency from one active site to another. © 2017 The Protein Society.

  19. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    Science.gov (United States)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  20. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    Science.gov (United States)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  1. DNA electrophoresis in tri-block copolymer gels--experiments and Brownian dynamics simulation

    Science.gov (United States)

    Wei, Ling; van Winkle, David H.

    2015-03-01

    The mobility of double-stranded DNA ladders in Pluronics®P105, P123 and F127, was measured by two-dimensional gel electrophoresis. Pluronics®are triblock copolymers which form gel-like phases of micelles arranged with cubic order at room temperature. A 10 base pair and a 25 base pair DNA ladder were used as samples in gel electrophoresis. The monotonically decreasing mobility with increasing length observed in the agarose separations is not observed in separations in Pluronics®. Rather, a complicated dependence of mobility on DNA length is observed, where mobility vs. length increases for short DNA molecules then decreases for longer molecules. There is also a variation of mobility with length correlated to the micelle diameter. Brownian dynamics simulations of a discrete wormlike chain model were performed to simulate short DNA molecules migrating in free solution and in a face-centered cubic matrix. By incorporating hydrodynamic interactions, the trend of simulated length-dependent mobility qualitatively agrees with experimental measurements.

  2. Programmable Active Matter: Dynamics of active filaments on patterned surfaces

    Science.gov (United States)

    Yadav, Vikrant; Todd, Daniel; Milas, Peker; Ruijgrok, Paul; Bryant, Zev; Ross, Jennifer

    Interfaces are ubiquitous in biology. For a sub-cellular component moving inside the cell, any change in its local environment across an interface whether chemical concentration, density, or any other physical variables can produce novel dynamics. Recent advances in bioengineering allow us to control motor proteins' velocities when prompted by an optical trigger. Using an optical diaphragm and a gear-shifting myosin XI construct containing a photoactive LOV domain, we can spatially pattern light to create interfaces across which speed of a gliding actin filament can differ by as much as a factor of two. We observe that when a gliding actin filament crosses an interface that has a discontinuous velocity jump, it buckles and changes its angle of orientation due to the velocity mismatch. Our preliminary data suggests that for small angels of incidence, the angle of emergence increases linearly. If we increase the angle of incidence further we observe that the angle of emergence saturates. For some actin filaments approaching the interface near-tangentially we observe total internal reflection as they fail to crossover the boundary. We have modeled our system using Cytosim software package and find excellent agreement with experimental data.

  3. Electrical autonomous Brownian gyrator

    Science.gov (United States)

    Chiang, K.-H.; Lee, C.-L.; Lai, P.-Y.; Chen, Y.-F.

    2017-09-01

    We study experimentally and theoretically the steady-state dynamics of a simple stochastic electronic system featuring two resistor-capacitor circuits coupled by a third capacitor. The resistors are subject to thermal noises at real temperatures. The voltage fluctuation across each resistor can be compared to a one-dimensional Brownian motion. However, the collective dynamical behavior, when the resistors are subject to distinct thermal baths, is identical to that of a Brownian gyrator, as first proposed by Filliger and Reimann [Phys. Rev. Lett. 99, 230602 (2007), 10.1103/PhysRevLett.99.230602]. The average gyrating dynamics is originated from the absence of detailed balance due to unequal thermal baths. We look into the details of this stochastic gyrating dynamics, its dependences on the temperature difference and coupling strength, and the mechanism of heat transfer through this simple electronic circuit. Our work affirms the general principle and the possibility of a Brownian ratchet working near room temperature scale.

  4. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  5. The special theory of Brownian relativity: equivalence principle for dynamic and static random paths and uncertainty relation for diffusion.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-03-15

    The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.

  6. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences

    International Nuclear Information System (INIS)

    McKane, Alan

    2003-01-01

    This is a book about the modelling of complex systems and, unlike many books on this subject, concentrates on the discussion of specific systems and gives practical methods for modelling and simulating them. This is not to say that the author does not devote space to the general philosophy and definition of complex systems and agent-based modelling, but the emphasis is definitely on the development of concrete methods for analysing them. This is, in my view, to be welcomed and I thoroughly recommend the book, especially to those with a theoretical physics background who will be very much at home with the language and techniques which are used. The author has developed a formalism for understanding complex systems which is based on the Langevin approach to the study of Brownian motion. This is a mesoscopic description; details of the interactions between the Brownian particle and the molecules of the surrounding fluid are replaced by a randomly fluctuating force. Thus all microscopic detail is replaced by a coarse-grained description which encapsulates the essence of the interactions at the finer level of description. In a similar way, the influences on Brownian agents in a multi-agent system are replaced by stochastic influences which sum up the effects of these interactions on a finer scale. Unlike Brownian particles, Brownian agents are not structureless particles, but instead have some internal states so that, for instance, they may react to changes in the environment or to the presence of other agents. Most of the book is concerned with developing the idea of Brownian agents using the techniques of statistical physics. This development parallels that for Brownian particles in physics, but the author then goes on to apply the technique to problems in biology, economics and the social sciences. This is a clear and well-written book which is a useful addition to the literature on complex systems. It will be interesting to see if the use of Brownian agents becomes

  7. Brownian agents and active particles collective dynamics in the natural and social sciences

    CERN Document Server

    Schweitzer, Frank

    2007-01-01

    ""This book lays out a vision for a coherent framework for understanding complex systems"" (from the foreword by J. Doyne Farmer). By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. This way, an efficient method for computer simulations of complex systems is developed which is also accessible to analytical investigations and quantitative predictions. The book demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from

  8. Dynamical 3-Space: Cosmic Filaments, Sheets and Voids

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-04-01

    Full Text Available Observations of weak gravitational lensing combined with statistical tomographic techniques have revealed that galaxies have formed along filaments, essentially one-dimensional lines or strings, which form sheets and voids. These have, in the main, been interpreted as "dark matter" effects. To the contrary here we report the discovery that the dynamical 3-space theory possesses such filamentary solutions. These solutions are purely space self-interaction effects, and are attractive to matter, and as well generate electromagnetic lensing. This theory of space has explained bore hole anomalies, supermassive black hole masses in spherical galaxies and globular clusters, flat rotation curves of spiral galaxies, and other gravitational anomalies. The theory has two constants, $G$ and $alpha$, where the bore hole experiments show that $alpha approx 1/137$ is the fine structure constant.

  9. Dynamical 3-Space: Cosmic Filaments, Sheets and Voids

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2011-04-01

    Full Text Available Observations of weak gravitational lensing combined with statistical tomographic techniques have revealed that galaxies have formed along filaments, essentially one- dimensional lines or strings, which form sheets and voids. These have, in the main, been interpreted as “dark matter” effects. To the contrary here we report the discovery that the dynamical 3-space theory possesses such filamentary solutions. These solutions are purely space self-interaction effects, and are attractive to matter, and as well gener- ate electromagnetic lensing. This theory of space has explained bore hole anomalies, supermassive black hole masses in spherical galaxies and globular clusters, flat rota- tion curves of spiral galaxies, and other gravitational anomalies. The theory has two constants, G and , where the bore hole experiments show that 1 = 137 is the fine structure constant.

  10. Structural modeling and molecular dynamics simulation of the actin filament.

    Science.gov (United States)

    Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C

    2011-07-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.

  11. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Hartvig, N; Belágyi, J; Somogyi, B

    2000-12-29

    Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys(374) residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys(374) from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys(374) of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.

  12. Quantal Brownian Motion from RPA dynamics: The master and Fokker-Planck equations

    International Nuclear Information System (INIS)

    Yannouleas, C.

    1984-05-01

    From the purely quantal RPA description of the damped harmonic oscillator and of the corresponding Brownian Motion within the full space (phonon subspace plus reservoir), a master equation (as well as a Fokker-Planck equation) for the reduced density matrix (for the reduced Wigner function, respectively) within the phonon subspace is extracted. The RPA master equation agrees with the master equation derived by the time-dependent perturbative approaches which utilize Tamm-Dancoff Hilbert spaces and invoke the rotating wave approximation. Since the RPA yields a full, as well as a contracted description, it can account for both the kinetic and the unperturbed oscillator momenta. The RPA description of the quantal Brownian Motion contrasts with the descriptions provided by the time perturbative approaches whether they invoke or not the rotating wave approximation. The RPA description also contrasts with the phenomenological phase space quantization. (orig.)

  13. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  14. Parallel O(N) Stokes' solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries

    Science.gov (United States)

    Zhao, Xujun; Li, Jiyuan; Jiang, Xikai; Karpeev, Dmitry; Heinonen, Olle; Smith, Barry; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2017-06-01

    An efficient parallel Stokes' solver has been developed for complete description of hydrodynamic interactions between Brownian particles in bulk and confined geometries. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green's function formalism. A scalable parallel computational approach is presented, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the general geometry Ewald-like method. Our approach employs a highly efficient iterative finite-element Stokes' solver for the accurate treatment of long-range hydrodynamic interactions in arbitrary confined geometries. A combination of mid-point time integration of the Brownian stochastic differential equation, the parallel Stokes' solver, and a Chebyshev polynomial approximation for the fluctuation-dissipation theorem leads to an O(N) parallel algorithm. We illustrate the new algorithm in the context of the dynamics of confined polymer solutions under equilibrium and non-equilibrium conditions. The method is then extended to treat suspended finite size particles of arbitrary shape in any geometry using an immersed boundary approach.

  15. Dynamics of RecA filaments on single-stranded DNA

    NARCIS (Netherlands)

    Van Loenhout, M.T.J.; Van der Heijden, T.; Kanaar, R.; Wyman, C.; Dekker, C.

    2009-01-01

    RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on

  16. Multi-code analysis of scrape-off layer filament dynamics in MAST

    DEFF Research Database (Denmark)

    Militello, F.; Walkden, N. R.; Farley, T.

    2016-01-01

    Four numerical codes are employed to investigate the dynamics of scrape-off layer filaments in tokamak relevant conditions. Experimental measurements were taken in the MAST device using visual camera imaging, which allows the evaluation of the perpendicular size and velocity of the filaments...

  17. Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study.

    Science.gov (United States)

    Tekieh, Tahereh; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2016-09-01

    A three-dimensional Brownian Dynamics (BD) in combination with electrostatic calculations is employed to specifically study the effects of radiation of high frequency electromagnetic fields on the conduction and concentration profile of calcium ions inside the voltage-gated calcium channels. The electrostatic calculations are performed using COMSOL Multiphysics by considering dielectric interfaces effectively. The simulations are performed for different frequencies and intensities. The simulation results show the variations of conductance, average number of ions and the concentration profiles of ions inside the channels in response to high frequency radiation. The ionic current inside the channel increases in response to high frequency electromagnetic field radiation, and the concentration profiles show that the residency of ions in the channel decreases accordingly. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dynamic light scattering study of the effect of Mg2+ and ATP on synthetic myosin filaments

    Science.gov (United States)

    Fujime, Satoru; Takayama, Sei-ichi

    1995-01-01

    The dynamic light scattering (DLS) method provides us with information about the apparent diffusion coefficient, Dapp, as well as the static scattering intensity, Is. For long but thin rods with length L and diameter d (i.e., KL >> 1 but Kd different from that of Is. By means of DLS were studied synthetic myosin filaments of vertebrate skeletal muscle in solution at pH 8.3. It appeared that Mg2+ ions induced lengthening and thickening of the filaments whereas ATP (and ADP) induced shortening (depolymerization) of the filaments. When ATP was added to the filament preparation in the presence of Mg2+ ions, thinning of the filaments (or splitting into subfilaments) occurred prior to shortening (depolymerization).

  19. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Mereghetti, Paolo; Wade, Rebecca C.

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  20. The self-assembly, elasticity, and dynamics of cardiac thin filaments.

    Science.gov (United States)

    Tassieri, M; Evans, R M L; Barbu-Tudoran, L; Trinick, J; Waigh, T A

    2008-03-15

    Solutions of intact cardiac thin filaments were examined with transmission electron microscopy, dynamic light scattering (DLS), and particle-tracking microrheology. The filaments self-assembled in solution with a bell-shaped distribution of contour lengths that contained a population of filaments of much greater length than the in vivo sarcomere size ( approximately 1 mum) due to a one-dimensional annealing process. Dynamic semiflexible modes were found in DLS measurements at fast timescales (12.5 ns-0.0001 s). The bending modulus of the fibers is found to be in the range 4.5-16 x 10(-27) Jm and is weakly dependent on calcium concentration (with Ca2+ > or = without Ca2+). Good quantitative agreement was found for the values of the fiber diameter calculated from transmission electron microscopy and from the initial decay of DLS correlation functions: 9.9 nm and 9.7 nm with and without Ca2+, respectively. In contrast, at slower timescales and high polymer concentrations, microrheology indicates that the cardiac filaments act as short rods in solution according to the predictions of the Doi-Edwards chopsticks model (viscosity, eta approximately c(3), where c is the polymer concentration). This differs from the semiflexible behavior of long synthetic actin filaments at comparable polymer concentrations and timescales (elastic shear modulus, G' approximately c(1.4), tightly entangled) and is due to the relative ratio of the contour lengths ( approximately 30). The scaling dependence of the elastic shear modulus on the frequency (omega) for cardiac thin filaments is G' approximately omega(3/4 +/- 0.03), which is thought to arise from flexural modes of the filaments.

  1. Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS

    Science.gov (United States)

    Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan

    Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiency has been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume.

  2. The Dynamic Behavior of a Concentrated Non-Brownian Glass Fiber Suspension in Simple Shear Flow

    International Nuclear Information System (INIS)

    Eberle, Aaron P. R.; Baird, Donald; Ortman, Kevin; Velez, Gregorio; Wapperom, Peter

    2008-01-01

    The dynamic behavior of a concentrated short glass fiber suspension subject to simple shear flow is investigated. In particular we are interested in determining the relationship between the stress growth functions (shear and first normal stress difference) and the fiber microstructure within the sample. Stress growth experiments, in start up of flow, are performed on a Rheometrics Mechanical Spectrometer (RMS-800) using a novel approach which deforms the sample in a homogeneous shear field. The 3D fiber orientation is characterized using confocal laser microscopy and experimental results are compared to predictions based on the generalized Jeffery equation. It is found that the theory over predicts the rate at which the fiber orientation evolves

  3. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.

    Science.gov (United States)

    Theers, Mario; Westphal, Elmar; Gompper, Gerhard; Winkler, Roland G

    2016-03-01

    The friction and diffusion coefficients of rigid spherical colloidal particles dissolved in a fluid are determined from velocity and force autocorrelation functions by mesoscale hydrodynamic simulations. Colloids with both slip and no-slip boundary conditions are considered, which are embedded in fluids modeled by multiparticle collision dynamics with and without angular momentum conservation. For no-slip boundary conditions, hydrodynamics yields the well-known Stokes law, while for slip boundary conditions the lack of angular momentum conservation leads to a reduction of the hydrodynamic friction coefficient compared to the classical result. The colloid diffusion coefficient is determined by integration of the velocity autocorrelation function, where the numerical result at shorter times is combined with the theoretical hydrodynamic expression for longer times. The suitability of this approach is confirmed by simulations of sedimenting colloids. In general, we find only minor deviations from the Stokes-Einstein relation, which even disappear for larger colloids. Importantly, for colloids with slip boundary conditions, our simulation results contradict the frequently assumed additivity of local and hydrodynamic diffusion coefficients.

  4. Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading

    Science.gov (United States)

    Esin, S.; Osman, B.

    2017-10-01

    The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.

  5. Nonequilibrium dynamics of probe filaments in actin-myosin networks

    Science.gov (United States)

    Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.

    2017-08-01

    Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.

  6. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  7. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  8. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  9. Ratcheted electrophoresis of Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Kowalik, Mikołaj; Bishop, Kyle J. M., E-mail: kjmbishop@engr.psu.edu [Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-05-16

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operating condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.

  10. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  11. Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.

    Science.gov (United States)

    Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J

    2017-06-16

    Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.

  12. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.

    Science.gov (United States)

    De Biase, Pablo M; Markosyan, Suren; Noskov, Sergei

    2015-02-05

    The transport of ions and solutes by biological pores is central for cellular processes and has a variety of applications in modern biotechnology. The time scale involved in the polymer transport across a nanopore is beyond the accessibility of conventional MD simulations. Moreover, experimental studies lack sufficient resolution to provide details on the molecular underpinning of the transport mechanisms. BROMOC, the code presented herein, performs Brownian dynamics simulations, both serial and parallel, up to several milliseconds long. BROMOC can be used to model large biological systems. IMC-MACRO software allows for the development of effective potentials for solute-ion interactions based on radial distribution function from all-atom MD. BROMOC Suite also provides a versatile set of tools to do a wide variety of preprocessing and postsimulation analysis. We illustrate a potential application with ion and ssDNA transport in MspA nanopore. © 2014 Wiley Periodicals, Inc.

  13. The structure and dynamics of blob filaments in the stellarator TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Garland, Stephen; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany); Fuchert, Golo [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany)

    2016-07-01

    Filamental structures with higher pressure than the background plasma are commonly observed in the scrape-off layer (SOL) of toroidal magnetic confinement devices. These structures, often referred to as blobs, propagate radially outwards and poloidally, contributing significantly to SOL transport. It is therefore important to study the properties of blobs in order to be able to predict heat loads on the plasma facing components of future reactors, as well as to better understand particle transport and plasma confinement. Detailed experiments have been carried out into blob dynamics and structure using Langmuir probes at the stellarator TJ-K. By means of the conditional averaging technique, blob dynamics in a poloidal cross section have been studied, and the influence of geodesic curvature on poloidal blob drive are shown. In addition, the result of simultaneous measurements at two toroidally separated locations is presented, providing information on the 3D structure of blob filaments and their alignment to the magnetic field as they propagate through the SOL.

  14. Brownian Motion in Minkowski Space

    Directory of Open Access Journals (Sweden)

    Paul O'Hara

    2015-06-01

    Full Text Available We construct a model of Brownian motion in Minkowski space. There are two aspects of the problem. The first is to define a sequence of stopping times associated with the Brownian “kicks” or impulses. The second is to define the dynamics of the particle along geodesics in between the Brownian kicks. When these two aspects are taken together, the Central Limit Theorem (CLT leads to temperature dependent four dimensional distributions defined on Minkowski space, for distances and 4-velocities. In particular, our processes are characterized by two independent time variables defined with respect to the laboratory frame: a discrete one corresponding to the stopping times when the impulses take place and a continuous one corresponding to the geodesic motion in-between impulses. The subsequent distributions are solutions of a (covariant pseudo-diffusion equation which involves derivatives with respect to both time variables, rather than solutions of the telegraph equation which has a single time variable. This approach simplifies some of the known problems in this context.

