WorldWideScience

Sample records for filamentous alga pithophora

  1. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  2. Harmful impact of filamentous algae (Spirogyra sp. on juvenile crayfish

    Directory of Open Access Journals (Sweden)

    Ulikowski Dariusz

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch., in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 under natural thermal conditions and fed a commercial feed. The results indicated that the presence of the filamentous algae did not have a statistically significant impact on the growth of the juvenile crayfish (P > 0.05. The presence of the filamentous algae had a strong negative impact on juvenile crayfish survival and stock biomass (P < 0.05. The layer of gravel and small stones that imitated the mineral substrate of natural aquatic basins somewhat neutralized the disadvantageous impact the filamentous algae had on the crayfish.

  3. Monetary value of the impacts of filamentous green algae on ...

    African Journals Online (AJOL)

    This paper presents estimates of the monetary value of the impact of eutrophication (algae) on commercial agriculture in two different catchments in South Africa. A production function approach is applied to estimate the monetary value of the impact of filamentous green algae on commercial agriculture in the Dwars River, ...

  4. Diversity and ecology of filamentous green conjugate algae

    OpenAIRE

    Strouhalová, Pavla

    2016-01-01

    Filamentous conjugating algae have a cosmopolitan distribution. They often inhabit fragile freshwater habitats such as temporary hydrated ditches or puddles of melting snow. Occurrence in this environment entails having to deal with extreme conditions. That helps them to variously adaptation and also the formation of resistant stages. Algae belonging to this group have an important role in nature, because they are often the first species that inhabit newly created habitats and consequently al...

  5. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Treatment of polluted urban river water using filamentous green algae].

    Science.gov (United States)

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  7. Towards tradable permits for filamentous green algae pollution.

    Science.gov (United States)

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    OpenAIRE

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in close proximity to S. aloides, resulting in gaps in filamentous algae mats. We analyzed whether those gaps may be caused by allelopathic substances excreted by S. aloides or by nutrient depletion. We ...

  9. Fitoremediasi limbah budidaya sidat menggunakan filamentous algae (Spirogyra sp.

    Directory of Open Access Journals (Sweden)

    Tri Apriadi

    2014-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui potensi dari filamentous algae (Spirogyra sp. sebagai agen bioremediasi dalam mereduksi kandungan bahan organik limbah budidaya sidat. Penelitian menggunakan rancangan acak lengkap dengan perlakuan perbedaan dosis limbah (25 %, 50 %, 75 %, 100%. Wadah penelitian berupa akuarium resirkulasi menggunakan sistem carrousel. Dilakukan pengukuran secara rutin terhadap beberapa parameter kualitas air serta perubahan bobot Spirogyra sp. selama dua minggu retensi. Diperoleh hasil bahwa penurunan konsentrasi bahan organik menggunakan Spirogyra sp. berlangsung efektif hingga hari keenam. Spirogyra sp. mampu mentolelir limbah budidaya sidat pada dosis limbah 25% dan 50%. Spirogyra sp. pada perlakuan dosis limbah 50% memiliki kemampuan yang lebih baik dalam menurunkan bahan organik limbah budidaya sidat.

  10. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    NARCIS (Netherlands)

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in

  11. Food Preference of Fresh-Water Invertebrates - Comparing Fresh and Decomposed Angiosperm and a Filamentous Alga

    NARCIS (Netherlands)

    Kornijow, R.; Gulati, R.D.; Ozimek, T.

    1995-01-01

    1. Fresh and decomposed Mougeotia sp. (a filamentous green alga) and Elodea nuttallii (a vascular plant) were offered as food to three species of aquatic macroinvertebrates (Lymnnea peregra, Asellus meridianus and Endochironomus albipennis) to test: (i) if filamentous algae are preferred to aquatic

  12. Accumulation of uranium by filamentous green algae under natural environmental conditions

    International Nuclear Information System (INIS)

    Aleissa, K.A.; Shabana, El-Said K.; Al-Masoud, F.L.S.

    2004-01-01

    The capacity of algae to concentrate uranium under natural environmental conditions is measured by a-spectrometry. Spirogyra, a filamentous green fresh-water alga, has concentrated uranium from a surface concrete ponds with elevated uranium levels (140-1140 ppb). The concentration factors (CFs) ranged from 8.9-67 with an average value of 22. Cladophora spp, a filamentous green marine alga has concentrated uranium from the marine water with a concentration factor ranged from 220-280. The average concentration factor was 250. The factors affecting the sorption process are discussed in detail. (author)

  13. Culture methods and mutant generation in the filamentous brown algae Ectocarpus siliculosus.

    Science.gov (United States)

    Le Bail, Aude; Charrier, Bénédicte

    2013-01-01

    Ectocarpus siliculosus is a small filamentous alga that has recently emerged as the new model for fundamental research on brown algae. Here, we describe the basic culture protocols for propagating and collecting E. siliculosus material that can then be used in all types of molecular biology, biochemistry and cell biology techniques. In addition, procedures for carrying out genetic experiments (generation of mutants and genetic segregation analyses) on E. siliculosus are described.

  14. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    Science.gov (United States)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  15. Evaluating biochemical response of filamentous algae integrated with different water bodies.

    Science.gov (United States)

    Çelekli, Abuzer; Kapı, Emine; Soysal, Çiğdem; Arslanargun, Hamdullah; Bozkurt, Hüseyin

    2017-08-01

    The present study prompted the second attempts to evaluate biochemical responses of filamentous algae under different physico-chemical variables in various water bodies in Turkey. These variables were investigated by use of multivariate approach in the years of 2013 (May and November) and 2014 (May and October). Studied ecoregions had the different geographic position, climate, land-use, and anthropogenic activities, could strongly affect physico-chemical variables of water bodies, which caused to change or regulate in algal biomass composition due to the different response of filamentous species. Besides, biochemical responses of species changed at different sampling times and stations. Multivariate analyses indicated that temperature, heavy metals, and nutrient contents of aquatic systems were found to be major variables driving the spatial and temporal occurrence and biochemical contents of filamentous species. Total protein and pigment production by filamentous algae were high in water bodies having high nutrients, whereas they were low in high heavy metal contents. Amount of malondialdehyde (MDA), H 2 O 2 , total thiol group, total phenolic compounds, proline, total carbohydrate, and bioaccumulation of metals by filamentous algae were closely related with heavy metal contents of water bodies, indicated by the multivariate approach. Significant increase in aforementioned biochemical compounds with a distinct range of habitats and sensitive-tolerance to environmental conditions could make them highly valuable indicators. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Straight-nosed pipefish Nerophis ophidion and broad-nosed pipefish Syngnathus typhle avoid eelgrass overgrown with filamentous algae.