  15. The L1495-B218 filaments in Taurus seen in NH3 & CCS and Dynamical Stability of Filaments and Dense Cores

    Science.gov (United States)

    Seo, Youngmin

    2016-01-01

    We present deep NH3 map of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending 8 pc. We observed the filaments in NH3 (1,1) & (2,2) and CCS 21-10 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH3 (1,1). Applying a virial analysis for the 39 NH3 leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar (Seo et al. 2015).We also present more realistic dynamic stability conditions for dense cores with converging motions and under the influence of radiation pressure. The critical Bonnor-Ebert sphere and the isothermal cylinder have been widely used to test stability of dense cores and filaments; however, these assume a quiescent environment while actual star forming regions are turbulent and illuminated by radiation. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores (Seo et al. 2011) and the effect of radiation fields into account. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere (Seo et al. 2013). We also find that the critical mass/line density of a dense core/filament irradiated by radiation are considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For inner Galactic regions and regions near OB associations, the critical

  16. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through ...

  17. Characterization of Actin Filament Dynamics during Mitosis in Wheat Protoplasts under UV-B Radiation.

    Science.gov (United States)

    Chen, Huize; Han, Rong

    2016-01-29

    Enhanced ultraviolet-B (UV-B) radiation is caused by the thinning ozone and affects photosynthesis and crop yield. Recently, UV-B radiation has been considered as an environmental signal that regulates plant growth. Elucidating the downstream effectors in UV-B-triggered pathways is of particular interest. Previous studies have shown that actin filaments (AFs) play many roles during cell physiological processes. However, the underlying response of AFs to UV-B radiation remains unclear. In this study, wheat protoplasts were isolated from 7-d-old leaves. The dynamics of AFs during mitosis were observed under different treatments. The protoplasts were treated with UV-B radiation, cytochalasin B (CB) and jasplakinolide (JAS). Ph-FITC labelling results revealed typical actin filament structures in the control group; AFs were rearranged under UV-B radiation. AFs polymerized into bundles during interphase, the preprophase band (PPB) structure was destroyed during prophase, and the AFs gathered into plaques during metaphase in response to UV-B radiation. During anaphase and telophase, the distribution of AFs was dispersed. Pharmacologic experiments revealed that CB induced apoptosis and JAS induced nuclear division without cytokinesis in wheat protoplasts. These results indicated that AFs respond to UV-B radiation during mitosis, supplying evidence of UV-B signal transduction in plants.

  18. Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments

    Science.gov (United States)

    Midha, Tripti; Gupta, Arvind Kumar

    2017-11-01

    Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.

  19. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  20. Static structure of active Brownian hard disks

    Science.gov (United States)

    de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.

    2018-02-01

    We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

  1. Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including the higher-order Kerr effects.

    Science.gov (United States)

    Huang, T W; Zhou, C T; He, X T

    2013-05-01

    Plasma defocusing and higher-order Kerr effects on multiple filamentation and pattern formation of ultrashort laser pulse propagation in air are investigated. Linear analyses and numerical results show that these two saturable nonlinear effects can destroy the coherent evolution of the laser field, and small-scale spatial turbulent structures rapidly appear. For the two-dimensional case, numerical simulations show that blow-up-like solutions, spatial chaos, and pseudorecurrence can appear at higher laser intensities if only plasma defocusing is included. These complex patterns result from the stochastic evolution of the higher- or shorter-wavelength modes of the laser light spectrum. From the viewpoint of nonlinear dynamics, filamentation can be attributed to the modulational instability of these spatial incoherent localized structures. Furthermore, filament patterns associated with multiphoton ionization of the air molecules with and without higher-order Kerr effects are compared.

  2. Efficiency of Brownian Motors

    OpenAIRE

    Parrondo, J. M. R.; Blanco, J. M.; Cao, F. J.; Brito, R.

    1998-01-01

    The efficiency of different types of Brownian motors is calculated analytically and numerically. We find that motors based on flashing ratchets present a,low efficiency and an unavoidable entropy production. On the other hand, a certain class of motors based on adiabatically changing potentials, named reversible ratchets, exhibit a higher efficiency and the entropy production can be arbitrarily reduced.

  3. Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

    Science.gov (United States)

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E

    2013-10-15

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. [Dynamics of a vortex with the U-shaped filament in the heart of a ground squirrel].

    Science.gov (United States)

    Kukushkin, N I; Gorbacheva, K N; Sklifas, A N

    2009-01-01

    The dynamics of an electrical scroll wave with the U-shaped filament with both ends of the filament being "anchored" on the endocardial surface and the dependence of the structure of pseudoECG on the dynamics of the vortex during the development of polymorphic tachysystolia have been studied by applying premature stimuli to the "target phase" with subsequent registration of the spatial and temporal distribution of electrical potential throughout the surface (endocardial and epicardial) of a thin (approximately 1 mm) preparation. It was found that (1) the psedoECG of the polymorphic form during the tachysystolia attack can be observed in the case that the position of the filament ends on the surfaces of the preparation does not practically change from turn to turn (filament ends are "anchored"); (2) the thread of a scroll wave during this attack can twist and untwin (twisted filament), just as it was the case for scroll waves with a straight filament; (3) in the case of pseudoECG of polymorphic form, the twisting and untwining of the filament were stronger (the angle of maximal twisting was 120 degrees and more), and the angle of twisting changed by a substantially greater value from turn to turn as compared with the pseudoECG of monomorphic form; (4) in the case of pseudoECG of polymorphic form, the time interval between the appearance of waves on the surfaces of the preparation (Tepi-endo) was substantially greater and changed to a greater extent from turn to turn of the vortex; and (5) simultaneously with the appearance of pseudoECG of polymorphic form and the onset of changes in the twisting of the scroll and the Tepi-endo interval indicated in (2-4), significant changes in the patterns of coverage of the surface by excitation occurred. Based on the results obtained, an explanation of the reasons for the appearance of excitation breakdown patterns on the surface of the myocardium was proposed, which differs from the traditional viewpoint. These patterns may be

  5. Disordered Markovian Brownian ratchets.

    Science.gov (United States)

    Alicki, R

    1999-09-01

    A model of a Brownian ratchet coupled to a heat bath and driven by a nonequilibrium Poisson white noise is discussed. The formula describing a generated current in terms of the statistical properties of a possible irregular or random potential is derived within the small nonequilibrium noise approximation and illustrated by a few concrete examples. The perturbation technique for Hilbert space operators is used as a mathematical tool.

  6. Biophysically realistic filament bending dynamics in agent-based biological simulation.

    Directory of Open Access Journals (Sweden)

    Jonathan B Alberts

    Full Text Available An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions--following thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear centration, cytokinesis, the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed (or theoretically expected static force deflection, relaxation time-constant, and thermal writhing motions. I additionally employ a unique pair of elastic elements--one representing the axial and the other the bending rigidity- that formulate the restoring force in terms of single time-step constraint resolution. This method is highly local -adjacent rigid segments of a filament only interact with one another through constraint forces-and is thus well-suited to simulations in which arbitrary additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements between filaments may be present. Implementation in code is straightforward; Java source code is available at www.celldynamics.org.

  7. Constructive role of Brownian motion: Brownian motors and Stochastic Resonance

    Science.gov (United States)

    Hänggi, Peter

    2005-03-01

    Noise is usually thought of as the enemy of order rather as a constructive influence. For the phenomena of Stochastic Resonance [1] and Brownian motors [2], however, stochastic noise can play a beneficial role in enhancing detection and/or facilitating directed transmission of information in absence of biasing forces. Brownian motion assisted Stochastic Resonance finds useful applications in physical, technological, biological and biomedical contexts [1,3]. The basic principles that underpin Stochastic Resonance are elucidated and novel applications for nonlinear classical and quantum systems will be addressed. The presence of non-equilibrium disturbances enables to rectify Brownian motion so that quantum and classical objects can be directed around on a priori designed routes in biological and physical systems (Brownian motors). In doing so, the energy from the haphazard motion of (quantum) Brownian particles is extracted to perform useful work against an external load. This very concept together with first experimental realizations are discussed [2,4,5]. [1] L. Gammaitoni, P. Hä'nggi, P. Jung and F. Marchesoni, Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998).[2] R. D. Astumian and P. Hä'nggi, Brownian motors, Physics Today 55 (11), 33 (2002).[3] P. Hä'nggi, Stochastic Resonace in Physics and Biology, ChemPhysChem 3, 285 (2002).[4] H. Linke, editor, Special Issue on Brownian Motors, Applied Physics A 75, No. 2 (2002).[5] P. Hä'nggi, F. Marchesoni, F. Nori, Brownian motors, Ann. Physik (Leipzig) 14, xxx (2004); cond-mat/0410033.

  8. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunhee; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Bourke, Tyler L. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Cheshire SK11 9DL (United Kingdom); II, Neal J. Evans, E-mail: yunhee.choi@khu.ac.kr, E-mail: jeongeun.lee@khu.ac.kr [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2017-04-01

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Class II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.

  9. Detrended Fluctuation Analysis of multifractional Brownian motion

    Science.gov (United States)

    Setty, Venkat; Sharma, Surjalal

    2013-03-01

    Multifractional Brownian Motion (mBm) is a generalization of Fractional Brownian motion (fBm) with a time varying Hurst exponent, H (t) . Detrended Fluctuation Analysis (DFA) is a technique used to study the scaling behavior representing long term correlations in various dynamical systems. In our work, we apply DFA to calculate a time averaged Hurst exponent, in mBm data. The accuracy of estimation of was shown to depend on the range and variability of H (t) . Furthermore, the effect of uniform random noise in H (t) on the nature of scaling observed in DFA is studied. Our research focusses on the robustness and applicability of the DFA technique for studying long term correlations in systems with time varying Hurst exponents akin to mBm .

  10. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.

    Science.gov (United States)

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-09-10

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  11. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range

    Directory of Open Access Journals (Sweden)

    Satoshi Ota

    2016-09-01

    Full Text Available The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  12. Interacting Brownian Swarms: Some Analytical Results

    Directory of Open Access Journals (Sweden)

    Guillaume Sartoretti

    2016-01-01

    Full Text Available We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact. Depending on the values of the control parameters, one of the following patterns emerges after collision: (i Both swarms remain essentially flocked, or (ii the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings.

  13. Archimedes' principle for Brownian liquid

    OpenAIRE

    Burdzy, Krzysztof; Chen, Zhen-Qing; Pal, Soumik

    2009-01-01

    We consider a family of hard core objects moving as independent Brownian motions confined to a vessel by reflection. These are subject to gravitational forces modeled by drifts. The stationary distribution for the process has many interesting implications, including an illustration of the Archimedes’ principle. The analysis rests on constructing reflecting Brownian motion with drift in a general open connected domain and studying its stationary distribution. In dimension two we utilize known ...

  14. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  15. Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Nedoma, Jiří; Kohout, L.; Kopáček, Jiří; Nedbalová, L.; Ráčková, P.; Šimek, Karel

    2003-01-01

    Roč. 46, č. 3 (2003), s. 281-294 ISSN 0168-6496 R&D Projects: GA ČR GA206/97/0072; GA ČR GA206/00/0063; GA ČR GA206/03/1583; GA AV ČR IAA6017202; GA AV ČR IPP1011802 Institutional research plan: CEZ:AV0Z6017912 Keywords : bacterioplankton * phylogenetic identification * heterotrophic filaments Subject RIV: EE - Microbiology, Virology Impact factor: 2.947, year: 2003

  16. Brownian gas models for extreme-value laws

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2013-01-01

    In this paper we establish one-dimensional Brownian gas models for the extreme-value laws of Gumbel, Weibull, and Fréchet. A gas model is a countable collection of independent particles governed by common diffusion dynamics. The extreme-value laws are the universal probability distributions governing the affine scaling limits of the maxima and minima of ensembles of independent and identically distributed one-dimensional random variables. Using the recently introduced concept of stationary Poissonian intensities, we construct two gas models whose global statistical structures are stationary, and yield the extreme-value laws: a linear Brownian motion gas model for the Gumbel law, and a geometric Brownian motion gas model for the Weibull and Fréchet laws. The stochastic dynamics of these gas models are studied in detail, and closed-form analytical descriptions of their temporal correlation structures, their topological phase transitions, and their intrinsic first-passage-time fluxes are presented. (paper)

  17. Limits of bifractional Brownian noises

    OpenAIRE

    Maejima, Makoto; Tudor, Ciprian

    2008-01-01

    International audience; Let $B^{H,K}=\\left (B^{H,K}_{t}, t\\geq 0\\right )$ be a bifractional Brownian motion with two parameters $H\\in (0,1)$ and $K\\in(0,1]$. The main result of this paper is that the increment process generated by the bifractional Brownian motion $\\left( B^{H,K}_{h+t} -B^{H,K} _{h}, t\\geq 0\\right)$ converges when $h\\to \\infty$ to $\\left (2^{(1-K)/{2}}B^{HK} _{t}, t\\geq 0\\right )$, where $\\left (B^{HK}_{t}, t\\geq 0\\right)$ is the fractional Brownian motion with Hurst index $HK...

  18. On the Generalized Brownian Motion and its Applications in Finance

    DEFF Research Database (Denmark)

    Høg, Esben; Frederiksen, Per; Schiemert, Daniel

    This paper deals with dynamic term structure models (DTSMs) and proposes a new way to handle the limitation of the classical affine models. In particular, the paper expands the exibility of the DTSMs by applying generalized Brownian motions with dependent increments as the governing force of the ...

  19. Deterministic Brownian motion generated from differential delay equations.

    Science.gov (United States)

    Lei, Jinzhi; Mackey, Michael C

    2011-10-01

    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.

  20. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-04-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.

  1. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-07-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the am- plitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2 m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic processes upon rotation of the Earth.

  2. Quantum Brownian motion model for the stock market

    Science.gov (United States)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  3. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  4. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocit...

  5. Nonequilibrium Brownian Motion beyond the Effective Temperature

    Science.gov (United States)

    Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo

    2014-01-01

    The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein’s relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own “effective” temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein’s relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased. PMID:24714671

  6. Nonequilibrium Brownian motion beyond the effective temperature.

    Directory of Open Access Journals (Sweden)

    Andrea Gnoli

    Full Text Available The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.

  7. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling.

    Science.gov (United States)

    Zheng, Wenjun

    2017-01-10

    Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.

  8. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    Science.gov (United States)

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-22

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  9. Dynamics of Apis mellifera Filamentous Virus (AmFV Infections in Honey Bees and Relationships with Other Parasites

    Directory of Open Access Journals (Sweden)

    Ulrike Hartmann

    2015-05-01

    Full Text Available Apis mellifera filamentous virus (AmFV is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75% and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  10. p-adic Brownian motion

    Science.gov (United States)

    Zelenov, E. I.

    2016-12-01

    We define p-adic Brownian motion (Wiener process) and study its properties. We construct a presentation of the trajectories of this process by their series expansions with respect to van der Put's basis and show that they are nowhere differentiable functions satisfying the p-adic Lipschitz condition of order 1. We define the p-adic Wiener measure on the space of continuous functions and study its properties.

  11. Extremes of multifractional Brownian motion

    OpenAIRE

    Bai, Long

    2017-01-01

    Let $B_{H}(t), t\\geq [0,T], T\\in(0,\\infty)$ be the standard Multifractional Brownian Motion(mBm), in this contribution we are concerned with the exact asymptotics of \\begin{eqnarray*} \\mathbb{P}\\left\\{\\sup_{t\\in[0,T]}B_{H}(t)>u\\right\\} \\end{eqnarray*} as $u\\rightarrow\\infty$. Mainly depended on the structures of $H(t)$, the results under several important cases are investigated.

  12. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  13. Communication: Memory effects and active Brownian diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak K. [Department of Chemistry, Presidency University, Kolkata 700073 (India); Li, Yunyun, E-mail: yunyunli@tongji.edu.cn [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Marchegiani, Giampiero [Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Marchesoni, Fabio [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy)

    2015-12-07

    A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer’s propulsion are exponentially correlated in time, whereas in the second one, we account for possible damped fluctuations of the propulsion velocity around the swimmer’s axis. The corresponding swimmer’s diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.

  14. Operator Fractional Brownian Motion and Martingale Differences

    Directory of Open Access Journals (Sweden)

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  15. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  16. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Premchandar, Aiswarya; Mücke, Norbert; Poznański, Jarosław; Wedig, Tatjana; Kaus-Drobek, Magdalena; Herrmann, Harald; Dadlez, Michał

    2016-11-25

    Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Brownian motion of tethered nanowires.

    Science.gov (United States)

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  18. Patterns of molecular motors that guide and sort filaments.

    Science.gov (United States)

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  19. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane.

    Directory of Open Access Journals (Sweden)

    Jihad El Andari

    Full Text Available Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly.

  20. Brownian motion - a laboratory experiment

    Science.gov (United States)

    Kruglak, Haym

    1988-09-01

    The availability of latex microspheres, compact television cameras and electronic calculators make it possible to perform an experiment on Brownian movement in one laboratory period. A more accurate value of N can be determined by other methods. However, the experiment described above has several valuable pedagogical outcomes. Undergraduate students get experience with several experimental techniques: (i) recording a `random walk' of a microphere; (ii) plotting a histogram of displacements; (iii) fitting a Gaussian curve to the histogram; (iv) checking the goodness of fit analytically or with probability graph paper; (v) calibrating screen displacements with a diffraction grating; (vi) calculating Avogadro's number from the experimental data; (vii) verifying data validity with the Einstein - Smoluchowski Law. The experiment also provides valuable practice in unit conversion and error analysis. Another instructive feature: the experiment makes the students aware of Einstein's work other than relativity. The students' reactions to the experiment were positive: `interesting', `challenging', `fun'.

  1. Stock price prediction using geometric Brownian motion

    Science.gov (United States)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  2. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  3. Colloidal transport by active filaments.

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P B Sunil; Adhikari, R

    2017-01-14

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  4. Colloidal transport by active filaments

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.

    2017-01-01

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  5. On some generalization of fractional Brownian motions

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China); Liang Xiangqian [Department of Applied Mathematics, Shandong University of Science and Technology, Qingdao 266510, Shandong (China); Ren Fuyao [Institute of Mathematics, Fudan University, Shanghai 200433 (China); Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com

    2006-05-15

    The multifractional Brownian motion (mBm) is a continuous Gaussian process that extends the classical fractional Brownian motion (fBm) defined by Barton and Vincent Poor [Barton RJ, Vincent Poor H. IEEE Trans Inform 1988;34(5):943] and Decreusefond and Ustuenel [Decreusefond L, Ustuenel AS. Potential Anal 1999;10:177]. In addition, an innovational representation of fBm is given.

  6. Brownian dynamics of confined rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar, E-mail: donev@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2015-10-14

    We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.