    Science.gov (United States)

    Sundin, J; Jacobsson, Ö; Berglund, A; Rosenqvist, G

    2011-06-01

    In a habitat choice experiment straight-nosed pipefish Nerophis ophidion and broad-nosed pipefish Syngnathus typhle avoided eelgrass Zostera marina covered with filamentous algae. Both juveniles as well as brooding adult males of the two species clearly preferred to position themselves in Z. marina without growth of filamentous algae. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  17. Antioxidant properties of some filamentous green algae (Chaetomorpha Genus

    Directory of Open Access Journals (Sweden)

    Massoumeh Farasat

    2013-12-01

    Full Text Available The antioxidant activity and the contents of total phenolics and flavonoids were quantified in the methanolic extracts of four Chaetomorpha species including C. aerea, C. crassa, C. linum and C. brachygona. Eight samples of Chaetomorpha plants were collected from five locations along the northern coasts of the Persian Gulf in south of Iran from December 2010 until October 2011. Methanolic extracts of the seaweeds were assessed for their antioxidant activity using DPPH radical scavenging assay. C. linum showed highest antioxidant potential with a relatively low IC50 (1.484 ± 0.168 mg mL-1, the highest flavonoid content (18.177 ± 2.238 mg RE g-1 and a relatively high content of phenolics (2.895 ± 0.415 mg GAE g-1 in comparison with the other species. C. crassa, which was collected from two different areas, showed lowest antioxidant activity and lowest phenolics and flavonoid contents than other species. Results revealed that IC50, total phenolics and flavonoid content were influenced by the time of collection and location. Also there were positive correlations between the phenolic and flavonoid contents with DPPH radical scavenging activity (p<0.01. The results suggested that some of these filamentous green seaweeds possessed antioxidant potential, which could be considered for future applications in medicine, food or cosmetic industries.

  18. Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Grayburn, W.S.; Holbrook, G.P. [Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115 (United States); Tatara, R.A. [Department of Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Rosentrater, K.A. [Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-07-01

    Algae are known to be a potential feedstock in the production of biodiesel fuel. Although much of the focus has been on microalgal species, macroalgae are also suitable as a source of lipids. In this study, a locally abundant (central Illinois) filamentous algae has been harvested from a water treatment plant; dried to about 10% of its initial weight; pulverized in a hammermill; and treated with methanol to extract the oil. The algae are a combination of several coexisting species including Cladophora sp. and Rhizoclonium. Oil yields ranged from 3% to 6%, by weight, of the dried mass. This oil was reacted by transesterification to yield fatty acid methyl esters (biodiesel fuel) with an overall mass conversion efficiency of 68%. A B5 blend of this algal biodiesel and petrodiesel was run in a 13.4-kW test engine. Measurements indicated similar performance compared to pure petrodiesel in terms of fuel efficiency and carbon dioxide and carbon monoxide exhaust emissions. Significantly, there was a 22% reduction in nitrogen oxides when using the B5 fuel. It has been demonstrated that filamentous macroalgae may be cultivated as biodiesel feedstock and have inherent advantages such as an ability to remove phosphorus and nitrogen compounds from wastewater, simplicity of harvesting, and natural resistance to local aquatic grazers and competing organisms.

  19. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.

    Science.gov (United States)

    Bohutskyi, Pavlo; Chow, Steven; Ketter, Ben; Fung Shek, Coral; Yacar, Dean; Tang, Yuting; Zivojnovich, Mark; Betenbaugh, Michael J; Bouwer, Edward J

    2016-12-01

    An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae. Published by Elsevier Ltd.

  20. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii

    Science.gov (United States)

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire MM; Katsaros, Christos

    2013-01-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host. PMID:24025487

  1. A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae

    Science.gov (United States)

    Råberg, Sonja; Kautsky, Lena

    2007-06-01

    Anthropogenic activities worldwide have contributed to vegetation changes in many coastal areas, changes that may in turn affect faunal and algal assemblages in the involved ecosystems. In the northernmost part of the Baltic Sea the salinity is extremely low (3-4) and the only structurally complex alga present is Fucus radicans. Since in this area F. radicans is living at its salinity tolerance limit, it is potentially very sensitive to environmental changes. Any change in salinity could thus alter the overall algal community, changing it to one dominated solely by filamentous algae. To determine the importance of F. radicans to the associated faunal community, we examined differences between the 2 main vegetation types present, i.e., F. radicans and filamentous algae, in the Kronören marine reserve in the northernmost part of the Baltic Sea. A similar study was conducted in the Askö area in the northern Baltic Proper, where the more-investigated Fucus vesiculosus is the only large fucoid present. The biomass of associated fauna was significantly higher in both the F. radicans and F. vesiculosus than in the filamentous algal vegetation at some, but not all, sites. The F. radicans community also displayed a greater diversity of associated fauna in 3 of 5 investigated Kronören sites, whereas no difference in diversity was detected between F. vesiculosus and the filamentous algal vegetations in the Askö sites. Furthermore, the F. radicans community displayed a different faunal community, being the only investigated algal community with a faunal community dominated by K-strategy species, according to abundance-biomass comparison curves. This pattern may be due to the low epiphytic load on these Fucus plants. In contrast, the F. vesiculosus community, as well as the algal communities with no Fucus in both areas, had high biomasses of filamentous algae and an invertebrate fauna dominated by Chironomidae, occurring in great abundance but only with a low biomass

  2. Fatty acid profiles of four filamentous green algae under varying culture conditions.

    Science.gov (United States)

    Liu, Junzhuo; Vanormelingen, Pieter; Vyverman, Wim

    2016-01-01

    Although benthic filamentous algae are interesting targets for wastewater treatment and biotechnology, relatively little is known about their biochemical composition and variation in response to growth conditions. Fatty acid composition of four benthic filamentous green algae was determined in different culture conditions. Although the response was partly species-dependent, increasing culture age, nitrogen deprivation and dark exposure of stationary phase greatly increased both total fatty acid content (TFA) from 12-35 to 40-173mgg(-1) dry weight (DW) and the relative proportion of polyunsaturated fatty acids (PUFAs) from 21-58% to 55-87% of TFA, with dark exposure having the greatest effect. However, the main variation in fatty acid composition was between species, with Uronema being rich in C16:0 (2.3% of DW), Klebsormidium in C18:2ω6 (5.4% of DW) and Stigeoclonium in C18:3ω3 (11.1% of DW). This indicates the potential of the latter two species as potential sources of these PUFAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus.

    Science.gov (United States)

    Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte

    2011-04-01

    Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.

  4. Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters.

    Science.gov (United States)

    Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin

    2016-11-01

    To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  6. Worldwide occurrence of virus-infections in filamentous marine brown algae

    Science.gov (United States)

    Müller, D. G.; Stache, B.

    1992-03-01

    Virus infections were detected in Ectocarpus siliculosus and Ectocarpus fasciculatus on the coasts of Ireland, California, Peru, southern South America, Australia and New Zealand; in three Feldmannia species on the coasts of Ireland, continental Chile and Archipelago Juan Fernandez (Chile); and in Leptonematella from Antarctica. Natural populations on the Irish coast contained 3% infected plants in E. fasciculatus, and less than 1% in Feldmannia simplex. On the Californian coast, 15 to 25% of Ectocarpus isolates were infected. Virus symptoms were absent in E. siliculosus from Peru, but appeared after meiosis in laboratory cultures. The virus particles in E. fasciculatus are identical in size and capsid structure to those reported for E. siliculosus, while the virus in F. simplex is smaller and has a different envelope. Our findings suggest that virus infections are a common and worldwide phenomenon in filamentous brown algae.

  7. Design parameters of high rate algal ponds using filamentous algae matrix for treating rural stream water.

    Science.gov (United States)

    Kim, T E; Chung, W M; Lim, B S

    2002-01-01

    High rate algal ponds (HRAP) with a filamentous algae matrix (FAM) as the predominant species, were operated to evaluate the characteristics of FAM and the basic design parameters for treating polluted rural stream water. The porous and gelatinous FAM was formed like a sponge, which functions to prevent excessive loss of the algae in the effluent and can easily be retrieved from the ponds. The organic fraction of harvested FAM was about 88%, which is suitable for use as fertilizer. The HRAP system using FAM was found to be an effective nutrient removal process not requiring any artificial carbon sources for nitrification. At HRT 4 days, the T-N and T-P removal efficiencies were 85.9% and 65.8%, respectively. When the pH and water temperature were maintained above 9 and 15 degrees C, HRT required for achieving a 70% T-N removal efficiency could be reduced by about 3 days. The oxygen production rate by FAM was calculated as 1.45 mgO2/L/m2. The design surface area of HRAP needed per rural inhabitant was about 2.72 m2.

  8. Biological responses of the coral Montastraea annularis to the removal of filamentous turf algae.

    Science.gov (United States)

    Cetz-Navarro, Neidy P; Espinoza-Avalos, Julio; Hernández-Arana, Héctor A; Carricart-Ganivet, Juan P

    2013-01-01

    Coral reef degradation increases coral interactions with filamentous turf algae (FTA) and macroalgae, which may result in chronic stress for the corals. We evaluated the effects of short (2.5 month) and long (10 month) periods of FTA removal on tissue thickness (TT), zooxanthellae density (ZD), mitotic index (MI), and concentration of chlorophyll a (Chl a) in Montastraea annularis at the beginning and end of gametogenesis. Ramets (individual lobes within a colony) consistently surrounded by FTA and ramets surrounded by crustose coralline algae (CCA) were used as controls. FTA removal reduced coral stress, indicated by increased TT and ZD and lower MI. The measured effects were similar in magnitude for the short and long periods of algal removal. Ramets were more stressed at the end of gametogenesis compared with the beginning, with lower ZD and Chl a cm(-2), and higher MI. However, it was not possible to distinguish the stress caused by the presence of FTA from that caused by seasonal changes in seawater temperature. Ramets surrounded by CCA showed less stress in comparison with ramets surrounded by FTA: with higher TT, Chl a cm(-2) and ZD, and lower MI values. Coral responses indicated that ramets with FTA suffered the most deleterious effects and contrasted with those measured in ramets surrounded by CCA. According to published studies and our observations, there could be at least six mechanisms associated to FTA in the stress caused to M. annularis by FTA. Owing to the high cover of FTA (in contrast to macroalgae and CCA) in the Caribbean, the chronic stress, the overgrowth and mortality that this functional algal group can cause on M. annularis species complex, a further decline of this important reef-building coral in the Caribbean is expected.

  9. Biological responses of the coral Montastraea annularis to the removal of filamentous turf algae.

    Directory of Open Access Journals (Sweden)

    Neidy P Cetz-Navarro

    Full Text Available Coral reef degradation increases coral interactions with filamentous turf algae (FTA and macroalgae, which may result in chronic stress for the corals. We evaluated the effects of short (2.5 month and long (10 month periods of FTA removal on tissue thickness (TT, zooxanthellae density (ZD, mitotic index (MI, and concentration of chlorophyll a (Chl a in Montastraea annularis at the beginning and end of gametogenesis. Ramets (individual lobes within a colony consistently surrounded by FTA and ramets surrounded by crustose coralline algae (CCA were used as controls. FTA removal reduced coral stress, indicated by increased TT and ZD and lower MI. The measured effects were similar in magnitude for the short and long periods of algal removal. Ramets were more stressed at the end of gametogenesis compared with the beginning, with lower ZD and Chl a cm(-2, and higher MI. However, it was not possible to distinguish the stress caused by the presence of FTA from that caused by seasonal changes in seawater temperature. Ramets surrounded by CCA showed less stress in comparison with ramets surrounded by FTA: with higher TT, Chl a cm(-2 and ZD, and lower MI values. Coral responses indicated that ramets with FTA suffered the most deleterious effects and contrasted with those measured in ramets surrounded by CCA. According to published studies and our observations, there could be at least six mechanisms associated to FTA in the stress caused to M. annularis by FTA. Owing to the high cover of FTA (in contrast to macroalgae and CCA in the Caribbean, the chronic stress, the overgrowth and mortality that this functional algal group can cause on M. annularis species complex, a further decline of this important reef-building coral in the Caribbean is expected.

  10. Diversity and Ecology of the Phytoplankton of Filamentous Blue-Green Algae (Cyanoprokaryota, Nostocales in Bulgarian Standing Waters

    Directory of Open Access Journals (Sweden)

    Plamen Stoyanov

    2013-12-01

    Full Text Available The current study presents data about the diversity and ecology of filamentous blue-green algae, found in the phytoplankton of 42 standing water basins in Bulgaria. We identified 9 species from Cyanoprokaryota, which belong to 5 genera from order Nostocales. Ecological characterization of the identified species has been performed. Data about the physicochemical parameters of the water basins are also provided.

  11. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal.

    Science.gov (United States)

    Khanaev, I V; Dzyuba, E V; Kravtsova, L S; Grachev, M A

    2016-03-01

    In shallow water areas of open Lake Baikal, filamentous green alga of the genus Spirogyra grows abundantly. Together with alga of the genus Ulothrix, it forms algal mats. According to our observations from 2010 to 2013, the spawning habitat conditions for the yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottidae) proved to be significantly disturbed in the littoral zone of Listvennichnyi Bay (southern Baikal), which, in turn, reduced the number of egg layings. With a 100% projective cover of the floor and a high density of green filamentous algae, the shallow-water stony substrate becomes completely inaccessible for spawning of the August population.

  12. Occurrence of proteinaceous 10-nm filaments throughout the cytoplasm of algae of the order Dasycladales.

    Science.gov (United States)

    Berger, S; Wittke, W; Traub, P

    1998-05-01

    Previously, whole-mount electron microscopy of nuclei extruded together with residual cytoplasm from the rhizoids of several algal species of the order Dasycladales has revealed the occurrence of an intra- and perinuclear network of 10-nm filaments morphologically indistinguishable from that of mammalian vimentin intermediate filaments. The present investigation demonstrates the existence of a filament system throughout the cytoplasm of the rhizoid, stalk, and apical tip of these giant cells. However, while the perinuclear 10-nm filaments interconnecting the nuclear surface with a perinuclear layer of large, electron-dense bodies filled with nucleoprotein material are of smooth appearance, those continuing within and beyond the perinuclear bodies are densely covered with differently sized, globular structures and, therefore, are of a very rough appearance. The filaments in the very apical tip of the cells are mainly of the smooth type. The transition from smooth to rough filaments seems to occur in the numerous perinuclear dense bodies surrounding the large nucleus. Digestion of the rough filaments with proteinase K removes the globules from the filament surface, revealing that throughout the nonvacuolar, intracellular space the filaments have the same basic 10-nm structure. On the other hand, gold-conjugated RNase A strongly binds to the filament-attached globules but not to the smooth, perinuclear, and the proteinase K-treated, rough filaments. In addition, an antibody raised against Xp54, a highly conserved protein which in Xenopus oocytes is an integral component of stored mRNP particles, decorates the rough but not the smooth 10-nm filaments. These results support the notion that the 10-nm filament system of Dasycladales cells plays a role in the transient storage of ribonucleoprotein particles in the cytoplasm and possibly fulfils a supportive function in the actomyosin-based transport of such material to various cytological destinations.