  7. Ellipsoidal Brownian self-driven particles in a magnetic field

    Science.gov (United States)

    Sandoval, Mario; Wai-Tong, Fan; Shun Pak, On

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement showing the effect of particles's shape, activity, and magnetic field on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain good agreement. Additionally, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is also elucidated. CONACYT GRANT: CB 2014/237848.

  8. Engineering Autonomous Chemomechanical Nanomachines Using Brownian Ratchets

    Science.gov (United States)

    Lavella, Gabriel

    Nanoscale machines which directly convert chemical energy into mechanical work are ubiquitous in nature and are employed to perform a diverse set of tasks such as transporting molecules, maintaining molecular gradients, and providing motion to organisms. Their widespread use in nature suggests that large technological rewards can be obtained by designing synthetic machines that use similar mechanisms. This thesis addresses the technological adaptation of a specific mechanism known as the Brownian ratchet for the design of synthetic autonomous nanomachines. My efforts were focused more specifically on synthetic chemomechanical ratchets which I deem will be broadly applicable in the life sciences. In my work I have theoretically explored the biophysical mechanisms and energy landscapes that give rise to the ratcheting phenomena and devised devices that operate off these principles. I demonstrate two generations of devices that produce mechanical force/deformation in response to a user specified ligand. The first generation devices, fabricatied using a combination nanoscale lithographic processes and bioconjugation techniques, were used to provide evidence that the proposed ratcheting phenomena can be exploited in synthetic architectures. Second generation devices fabricated using self-assembled DNA/hapten motifs were constructed to gain a precise understanding of ratcheting dynamics and design constraints. In addition, the self-assembled devices enabled fabrication en masse, which I feel will alleviate future experimental hurdles in analysis and facilitate its adaptation to technologies. The product of these efforts is an architecture that has the potential to enable numerous technologies in biosensing and drug delivery. For example, the coupling of molecule-specific actuation to the release of drugs or signaling molecules from nanocapsules or porous materials could be transformative. Such architectures could provide possible avenues to pressing issues in biology and

  9. Theory of Semiflexible Filaments and Networks

    Directory of Open Access Journals (Sweden)

    Fanlong Meng

    2017-02-01

    Full Text Available We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.

  10. On-chip measurements of Brownian relaxation vs. concentration of 40nm magnetic beads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2012-01-01

    We present on-chip Brownian relaxation measurements on a logarithmic dilution series of 40 nm beads dispersed in water with bead concentrations between 16 mu g/ml and 4000 mu g/ml. The measurements are performed using a planar Hall effect bridge sensor at frequencies up to 1 MHz. No external fields...... are needed as the beads are magnetized by the field generated by the applied sensor bias current. We show that the Brownian relaxation frequency can be extracted from fitting the Cole-Cole model to measurements for bead concentrations of 64 mu g/ml or higher and that the measured dynamic magnetic response...

  11. Swarming behavior of gradient-responsive Brownian particles in a porous medium

    Science.gov (United States)

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  12. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  13. Intermittency and multifractional Brownian character of geomagnetic time series

    Science.gov (United States)

    Consolini, G.; De Marco, R.; De Michelis, P.

    2013-07-01

    The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008), which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  14. Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids.

    Science.gov (United States)

    Fakhri, Nikta; Tsyboulski, Dmitri A; Cognet, Laurent; Weisman, R Bruce; Pasquali, Matteo

    2009-08-25

    By relating nanotechnology to soft condensed matter, understanding the mechanics and dynamics of single-walled carbon nanotubes (SWCNTs) in fluids is crucial for both fundamental and applied science. Here, we study the Brownian bending dynamics of individual chirality-assigned SWCNTs in water by fluorescence microscopy. The bending stiffness scales as the cube of the nanotube diameter and the shape relaxation times agree with the semiflexible chain model. This suggests that SWCNTs may be the archetypal semiflexible filaments, highly suited to act as nanoprobes in complex fluids or biological systems.

  15. 100 years of Einstein's Theory of Brownian Motion: From Pollen ...

    Indian Academy of Sciences (India)

    Debashish Chowdhury. In this part, rotational Brownian motion and. Brownian shape fluctuations of soft materials are discussed. This is followed by an elementary in- troduction to two of the hottest topics in this contemporary area of interdisciplinary research, namely, stochastic resonance and Brownian rat- chet. 1. Beyond ...

  16. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  17. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture.

    Directory of Open Access Journals (Sweden)

    Kefeng Fang

    Full Text Available A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II through borate diester linkages. Phenylboronic acid (PBA can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components.

  18. Generalized Arcsine Laws for Fractional Brownian Motion.

    Science.gov (United States)

    Sadhu, Tridib; Delorme, Mathieu; Wiese, Kay Jörg

    2018-01-26

    The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a Brownian B_{t} starting from the origin, and evolving during time T, one considers the following three observables: (i) the duration t_{+} the process is positive, (ii) the time t_{last} the process last visits the origin, and (iii) the time t_{max} when it achieves its maximum (or minimum). All three observables have the same cumulative probability distribution expressed as an arcsine function, thus the name arcsine laws. We show how these laws change for fractional Brownian motion X_{t}, a non-Markovian Gaussian process indexed by the Hurst exponent H. It generalizes standard Brownian motion (i.e., H=1/2). We obtain the three probabilities using a perturbative expansion in ϵ=H-1/2. While all three probabilities are different, this distinction can only be made at second order in ϵ. Our results are confirmed to high precision by extensive numerical simulations.

  19. Brownian Motion Problem: Random Walk and Beyond

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Brownian Motion Problem: Random Walk and Beyond. Shama Sharma Vishwamittar. General Article Volume 10 Issue 8 August 2005 pp 49-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Hybrid scheme for Brownian semistationary processes

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko S.

    We introduce a simulation scheme for Brownian semistationary processes, which is based on discretizing the stochastic integral representation of the process in the time domain. We assume that the kernel function of the process is regularly varying at zero. The novel feature of the scheme is to ap...

  1. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  2. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  3. Suspended particle transport through constriction channel with Brownian motion

    Science.gov (United States)

    Hanasaki, Itsuo; Walther, Jens H.

    2017-08-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.

  4. Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review

    Science.gov (United States)

    Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard

    2017-10-01

    Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.

  5. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  6. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  7. Fractional Brownian motion with a reflecting wall

    Science.gov (United States)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α <1 , in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  8. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  9. The quantum brownian particle and memory effects

    International Nuclear Information System (INIS)

    Britani, J.R.; Mizrahi, S.S.; Pimentel, B.M.

    1991-01-01

    The Quantum Brownian particle, immersed in a heat bath, is described by a statistical operator whose evolution is ruled by a Generalized Master Equation (GME). The heat bath degrees of freedom are considered to be either white noise or coloured noise correlated,while the GME is considered under either the Markov or Non-Markov approaches. The comparison between these considerations are fully developed and their physical meaning is discussed. (author)

  10. Time-averaged MSD of Brownian motion

    OpenAIRE

    Andreanov, Alexei; Grebenkov, Denis

    2012-01-01

    We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we de...

  11. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  12. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  13. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime.

    Science.gov (United States)

    Skrodzki, P J; Burger, M; Jovanovic, I

    2017-10-06

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. We investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficiencies for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr . Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr , emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.

  14. Intermediate scattering function of an anisotropic Brownian circle swimmer.

    Science.gov (United States)

    Kurzthaler, Christina; Franosch, Thomas

    2017-09-27

    Microswimmers exhibit noisy circular motion due to asymmetric propulsion mechanisms, their chiral body shape, or by hydrodynamic couplings in the vicinity of surfaces. Here, we employ the Brownian circle swimmer model and characterize theoretically the dynamics in terms of the directly measurable intermediate scattering function. We derive the associated Fokker-Planck equation for the conditional probabilities and provide an exact solution in terms of generalizations of the Mathieu functions. Different spatiotemporal regimes are identified reflecting the bare translational diffusion at large wavenumbers, the persistent circular motion at intermediate wavenumbers and an enhanced effective diffusion at small wavenumbers. In particular, the circular motion of the particle manifests itself in characteristic oscillations at a plateau of the intermediate scattering function for wavenumbers probing the radius.

  15. Modeling collective emotions: a stochastic approach based on Brownian agents

    International Nuclear Information System (INIS)

    Schweitzer, F.

    2010-01-01

    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a super linear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities. (author)

  16. Structure and dynamics of the membrane-bound form of the filamentous bacteriophage coat proteins by NMR spectroscopy

    International Nuclear Information System (INIS)

    Bogusky, M.J.

    1987-01-01

    The structure and dynamics of the Pf1 and fd bacteriophage coat proteins in detergent micelles are characterized in solution by nuclear magnetic resonance spectroscopy. The coat proteins are found to exist within the bacterial inner cell membrane during viral infection and assembly. The coat proteins serve as a model system to investigate integral membrane proteins as well as the viral infection and assembly processes. The coat protein is insoluble in aqueous or organic solvents and can only be effectively solubilized in the presence of detergents that form micelles or phospholipids that form vesicles. The effective molecular weight of the detergent-micelle complex is ca. 30K daltons. Sequential assignment strategies were ineffective due to short T/sub 2s/ and severe resonance degeneracy. The backbone resonance assignments were completed by the combination of several homo- and heteronuclear correlation techniques with biosynthetic 15 N labelling. 2D NOE experiments were used to locate and characterize the secondary structure of the membrane bound form of the proteins showing them to be largely helical with the hydrophobic core existing in a very stable helix

  17. From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions

    OpenAIRE

    Herbin, E.

    2005-01-01

    International audience; Multifractional Brownian motion is an extension of the well-known fractional Brownian motion where the H¨older regularity is allowed to vary along the paths. In this paper, two kinds of multi-parameter extensions of mBm are studied: one is isotropic while the other is not. For each of these processes, a moving average representation, a harmonizable representation, and the covariance structure are given. The H¨older regularity is then studied. In particular, the case of...

  18. From fractional Brownian motion to multifractional and multistable motion

    Science.gov (United States)

    Falconer, Kenneth

    2015-03-01

    Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.

  19. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments

    Directory of Open Access Journals (Sweden)

    M. Garbuglia

    1999-10-01

    Full Text Available The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix type, S100A1 and S100B, that have been shown to inhibit microtubule (MT protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF subunits, desmin and glial fibrillary acidic protein (GFAP, with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

  20. Role of multiple filaments in self-accelerating actions of laser filamentation in air

    Science.gov (United States)

    Hu, Yuze; Nie, Jinsong; Sun, Ke

    2017-11-01

    The nonlinear dynamics of multiple filaments in self-accelerating actions by using corrected accelerating parabolic beams (CAPBs) are numerically investigated. By increasing the number of main lobes, the curved filaments can be elongated, leading to a longer displacement. The replenished energy originating from curved multiple filaments (MFs) that constructively interfere with the central one plays a crucial role in the phenomenon. At the bifurcation position, a beam pattern in which secondary lobes tightly follow the main lobes is formed, which is beneficial for the accelerating action of MFs. A new curved filament is generated due to the merging of side-curved MFs, and its accelerating strength decreases gradually with further propagation. Moreover, a special spatiotemporal profile that enhances the possibility of acceleration is also formed. The use of the accelerating beam with the appropriate amount of main lobes provides a new approach to elongate curved filaments.

  1. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  2. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  3. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  4. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  5. Particle diode: Rectification of interacting Brownian ratchets

    OpenAIRE

    Ai, Bao-quan; He, Ya-feng; Zhong, Wei-rong

    2012-01-01

    Transport of Brownian particles interacting with each other via the Morse potential is investigated in the presence of an ac driving force applied locally at one end of the chain. By using numerical simulations, we find that the system can behave as a particle diode for both overdamped and underdamped cases. For low frequencies, the transport from the free end to the ac acting end is prohibited, while the transport from the ac acting end to the free end is permitted. However, the polarity of ...

  6. Time-averaged MSD of Brownian motion

    Science.gov (United States)

    Andreanov, Alexei; Grebenkov, Denis S.

    2012-07-01

    We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we deduce the first four cumulant moments of the TAMSD, the asymptotic behavior of the probability density and its accurate approximation by a generalized Gamma distribution.

  7. A Robust Actin Filaments Image Analysis Framework.

    Directory of Open Access Journals (Sweden)

    Mitchel Alioscha-Perez

    2016-08-01

    Full Text Available The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale. Based on this observation, we propose a three-steps actin filaments extraction methodology: (i first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in

  8. Diffusion in one dimensional random medium and hyperbolic Brownian motion

    International Nuclear Information System (INIS)

    Comtet, A.; Monthus, C.; Paris-6 Univ., 75

    1995-03-01

    Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. This relationship is analyzed in detail and various distributions are studied using stochastic calculus and functional integration. (author) 17 refs

  9. Fractional Brownian motion of director fluctuations in nematic ordering

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Otnes, K.

    1993-01-01

    to determine the Hurst exponent H. Theory and experiment are in good agreement. A value of H congruent-to 1 was found for the nematic phase, characterizing fractional Brownian motion, whereas H congruent-to 0.5, reflecting ordinary Brownian motion, applies in the isotropic phase. Field-induced crossover from...

  10. Brownian motion of a particle with arbitrary shape.

    Science.gov (United States)

    Cichocki, Bogdan; Ekiel-Jeżewska, Maria L; Wajnryb, Eligiusz

    2015-06-07

    Brownian motion of a particle with an arbitrary shape is investigated theoretically. Analytical expressions for the time-dependent cross-correlations of the Brownian translational and rotational displacements are derived from the Smoluchowski equation. The role of the particle mobility center is determined and discussed.

  11. Simple Brownian diffusion an introduction to the standard theoretical models

    CERN Document Server

    Gillespie, Daniel T

    2013-01-01

    Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.

  12. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... biosensor based on the detection of the dynamic response of magnetic beads....

  13. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    increases far more quickly than those identified in two-dimensional column density maps. Conclusions: Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.

  14. Magnetic nanoparticle thermometry independent of Brownian relaxation

    Science.gov (United States)

    Zhong, Jing; Schilling, Meinhard; Ludwig, Frank

    2018-01-01

    An improved method of magnetic nanoparticle (MNP) thermometry is proposed. The phase lag ϕ of the fundamental f 0 harmonic is measured to eliminate the influence of Brownian relaxation on the ratio of 3f 0 to f 0 harmonic amplitudes applying a phenomenological model, thus allowing measurements in high-frequency ac magnetic fields. The model is verified by simulations of the Fokker–Planck equation. An MNP spectrometer is calibrated for the measurements of the phase lag ϕ and the amplitudes of 3f 0 and f 0 harmonics. Calibration curves of the harmonic ratio and tanϕ are measured by varying the frequency (from 10 Hz to 1840 Hz) of ac magnetic fields with different amplitudes (from 3.60 mT to 4.00 mT) at a known temperature. A phenomenological model is employed to fit the calibration curves. Afterwards, the improved method is proposed to iteratively compensate the measured harmonic ratio with tanϕ, and consequently calculate temperature applying the static Langevin function. Experimental results on SHP-25 MNPs show that the proposed method significantly improves the systematic error to 2 K at maximum with a relative accuracy of about 0.63%. This demonstrates the feasibility of the proposed method for MNP thermometry with SHP-25 MNPs even if the MNP signal is affected by Brownian relaxation.

  15. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  16. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  17. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  18. Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type

    Science.gov (United States)

    Lim, S. C.

    2001-02-01

    The relationship between standard fractional Brownian motion (FBM) and FBM based on the Riemann-Liouville fractional integral (or RL-FBM) is clarified. The absence of stationary property in the increment process of RL-FBM is compensated by a weaker property of local stationarity, and the stationary property for the increments of the large-time asymptotic RL-FBM. Generalization of RL-FBM to the RL-multifractional Brownian motion (RL-MBM) can be carried out by replacing the constant Hölder exponent by a time-dependent function. RL-MBM is shown to satisfy a weaker scaling property known as the local asymptotic self-similarity. This local scaling property can be translated into the small-scale behaviour of the associated scalogram by using the wavelet transform.

  19. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  20. Brownian motion with multiplicative noises revisited

    International Nuclear Information System (INIS)

    Kuroiwa, T; Miyazaki, K

    2014-01-01

    The Langevin equation with multiplicative noise and a state-dependent transport coefficient should always complemented with the proper interpretation rule of the noise, such as the Itô and Stratonovich conventions. Although the mathematical relationship between the different rules and how to translate from one rule to another are well established, the subject of which is a more physically natural rule still remains controversial. In this communication, we derive the overdamped Langevin equation with multiplicative noise for Brownian particles, by systematically eliminating the fast degrees of freedom of the underdamped Langevin equation. The Langevin equations obtained here vary depending on the choice of the noise conventions but they are different representations for an identical phenomenon. The results apply to multi-variable, nonequilibrium, non-stationary systems, and other general settings. (fast track communication)

  1. Interaction of Two Filaments in a Long Filament Channel Associated with Twin Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Du, Guohui; Li, Chuanyang [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209 Weihai (China); Zhang, Qingmin [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yang, Kai, E-mail: ruishengzheng@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2017-02-20

    Using the high-quality observations of the Solar Dynamics Observatory , we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanied by post-eruption loops and flare ribbons. This likely indicated a large-scale eruption involving the long filament channel, which resulted from the interaction between F1 and the east filament (F2). Some bright plasma flew over F2, and F2 stayed at rest during the eruption, likely due to the confinement of its overlying lower magnetic field. Interestingly, the impulsive F1 pushed its overlying magnetic arcades to form the first CME, and F1 finally evolved into the second CME after the collision with the nearby coronal hole. We suggest that the interaction of F1 and the overlying magnetic field of F2 led to the merging reconnection that forms a longer eruptive filament loop. Our results also provide a possible picture of the origin of twin CMEs and show that the large-scale magnetic topology of the coronal hole is important for the eventual propagation direction of CMEs.

  2. Negative mobility of a Brownian particle: Strong damping regime

    Science.gov (United States)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  3. Bose polaron as an instance of quantum Brownian motion

    Directory of Open Access Journals (Sweden)

    Aniello Lampo

    2017-09-01

    Full Text Available We study the dynamics of a quantum impurity immersed in a Bose-Einstein condensate as an open quantum system in the framework of the quantum Brownian motion model. We derive a generalized Langevin equation for the position of the impurity. The Langevin equation is an integrodifferential equation that contains a memory kernel and is driven by a colored noise. These result from considering the environment as given by the degrees of freedom of the quantum gas, and thus depend on its parameters, e.g. interaction strength between the bosons, temperature, etc. We study the role of the memory on the dynamics of the impurity. When the impurity is untrapped, we find that it exhibits a super-diffusive behavior at long times. We find that back-flow in energy between the environment and the impurity occurs during evolution. When the particle is trapped, we calculate the variance of the position and momentum to determine how they compare with the Heisenberg limit. One important result of this paper is that we find position squeezing for the trapped impurity at long times. We determine the regime of validity of our model and the parameters in which these effects can be observed in realistic experiments.