  13. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  14. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo; Poulsen, M.

    2013-01-01

    biomass blending (20% compared to use of a mechanical size reduction method alone. The methane yields from Rhizoclonium biomass were however observed to be considerably lower than those of other algae species from...

  15. Freezing and desiccation injury resistance in the filamentous green alga klebsormidium fromthe Antarctic, Arctic and Slovakia

    Czech Academy of Sciences Publication Activity Database

    Elster, Josef; Degma, P.; Kováčik, L.; Valentová, L.; Šramková, K.; Pereira, C. A. B.

    2008-01-01

    Roč. 63, č. 6 (2008), s. 839-847 ISSN 0006-3088. [International Symposium Biology and Taxonomy of Green Algae /5./. Smolenice-Castle, 25.06.2007-29.06.2007] R&D Projects: GA MŠk MEB080822 Institutional research plan: CEZ:AV0Z60050516 Keywords : Klebsormidium * green algae * algal adaptation Subject RIV: EF - Botanics Impact factor: 0.406, year: 2008

  16. Drifting blooms of the endemic filamentous brown alga Hincksia sordida at Noosa on the subtropical east Australian coast.

    Science.gov (United States)

    Phillips, Julie A

    2006-08-01

    Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options.

  17. Temporal changes in elemental composition in decomposing filamentous algae (Cladophora glomerata and Pilayella littoralis) determined with PIXE and PIGE

    Energy Technology Data Exchange (ETDEWEB)

    Lill, J.-O., E-mail: jlill@abo.fi [Accelerator Laboratory, Turku PET Centre, Abo Akademi University, Porthansg. 3, FI-20500 Turku (Finland); Department of Natural Sciences, Abo Akademi University, Porthansg. 3, FI-20500 Turku (Finland); Salovius-Lauren, S. [Department of Biosciences, Abo Akademi University, Artillerig. 6, FI-20520 Turku (Finland); Harju, L. [Department of Chemical Engineering, Abo Akademi University, Biskopsg. 8, FI-20500 Turku (Finland); Rajander, J. [Accelerator Laboratory, Turku PET Centre, Abo Akademi University, Porthansg. 3, FI-20500 Turku (Finland); Department of Chemical Engineering, Abo Akademi University, Biskopsg. 8, FI-20500 Turku (Finland); Saarela, K.-E. [Department of Chemical Engineering, Abo Akademi University, Biskopsg. 8, FI-20500 Turku (Finland); Lindroos, A. [Department of Natural Sciences, Abo Akademi University, Porthansg. 3, FI-20500 Turku (Finland); Heselius, S.-J. [Accelerator Laboratory, Turku PET Centre, Abo Akademi University, Porthansg. 3, FI-20500 Turku (Finland)

    2012-01-01

    Particle-induced X-ray emission and particle-induced gamma-ray emission spectrometry were successfully applied in a study of the elemental composition of decomposing filamentous algae. Fresh brown (Pilayella littoralis) and green (Cladophora glomerata) algal materials were placed in cages at 4 m depth in a water column of 8 m in the Archipelago Sea, northern Baltic Sea. Every second week decaying algae were sampled from the cages to allow measurements of changes in the elemental compositions. In the study of the elemental losses the concentrations were compensated for the mass reduction. The results show that sulphur, chlorine and partly potassium were lost during decomposition of P. littoralis and C. glomerata. Most of the other elements studied were recovered in the remaining algal mass. Special attention was paid to sorption and desorption of elements, including metal binding capacity, in the decaying algal materials. The affinity order of different cations to the two algal species was established by calculation of conditional distribution coefficients, D Prime {sub M}. For instance for P. littoralis the following series of binding strength (affinity) of cations were obtained: Al > Ti > Fe Much-Greater-Than Mn > Ni, Cu > Ba, Cr, Zn Much-Greater-Than Rb > K, Sr > Pb Much-Greater-Than Ca Much-Greater-Than Na > Mg. Notably is that the binding strength of strontium was more than 10 times higher for P. littoralis than for C. glomerata. Due to their high binding capacity and good affinity and selectivity for heavy metal ions these algae have great potential as biological sorbents. Large variations in elemental content during decomposition complicate the use of algae for environmental monitoring. - Highlights: Black-Right-Pointing-Pointer Elemental concentrations in P. littoralis and C. glomerata from the Archipelago Sea in Finland were measured during decomposition. Black-Right-Pointing-Pointer PIXE and PIGE were successfully used for chemical analysis of 24 elements

  18. Maullinia ectocarpii gen. et sp. nov. (Plasmodiophorea), an intracellular parasite in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) and other filamentous brown algae.

    Science.gov (United States)

    Maier, I; Parodi, E; Westermeier, R; Müller, D G

    2000-10-01

    An obligate intracellular parasite infecting Ectocarpus spp. and other filamentous marine brown algae is described. The pathogen forms an unwalled multinucleate syncytium (plasmodium) within the host cell cytoplasm and causes hypertrophy. Cruciform nuclear divisions occur during early development. Mature plasmodia become transformed into single sporangia, filling the host cell completely, and then cleave into several hundred spores. The spores are motile with two unequal, whiplash-type flagella inserted subapically and also show amoeboid movement. Upon settlement, cysts with chitinous walls are formed. Infection of host cells is accomplished by means of an adhesorium and a stachel apparatus penetrating the host cell wall, and injection of the cyst content into the host cell cytoplasm. The parasite is characterized by features specific for the plasmodiophorids and is described as a new genus and species, Maullinia ectocarpii.

  19. Association of nuisance filamentous algae Cladophora spp. with E. coli and Salmonella in public beach waters: impacts of UV protection on bacterial survival.

    Science.gov (United States)

    Beckinghausen, Aubrey; Martinez, Alexia; Blersch, David; Haznedaroglu, Berat Z

    2014-05-01

    This study investigated whether filamentous algal species commonly found in nearshore public beach water systems provide protection from natural UV to bacteria present in the same environmental settings. To test this hypothesis, Cladophora spp., a filamentous nuisance algae group causing undesired water quality in the Great Lakes region was selected and its interactions with a non-pathogenic indicator organism Escherichia coli and a pathogenic strain of Salmonella enterica serovar Typhimurium were tested. In laboratory microcosms where the lake environment and natural sunlight conditions were simulated, a 7-log removal of E. coli was observed in only six hours of exposure to UV with an initial seed concentration of 10(3) CFU mL(-1). With the presence of algae, the same log removal was achieved in 16 hours. At higher seed concentrations of 10(5) CFU mL(-1), E. coli survived for two days with an extended survival up to 11 days in the presence of Cladophora spp. S. typhimurium has shown more resilient survival profiles, with the same log removals achieved in 14 and 20 days for low and high seed concentrations respectively, in the absence of algae. Cladophora spp. caused extended protection for S. typhimurium with much less log reductions reported. Algae-mediated protection from UV irradiation was attributed to certain organic carbon exuded from Cladophora spp. In addition, confocal microscopy images confirmed close interaction between bacteria and algae, more prominent with thin filamentous Cladophora spp.

  20. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  1. Diquat associated with copper sources for algae control: Efficacy and ecotoxicology.

    Science.gov (United States)

    Garlich, Nathalia; Da Cruz, Claudinei; Da Silva, Adilson F; Carraschi, Silvia P; Malaspina, Igor C; Pitelli, Robinson A; Bianco, Silvano

    2016-01-01

    The aims of this research were to evaluate the efficacy of copper oxychloride (CuCl2.3Cu(OH)2), copper hydroxide (Cu(OH)2) and diquat (1.1'-ethylene-2.2'-bipyridyldiylium dibromide), isolated and in association with 0.1% of both copper sources, in the control of the unicellular algae Ankistrodesmus gracilis and the filamentous algae Pithophora kewesis, and to determine the acute toxicity of the tested chemicals in Hyphressobrycon eques, Pomacea canaliculata, Lemna minor and Azolla caroliniana. The efficacy was estimated by the methods of chlorophyll a and pheophytin a readings, changed into growth inhibition percentage. Both algae were exposed to the following concentrations: 0.2; 0.4; 0.8; 1.2 mg L(-1) of diquat and its association with the copper sources; and 0.1; 0.3; 0.5; 0.7; 1.0 and 1.5 mg L(-1) in the isolated applications of copper hydroxide and copper oxychloride. An untreated control was kept. The acute toxicity was estimatedby 50% lethal concentration (LC50). The copper sources were effective for A. gracilis control, at rates as high as 0.1 mg L(-1) (>95% efficacy). Isolated diquat and its association with copper hydroxide were both effective at rates as high as 0.4 mg L(-1), with 95 and 88% control efficacy, respectively. The copper oxychloride was effective at 0.2 mg L(-1), with 93% efficacy. None of the tested chemicals and associations was effective on P. kewesis control. The most sensitive non target organism to the tested chemicals was L. minor; the less sensitive was H. eques.

  2. Space-time decoupling in the branching process in the mutant étoile of the filamentous brown alga Ectocarpus siliculosus.

    Science.gov (United States)

    Nehr, Zofia; Billoud, Bernard; Le Bail, Aude; Charrier, Bénédicte

    2011-12-01

    Ectocarpus siliculosus is being developed as a model organism for brown algal genetics and genomics. Brown algae are phylogenetically distant from the other multicellular phyla (green lineage, red algae, fungi and metazoan) and therefore might offer the opportunity to study novel and alternative developmental processes that lead to the establishment of multicellularity. E. siliculosus develops as uniseriate filaments, thereby displaying one of the simplest architectures among multicellular organisms. The young sporophyte grows as a primary filament and then branching occurs, preferentially at the center of the filament. We recently described the first morphogenetic mutant étoile (etl) in a brown alga, produced by UVB mutagenesis in E. siliculosus. We showed that a single recessive mutation was responsible for a defect in both cell differentiation and the very early branching pattern (first and second branch emergences). Here, we supplement this study by reporting the branching defects observed subsequently, i.e. for the later stages corresponding to the emergence of up to the first six secondary filaments, and we show that the branching process is composed of at least two distinct components: time and position. © 2011 Landes Bioscience

  3. Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta)

    Science.gov (United States)

    Hubbard, Charlene B.; Garbary, David J.; Kim, Kwang Young; Chiasson, David M.

    2004-02-01

    Kelp gametophytes were previously observed in nature living endophytically in red algal cell walls. Here we examine the interactions of two kelp species and six red algae in culture. Gametophytes of Nereocystis luetkeana (Mertens) Postels et Ruprecht became endophytic in the cell walls of Griffithsia pacifica Kylin and Antithamnion defectum Kylin, and grew epiphytically in high abundance on G. japonica Okamura and Aglaothamnion oosumiense Itono. Alaria esculenta (Linnaeus) Greville from the Atlantic coast of Nova Scotia became endophytic in Aglaothamnion oosumiense, Antithamnion defectum, Callithamnion sp., G. japonica, G. pacifica, and Pleonosporium abysicola Gardner, all from the Pacific Ocean. Some cultures were treated with phloroglucinol before infection to thicken the cell walls. The endophytic gametophytes were smaller and grew more slowly than gametophytes epiphytic on the same host. N. luetkeana failed to become endophytic in some of the potential hosts, and this may reflect host specificity, or culture artifacts. This work improves our understanding of the process of infection of red algae by kelp gametophytes, and broadens our knowledge of host specificity in endophytic symbioses.

  4. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  5. Two new growth inhibition tests with the filamentous algae Ceramium strictum and C. tenuicorne (Rhodophyta).

    Science.gov (United States)

    Bruno, Ellen; Eklund, Britta

    2003-01-01

    Two growth inhibition tests using the red marine macroalgae Ceramium strictum and the brackish water relative C. tenuicorne have been developed. Besides using phenol as a reference substance, the toxicity of a metal, a flame retardant and a complex effluent water were assayed. The two methods are reliable and repeatable bioassays for salinities between 4 and 30 per thousandth. The coefficients of variation (CV) for toxicity of the reference substance phenol were 15% for the Stereo Microscope Analysis test and between 24 and 51% for the Computer Image Analysis test (n=5). Ceramium spp. are common and important primary producers in temperate coastal waters and are thus relevant as test organisms. Both algae grow well in laboratorial conditions and tests can be performed all year around.

  6. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae.