  4. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    Full Text Available How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below

  5. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Science.gov (United States)

    Erickson, Robert P; Gross, Steven P; Yu, Clare C

    2013-01-01

    How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing

  6. Subcutaneous implants of polypropylene filaments.

    Science.gov (United States)

    Liebert, T C; Chartoff, R P; Cosgrove, S L; McCuskey, R S

    1976-11-01

    Extruded filaments of unmodified polypropylene (PP) with and without antioxidant were implanted subcutaneously in hamsters in order to determine their rate of degradation. Specimens were removed periodically during a 5 month test period and analyzed by infrared spectroscopy and dynamic mechanical testing. The analyses show that degradation beigns to occur after only a few days. Although the reaction sequence is not known, several factors suggest that the in vivo degradation process is similar to autoxidation which occurs in air or oxygen. The infrared data indicate that the hydroxyl content of the implants increases at a rate of 0.061 mg/g polypropylene per day during the initiation phase of the reaction. An induction time of 108 days was extablished. Carbonyl bonds appear after an implantation time of 50--90 days and increase therafter. Mechanical tests indicate a decrease in the dynamic loss tangent, tan delta, during the first month of implantation for unmodified polypropylene. No change in the infrared spectra or tan delta was observed, however, for implants containing an antioxidant. Thus, it is apparent that polypropylene filaments implanted subcutaneously in hamsters degrade by an oxidation process which is retarded effectively by using an antioxidant. While the findings reported are specific to subcutaneous polypropylene implants, they suggest that degradation of other systems may involve similar processes. This notion suggests directions for further research on increasing the in vivo stability of synthetic polymers. Long-term effects of polymer implantation upon tissue were not studied in this work.

  7. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.

    Science.gov (United States)

    Kranstauber, Bart; Safi, Kamran; Bartumeus, Frederic

    2014-01-01

    In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion. Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk. We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the "move" package for R.

  8. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  9. A weighted random walk approximation to fractional Brownian motion

    OpenAIRE

    Lindstrøm, Tom

    2007-01-01

    We present a random walk approximation to fractional Brownian motion where the increments of the fractional random walk are defined as a weighted sum of the past increments of a Bernoulli random walk.

  10. A random walk approximation to fractional Brownian motion

    OpenAIRE

    Lindstrøm, Tom

    2007-01-01

    We present a random walk approximation to fractional Brownian motion where the increments of the fractional random walk are defined as a weighted sum of the past increments of a Bernoulli random walk.

  11. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  12. Fast orthogonal transforms and generation of Brownian paths.

    Science.gov (United States)

    Leobacher, Gunther

    2012-04-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length [Formula: see text] can be generated in [Formula: see text] floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples.

  13. Estimation of the global regularity of a multifractional Brownian motion

    DEFF Research Database (Denmark)

    Lebovits, Joachim; Podolskij, Mark

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....

  14. Estimation of the global regularity of a multifractional Brownian motion

    OpenAIRE

    Lebovits, Joachim; Podolskij, Mark

    2016-01-01

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of th...

  15. Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation

    Science.gov (United States)

    Tsuji, Tetsuro; Saita, Sho; Kawano, Satoyuki

    2018-03-01

    Brownian motion of a spherical particle induced by the interaction with surrounding molecules is considered. If the particle is larger than the molecules and the temperature of surrounding media is spatially non-uniform, the interaction between an individual molecule and the particle is also position-dependent. That is, the particle is subject to inhomogeneous thermal fluctuation. In this paper, we investigate the contribution of the inhomogeneous thermal fluctuation to the thermophoresis, i.e., the Soret coefficient or thermal diffusion factor. The problem is simplified by assuming a hard-sphere potential between the particle and the surrounding molecules and is investigated using the kinetic theory, namely, we consider a linear Boltzmann-type equation for the velocity distribution function of the particle. Using the perturbation analysis with respect to the square root of mass ratio between the molecule and the particle, the drift-diffusion equation of the particle is derived. It is found that the Soret coefficient, or thermal diffusion factor, is dependent on the mass ratio and the excluded volume of the particle. In particular, when the ratio of the mass density of the particle to that of the surrounding media decreases, the Soret coefficient also decreases and may take negative value. The present result well describes the mass-dependency of thermal diffusion factor obtained by the molecular dynamics simulation carried out in an existing study and the one in the present study, where soft potentials of Lennard-Jones-type are used instead of hard-sphere potential.

  16. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    Science.gov (United States)

    To, Kiwing; Peng, Zheng

    2016-11-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  17. MATERIAL SUPPLY AND MAGNETIC CONFIGURATION OF AN ACTIVE REGION FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: fangc@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-11-10

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  18. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    Science.gov (United States)

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  19. From Brownian motion to power of fluctuations

    Directory of Open Access Journals (Sweden)

    B. Berche

    2012-12-01

    Full Text Available The year 2012 marks the 140th birth anniversary of Marian Smoluchowski (28.05.1872-5.09.1917, a man who "made ground-breaking contribution to the theory of Brownian motion, the theory of sedimentation, the statistical nature of the Second Law, the theory and practice of density fluctuations (critical opalescence. During his final years of scientific creativity his pioneering theory of coagulation and diffusion-limited reaction rate appeared. These outstanding achievements present true gems which dominate the description of soft matter physics and chemical physics as well as the related areas up till now!" This quotation was taken from the lecture by Peter Hanggi given at international conference Statistical Physics: Modern Trends and Applications that took place in Lviv, Ukraine on July 3-6, 2012 (see conference web-page for more details and was dedicated to the commemoration of Smoluchowski's work. This and forthcoming issues of the Condensed Matter Physics contain papers presented at this conference.

  20. Shear thinning in non-Brownian suspensions.

    Science.gov (United States)

    Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie

    2018-02-14

    We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.

  1. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  2. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  3. Featured Image: A Filament Forms and Erupts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    This dynamic image of active region NOAA 12241 was captured by the Solar Dynamics Observatorys Atmospheric Imaging Assembly in December 2014. Observations of this region from a number of observatories and instruments recently presented by Jincheng Wang (University of Chinese Academy of Sciences) and collaborators reveal details about the formation and eruption of a long solar filament. Wang and collaborators show that the right part of the filament formed by magnetic reconnection between two bundles of magnetic field lines, while the left part formed as a result of shearing motion. When these two parts interacted, the filament erupted. You can read more about the teams results in the article linked below. Also, check out this awesome video of the filament formation and eruption, again by SDO/AIA:http://cdn.iopscience.com/images/0004-637X/839/2/128/Full/apjaa6bf3f1_video.mp4CitationJincheng Wang et al 2017 ApJ 839 128. doi:10.3847/1538-4357/aa6bf3

  4. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved...... in polarity establishment and maintenance, cytoskeleton dynamics and intracellular transport. The first part of this thesis addresses the A. gossypii Arf3 small GTPase and its GEF- and GAP regulators; Yel1 and Gts1, which has been implicated in polar growth in a wide range of organisms. We could demonstrate......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...

  5. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  6. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  7. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Leehwa [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1993-06-23

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.

  8. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    International Nuclear Information System (INIS)

    Yeh, L.

    1993-01-01

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented

  9. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0Brownian SDE. The author develops optimal filtering of mixed models including linear case, and studies financial applications and statistical inference with hypotheses testing and parameter estimation. She proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional mark...

  10. Kinetic Energy of a Free Quantum Brownian Particle

    Directory of Open Access Journals (Sweden)

    Paweł Bialas

    2018-02-01

    Full Text Available We consider a paradigmatic model of a quantum Brownian particle coupled to a thermostat consisting of harmonic oscillators. In the framework of a generalized Langevin equation, the memory (damping kernel is assumed to be in the form of exponentially-decaying oscillations. We discuss a quantum counterpart of the equipartition energy theorem for a free Brownian particle in a thermal equilibrium state. We conclude that the average kinetic energy of the Brownian particle is equal to thermally-averaged kinetic energy per one degree of freedom of oscillators of the environment, additionally averaged over all possible oscillators’ frequencies distributed according to some probability density in which details of the particle-environment interaction are present via the parameters of the damping kernel.

  11. Non-colliding Brownian Motions and the Extended Tacnode Process

    Science.gov (United States)

    Johansson, Kurt

    2013-04-01

    We consider non-colliding Brownian motions with two starting points and two endpoints. The points are chosen so that the two groups of Brownian motions just touch each other, a situation that is referred to as a tacnode. The extended kernel for the determinantal point process at the tacnode point is computed using new methods and given in a different form from that obtained for a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the extended kernel is also different from that obtained for the extended tacnode kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the correlation kernel for a finite number of non-colliding Brownian motions starting at two points and ending at arbitrary points.

  12. Exponential functionals of Brownian motion, I: Probability laws at fixed time

    OpenAIRE

    Matsumoto, Hiroyuki; Yor, Marc

    2005-01-01

    This paper is the first part of our survey on various results about the distribution of exponential type Brownian functionals defined as an integral over time of geometric Brownian motion. Several related topics are also mentioned.

  13. The Intersection Probability of Brownian Motion and SLEκ

    Directory of Open Access Journals (Sweden)

    Shizhong Zhou

    2015-01-01

    Full Text Available By using excursion measure Poisson kernel method, we obtain a second-order differential equation of the intersection probability of Brownian motion and SLEκ. Moreover, we find a transformation such that the second-order differential equation transforms into a hypergeometric differential equation. Then, by solving the hypergeometric differential equation, we obtain the explicit formula of the intersection probability for the trace of the chordal SLEκ and planar Brownian motion started from distinct points in an upper half-plane H-.

  14. Brownian motion of solitons in a Bose-Einstein condensate.

    Science.gov (United States)

    Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B

    2017-03-07

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  15. Stochastic flows in the Brownian web and net

    Czech Academy of Sciences Publication Activity Database

    Schertzer, E.; Sun, R.; Swart, Jan M.

    2014-01-01

    Roč. 227, č. 1065 (2014), s. 1-160 ISSN 0065-9266 R&D Projects: GA ČR GA201/07/0237; GA ČR GA201/09/1931 Institutional support: RVO:67985556 Keywords : Brownian web * Brownian net * stochastic flow of kernels * measure-valued process * Howitt-Warren flow * linear system * random walk in random environment * finite graph representation Subject RIV: BA - General Mathematics Impact factor: 1.727, year: 2014 http://library.utia.cas.cz/separaty/2013/SI/swart-0396636.pdf

  16. Generalized Multifractional Brownian Motion: Definition and Preliminary Results

    OpenAIRE

    Ayache, Antoine; Lévy Véhel, Jacques

    1999-01-01

    The Multifractional Brownian Motion (MBM) is a generalization of the well known Fractional Brownian Motion. One of the main reasons that makes the MBM interesting for modelization, is that one can prescribe its regularity: given any Hölder function H(t), with values in ]0,1[, one can construct an MBM admitting at any t0, a Hölder exponent equal to H(t0). However, the continuity of the function H(t) is sometimes undesirable, since it restricts the field of application. In this work we define a...

  17. Brownian motion with adhesion: harmonic oscillator with fluctuating mass.

    Science.gov (United States)

    Gitterman, M; Klyatskin, V I

    2010-05-01

    In contrast to the cases usually studied of a harmonic oscillator subject to a random force (Brownian motion) or having random frequency or random damping, we consider a random mass which corresponds to an oscillator for which the particles of the surrounding medium adhere to it for some (random) time after the collision, thereby changing the oscillator mass. This model, which describes Brownian motion with adhesion, can be useful for the analysis of chemical and biological solutions as well as nanotechnological devices. We consider dichotomous noise and its limiting case, white noise.

  18. Polar patterns of driven filaments.

    Science.gov (United States)

    Schaller, Volker; Weber, Christoph; Semmrich, Christine; Frey, Erwin; Bausch, Andreas R

    2010-09-02

    The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system

  19. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  20. Understanding the Resistive Switching Phenomena of Stacked Al/Al2O3/Al Thin Films from the Dynamics of Conductive Filaments

    Directory of Open Access Journals (Sweden)

    Joel Molina-Reyes

    2017-01-01

    Full Text Available We present the resistive switching characteristics of Metal-Insulator-Metal (MIM devices based on amorphous Al2O3 which is deposited by Atomic Layer Deposition (ALD. A maximum processing temperature for this memory device is 300°C, making it ideal for Back-End-of-Line (BEOL processing. Although some variations in the forming, set, and reset voltages (VFORM, VSET, and VRESET are obtained for many of the measured MIM devices (mainly due to roughness variations of the MIM interfaces as observed after atomic-force microscopy analysis, the memristor effect has been obtained after cyclic I-V measurements. These resistive transitions in the metal oxide occur for both bipolar and unipolar conditions, while the IOFF/ION ratio is around 4–6 orders of magnitude and is formed at gate voltages of Vg<4 V. In unipolar mode, a gradual reduction in VSET is observed and is related to combined (a incomplete dissolution of conductive filaments (made of oxygen vacancies and metal ions which leaves some residuals and (b thickening of chemically reduced Al2O3 during localized Joule heating. This is important because, by analyzing the macroscopic resistive switching behavior of this MIM structure, we could indirectly relate it to microscopic and/or nanoscopic phenomena responsible for the physical mechanism upon which most of these devices operate.

  1. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  2. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  3. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    Science.gov (United States)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  4. Stability theorems for stochastic differential equations driven by G-Brownian motion

    OpenAIRE

    Zhang, Defei

    2011-01-01

    In this paper, stability theorems for stochastic differential equations and backward stochastic differential equations driven by G-Brownian motion are obtained. We show the existence and uniqueness of solutions to forward-backward stochastic differential equations driven by G-Brownian motion. Stability theorem for forward-backward stochastic differential equations driven by G-Brownian motion is also presented.

  5. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  6. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  7. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  8. Brownian motion as a new probe of wettability

    Science.gov (United States)

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G.

    2017-04-01

    Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, pharmaceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed in the vicinity of a plane wall. For the first case, we show the effects of wettability on the statistical properties of the particles' motion, such as velocity autocorrelation, velocity, and thermal force power spectra over a large range of time scales. We also propose a new method to measure wettability based on the particles' Brownian motion. In addition, we compare the boundary effects on Brownian motion imposed by both no-slip and perfect-slip flat walls. We emphasize the surprising boundary effects on Brownian motion imposed by a perfect-slip wall in the parallel direction, such as a higher particle mobility parallel to a perfect flat wall compared to that in the absence of the wall, as well as compared to a particle near a no-slip flat wall.

  9. Brownian Motion as a Limit to Physical Measuring Processes

    DEFF Research Database (Denmark)

    Niss, Martin

    2016-01-01

    formulated a general conclusion concerning the nature of physical measurements, namely that there is a definite limit to the ultimate sensitivity of measuring instruments beyond which we cannot advance, and that this limit is determined by Brownian motion. Ising’s conclusion agreed with experiments......, physicists in particular saw the work as an indication that noise is of practical relevance for their enterprise...

  10. 100 years of Einstein's Theory of Brownian Motion: From Pollen ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. 100 years of Einstein's Theory of Brownian Motion: From Pollen Grains to Protein Trains – 2. Debashish Chowdhury. General Article Volume 10 Issue 11 November 2005 pp 42-54 ...

  11. 100 years of Einstein's Theory of Brownian Motion: From Pollen ...

    Indian Academy of Sciences (India)

    ian motion was made by Gerlach [1] using a tiny mirror fixed on a very fine ... deterministic equation that describes the time evolution. Interestingly, three quarters of a century later the problem of rotational Brownian motion of a mirror was reinvestigated ... (geomagnetism), as the history of the earth's magnetic field remains ...

  12. Entropy production of a Brownian ellipsoid in the overdamped limit.

    Science.gov (United States)

    Marino, Raffaele; Eichhorn, Ralf; Aurell, Erik

    2016-01-01

    We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamics is based on the entropy production associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit of vanishing inertia effects (as compared to viscous fricion) produces a so-called "anomalous" contribution to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an additional contribution to the "anomalous" entropy. We calculate its specific form by performing a systematic singular perturbation analysis for the generating function of the entropy production. As a side result, we also obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of particle shape and give explicit expressions of the "anomalous entropy" for prolate and oblate spheroids and for near-spherical Brownian particles.

  13. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    The Langevin equation used to model Brownian motion includes a stochastic process that is routinely assumed to be a Gaussian white noise. Spatial correlations of the noise are usually ruled out, and the paths traced by the random walkers are statistically independent. In this study, I consider instead noise which is white in ...

  14. Suspended particle transport through constriction channel with Brownian motion

    DEFF Research Database (Denmark)

    Hanasaki, Itsuo; Walther, Jens Honore

    2017-01-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the devia...

  15. Markov-modulated Brownian motion with two reflecting barriers

    NARCIS (Netherlands)

    Ivanovs, J.

    2010-01-01

    We consider a Markov-modulated Brownian motion reflected to stay in a strip [0, B]. The stationary distribution of this process is known to have a simple form under some assumptions. We provide a short probabilistic argument leading to this result and explain its simplicity. Moreover, this argument

  16. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    Science.gov (United States)

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  17. Morphogenesis of filaments growing in flexible confinements

    Science.gov (United States)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2014-07-01

    Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.

  18. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  19. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets

    Science.gov (United States)

    Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming

    2018-02-01

    We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.

  20. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  1. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  2. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynam......, filaments with short cells in sheaths, populating the upper 7 cm of the sediment, and filaments without sheaths living at the sediment surface....

  3. F-actin-like filaments formed by plasmid segregation protein ParM

    DEFF Research Database (Denmark)

    van den Ent, Fusinita; Møller-Jensen, Jakob; Amos, Linda A.

    2002-01-01

    It was the general belief that DNA partitioning in prokaryotes is independent of a cytoskeletal structure, which in eukaryotic cells is indispensable for DNA segregation. Recently, however, immunofluorescence microscopy revealed highly dynamic, filamentous structures along the longitudinal axis o...... compared with F-actin, despite the similar arrangement of the subunits within the filaments. Thus, there is now evidence for cytoskeletal structures, formed by actin-like filaments that are involved in plasmid partitioning in E.coli. Udgivelsesdato: Dec 16...

  4. Competitive Brownian and Lévy walkers

    Science.gov (United States)

    Heinsalu, E.; Hernández-García, E.; López, C.

    2012-04-01

    Population dynamics of individuals undergoing birth and death and diffusing by short- or long-range two-dimensional spatial excursions (Gaussian jumps or Lévy flights) is studied. Competitive interactions are considered in a global case, in which birth and death rates are influenced by all individuals in the system, and in a nonlocal but finite-range case in which interaction affects individuals in a neighborhood (we also address the noninteracting case). In the global case one single or few-cluster configurations are achieved with the spatial distribution of the bugs tied to the type of diffusion. In the Lévy case long tails appear for some properties characterizing the shape and dynamics of clusters. Under nonlocal finite-range interactions periodic patterns appear with periodicity set by the interaction range. This length acts as a cutoff limiting the influence of the long Lévy jumps, so that spatial configurations under the two types of diffusion become more similar. By dividing initially everyone into different families and following their descent it is possible to show that mixing of families and their competition is greatly influenced by the spatial dynamics.

  5. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  6. Human behavioral regularity, fractional Brownian motion, and exotic phase transition

    Science.gov (United States)

    Li, Xiaohui; Yang, Guang; An, Kenan; Huang, Jiping

    2016-08-01

    The mix of competition and cooperation (C&C) is ubiquitous in human society, which, however, remains poorly explored due to the lack of a fundamental method. Here, by developing a Janus game for treating C&C between two sides (suppliers and consumers), we show, for the first time, experimental and simulation evidences for human behavioral regularity. This property is proved to be characterized by fractional Brownian motion associated with an exotic transition between periodic and nonperiodic phases. Furthermore, the periodic phase echoes with business cycles, which are well-known in reality but still far from being well understood. Our results imply that the Janus game could be a fundamental method for studying C&C among humans in society, and it provides guidance for predicting human behavioral activity from the perspective of fractional Brownian motion.

  7. On some possible generalizations of fractional Brownian motion

    Science.gov (United States)

    Lim, S. C.; Muniandy, S. V.

    2000-02-01

    Fractional Brownian motion (fBm) can be generalized to multifractional Brownian motion (mBm) if the Hurst exponent H is replaced by a deterministic function H( t). The two possible generalizations of mBm based on the moving average representation and the harmonizable representation are first shown to be equivalent up to a multiplicative deterministic function of time by Cohen [S. Cohen, in: M. Dekking et al. (Eds.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999, p. 3.] using the Fourier transform method. In this Letter, we give an alternative verification of such an equivalence based on the direct computation of the covariances of these two Gaussian processes. There also exists another equivalent representation of mBm, which is a variant version of the harmonizable representation. Finally, we consider a generalization based on the Riemann-Liouville fractional integral, and study the large time asymptotic properties of this version of mBm.

  8. Fractional Brownian Motion:. Theory and Application to DNA Walk

    Science.gov (United States)

    Lim, S. C.; Muniandy, S. V.

    2001-09-01

    This paper briefly reviews the theory of fractional Brownian motion (FBM) and its generalization to multifractional Brownian motion (MBM). FBM and MBM are applied to a biological system namely the DNA sequence. By considering a DNA sequence as a fractal random walk, it is possible to model the noncoding sequence of human retinoblastoma DNA as a discrete version of FBM. The average scaling exponent or Hurst exponent of the DNA walk is estimated to be H = 0.60 ± 0.05 using the monofractal R/S analysis. This implies that the mean square fluctuation of DNA walk belongs to anomalous superdiffusion type. We also show that the DNA landscape is not monofractal, instead one has multifractal DNA landscape. The empirical estimates of the Hurst exponent falls approximately within the range H ~ 0.62 - 0.72. We propose two multifractal models, namely the MBM and multiscale FBM to describe the existence of different Hurst exponents in DNA walk.

  9. Synchronization and collective motion of globally coupled Brownian particles

    International Nuclear Information System (INIS)

    Sevilla, Francisco J; Heiblum-Robles, Alexandro; Dossetti, Victor

    2014-01-01

    In this work, we study a system of passive Brownian (non-self-propelled) particles in two dimensions, interacting only through a social-like force (velocity alignment in this case) that resembles Kuramoto's coupling among phase oscillators. We show that the kinematical stationary states of the system go from a phase in thermal equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting collective motion by increasing the coupling among particles. The mechanism that leads to the instability of the equilibrium phase relies on the competition between two time scales, namely, the mean collision time of the Brownian particles in a thermal bath and the time it takes for a particle to orient its direction of motion along the direction of motion of the group. Our results show a clear connection between collective motion and the Kuramoto model for synchronization, in our case, for the direction of motion of the particles. (paper)

  10. The Glassy Phase of Complex Branching Brownian Motion

    Science.gov (United States)

    Madaule, Thomas; Rhodes, Rémi; Vargas, Vincent

    2015-03-01

    In this paper, we study complex valued branching Brownian motion in the so-called glassy phase, also called phase II. In this context, we prove a limit theorem for the complex partition function hence confirming a conjecture formulated by Lacoin and the last two authors in a previous paper on complex Gaussian multiplicative chaos. We will show that the limiting partition function can be expressed as a product of a Gaussian random variable, mainly due to the windings of the phase, and a stable transform of the so-called derivative martingale, mainly due to the clustering of the modulus. The proof relies on the fine description of the extremal process available in the branching Brownian motion context.

  11. Exact master equation for a noncommutative Brownian particle

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Nuno Prata, Joao

    2009-01-01

    We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale

  12. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.

    Science.gov (United States)

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan

    2014-01-07

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

  13. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  14. Efficiency of interacting Brownian motors: Improved mean-field treatment

    Czech Academy of Sciences Publication Activity Database

    Slanina, František

    2009-01-01

    Roč. 135, 5-6 (2009), s. 935-950 ISSN 0022-4715 R&D Projects: GA ČR GA202/07/0404 Institutional research plan: CEZ:AV0Z10100520 Keywords : Brownian motors * diffusion Subject RIV: BE - Theoretical Physics Impact factor: 1.390, year: 2009 http://www.springerlink.com/content/1040451k48528058/?p=9aa7761fe82743b69f9feafc3a665c0cπ=1

  15. Adiabatic Processes Realized with a Trapped Brownian Particle

    Science.gov (United States)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  16. The Diffusion Process in Small Particles and Brownian Motion

    Science.gov (United States)

    Khoshnevisan, M.

    Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.

  17. Collective motion of active Brownian particles with polar alignment.

    Science.gov (United States)

    Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio

    2018-04-04

    We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

  18. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  19. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  20. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  1. Degree distributions of the visibility graphs mapped from fractional Brownian motions and multifractal random walks

    International Nuclear Information System (INIS)

    Ni Xiaohui; Jiang Zhiqiang; Zhou Weixing

    2009-01-01

    The dynamics of a complex system is usually recorded in the form of time series, which can be studied through its visibility graph from a complex network perspective. We investigate the visibility graphs extracted from fractional Brownian motions and multifractal random walks, and find that the degree distributions exhibit power-law behaviors, in which the power-law exponent α is a linear function of the Hurst index H of the time series. We also find that the degree distribution of the visibility graph is mainly determined by the temporal correlation of the original time series with minor influence from the possible multifractal nature. As an example, we study the visibility graphs constructed from three Chinese stock market indexes and unveil that the degree distributions have power-law tails, where the tail exponents of the visibility graphs and the Hurst indexes of the indexes are close to the α∼H linear relationship.

  2. A Langevin Approach to a Classical Brownian Oscillator in an Electromagnetic Field

    International Nuclear Information System (INIS)

    Espinoza Ortiz, J. S.; Bauke, F. C.; Lagos, R. E.

    2016-01-01

    We consider a charged Brownian particle bounded by an harmonic potential, embedded in a Markovian heat bath and driven from equilibrium by external electric and magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward and elegant fashion, we compute the exact solution for the resulting generalized Langevin equation, for the case of a constant magnetic field. For the case the source electromagnetic fields satisfy Maxwell's equations, yielding spinor-like Mathieu equations, we compute the solutions within the JWKB approximation. With the solutions at hand we further compute spatial, velocities and crossed time correlations. In particular we study the (kinetically defined) nonequilbrium temperature. Therefore, we can display the system's time evolution towards equilibrium or towards non equilibrium (steady or not) states. (paper)

  3. A Langevin Approach to a Classical Brownian Oscillator in an Electromagnetic Field

    Science.gov (United States)

    Espinoza Ortiz, J. S.; Bauke, F. C.; Lagos, R. E.

    2016-08-01

    We consider a charged Brownian particle bounded by an harmonic potential, embedded in a Markovian heat bath and driven from equilibrium by external electric and magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward and elegant fashion, we compute the exact solution for the resulting generalized Langevin equation, for the case of a constant magnetic field. For the case the source electromagnetic fields satisfy Maxwell's equations, yielding spinor-like Mathieu equations, we compute the solutions within the JWKB approximation. With the solutions at hand we further compute spatial, velocities and crossed time correlations. In particular we study the (kinetically defined) nonequilbrium temperature. Therefore, we can display the system's time evolution towards equilibrium or towards non equilibrium (steady or not) states.

  4. Morphological indictors of the chirality of solar filaments

    Science.gov (United States)

    Filippov, B. P.

    2017-10-01

    There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous "barbs"; i.e., those whose jagged side is located on the opposite side of the axis compared to most ("normal") filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.

  5. Static and dynamic properties of dissipative particle dynamics

    NARCIS (Netherlands)

    Marsh, C.A.; Backx, G.; Ernst, M.H.

    The algorithm for the dissipative particle dynamics (DPD) fluid, the dynamics of which is conceptually a combination of molecular dynamics, Brownian dynamics, and lattice gas automata, is designed for simulating rheological properties of complex fluids on hydrodynamic time scales. This paper

  6. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  7. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  8. Parameter inference from hitting times for perturbed Brownian motion

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano; Ditlevsen, Susanne; Lansky, Peter

    2015-01-01

    ? To answer this question we describe the effect of the intervention through parameter changes of the law governing the internal process. Then, the time interval between the start of the process and the final event is divided into two subintervals: the time from the start to the instant of intervention...... from observations of S and R and compare them statistically? Maximum likelihood estimators are calculated and applied on simulated data under the assumption that the process before and after the intervention is described by the same type of model, i.e. a Brownian motion, but with different parameters...

  9. Brownian semi-stationary processes, turbulence and smooth processes

    DEFF Research Database (Denmark)

    Urbina, José Ulises Márquez

    This thesis analysis the use of Brownian semi-stationary (BSS) processes to model the main statistical features present in turbulent time series, and some asymptotic properties of certain classes of smooth processes.  Turbulence is a complex phenomena governed by the Navier-Stokes equations......-based approach, the potential of BSS processes to model turbulent velocity time series. It turns out that this family of processes reproduces accurately some of the main features present in turbulent time series, such as the distribution of the velocity increments and the statistics of the Kolmogorov variable...

  10. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  11. Pricing geometric Asian rainbow options under fractional Brownian motion

    Science.gov (United States)

    Wang, Lu; Zhang, Rong; Yang, Lin; Su, Yang; Ma, Feng

    2018-03-01

    In this paper, we explore the pricing of the assets of Asian rainbow options under the condition that the assets have self-similar and long-range dependence characteristics. Based on the principle of no arbitrage, stochastic differential equation, and partial differential equation, we obtain the pricing formula for two-asset rainbow options under fractional Brownian motion. Next, our Monte Carlo simulation experiments show that the derived pricing formula is accurate and effective. Finally, our sensitivity analysis of the influence of important parameters, such as the risk-free rate, Hurst exponent, and correlation coefficient, on the prices of Asian rainbow options further illustrate the rationality of our pricing model.

  12. Moments of inertia and the shapes of Brownian paths

    International Nuclear Information System (INIS)

    Fougere, F.; Desbois, J.

    1993-01-01

    The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs

  13. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    International Nuclear Information System (INIS)

    Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2008-01-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays

  14. Brownian motion of a dust particle in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T.; Shukla, P.K.; Martins, A.M.; Guerra, R. [Grupo de Lasers e Plasmas (GOLP)/Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal)

    1997-03-01

    A new version of the Brownian motion describing the motion of a dust particle in a turbulent plasma is considered. Here, the stochastic force acting on the dust particle is due to the fluctuations of the plasma potential and not due to the usual molecular collisions. Another significant difference is due to the fact that the dust electric charge is not constant but fluctuates with the potential. A four-dimensional formulation of the problem is also given. {copyright} {ital 1997 American Institute of Physics.}

  15. Random functions via Dyson Brownian Motion: progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoyuan; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen,Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  16. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  17. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  18. Beam distribution function after filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.; Decker, F.J.; Seeman, J.T.

    1995-05-01

    In this paper, the authors calculate the beam distribution function after filamentation (phase-mixing) of a focusing mismatch. This distribution is relevant when interpreting beam measurements and sources of emittance dilution in linear colliders. It is also important when considering methods of diluting the phase space density, which may be required for the machine protection system in future linear colliders, and it is important when studying effects of trapped ions which filament in the electron beam potential. Finally, the resulting distribution is compared with measured beam distributions from the SLAC linac.

  19. Subdiffusion in hair bundle dynamics: The role of protein conformational fluctuations

    Science.gov (United States)

    Sharma, Rati; Cherayil, Binny J.

    2012-12-01

    The detection of sound signals in vertebrates involves a complex network of different mechano-sensory elements in the inner ear. An especially important element in this network is the hair bundle, an antenna-like array of stereocilia containing gated ion channels that operate under the control of one or more adaptation motors. Deflections of the hair bundle by sound vibrations or thermal fluctuations transiently open the ion channels, allowing the flow of ions through them, and producing an electrical signal in the process, eventually causing the sensation of hearing. Recent high frequency (0.1-10 kHz) measurements by Kozlov et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 2896 (2012)], 10.1073/pnas.1121389109 of the power spectrum and the mean square displacement of the thermal fluctuations of the hair bundle suggest that in this regime the dynamics of the hair bundle are subdiffusive. This finding has been explained in terms of the simple Brownian motion of a filament connecting neighboring stereocilia (the tip link), which is modeled as a viscoelastic spring. In the present paper, the diffusive anomalies of the hair bundle are ascribed to tip link fluctuations that evolve by fractional Brownian motion, which originates in fractional Gaussian noise and is characterized by a power law memory. The predictions of this model for the power spectrum of the hair bundle and its mean square displacement are consistent with the experimental data and the known properties of the tip link.

  20. Rapid Formation and Disappearance of a Filament Barb

    Science.gov (United States)

    Joshi, Anand D.; Srivastava, Nandita; Mathew, Shibu K.; Martin, Sara F.

    2013-11-01

    We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.

  1. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  2. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  3. Studies of the laser filament instability in a semicollisional plasma

    International Nuclear Information System (INIS)

    Michel, P.; Labaune, C.; Weber, S.; Tikhonchuk, V.T.; Bonnaud, G.; Riazuelo, G.; Walraet, F.

    2003-01-01

    The stability and nonlinear evolution of a laser filament in an underdense, semicollisional plasma are studied with a simulation code accounting for the ponderomotive and thermal effects together with the nonlocal electron transport. It is found that the filament is stable at low intensities, where the trapped laser power is below the self-focusing threshold. For larger powers, the filament is unstable with respect to bending. This instability, though predicted in theory (the m=1 mode), has not been seen so far in monospeckle modelling probably because of simulation symmetry. In our simulations an artificial noise source has been implemented in order to make nonsymmetric features appear. The instability leads to a complete breakup of the filament which reconstructs itself after some time and the process then repeats itself. Due to the filament instability the plasma sets in a regime of self-supported oscillations and results in temporal modulation and angular spreading of transmitted light. The numerical simulations are compared with theoretical predictions and experimental observations of speckle dynamics in the interaction of a randomized laser beam with preformed plasmas

  4. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  5. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  6. Brownian motion in a classical ideal gas: A microscopic approach to ...

    Indian Academy of Sciences (India)

    of a surface profile due to random deposition [10] are a few examples of such a situation and the description ... motion of the Brownian particle through an ideal gas to be a jump Markov process,. Gillespie [14] and van ... Brownian particle moving in an ideal gas at a fixed temperature, using a combi- nation of microscopic ...

  7. A Simplified Treatment of Brownian Motion and Stochastic Differential Equations Arising in Financial Mathematics

    Science.gov (United States)

    Parlar, Mahmut

    2004-01-01

    Brownian motion is an important stochastic process used in modelling the random evolution of stock prices. In their 1973 seminal paper--which led to the awarding of the 1997 Nobel prize in Economic Sciences--Fischer Black and Myron Scholes assumed that the random stock price process is described (i.e., generated) by Brownian motion. Despite its…

  8. Biased motion of a brownian particle for the pausing time behavior of the CTRW

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S. (National Fisheries Univ., Busan (Republic of Korea))

    1982-12-01

    The purpose of this paper is to discuss the biased Brownian motion with the absorbing barrier for the pausing time behavior of the CTRW (continuous-time random walk method), regarding a Brownian particle as a walker. For two pausing time density functions, the respective values for the transport averaged velocity and the dispersion are calculated as the time t becomes large.

  9. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    Science.gov (United States)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  10. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Science.gov (United States)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  11. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  12. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...

  13. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then...

  14. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  15. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  16. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  17. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  18. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  19. Femtosecond Laser Filamentation for Atmospheric Sensing

    OpenAIRE

    Huai Liang Xu; See Leang Chin

    2010-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence sp...

  20. Filament Winding Of Carbon/Carbon Structures

    Science.gov (United States)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  1. Filament Eruptions, Jets, and Space Weather

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  2. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    Filaments are clouds of relatively cool and dense gas in the solar atmosphere. ... First-tier filaments may be related to a peculiar feature of the solar dynamo. .... Still, an appeal to subsurface processes should be resisted, but surface motion models have been able to reproduce neither the pattern of filament field orientations ...

  3. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  4. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    according to which, probably all the magnetic flux that emerges into the photosphere is twisted. Twisted flux forms sunspots, active regions (ARs) and filaments. The twist accumulates in filaments and coronal arcades. Eventually the accumulated, highly twisted fields become unstable and erupt. From a study of filament ...

  5. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  6. Elasticity of a Filament with Kinks

    Science.gov (United States)

    Razbin, Mohammadhosein

    2017-12-01

    Using the wormlike chain model, we analytically study the elasticity of a filament with kinks. We calculate the position probability density function and the force constant of a kinked filament with a general kink angle. Then, using the mathematical induction, we obtain the positional-orientational probability density function of a filament with regular kinks. For this filament, we compute the force constant in two different directions. In longitudinal direction of the filament, the force constant is proportional to the inverse of the number of the segments, i.e., 1 / m, while in transverse direction, it is proportional to 1/m^3.

  7. Change of particle size distribution during Brownian coagulation

    International Nuclear Information System (INIS)

    Lee, K.W.