    Science.gov (United States)

    Munk, Michele; Brandão, Humberto M; Nowak, Sophie; Mouton, Ludovic; Gern, Juliana C; Guimaraes, Alessandro S; Yéprémian, Claude; Couté, Alain; Raposo, Nádia R B; Marconcini, José M; Brayner, Roberta

    2015-12-01

    Recently, cellulose nanofibers (CNFs) have attracted considerable attention as natural, abundant polymers with excellent mechanical properties and biodegradability. CNFs provide a new materials platform for the sustainable production of high-performance nano-enable products for various applications. Given the increasing rates of CNF production, the potential for their release to the environment and the subsequent impact on ecosystem is becoming an increasing concern that needs to be addressed. Here, we used the Klebsormidium flaccidum as a bioindicator organism of terrestrial and freshwater habitats pollution using a battery of biomarkers. Our results show that cotton CNFs inhibit the proliferation of algae and induce morphological changes in them. The two main toxicity mechanisms induced by cotton CNFs are: (i) a direct contact of CNFs with the cell wall and cellular membrane and (ii) an indirect effect through the generation of reactive oxygen species (ROS). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Two new growth inhibition tests with the filamentous algae Ceramium strictum and C. tenuicorne (Rhodophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ellen; Eklund, Britta

    2003-09-01

    Two species of Ceramium grow well in lab assays and tests can be performed all year around. - Two growth inhibition tests using the red marine macroalgae Ceramium strictum and the brackish water relative C. tenuicorne have been developed. Besides using phenol as a reference substance, the toxicity of a metal, a flame retardant and a complex effluent water were assayed. The two methods are reliable and repeatable bioassays for salinities between 4 and 30%o. The coefficients of variation (CV) for toxicity of the reference substance phenol were 15% for the Stereo Microscope Analysis test and between 24 and 51% for the Computer Image Analysis test (n=5). Ceramium spp. are common and important primary producers in temperate coastal waters and are thus relevant as test organisms. Both algae grow well in laboratorial conditions and tests can be performed all year around.

  8. Two new growth inhibition tests with the filamentous algae Ceramium strictum and C. tenuicorne (Rhodophyta)

    International Nuclear Information System (INIS)

    Bruno, Ellen; Eklund, Britta

    2003-01-01

    Two species of Ceramium grow well in lab assays and tests can be performed all year around. - Two growth inhibition tests using the red marine macroalgae Ceramium strictum and the brackish water relative C. tenuicorne have been developed. Besides using phenol as a reference substance, the toxicity of a metal, a flame retardant and a complex effluent water were assayed. The two methods are reliable and repeatable bioassays for salinities between 4 and 30%o. The coefficients of variation (CV) for toxicity of the reference substance phenol were 15% for the Stereo Microscope Analysis test and between 24 and 51% for the Computer Image Analysis test (n=5). Ceramium spp. are common and important primary producers in temperate coastal waters and are thus relevant as test organisms. Both algae grow well in laboratorial conditions and tests can be performed all year around

  9. Intercellular translocation of molecules via plasmodesmata in the multiseriate filamentous brown alga, Halopteris congesta (Sphacelariales, Phaeophyceae).

    Science.gov (United States)

    Nagasato, Chikako; Tanaka, Atsuko; Ito, Toshiaki; Katsaros, Christos; Motomura, Taizo

    2017-04-01

    Despite the high number of studies on the fine structure of brown algal cells, only limited information is available on the intercelluar transportation of molecules via plasmodesmata in brown algae. In this study, plasmodesmatal permeability of Halopteris congesta was examined by observing the translocation of microinjected fluorescent tracers of different molecular sizes. The tip region of H. congesta consists of a cylindrical apical cell, while the basal region is multiseriate. Fluorescein isothiocyanate-dextran (FD; 3, 10, and 20 kDa) and recombinant green fluorescent protein (27 kDa) were injected into the apical cell and were observed to diffuse into the neighboring cells. FD of 40 kDa was detected only in the injected apical cell. The plasmodesmatal size exclusion limit was considered to be more than 20 kDa and less than 40 kDa. The extent of translocation of 3 and 10 kDa FD from the apical to neighboring cells 2 h postinjection was estimated based on the fluorescence intensity. It was suggested that the diffusing capacity of plasmodesmata varied according to molecular size. In order to examine acropetal and/or basipetal direction of molecular movement, 3 and 10 kDa FD were injected into the third cell from the apical cell. Successive observations indicated that the diffusion of fluorescence in the acropetal direction took longer than that in the basipetal direction. No ultrastructural difference in plasmodesmata was noted among the cross walls. © 2016 Phycological Society of America.

  10. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    Science.gov (United States)

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii: first results on the organization and the role of cytoskeleton in both host and parasite.

    Science.gov (United States)

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire Mm; Katsaros, Christos

    2013-11-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.

  12. Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales).

    Science.gov (United States)

    Leflaive, Joséphine; Lacroix, Gérard; Nicaise, Yvan; Ten-Hage, Loïc

    2008-06-01

    In biofilms, the competition between microorganisms for light, nutrients and space is extreme. Moreover, planktonic algae can be considered as competitors insofar as they decrease the available light for the benthic algae. One of the strategies employed by microorganisms to eliminate competitors is the release of inhibiting compounds, a process known as allelopathy. Here we demonstrate that a benthic/epiphytic alga, Uronema confervicolum, produces allelopathic compounds that induce oxidative stress and growth inhibition in the planktonic Desmodesmus quadrispina. Some of these compounds can also trigger the formation of colony in D. quadrispina. As colonies have higher sedimentation rates than unicells, their induction by U. confervicolum might decrease shading. This study is the first report of colony induction in the context of alga-alga interaction. Our results also suggest the implication of mitogen-activated protein (MAP) kinases in the transduction of the signal leading to the formation of reactive oxygen species in the cells. A comparison with allelochemicals from another planktonic green alga, Monoraphidium aff. dybowski, emphasizes the specificity of colony induction by U. confervicolum, in contrast with oxidative stress which is induced by several compounds. The reciprocal production of inhibiting compounds by D. quadrispina makes this interaction an interesting example of co-evolution between two microorganisms belonging to different compartments of the ecosystem.

  13. Monetary value of the impacts of filamentous green algae on commercial agriculture: Results from two geographically different case studies

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2016-07-01

    Full Text Available on the impact, and the extent of the impact, of algae on farming practice. The paper presents the study areas, methodological approach, surveyed pollution impacts and the calculated monetary value of the impacts of such pollution. A short conclusion discusses...

  14. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta).

    Science.gov (United States)

    Škaloud, Pavel; Rindi, Fabio

    2013-01-01

    Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro-repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well-defined cryptic species is enabled by the mechanism of selective sweep. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  15. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    Science.gov (United States)

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis.

    Science.gov (United States)

    Sekimoto, Satoshi; Beakes, Gordon W; Gachon, Claire M M; Müller, Dieter G; Küpper, Frithjof C; Honda, Daiske

    2008-04-01

    The morphological development, ultrastructural cytology, and molecular phylogeny of Eurychasma dicksonii, a holocarpic oomycete endoparasite of phaeophyte algae, were investigated in laboratory cultures. Infection of the host algae by E. dicksonii is initiated by an adhesorium-like infection apparatus. First non-walled, the parasite cell developed a cell wall and numerous large vacuoles once it had almost completely filled the infected host cell (foamy stage). Large-scale cytoplasmic changes led to the differentiation of a sporangium with peripheral primary cysts. Secondary zoospores appeared to be liberated from the primary cysts in the internal space left after the peripheral spores differentiated. These zoospores contained two phases of peripheral vesicles, most likely homologous to the dorsal encystment vesicles and K-bodies observed in other oomycetes. Following zoospore liberation the walls of the empty cyst were left behind, forming the so-called net sporangium, a distinctive morphological feature of this genus. The morphological and ultrastructural features of Eurychasma were discussed in relation to similarities with other oomycetes. Both SSU rRNA and COII trees pointed to a basal position of Eurychasma among the Oomycetes. The cox2 sequences also revealed that the UGA codon encoded tryptophan, constituting the first report of stop codon reassignment in an oomycete mitochondrion.