    1984-01-01

    Change in particle size distribution due to Brownian coagulation in the continuum regime has been stuied analytically. A simple analytic solution for the size distribution of an initially lognormal distribution is obtained based on the assumption that the size distribution during the coagulation process attains or can, at least, be represented by a time dependent lognormal function. The results are found to be in a form that corrects Smoluchowski's solution for both polydispersity and size-dependent kernel. It is further shown that regardless of whether the initial distribution is narrow or broad, the spread of the distribution is characterized by approaching a fixed value of the geometric standard deviation. This result has been compared with the self-preserving distribution obtained by similarity theory. (Author)

  8. Confined mobility in biomembranes modeled by early stage Brownian motion.

    Science.gov (United States)

    Gmachowski, Lech

    2014-08-01

    An equation of motion, derived from the fractal analysis of the Brownian particle trajectory, makes it possible to calculate the time dependence of the mean square displacement for early times, before the Einstein formula becomes valid. The diffusion coefficient increases with the distance travelled which can be restricted by the geometrical conditions. The corresponding diffusion coefficient cannot increase further to achieve a value characteristic for unrestricted environment. Explicit formula is derived for confined diffusivity related to the unrestricted one as dependent on the maximum particle mean square displacement possible normalized by the square of its mean free path. The model describes the lipid and protein diffusion in tubular membranes with different radii, originally fitted by the modified Saffman-Delbrück equation, and the lateral mobility of synthetic model peptides for which the diffusion coefficient is inversely proportional to the radius of the diffusing object and to the thickness of the membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  10. Optimal dividends in the Brownian motion risk model with interest

    Science.gov (United States)

    Fang, Ying; Wu, Rong

    2009-07-01

    In this paper, we consider a Brownian motion risk model, and in addition, the surplus earns investment income at a constant force of interest. The objective is to find a dividend policy so as to maximize the expected discounted value of dividend payments. It is well known that optimality is achieved by using a barrier strategy for unrestricted dividend rate. However, ultimate ruin of the company is certain if a barrier strategy is applied. In many circumstances this is not desirable. This consideration leads us to impose a restriction on the dividend stream. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. Under this additional constraint, we show that the optimal dividend strategy is formed by a threshold strategy.

  11. BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME

    Directory of Open Access Journals (Sweden)

    Suresh Chandrasekhar

    2016-08-01

    Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.

  12. Semicircular canals circumvent Brownian Motion overload of mechanoreceptor hair cells

    DEFF Research Database (Denmark)

    Muller, Mees; Heeck, Kier; Elemans, Coen P H

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500...... nN/m), and have a 100-fold higher tip displacement threshold (hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above...... differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (

  13. Monitoring autocorrelated process: A geometric Brownian motion process approach

    Science.gov (United States)

    Li, Lee Siaw; Djauhari, Maman A.

    2013-09-01

    Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.

  14. On the first-passage time of integrated Brownian motion

    Directory of Open Access Journals (Sweden)

    Christian H. Hesse

    2005-01-01

    Full Text Available Let (Bt;t≥0 be a Brownian motion process starting from B0=ν and define Xν(t=∫0tBsds. For a≥0, set τa,ν:=inf{t:Xν(t=a} (with inf φ=∞. We study the conditional moments of τa,ν given τa,ν<∞. Using martingale methods, stopping-time arguments, as well as the method of dominant balance, we obtain, in particular, an asymptotic expansion for the conditional mean E(τa,ν|τa,ν<∞ as ν→∞. Through a series of simulations, it is shown that a truncation of this expansion after the first few terms provides an accurate approximation to the unknown true conditional mean even for small ν.

  15. Generalized Fokker-Planck equation, Brownian motion, and ergodicity.

    Science.gov (United States)

    Plyukhin, A V

    2008-06-01

    Microscopic theory of Brownian motion of a particle of mass M in a bath of molecules of mass mforce, and the generalized Fokker-Planck equation involves derivatives of order higher than 2. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In the general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order (m/M)2 and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented.

  16. Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-02-01

    Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.

  17. NMR signals within the generalized Langevin model for fractional Brownian motion

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  18. UNUSUAL FILAMENTS INSIDE THE UMBRA

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Sainz Dalda, A., E-mail: kleintl@ucar.edu [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States)

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  19. [Chitinolytic activity of filamentous fungi].

    Science.gov (United States)

    Shubakov, A A; Kucheriavykh, P S

    2004-01-01

    The chitinolytic activity of nine species of filamentous fungi, classified with seven genera (specifically, Aspergillus, Penicillium, Trichoderma, Paecilomyces, Sporotrichum, Beaueria, and Mucor), was studied. When cultured in liquid medium containing 1% crystalline chitin, all fungi produced extracellular chitosans with activity varying from 0.2 U/mg protein (Sporotrichum olivaceum, Mucor sp., etc.) to 4.0-4.2 U/mg protein (Trichoderma lignorum, Aspergillus niger).

  20. Lighting the universe with filaments.

    Science.gov (United States)

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  1. Micro- and Mesozooplankton Distribution Related to an Upwelling Filament in the Northern Benguela Current Region

    Science.gov (United States)

    Koppelmann, R.; Bohata, K.

    2016-02-01

    Upwelling filaments are formations of cold upwelled water which develop near the coast and extend up to hundreds of kilometers offshore. They are important for the dynamics of upwelling systems as they transport nutrients and plankton to the open ocean. On regional scales, the transport of water masses by upwelling filaments occasionally can be higher and more important than the Ekman transport. Such filaments are able to transport a large fraction of coastal primary production even during low upwelling intensity. However, the dimension and nature of transported organic matter depends largely on the size structure of the involved plankton community. In the course of the GENUS project (Geochemistry and Ecology of the Namibian Upwelling System), we investigated the micro- and mesozooplankton community associated with upwelling filaments. Small-scale differences in the distribution of micro- and mesozooplankton species were detected and related to different water masses. Depending on the developmental stage of the filament, zooplankton abundance can be higher or lower than in the surrounding offshore waters. Along the filament, the microzooplankton composition changed from ciliates-dominated in the in the centre of the filament to dinoflagellate-dominated further offshore. Several mechanisms like the exhaustion of available nutrients and the subsequent die off and sinking of the community or increased predation pressure within the filament are discussed to enlighten the fate of the transported organic material.

  2. A study of a coronal hole associated with a large filament eruption

    Science.gov (United States)

    Gutiérrez, Heidy; Taliashvili, Lela; Lazarian, Alexandre; Mouradian, Zadig

    2017-11-01

    We report the results of a detailed study of an equatorial coronal hole and a dimming region related to the eruptions of a nearby large filament and subsequent coronal mass ejections (CMEs). The dynamic eruptions of the filament and the associated CMEs are probably related to the magnetic reconnection involving the magnetic field lines at the filament footpoints. During the starting processes of the filament eruption, we observed several newly emerged small magnetic flux concentrations close to the filament footpoints. Disturbance increase in the prominence body was observed during the pre-eruption processes. After the filament eruption, we observed evacuated filament material from the filament channel towards the coronal hole. Thus, all the region is perturbed and EUV loops and bright points are observed before and after the eruptions. Additionally, after the CME, we observed the disappearance of the dimming region and the coronal hole, followed by photospheric magnetic diffusion. We discussed a possible magnetic reconnection scenario and MHD waves involved during these processes.

  3. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  4. A Stability Result for Stochastic Differential Equations Driven by Fractional Brownian Motions

    Directory of Open Access Journals (Sweden)

    Bruno Saussereau

    2012-01-01

    Full Text Available We study the stability of the solutions of stochastic differential equations driven by fractional Brownian motions with Hurst parameter greater than half. We prove that when the initial conditions, the drift, and the diffusion coefficients as well as the fractional Brownian motions converge in a suitable sense, then the sequence of the solutions of the corresponding equations converge in Hölder norm to the solution of a stochastic differential equation. The limit equation is driven by the limit fractional Brownian motion and its coefficients are the limits of the sequence of the coefficients.

  5. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex.

    Science.gov (United States)

    McFadden, William M; McCall, Patrick M; Gardel, Margaret L; Munro, Edwin M

    2017-12-01

    Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding

  6. Filamentous fungi: the indeterminate lifestyle and microbial ecology.

    Science.gov (United States)

    Klein, D A; Paschke, M W

    2004-04-01

    The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be

  7. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    Science.gov (United States)

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  8. Decidable and undecidable arithmetic functions in actin filament networks

    Science.gov (United States)

    Schumann, Andrew

    2018-01-01

    The plasmodium of Physarum polycephalum is very sensitive to its environment, and reacts to stimuli with appropriate motions. Both the sensory and motor stages of these reactions are explained by hydrodynamic processes, based on fluid dynamics, with the participation of actin filament networks. This paper is devoted to actin filament networks as a computational medium. The point is that actin filaments, with contributions from many other proteins like myosin, are sensitive to extracellular stimuli (attractants as well as repellents), and appear and disappear at different places in the cell to change aspects of the cell structure—e.g. its shape. By assembling and disassembling actin filaments, some unicellular organisms, like Amoeba proteus, can move in response to various stimuli. As a result, these organisms can be considered a simple reversible logic gate—extracellular signals being its inputs and motions its outputs. In this way, we can implement various logic gates on amoeboid behaviours. These networks can embody arithmetic functions within p-adic valued logic. Furthermore, within these networks we can define the so-called diagonalization for deducing undecidable arithmetic functions.

  9. Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker-Planck equations

    International Nuclear Information System (INIS)

    Jumarie, Guy

    2004-01-01

    There are presently two different models of fractional Brownian motions available in the literature: the Riemann-Liouville fractional derivative of white noise on the one hand, and the complex-valued Brownian motion of order n defined by using a random walk in the complex plane, on the other hand. The paper provides a comparison between these two approaches, and in addition, takes this opportunity to contribute some complements. These two models are more or less equivalent on the theoretical standpoint for fractional order between 0 and 1/2, but their practical significances are quite different. Otherwise, for order larger than 1/2, the fractional derivative model has no counterpart in the complex plane. These differences are illustrated by an example drawn from mathematical finance. Taylor expansion of fractional order provides the expression of fractional difference in terms of finite difference, and this allows us to improve the derivation of Fokker-Planck equation and Kramers-Moyal expansion, and to get more insight in their relation with stochastic differential equations of fractional order. In the case of multi-fractal systems, the Fokker-Planck equation can be solved by using path integrals, and the fractional dynamic equations of the state moments of the stochastic system can be easily obtained. By combining fractional derivative and complex white noise of order n, one obtains a family of complex-valued fractional Brownian motions which exhibits long-range dependence. The conclusion outlines suggestions for further research, mainly regarding Lorentz transformation of fractional noises

  10. Second order limit laws for occupation times of the fractional Brownian motion

    OpenAIRE

    Xu, Fangjun

    2013-01-01

    We prove second order limit laws for (additive) functionals of the $d$-dimensional fractional Brownian motion with Hurst index $H=\\frac{1}{d}$, using the method of moments, extending the Kallianpur-Robbins law.

  11. Self-Intersection Local Times of Generalized Mixed Fractional Brownian Motion as White Noise Distributions

    International Nuclear Information System (INIS)

    Suryawan, Herry P.; Gunarso, Boby

    2017-01-01

    The generalized mixed fractional Brownian motion is defined by taking linear combinations of a finite number of independent fractional Brownian motions with different Hurst parameters. It is a Gaussian process with stationary increments, posseses self-similarity property, and, in general, is neither a Markov process nor a martingale. In this paper we study the generalized mixed fractional Brownian motion within white noise analysis framework. As a main result, we prove that for any spatial dimension and for arbitrary Hurst parameter the self-intersection local times of the generalized mixed fractional Brownian motions, after a suitable renormalization, are well-defined as Hida white noise distributions. The chaos expansions of the self-intersection local times in the terms of Wick powers of white noises are also presented. (paper)

  12. Self-Intersection Local Times of Generalized Mixed Fractional Brownian Motion as White Noise Distributions

    Science.gov (United States)

    Suryawan, Herry P.; Gunarso, Boby

    2017-06-01

    The generalized mixed fractional Brownian motion is defined by taking linear combinations of a finite number of independent fractional Brownian motions with different Hurst parameters. It is a Gaussian process with stationary increments, posseses self-similarity property, and, in general, is neither a Markov process nor a martingale. In this paper we study the generalized mixed fractional Brownian motion within white noise analysis framework. As a main result, we prove that for any spatial dimension and for arbitrary Hurst parameter the self-intersection local times of the generalized mixed fractional Brownian motions, after a suitable renormalization, are well-defined as Hida white noise distributions. The chaos expansions of the self-intersection local times in the terms of Wick powers of white noises are also presented.

  13. The rate of collisions due to Brownian or gravitational motion of small drops

    Science.gov (United States)

    Zhang, Xiaoguang; Davis, Robert H.

    1991-01-01

    Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.

  14. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  15. On the distribution of estimators of diffusion constants for Brownian motion

    International Nuclear Information System (INIS)

    Boyer, Denis; Dean, David S

    2011-01-01

    We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.

  16. The probability of an encounter of two Brownian particles before escape

    International Nuclear Information System (INIS)

    Holcman, D; Kupka, I

    2009-01-01

    We study the probability of meeting of two Brownian particles before one of them exits a finite interval. We obtain an explicit expression for the probability as a function of the initial distance between the two particles using the Weierstrass elliptic function. We also find the law of the meeting location. Brownian simulations show the accuracy of our analysis. Finally, we discuss some applications to the probability that a double-strand DNA break repairs in confined environments.

  17. Asian Option Pricing with Monotonous Transaction Costs under Fractional Brownian Motion

    Directory of Open Access Journals (Sweden)

    Di Pan

    2013-01-01

    Full Text Available Geometric-average Asian option pricing model with monotonous transaction cost rate under fractional Brownian motion was established. The method of partial differential equations was used to solve this model and the analytical expressions of the Asian option value were obtained. The numerical experiments show that Hurst exponent of the fractional Brownian motion and transaction cost rate have a significant impact on the option value.

  18. Integrated fractional white noise as an alternative to multifractional Brownian motion

    OpenAIRE

    Sly, Allan

    2007-01-01

    Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show h...

  19. Weak solutions to stochastic differential equations driven by fractional Brownian motion

    Czech Academy of Sciences Publication Activity Database

    Šnupárková, Jana

    2009-01-01

    Roč. 59, č. 4 (2009), s. 879-907 ISSN 0011-4642 R&D Projects: GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10750506 Keywords : fractional Brownian motion * weak solutions Subject RIV: BA - General Mathematics Impact factor: 0.306, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/snuparkova-weak solutions to stochastic differential equations driven by fractional brownian motion.pdf

  20. Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation

    OpenAIRE

    Dunkel, Jörn; Hänggi, Peter (Prof. Dr. Dr. h.c. mult.)

    2006-01-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy point-like Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, non-relativistic LE is deduced from this model, by taking into account the non-relativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativi...

  1. Femtosecond Laser Filamentation for Atmospheric Sensing

    Directory of Open Access Journals (Sweden)

    Huai Liang Xu

    2010-12-01

    Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

  2. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  3. Assembly of Superparamagnetic Filaments in External Field.

    Science.gov (United States)

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.

  4. Chaperonin filaments: The archaeal cytoskeleton?

    Science.gov (United States)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  5. Phase transition in non-brownian fiber suspensions

    Science.gov (United States)

    Franceschini, Alexandre; Filippidi, Emmanouella; Guazzelli, Elizabeth; Pine, David

    2012-11-01

    The simple shear of a suspension of fibers tends to align them with the flow direction. We previously reported that the oscillatory shear of neutrally buoyant non-Brownian fibers align them with the vorticity (Franceschini A. et al. PRL, 2011). We interpreted this phenomenon as the minimization of a ``corrected volume fraction'' defined as a function of the strain amplitude, the average orientation and the volume fraction. Below a critical value of this parameter, the system becomes fully reversible after a few periods. Above it, fluctuations remain and the fibers align with the vorticity, subsequently reducing the value of this corrected volume fraction. We present here the collective behavior of fibers constrained at the liquid-air interface. By pinning the liquid on the wall of a Couette cell, we can have a flat interface. By modifying the surface of the fibers, we get rid of most of surface tension mediated fiber-fiber interactions. In this 2D configuration we can measure spatial correlations, as well as the position and orientation of every fiber at each shear cycle. We similarly define a ``corrected surface fraction'' and see how this parameter help us understand the difference between the surface behavior and the suspension behavior. This work was supported by the NSF through the NYU MRSEC, Award DMR:0820341. Additional support was provided by a Lavoisier Fellowship (AF) and from the Onassis Foundation (EF).

  6. Beyond multifractional Brownian motion: new stochastic models for geophysical modelling

    Directory of Open Access Journals (Sweden)

    J. Lévy Véhel

    2013-09-01

    Full Text Available Multifractional Brownian motion (mBm has proved to be a useful tool in various areas of geophysical modelling. Although a versatile model, mBm is of course not always an adequate one. We present in this work several other stochastic processes which could potentially be useful in geophysics. The first alternative type is that of self-regulating processes: these are models where the local regularity is a function of the amplitude, in contrast to mBm where it is tuned exogenously. We demonstrate the relevance of such models for digital elevation maps and for temperature records. We also briefly describe two other types of alternative processes, which are the counterparts of mBm and of self-regulating processes when the intensity of local jumps is considered in lieu of local regularity: multistable processes allow one to prescribe the local intensity of jumps in space/time, while this intensity is governed by the amplitude for self-stabilizing processes.

  7. Beyond multifractional Brownian motion: new stochastic models for geophysical modelling

    Science.gov (United States)

    Lévy Véhel, J.

    2013-09-01

    Multifractional Brownian motion (mBm) has proved to be a useful tool in various areas of geophysical modelling. Although a versatile model, mBm is of course not always an adequate one. We present in this work several other stochastic processes which could potentially be useful in geophysics. The first alternative type is that of self-regulating processes: these are models where the local regularity is a function of the amplitude, in contrast to mBm where it is tuned exogenously. We demonstrate the relevance of such models for digital elevation maps and for temperature records. We also briefly describe two other types of alternative processes, which are the counterparts of mBm and of self-regulating processes when the intensity of local jumps is considered in lieu of local regularity: multistable processes allow one to prescribe the local intensity of jumps in space/time, while this intensity is governed by the amplitude for self-stabilizing processes.

  8. Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion

    Science.gov (United States)

    Setty, V. A.; Sharma, A. S.

    2015-02-01

    The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.

  9. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S. [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Li, T. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Zheng, R. S., E-mail: zhangqm@pmo.ac.cn [Institute of Space Sciences, Shandong University, Weihai 264209 (China)

    2017-06-10

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  10. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available This paper reports on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological...

  11. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  12. Liquid droplets of cross-linked actin filaments

    Science.gov (United States)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  13. Functional characterisation of filamentous actin probe expression in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Shrujna Patel

    Full Text Available Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.

  14. Human Rad51 filaments on double- and single-stranded DNA : Correlating regular and irregular forms with recombination function

    NARCIS (Netherlands)

    Ristic, D.; Modesti, M.; Van der Heijden, T.; Van Noort, J.; Dekker, C.; Kanaar, R.; Wyman, C.

    Recombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity of

  15. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... was ATP dependent, and depolymerization of ParM filaments required nucleotide hydrolysis. Our in vivo and in vitro results indicate that ParM polymerization generates the force required for directional movement of plasmids to opposite cell poles and that the ParR-parC complex functions as a nucleation...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  16. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  17. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  18. Kinetics of filamentous phage assembly

    Science.gov (United States)

    Ploss, Martin; Kuhn, Andreas

    2010-12-01

    Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.

  19. Testing for Expected Return and Market Price of Risk in Chinese A-B Share Market: A Geometric Brownian Motion and Multivariate GARCH Model Approach

    DEFF Research Database (Denmark)

    Zhu, Jie

    There exist dual-listed stocks which are issued by the same company in some stock markets. Although these stocks bare the same firm-specific risk and enjoy identical dividends and voting policies, they are priced differently. Some previous studies show this seeming deviation from the law of one...... stock markets. Models with dynamic of Geometric Brownian Motion are adopted, multivariate GARCH models are also introduced to capture the feature of time-varying volatility in stock returns. The results suggest that the different pric- ing can be explained by the difference in expected returns between...

  20. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  1. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  2. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  3. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    Science.gov (United States)

    Lim, S. C.; Teo, L. P.

    2009-08-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann-Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion.

  4. The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations—A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Pamela Vrabl

    2017-12-01

    Full Text Available Filamentous fungi are important cell factories. In contrast, we do not understand well even basic physiological behavior in these organisms. This includes the widespread phenomenon of organic acid excretion. One strong hurdle to fully exploit the metabolic capacity of these organisms is the enormous, highly environment sensitive phenotypic plasticity. In this work we explored organic acid excretion in Penicillium ochrochloron from a new point of view by simultaneously investigating three essential metabolic levels: the plasma membrane H+-ATPase (PM; energy metabolism, in particular adenine and pyridine nucleotides (M; and respiration, in particular the alternative oxidase (R. This was done in strictly standardized chemostat culture with different nutrient limitations (glucose, ammonium, nitrate, and phosphate. These different nutrient limitations led to various quantitative phenotypes (as represented by organic acid excretion, oxygen consumption, glucose consumption, and biomass formation. Glucose-limited grown mycelia were used as the reference point (very low organic acid excretion. Both ammonium and phosphate grown mycelia showed increased organic acid excretion, although the patterns of excreted acids were different. In ammonium-limited grown mycelia amount and activity of the plasma membrane H+-ATPase was increased, nucleotide concentrations were decreased, energy charge (EC and catabolic reduction charge (CRC were unchanged and alternative respiration was present but not quantifiable. In phosphate-limited grown mycelia (no data on the H+-ATPase nucleotide concentrations were still lower, EC was slightly decreased, CRC was distinctly decreased and alternative respiration was present and quantifiable. Main conclusions are: (i the phenotypic plasticity of filamentous fungi demands adaptation of sample preparation and analytical methods at the phenotype level; (ii each nutrient condition is unique and its metabolic situation must be considered

  5. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring viscoela......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...... to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially...

  6. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  7. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  8. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  9. Novel Actin-like Filament Structure from Clostridium tetani*

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Tanaka, Toshitsugu; Robinson, Robert C.

    2012-01-01

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  10. Novel actin-like filament structure from Clostridium tetani.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  11. Current filamentation in high-current diodes

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Kuksov, P.V.; Fanchenko, S.D.; Shuvaev, V.Y.

    1988-01-01

    Experimental data are reported on the filamentation of a high-current relativistic electron beam in the Kal'mar-1 relativistic-electron-beam source. A possible mechanism for this filamentation is studied theoretically. It is shown that the experimental results on the number of filaments into which the relativistic electron beam breaks up can be explained on the basis of an azimuthal nonuniformity of the current. This nonuniformity develops in the plasma near the cathode as the result of a Rayleigh--Taylor electron instability

  12. Membrane Buckling Induced by Curved Filaments

    Science.gov (United States)

    Lenz, Martin; Crow, Daniel J. G.; Joanny, Jean-François

    2009-07-01

    We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.

  13. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  14. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss.

    Science.gov (United States)

    Kheifets, Simon; Simha, Akarsh; Melin, Kevin; Li, Tongcang; Raizen, Mark G

    2014-03-28

    Measurement of the instantaneous velocity of Brownian motion of suspended particles in liquid probes the microscopic foundations of statistical mechanics in soft condensed matter. However, instantaneous velocity has eluded experimental observation for more than a century since Einstein's prediction of the small length and time scales involved. We report shot-noise-limited, high-bandwidth measurements of Brownian motion of micrometer-sized beads suspended in water and acetone by an optical tweezer. We observe the hydrodynamic instantaneous velocity of Brownian motion in a liquid, which follows a modified energy equipartition theorem that accounts for the kinetic energy of the fluid displaced by the moving bead. We also observe an anticorrelated thermal force, which is conventionally assumed to be uncorrelated.

  15. Stochastic processes with values in Riemannian admissible complex: Isotropic process, Wiener measure and Brownian motion

    International Nuclear Information System (INIS)

    Bouziane, T.

    2004-04-01

    The purpose of this work was to construct a Brownian motion with values in simplicial complexes with piecewise differential structure. After a martingale theory attempt, we constructed a family of continuous Markov processes with values in an admissible complex; we named every process of this family, isotropic transport process. We showed that the family of the isotropic processes contains a subsequence, which converged weakly to a measure; we named it the Wiener measure. Then, we constructed, thanks to the finite dimensional distributions of the Wiener measure a new continuous Markov process with values in an admissible complex: the Brownian motion. We finished with a geometric analysis of this Brownian motion, to determinate, under hypothesis on the complex, the recurrent or transient behavior of such process. (author)

  16. Brownian ratchets from statistical physics to bio and nano-motors

    CERN Document Server

    Cubero, David

    2016-01-01

    Illustrating the development of Brownian ratchets, from their foundations, to their role in the description of life at the molecular scale and in the design of artificial nano-machinery, this text will appeal to both advanced graduates and researchers entering the field. Providing a self-contained introduction to Brownian ratchets, devices which rectify microscopic fluctuations, Part I avoids technicalities and sets out the broad range of physical systems where the concept of ratchets is relevant. Part II supplies a single source for a complete and modern theoretical analysis of ratchets in regimes such as classical vs quantum and stochastic vs deterministic, and in Part III readers are guided through experimental developments in different physical systems, each highlighting a specific unique feature of ratchets. The thorough and systematic approach to the topic ensures that this book provides a complete guide to Brownian ratchets for newcomers and established researchers in physics, biology and biochemistry.

  17. Asymptotic theory for Brownian semi-stationary processes with application to turbulence

    DEFF Research Database (Denmark)

    Corcuera, José Manuel; Hedevang, Emil; Pakkanen, Mikko S.

    2013-01-01

    -stationary processes. In "Prokhorov and Contemporary Probability Theory", Springer.] and present some new connections to fractional diffusion models. We apply our probabilistic results to construct a family of estimators for the smoothness parameter of the BSS process. In this context we develop estimates with gaps......This paper presents some asymptotic results for statistics of Brownian semi-stationary (BSS) processes. More precisely, we consider power variations of BSS processes, which are based on high frequency (possibly higher order) differences of the BSS model. We review the limit theory discussed...... in [Barndorff-Nielsen, O.E., J.M. Corcuera and M. Podolskij (2011): Multipower variation for Brownian semistationary processes. Bernoulli 17(4), 1159-1194; Barndorff-Nielsen, O.E., J.M. Corcuera and M. Podolskij (2012): Limit theorems for functionals of higher order differences of Brownian semi...

  18. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  19. Brownian Motion of 2D Vacancy Islands by Adatom Terrace Diffusion

    International Nuclear Information System (INIS)

    Morgenstern, Karina; Laegsgaard, Erik; Besenbacher, Flemming

    2001-01-01

    We have studied the Brownian motion of two-dimensional (2D) vacancy islands on Ag(110) at temperatures between 175 and 215K. While the detachment of adatoms from the island and their diffusion on the terrace are permitted in this temperature range, the periphery diffusion of single adatoms is prohibited. The present scanning tunneling microscopy results provide the first direct experimental proof that the Brownian motion of the islands follows a simple scaling law with terrace diffusion being the rate limiting process. The activation energy of the vacancy island motion is determined to 0.41eV

  20. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments

    DEFF Research Database (Denmark)

    Dávid, Selmeczi; Tolic-Nørrelykke, S.F.; Schäffer, E.

    2007-01-01

    that it requires an understanding of Brownian motion beyond Einstein's and Smoluchowski's for its calibration, and can measure effects not present in their theories. This is illustrated with some applications, current and potential. It is also shown how addition of a controlled forced motion on the nano......The first half of this review describes the development in mathematical models of Brownian motion after Einstein's and Smoluchowski's seminal papers and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of such precision...

  1. Non-intersecting Brownian motions leaving from and going to several points

    Science.gov (United States)

    Adler, Mark; van Moerbeke, Pierre; Vanderstichelen, Didier

    2012-03-01

    Consider n non-intersecting Brownian motions on R, depending on time t∈[0,1], with mi particles forced to leave from ai at time t=0, 1≤i≤q, and nj particles forced to end up at bj at time t=1, 1≤j≤p. For arbitrary p and q, it is not known if the distribution of the positions of the non-intersecting Brownian particles at a given time 0miracle! Unfortunately we were unable to find its explicit expression. The case p=q=2 will be discussed in the last section.

  2. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments

    DEFF Research Database (Denmark)

    Dávid, Selmeczi; Tolic-Nørrelykke, S.F.; Schäffer, E.

    2007-01-01

    The first half of this review describes the development in mathematical models of Brownian motion after Einstein's and Smoluchowski's seminal papers and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of such precision...... that it requires an understanding of Brownian motion beyond Einstein's and Smoluchowski's for its calibration, and can measure effects not present in their theories. This is illustrated with some applications, current and potential. It is also shown how addition of a controlled forced motion on the nano...

  3. Magnetic tension and instabilities in the Orion A integral-shaped filament

    Science.gov (United States)

    Schleicher, Dominik R. G.; Stutz, Amelia

    2018-03-01

    The Orion nebula is a prime example of a massive star-forming region in our galaxy. Observations have shown that gravitational and magnetic energy are comparable in its integral-shaped filament on a scale of ˜1 pc, and that the population of pre-main sequence stars appears dynamically heated compared to the protostars. These results have been attributed to a slingshot mechanism resulting from the oscillation of the filament by Stutz & Gould. In this paper, we show that radially contracting filaments naturally evolve towards a state where gravitational, magnetic, and rotational energy are comparable. While the contraction of the filament will preferentially amplify the axial component of the magnetic field, the presence of rotation leads to a helical field structure. We show how magnetic tension can give rise to a filament oscillation, and estimate a typical time-scale of 0.7 Myr for the motion of the filament to the position of maximum displacement, consistent with the characteristic time-scale of the ejected stars. Furthermore, the presence of helical magnetic fields is expected to give rise to magneto-hydrodynamical instabilities. We show here that the presence of a magnetic field significantly enhances the overall instability, which operates on a characteristic scale of about 1 pc. We expect the physics discussed here to be generally relevant in massive star-forming regions, and encourage further investigations in the future.

  4. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments

    Directory of Open Access Journals (Sweden)

    James M. Wagstaff

    2017-05-01

    Full Text Available Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ, we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ’s conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.

  5. Two-step solar filament eruptions

    Science.gov (United States)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  6. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  7. Effect of friction on the motion of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Madsen, Jens; Naulin, Volker

    is influenced by the collisional friction with the neutral gas fluid. In magnetically confined plasmas, the motion of filamentary structures in the edge region can be influenced by parallel dynamics in a manner that resembles an effective friction. In the presence of strong ballooning, such a frictional...... an effective friction, is investigated. In the inertial regime the radial filament velocity scales as the square root of its size. In the limit of strong friction regime the velocity scales as the inverse of the structure size. A discussion of these results will be given in the context of irregularities...

  8. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen MJ; Stricker RB

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  9. Three dimensional simulations of plasma filaments in the scrape off layer

    DEFF Research Database (Denmark)

    Easy, L.; Militello, F.; Omotani, J.

    2014-01-01

    This paper presents simulations of isolated 3D filaments in a slab geometry obtained using a newly developed 3D reduced fluid code, written using the BOUT++ framework. First, systematic scans were performed to investigate how the dynamics of a filament are affected by its amplitude, perpendicular...... was increased sufficiently. Next, the 3D simulations were compared to 2D simulations using different parallel closures; namely, the sheath dissipation closure, which neglects parallel gradients, and the vorticity advection closure, which neglects the influence of parallel currents. The vorticity advection...... the closure is no longer valid. Specifically, it captured the contrasting dynamics of filaments with different perpendicular sizes that were observed in the 3D simulations which the vorticity advection closure failed to replicate. However, neither closure successfully replicated the Boltzmann spinning effects...

  10. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  11. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    Science.gov (United States)

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  12. Biosensor based on measurements of the clustering dynamics of magnetic particles

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....

  13. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    Science.gov (United States)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  14. An Extreme-Value Analysis of the LIL for Brownian Motion

    OpenAIRE

    Khoshnevisan, Davar; Levin, David; Shi, Zhan

    2005-01-01

    We use excursion theory and the ergodic theorem to present an extreme-value analysis of the classical law of the iterated logarithm (LIL) for Brownian motion. A simplified version of our method also proves, in a paragraph, the classical theorem of Darling and Erdős (1956).

  15. Orbital diamagnetism of a charged Brownian particle undergoing birth-death process

    International Nuclear Information System (INIS)

    Jayannawar, A.M.; Kumar, N.

    1980-06-01

    We consider the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. We obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem. (author)

  16. From Levy to Brownian: a computational model based on biological fluctuation.

    Directory of Open Access Journals (Sweden)

    Surya G Nurzaman

    Full Text Available BACKGROUND: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. METHODOLOGY/PRINCIPAL FINDINGS: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. CONCLUSIONS/SIGNIFICANCE: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  17. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  18. A modified Brownian force for ultrafine particle penetration through building crack modeling

    Science.gov (United States)

    Chen, Chen; Zhao, Bin

    2017-12-01

    Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.

  19. About the linear-quadratic regulator problem under a fractional Brownian perturbation and complete observation

    OpenAIRE

    Kleptsyna, Marina; Le Breton, Alain; Viot, Michel

    2002-01-01

    In this report we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

  20. A series expansion of fractional Brownian motion with Hurst index exceeding 1/2

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha); J.H. van Zanten (Harry)

    2002-01-01

    textabstractLet $B$ be a fractional Brownian motion with Hurst index $H ge 1/2$. Denote by $x_1 < x_2 < cdots$ the positive, real zeros of the Bessel function $J_{-H$ of the first kind of order $-H$, and by $y_1 < y_2 < cdots$ the positive zeros of $J_{1-H$. We prove the series representation

  1. 100 years of Einstein's Theory of Brownian Motion:from Pollen ...

    Indian Academy of Sciences (India)

    cial theory of relativity, (ii) photoelectric effect and (iii). Brownian motion [1]. These three papers not only rev- olutionized physics but also provided keys to open new frontiers in other branches of science and almost all areas of modern technology. In one of these three papers [2], enti tled "On the movement of small particles ...

  2. Brownian motion and parabolic Anderson model in a renormalized Poisson potential

    OpenAIRE

    Chen, Xia; Kulik, Alexey M.

    2012-01-01

    A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.

  3. A canonical process for estimation of convex functions : The "invelope" of integrated Brownian motion +t4

    NARCIS (Netherlands)

    Groeneboom, P.; Jongbloed, G.; Wellner, J.A.

    2001-01-01

    A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely

  4. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  5. Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory

    Czech Academy of Sciences Publication Activity Database

    Filip, R.; Zemánek, Pavel

    2016-01-01

    Roč. 18, č. 6 (2016), 065401:1-8 ISSN 2040-8978 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : optically trapped particles * Brownian motion * optomechanics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.741, year: 2016

  6. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  7. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  8. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  9. Weak convergence of the past and future of Brownian motion given ...

    Indian Academy of Sciences (India)

    Corresponding author. E-mail: kba@iastate.edu; kbathreya@gmail.com; ... of a pair of coupled processes Y + B1,Y + B2 where Y, B1,B2 are independent, Y is uniformly distributed on U and B1,B2 are standard d-dimensional Brownian motions.

  10. Non-intersecting Brownian walkers and Yang-Mills theory on the sphere

    International Nuclear Information System (INIS)

    Forrester, Peter J.; Majumdar, Satya N.; Schehr, Gregory

    2011-01-01

    We study a system of N non-intersecting Brownian motions on a line segment [0,L] with periodic, absorbing and reflecting boundary conditions. We show that the normalized reunion probabilities of these Brownian motions in the three models can be mapped to the partition function of two-dimensional continuum Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and SO(2N). Consequently, we show that in each of these Brownian motion models, as one varies the system size L, a third order phase transition occurs at a critical value L=L c (N)∼√(N) in the large N limit. Close to the critical point, the reunion probability, properly centered and scaled, is identical to the Tracy-Widom distribution describing the probability distribution of the largest eigenvalue of a random matrix. For the periodic case we obtain the Tracy-Widom distribution corresponding to the GUE random matrices, while for the absorbing and reflecting cases we get the Tracy-Widom distribution corresponding to GOE random matrices. In the absorbing case, the reunion probability is also identified as the maximal height of N non-intersecting Brownian excursions ('watermelons' with a wall) whose distribution in the asymptotic scaling limit is then described by GOE Tracy-Widom law. In addition, large deviation formulas for the maximum height are also computed.

  11. Optimality of an explicit series expansion of the fractional Brownian sheet

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha); J.H. van Zanten (Harry)

    2005-01-01

    htmlabstractWe show that an explicit series expansion of the fractional Brownian motion derived by Dzhaparidze and Van Zanten (Probab. Theory Related Fields 130 (1) (2004) 39) is rate-optimal in the sense that the expected uniform norm of the truncated series vanishes at the optimal rate as the

  12. Optimality of an explicit series expansion of the fractional Brownian sheet

    NARCIS (Netherlands)

    Dzhaparidze, K.; van Zanten, J.H.

    2005-01-01

    We show that an explicit series expansion of the fractional Brownian motion derived by Dzhaparidze and Van Zanten (Probab. Theory Related Fields 130 (1) (2004) 39) is rate-optimal in the sense that the expected uniform norm of the truncated series vanishes at the optimal rate as the truncation point

  13. Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion

    Czech Academy of Sciences Publication Activity Database

    Duncan, T. E.; Maslowski, Bohdan; Pasik-Duncan, B.