  17. A comparison of methods for the non-destructive fresh weight determination of filamentous algae for growth rate analysis and dry weight estimation.

    Science.gov (United States)

    Ross, Michael E; Stanley, Michele S; Day, John G; Semião, Andrea J C

    2017-01-01

    The determination of rates of macroalgal growth and productivity via temporal fresh weight (FW) measurements is attractive, as it does not necessitate the sacrifice of biomass. However, there is no standardised method for FW analysis; this may lead to potential discrepancies when determining growth rates or productivity and make literature comparison problematic. This study systematically assessed a variety of lab-scale methods for macroalgal FW measurement for growth rate determination. Method efficacy was assessed over a 14-day period as impact upon algal physiology, growth rate on basis of FW and dry weight (DW), nitrate removal, and maintenance of structural integrity. The choice of method is critical to both accuracy and inter-study comparability of the data generated. In this study, it was observed that the choice of protocol had an impact upon the DW yield ( P values = 0.036-0.51). For instance, those involving regular mechanical pressing resulted in a >25% reduction in the final DW in two of the three species studied when compared to algae not subjected to any treatment. This study proposes a standardised FW determination method employing a reticulated spinner that is rapid, reliable, and non-destructive and provides an accurate growth estimation.

  18. Plasmodesmata of brown algae.

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open.

  19. soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over emphasized as the world is working ... farms further establishes the role of blue green algae in soil nutrients for plant growth. Key words- Soil Fertility, Soil ... with sunlight will promote the growth of soil algae and their contribution to ...

  20. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  1. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  2. Effects of filamentous macroalgae mats on growth and survival of eelgrass, Zostera marina, seedlings

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Olesen, Birgit; Krause-Jensen, Dorte

    2012-01-01

    A laboratory experiment was conducted to assess the effect of filamentous algae mats on the performance of seedlings of the eelgrass, Zostera marina. The seedlings were covered by three levels (3, 6 and 9 cm) of natural (Chaetomorpha linum) and imitation algae mats and it was hypothesized...... that the effects of the natural algae on seedling growth may be more severe because of the metabolic demands of the algae. Results show that coverage by both C. linum and imitation algae significantly reduced seedling growth and increased allocation of resources to above ground tissues. No clear effects of algae...

  3. Beberapa Marga Alga Benang dan Hubungannya dengan Keberadaan Vektor Malaria di Bali Utara

    OpenAIRE

    Seregeg, I. G

    1988-01-01

    A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae) in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, an...

  4. Streptophyte algae and the origin of embryophytes.

    Science.gov (United States)

    Becker, Burkhard; Marin, Birger

    2009-05-01

    Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major

  5. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  6. Freshwater algae of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

  7. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  8. Biofilms from a Brazilian water distribution system include filamentous fungi.

    Science.gov (United States)

    Siqueira, V M; Oliveira, H M B; Santos, C; Paterson, R R M; Gusmão, N B; Lima, N

    2013-03-01

    Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4',6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.

  9. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  10. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  11. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  12. Antioxidant properties of some filamentous green algae (Chaetomorpha Genus)

    OpenAIRE

    Farasat,Massoumeh; Khavari-Nejad,Ramazan-Ali; Nabavi,Seyed Mohammad Bagher; Namjooyan,Foroogh

    2013-01-01

    The antioxidant activity and the contents of total phenolics and flavonoids were quantified in the methanolic extracts of four Chaetomorpha species including C. aerea, C. crassa, C. linum and C. brachygona. Eight samples of Chaetomorpha plants were collected from five locations along the northern coasts of the Persian Gulf in south of Iran from December 2010 until October 2011. Methanolic extracts of the seaweeds were assessed for their antioxidant activity using DPPH radical scavenging assay...

  13. Towards tradable permits for filamentous green algae pollution

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2016-09-01

    Full Text Available a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary...

  14. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  15. Ectocarpus: a model organism for the brown algae.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.

  16. Algae as hosts for epifaunal bryozoans: Role of functional groups and taxonomic relatedness

    Science.gov (United States)

    Liuzzi, María G.; López Gappa, Juan

    2011-01-01

    Macroalgae build biogenic habitats which give shelter and provide a suitable physical environment for a great variety of organisms. Structural complexity of algal substrates may influence the composition of their attached epifauna. The aim of this study is to test whether the taxonomic relatedness of the algal hosts and the functional groups to which they belong influence the species richness and composition of their epifaunal bryozoans. We analysed 36 algal genera from the Atlantic coast of South America between 42°S and Cape Horn. Changes in bryozoan species richness (number of species) among different algal functional groups (filamentous algae, foliose algae, corticated foliose algae, corticated macrophytes) were non-significant. The composition of the epifaunal assemblages differed significantly only between filamentous and foliose algae. Sheet-like bryozoans (i.e. encrusting, pluriserial colonies) were more frequent on foliose than on filamentous algae, while runner-like species (i.e. uniserial stolons) were characteristic epibionts on filamentous thallii. Similarity of bryozoan assemblages increased with increasing taxonomic relatedness of their hosts. As most filamentous seaweeds analysed in this study are members of the Order Ceramiales, the influence of algal taxonomic relatedness and functional groups on the composition of their bryozoan assemblages can be viewed as two different aspects of the same phenomenon.

  17. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  18. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  19. Plasmodesmata of brown algae

    OpenAIRE

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2014-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10?20?nm and they lack desmotubule in contrast to green plants. Moreover, branched PD ...

  20. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    Full Text Available How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below

  1. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Science.gov (United States)

    Erickson, Robert P; Gross, Steven P; Yu, Clare C

    2013-01-01

    How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing

  2. Overcoming Microalgae Harvesting Barrier by Activated Algae Granules.

    Science.gov (United States)

    Tiron, Olga; Bumbac, Costel; Manea, Elena; Stefanescu, Mihai; Nita Lazar, Mihai

    2017-07-05

    The economic factor of the microalgae harvesting step acts as a barrier to scaling up microalgae-based technology designed for wastewater treatment. In view of that, this study presents an alternative microalgae-bacteria system, which is proposed for eliminating the economic obstacle. Instead of the microalgae-bacteria (activated algae) flocs, the study aimed to develop activated algae granules comprising the microalgae Chlorella sp. as a target species. The presence of the filamentous microalgae (Phormidium sp.) was necessary for the occurrence of the granulation processes. A progressive decrease in frequency of the free Chlorella sp. cells was achieved once with the development of the activated algae granules as a result of the target microalgae being captured in the dense and tangled network of filaments. The mature activated algae granules ranged between 600 and 2,000 µm, and were characterized by a compact structure and significant settling ability (21.6 ± 0.9 m/h). In relation to the main aim of this study, a microalgae recovery efficiency of higher than 99% was achieved only by fast sedimentation of the granules; this performance highlighted the viability of the granular activated algae system for sustaining a microalgae harvesting procedure with neither cost nor energy inputs.