    2009-01-01

    Roč. 40, č. 6 (2009), s. 2286-2315 ISSN 0036-1410 R&D Projects: GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10190503 Keywords : semilinear stochastic equations * fractional Brownian motion * stochastic partial differential equations * absolute continuity of measures Subject RIV: BA - General Mathematics Impact factor: 1.649, year: 2009

  14. Solutions of linear and semilinear distributed parameter equations with a fractional Brownian motion

    Czech Academy of Sciences Publication Activity Database

    Duncan, T. E.; Maslowski, Bohdan; Pasik-Duncan, B.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 114-130 ISSN 0890-6327 R&D Projects: GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10190503 Keywords : distributed parameter equations * fractional Brownian motion * stochastic partial differential equations * solutions of stochastic equations Subject RIV: BA - General Mathematics Impact factor: 1.347, year: 2009

  15. Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam.

    Science.gov (United States)

    Gong, Cheng; Li, ZiXi; Hua, LinQiang; Quan, Wei; Liu, XiaoJun

    2016-09-15

    Filamentation dynamics in fused silica are investigated using an Airy pattern and a Gaussian laser beam. The angle-resolved conical emission spectra are measured and compared with the predictions of several models. Our experimental observations are consistent with the X-waves model in both cases. This indicates that both laser beams spontaneously evolve into nonlinear X-waves and suggests a universal evolution of filaments in fused silica, regardless of the initial laser beam profile.

  16. NLTE modeling of a small active region filament observed with the VTT

    Czech Academy of Sciences Publication Activity Database

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Heinzel, Petr; Kučera, A.

    2016-01-01

    Roč. 337, č. 10 (2016), s. 1045-1049 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10.2015-29.10.2015] Institutional support: RVO:67985815 Keywords : Sun * filaments * prominences Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  17. Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope

    Czech Academy of Sciences Publication Activity Database

    Balthasar, H.; Gömöry, P.; Gonzalez Manrique, S. J.; Kuckein, C.; Kavka, J.; Kučera, A.; Schwartz, P.; Vašková, R.; Berkefeld, T.; Collados Vera, M.; Denker, C.; Feller, A.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, Michal; Solanki, S.K.; Soltau, D.; Staude, J.; Strassmeier, K.G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.A.

    2016-01-01

    Roč. 337, č. 10 (2016), s. 1050-1056 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10.2015-29.10.2015] Institutional support: RVO:67985815 Keywords : Sun * filaments * photosphere Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  18. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  19. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions.

    Directory of Open Access Journals (Sweden)

    Davide Mercadante

    Full Text Available Pectin methylesterases (PMEs hydrolyze the methylester groups that are found on the homogalacturonan (HG chains of pectic polysaccharides in the plant cell wall. Plant and bacterial PMEs are especially interesting as the resulting de-methylesterified (carboxylated sugar residues are found to be arranged contiguously, indicating a so-called processive nature of these enzymes. Here we report the results of continuum electrostatics calculations performed along the molecular dynamics trajectory of a PME-HG-decasaccharide complex. In particular it was observed that, when the methylester groups of the decasaccharide were arranged in order to mimic the just-formed carboxylate product of de-methylesterification, a net unidirectional sliding of the model decasaccharide was subsequently observed along the enzyme's binding groove. The changes that occurred in the electrostatic binding energy and protein dynamics during this translocation provide insights into the mechanism by which the enzyme rectifies Brownian motions to achieve processivity. The free energy that drives these molecular motors is thus demonstrated to be incorporated endogenously in the methylesterified groups of the HG chains and is not supplied exogenously.

  20. Filamentous Influenza Virus Enters Cells via Macropinocytosis

    Science.gov (United States)

    Rossman, Jeremy S.; Leser, George P.

    2012-01-01

    Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes. PMID:22875971

  1. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Li Ding

    2018-01-01

    Full Text Available In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. Finally, we give three examples to demonstrate the applicability of our obtained results.

  2. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  3. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    International Nuclear Information System (INIS)

    Yu Mingzhou; Lin Jianzhong; Jin Hanhui; Jiang Ying

    2011-01-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke’s solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis’s log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke’s solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  4. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion

    Science.gov (United States)

    Yu, Mingzhou; Lin, Jianzhong; Jin, Hanhui; Jiang, Ying

    2011-05-01

    The closure of moment equations for nanoparticle coagulation due to Brownian motion in the entire size regime is performed using a newly proposed method of moments. The equations in the free molecular size regime and the continuum plus near-continuum regime are derived separately in which the fractal moments are approximated by three-order Taylor-expansion series. The moment equations for coagulation in the entire size regime are achieved by the harmonic mean solution and the Dahneke's solution. The results produced by the quadrature method of moments (QMOM), the Pratsinis's log-normal moment method (PMM), the sectional method (SM), and the newly derived Taylor-expansion moment method (TEMOM) are presented and compared in accuracy and efficiency. The TEMOM method with Dahneke's solution produces the most accurate results with a high efficiency than other existing moment models in the entire size regime, and thus it is recommended to be used in the following studies on nanoparticle dynamics due to Brownian motion.

  5. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Pariat, Étienne [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Wiegelmann, Thomas [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, D-37077 Göttingen (Germany); Liu, Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Kleint, Lucia, E-mail: chang.liu@njit.edu [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  6. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Structure of Flexible Filamentous Plant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald (IIT); (BU-M); (Vanderbilt); (Kentucky); (BNL)

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  8. Interplay between hydrodynamic and Brownian fluctuations in sedimenting colloidal suspensions

    NARCIS (Netherlands)

    Padding, J.T.; Louis, A.A.

    2008-01-01

    We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the steady-state sedimentation of hard sphere particles for Peclet number (Pe) ranging from 0.08 to 12. Hydrodynamic backflow causes a reduction of the average sedimentation velocity relative to the Stokes velocity. We

  9. Beyond Brownian Motion: A Levy Flight in Magic Boots -50 ...

    Indian Academy of Sciences (India)

    tems in Chemistry, Physics and Biology. Fundamental dynamical processes such as molecular transport ... examples from our daily activities, BM explains why a spoonful of sugar sweetens a whole cup of coffee and .... tional Institutes of health analysed the time intervals between heart beats. They found that the erratic pat-.

  10. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Ramin, Elham; Szabo, Peter

    2015-01-01

    viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through...... altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably...... high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from...

  11. Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chang Weon Song

    2017-12-01

    Full Text Available To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in a hot filament chemical vapor deposition (HF-CVD system. In this study, the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16, and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software ANSYS-FLUENT. To account for radiative heat-transfer in the HF-CVD reactor, the discrete ordinate (DO model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512–2802 K and 1076–1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with the experimental temperatures measured using a two-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  12. Average velocity and effective diffusion of a Brownian particle driven by a constant force over a static periodic potential

    OpenAIRE

    Wang, Hongyun

    2006-01-01

    In this manuscript, we consider the case where a Brownian particle is subject to a static periodic potential and is driven by a constant force. We derive analytic formulas for the average velocity and the effective diffusion.

  13. Theoretical predictions of diffusion from Brownian motion in superstrong polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1991-01-01

    This paper presents a summary of unique highly nonlinear static and dynamic theories for chain molecules (actually, for almost any kind of organic molecule), including the first superstrong polymers. These theories have been used to predict and explain (1) the physical self-assembly (self-ordering) of specific kinds of molecules into liquid crystalline (LC) phases (i.e., partially ordered phases) and (2) the diffusion of these molecules in various LC phases and the isotropic (I) liquid phase

  14. Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime

    OpenAIRE

    MARCEAU, Sandrine; DUBOIS, Philippe; FULCHIRON, René; CASSAGNAU, Philippe

    2009-01-01

    The objective of the present paper is to investigate the linear viscoelasticity of diluted suspension of MWNT spread in PDMS. Specifically, we focus our attention on both the CNT relaxation in semidilute conditions and the concept of percolation threshold for such system. Finally, the results, and mainly the concentration dependence of the zero-shear viscosity and mean relaxation time, will be discussed within the Doi−Edwards theory framework on molecular dynamic of rigid rods in a semi...

  15. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  16. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  17. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  18. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  19. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo...

  20. Evolution of genetic systems in filamentous ascomycetes

    NARCIS (Netherlands)

    Nauta, M.J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied,

  1. Unraveling Intermediate Filaments : The super resolution solution

    NARCIS (Netherlands)

    Nahidiazar, L.

    2017-01-01

    Intermediate Filaments (IFs) carry out major functions in cells. Several diseases have been associated with malfunctioning IFs in the cells and among them are certain sub types of cancer. To determine the structure and organization of IFs, we have used Single Molecule Localization Microscopy (SMLM)

  2. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    The 'seeing' dependent contrast of the Hα pictures is the source of uncertainties during the measurements on ... Results of measurements and conclusions. Heliographic position of the filaments is measured on the full disc Hα pictures taken ... consecutive magnetic synoptic charts. Two arrays of corresponding velocities are ...

  3. Mapping the filaments in NGC 1275

    Science.gov (United States)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  4. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  5. Characterization of turbulence stability through the identification of multifractional Brownian motions

    Directory of Open Access Journals (Sweden)

    K. C. Lee

    2013-02-01

    Full Text Available Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  6. Characterization of turbulence stability through the identification of multifractional Brownian motions

    Science.gov (United States)

    Lee, K. C.

    2013-02-01

    Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  7. Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.

    Science.gov (United States)

    Dunkel, Jörn; Hänggi, Peter

    2006-11-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.

  8. Brownian motion in wedges, last passage time and the second arc-sine law

    International Nuclear Information System (INIS)

    Comtet, Alain; Desbois, Jean

    2003-01-01

    We consider a planar Brownian motion starting from O at time t = 0 and stopped at t = 1 and a set F = OI i ; i = 1, 2, ..., n of n semi-infinite straight lines emanating from O. Denoting by g the last time when F is reached by the Brownian motion, we compute the probability law of g. In particular, we show that, for a symmetric F and even n values, this law can be expressed as a sum of arcsin or (arcsin) 2 functions. The original result of Levy is recovered as the special case n = 2. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed. (letter to the editor)

  9. Is Cold Gas Removed from Galaxies in Filaments and Tendrils?

    Science.gov (United States)

    Crone Odekon, Mary; Shah, Ebrahim; Hall, Ryan; Cane, Thomas; Maloney, Erin; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team

    2018-01-01

    We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.

  10. Stability of anisotropic stellar filaments

    Science.gov (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.

    2017-12-01

    The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.

  11. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  12. Standing waves in a counter-rotating vortex filament pair

    Science.gov (United States)

    García-Azpeitia, Carlos

    2018-03-01

    The distance among two counter-rotating vortex filaments satisfies a beam-type of equation according to the model derived in [15]. This equation has an explicit solution where two straight filaments travel with constant speed at a constant distance. The boundary condition of the filaments is 2π-periodic. Using the distance of the filaments as bifurcating parameter, an infinite number of branches of periodic standing waves bifurcate from this initial configuration with constant rational frequency along each branch.

  13. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  14. Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions

    OpenAIRE

    Biane, P.; Pitman, J.; Yor, M.

    1999-01-01

    This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.

  15. Level-statistics in Disordered Systems: A single parametric scaling and Connection to Brownian Ensembles

    OpenAIRE

    Shukla, Pragya

    2004-01-01

    We find that the statistics of levels undergoing metal-insulator transition in systems with multi-parametric Gaussian disorders and non-interacting electrons behaves in a way similar to that of the single parametric Brownian ensembles \\cite{dy}. The latter appear during a Poisson $\\to$ Wigner-Dyson transition, driven by a random perturbation. The analogy provides the analytical evidence for the single parameter scaling of the level-correlations in disordered systems as well as a tool to obtai...

  16. Hilbert-Space-Valued Super-Brownian Motion and Related Evolution Equations

    International Nuclear Information System (INIS)

    Kallianpur, G.; Sundar, P.

    2000-01-01

    A stochastic partial differential equation in which the square root of the solution appears as the diffusion coefficient is studied as a particular case of stochastic evolution equations. Weak existence of a solution is proved by the Euler approximation scheme. The super-Brownian motion on [0, 1] is also studied as a Hilbert-space-valued equation. In this set up, weak existence, pathwise uniqueness, and positivity of solutions are obtained in any dimension d

  17. Local times for multifractional Brownian motion in higher dimensions: A white noise approach

    Science.gov (United States)

    Bock, Wolfgang; da Silva, José Luís; Suryawan, Herry P.

    2016-11-01

    We present the expansion of the multifractional Brownian motion (mBm) local time in higher dimensions, in terms of Wick powers of white noises (or multiple Wiener integrals). If a suitable number of kernels is subtracted, they exist in the sense of generalized white noise functionals. Moreover, we show the convergence of the regularized truncated local times for mBm in the sense of Hida distributions.

  18. GaAs-Based Nanowire Devices with Multiple Asymmetric Gates for Electrical Brownian Ratchets

    OpenAIRE

    Tanaka, Takayuki; Nakano, Yuki; Kasai, Seiya

    2013-01-01

    GaAs-based nanowire devices having multiple asymmetric gates for electrical Brownian ratchets were fabricated and characterized. From three-dimensional potential simulation results and current–voltage characteristics, we confirmed the formation of the asymmetric potential in our device design. Direct current was generated at room temperature by repeatedly switching the potential in a multiple-asymmetric-gate device on and off. Such current was not observed in either a single-asymmetric-gate d...

  19. High-resolution Observations of Downflows at One End of a Pre-eruption Filament

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin, E-mail: ql47@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

    2017-06-01

    Studying the dynamics of filaments at the pre-eruption phase can shed light on the precursor of eruptive events. Such high-resolution studies (of the order of 0.″1) are highly desirable yet very rare. In this work, we present a detailed observation of a pre-eruption evolution of a filament obtained by the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO). One end of the filament is anchored at the sunspot in the NOAA active region (AR) 11515, which is well observed by NST H α off-bands from four hours before to one hour after the filament eruption. A M1.6 flare is associated with the eruption. We observed persistent downflowing materials along the H α multi-threaded component of the loop toward the AR end during the pre-eruption phase. We traced the trajectories of plasma blobs along the H α threads and obtained a plane-of-sky velocity of 45 km s{sup −1} on average. Furthermore, we estimated the real velocities of the downflows and the altitude of the filament by matching the observed H α threads with magnetic field lines extrapolated from a nonlinear force-free field model. Observations of chromospheric brightenings at the footpoints of the falling plasma blobs are also presented. The lower limit of the kinetic energy per second of the downflows through the brightenings is found to be ∼10{sup 21} erg. Larger FOV observations from BBSO full-disk H α images show that the AR end of the filament started ascending four hours before the flare. We attribute the observed downflows at the AR end of the filament to the draining effect of the filament rising prior to its eruption. During the slow-rise phase, the downflows continuously drained away ∼10{sup 15}g mass from the filament over a few hours, which is believed to be essential for the instability, and could be an important precursor of eruptive events.

  20. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields

    Science.gov (United States)

    Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R. C.; Nijhuis, Christian A.; van Kan, Jeroen A.

    2016-01-01

    Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μm, 2.47 μm, and 2.60 μm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules. PMID:27917252

  1. Feller processes: the next generation in modeling. Brownian motion, Lévy processes and beyond.

    Directory of Open Access Journals (Sweden)

    Björn Böttcher

    Full Text Available We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.

  2. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  3. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.

    Science.gov (United States)

    Marquez-Lago, T T; Leier, A; Burrage, K

    2012-08-01

    There have been many recent studies from both experimental and simulation perspectives in order to understand the effects of spatial crowding in molecular biology. These effects manifest themselves in protein organisation on the plasma membrane, on chemical signalling within the cell and in gene regulation. Simulations are usually done with lattice- or meshless-based random walks but insights can also be gained through the computation of the underlying probability density functions of these stochastic processes. Until recently much of the focus had been on continuous time random walks, but some very recent work has suggested that fractional Brownian motion may be a good descriptor of spatial crowding effects in some cases. The study compares both fractional Brownian motion and continuous time random walks and highlights how well they can represent different types of spatial crowding and physical obstacles. Simulated spatial data, mimicking experimental data, was first generated by using the package Smoldyn. We then attempted to characterise this data through continuous time anomalously diffusing random walks and multifractional Brownian motion (MFBM) by obtaining MFBM paths that match the statistical properties of our sample data. Although diffusion around immovable obstacles can be reasonably characterised by a single Hurst exponent, we find that diffusion in a crowded environment seems to exhibit multifractional properties in the form of a different short- and long-time behaviour.

  4. Fabrication of Polylactide Nanocomposite Filament Using Melt Extrusion and Filament Characterization for 3D Printing

    Science.gov (United States)

    Jain, Shrenik Kumar

    Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.

  5. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    Science.gov (United States)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  6. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    Science.gov (United States)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  7. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  8. Synthesis and functionalization of coiled carbon filaments

    Science.gov (United States)

    Hikita, Muneaki

    Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs

  9. Introduction to practice of molecular simulation molecular dynamics, Monte Carlo, Brownian dynamics, lattice Boltzmann and dissipative particle dynamics

    CERN Document Server

    Satoh, Akira

    2010-01-01

    This book presents the most important and main concepts of the molecular and microsimulation techniques. It enables readers to improve their skills in developing simulation programs by providing physical problems and sample simulation programs for them to use. Provides tools to develop skills in developing simulations programs Includes sample simulation programs for the reader to use Appendix explains Fortran and C languages in simple terms to allow the non-expert to use them.

  10. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    Science.gov (United States)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption

  11. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  12. Subcycle engineering of laser filamentation in gas by harmonic seeding

    Science.gov (United States)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  13. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  14. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking.

    Science.gov (United States)

    Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy

    2015-07-01

    The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling

  15. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei

    2015-01-01

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope

  16. SWAYING THREADS OF A SOLAR FILAMENT

    International Nuclear Information System (INIS)

    Lin, Y.; Engvold, O.; Langangen, Oe.; Rouppe van der Voort, L. H. M.; Soler, R.; Ballester, J. L.; Oliver, R.

    2009-01-01

    From recent high-resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory characters of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic (MHD) theory. Kink MHD waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfven speed and magnetic field strength by means of seismological arguments.

  17. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  18. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii , Borrelia miyamotoi , and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  19. Statistical study of solar filaments since 1919

    Science.gov (United States)

    Aboudarham, Jean

    2016-04-01

    Science board of Paris Observatory funded the data capture of tables associated with Meudon synoptic maps of Solar activity, which were published for observations ranging from 1919 to 1992. The EU HELIO project developed automatic recognition codes, especially concerning filaments based on observations between 1996 en 2014 (and soon, up to now). We plan to fill the gap between the two catalogues in the short term. But it is already possible to study filaments behavior over quite long periods of time. We present here the first series of results obtained from this analysis which give some clue about the way Solar activity behaves in various parts of the cycle, and about the way if depends on the hemisphere where activity occurs. This information could then be correlated with events catalogues (e.g. flares, CMEs, …) in order to link those phenomena with concrete Solar activity.

  20. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...