  3. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    Science.gov (United States)

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  4. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  5. [Harmful algae and health].

    Science.gov (United States)

    Kankaanpää, Harri T

    2011-01-01

    Harmful algae are a worldwide problem. Phycotoxins is a general term for toxic compounds produced by harmful species of the phytoplankton. This review deals with the occurrence of harmful algae and phycotoxins in the Baltic Sea and other domestic waters, the ways of getting exposed to them, and their effects. Advice on how to avoid the exposure is provided.

  6. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  7. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  8. BEBERAPA MARGA ALGA BENANG DAN HUBUNGANNYA DENGAN KEBERADAAN VEKTOR MALARIA DI BALI UTARA

    Directory of Open Access Journals (Sweden)

    I. G. Seregeg

    2012-09-01

    Full Text Available A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, and Anabaena; under the subphyllum of CHLOROPHYTA (Green Algae in the family of Chlorophyceae were Enteromorpha, Spirogyra, Mougeotia, Zygnema, and Oedogonium. The surface of water in between the floating masses of algae were an exellent breeding place of mosquitoes mainly Anopheles sundaicus. The density of Enteromorpha, the main attractant of An sundaicus compared to other filamantous algae, has no direct relation on the density of An. sundaicus larva. Hence Enteromorpha could only be considered as the indicator of the presence of larvae and not as the indicator of population densities of larvae Lagoons surrounded with mangrove plantations did not harbour filamentous algae and larvae of An. sundaicus were not found.

  9. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    OpenAIRE

    Beatriz MODENUTTI; Esteban BALSEIRO; Marcela BASTIDAS NAVARRO; Florencia CUASSOLO

    2011-01-01

    In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM) of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P) of benthic algae (Spirogyra sp. and Zygnema sp.) and the submerged macrophyte (Myriophyllum qu...

  10. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  11. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  12. Toxic effects of decomposing red algae on littoral organisms

    Science.gov (United States)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  13. Blue-Green Algae

    Science.gov (United States)

    ... people with hepatitis C or hepatitis B. HIV/AIDS. Research on the effects of blue-green algae in people with HIV/AIDS has been inconsistent. Some early research shows that taking 5 grams of blue-green ...

  14. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  15. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  16. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  17. Isolation of algae of the Neusa reservoir by means of cultivations in vitro

    International Nuclear Information System (INIS)

    Maldonado A; Moreno, E

    2000-01-01

    The cultivation of algae at world level is an occupation of old it dates, but in Colombia it is in its first development stages. The present work developed in the Laboratory of Bioassays, Department of Biology, National University of Colombia, is guided to contribute technical in the development of the cultivation of algae. In the practical part of the work; samples of water of the Reservoir of the Neusa were used for cultivation in liquid medium and solid medium. A better growth of filamentous cianoficeas was observed in solid medium and green algae in liquid medium. The clamidomonas is favored in both mediums, fact that allowed isolating a pure stump of this type of algae. The diatomeas for the fact of growing in connection with green algae generates a methodological problem for their isolation that is still without solving

  18. Anticoagulant effect of marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  20. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  1. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  2. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  3. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    Directory of Open Access Journals (Sweden)

    Christian Wild

    2014-09-01

    Full Text Available Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km: Mesoamerican Barrier Reef (inshore, Turneffe Atoll (inner and outer midshore, and Lighthouse Reef (offshore. In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29% when compared to the other sites (4–19%. The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth for corals (mainly genera Orbicella and Agaricia, particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  4. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  5. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  6. Chloroplast division checkpoint in eukaryotic algae

    Science.gov (United States)

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  7. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  8. Transcriptomics in brown algae

    OpenAIRE

    Heinrich, Sandra

    2015-01-01

    Brown algae are distributed worldwide on rocky shores. They are importenet components of ecosystems, they provide habitat, shelter and serve as nurseries for various marine organisms. The geographic as well as depth distribution of macroalgae is constrained by abiotic factors, especially light and temperature. It is therefore likely that due to the global change, distribution patterns of these organisms will change. In this work the molecular acclimation of two prominent brown macroalgae, Sac...

  9. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  10. Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2013-11-01

    Full Text Available Cultivation of microalgae to utilize CO2 and nutrients in the wastewater to generate biofuel products is a promising research objective. However, the process faces tremendous technical difficulties, especially the harvest of microalgae cells, an economically challenging step. Several researchers recently reported co-culturing of filamentous fungi with microalgae so that microalgae cells can be co-pelletized in order to facilitate the cell harvest. This algae pelletization via the filamentous fungi represents an innovative approach to address both the cost and sustainability issues in algae biofuel production and also has potential with direct commercial applications. This paper reviews the current research status in this area and some possible drawbacks of this method in order to provide some possible directions for the future research.

  11. Colloidal transport by active filaments.

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P B Sunil; Adhikari, R

    2017-01-14

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  12. Colloidal transport by active filaments

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.

    2017-01-01

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  13. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  14. Are the Satellite-Observed Narrow, Streaky Chlorophyll Filaments Locally Intensified by the Submesoscale Processes?

    Science.gov (United States)

    2015-11-05

    studies focusing on the impact of submesoscale processes on biological dynamics in the ocean (see, for example, review by Levy et al., 2012). It has...the impact of submesoscale processes on the development and intensification of offshore narrow (5-10km wide) phytoplankton filaments during summer... ecosystem health, as for example, in the development of such events as harmful algae blooms (HABs). All these emphasize the importance of further

  15. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  16. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.

    Science.gov (United States)

    Boutsivongsakd, Monique; Farwell, Andrea J; Chen, Hao; Dixon, D George

    2015-01-01

    Previous studies reported (15)N enrichment of biota in reclamation wetlands that contain oil sands processed material (e.g., processed water and tailings); however, there is little information on the factors controlling (15)N enrichment in these systems. In this microcosm study, the aim was to examine stable C and N isotopes and growth (chlorophyll a [chl a] and dry weight) of algae as a function of exposure to different sources and concentrations of water-soluble fractions (WSF) derived from tailings. Two sources of tailings including mature fine tailings (MFT) and consolidated tailings (CT) and peat-mineral overburden were utilized to generate separate WSF that differed in water quality. In general, there was (15)N enrichment of filamentous algae along the increasing gradient of WSF/nutrient concentrations in both CT and peat microcosms, and among the different sources, algae were more (15)N enriched in CT WSF than in peat WSF. Growth of filamentous algae was inhibited at higher WSF concentrations, possibly due to reduced light availability at elevated levels of fine clay particles in MFT microcosms and colored dissolved organic carbon (DOC) in peat microcosms. Filamentous algae displayed lower biomass and (15)N depletion in 100% peat WSF. This study indicated that both the quality (source) and quantity of WSF affected algal growth and directly and/or indirectly influenced δ(15)N of algae. The distinct (15)N enrichment of primary producers derived from tailings suggest that stable N isotopes might be useful to trace exposure to oil sands processed material in biota that utilize these resources in reclaimed systems constructed with tailings or natural systems that receive tailings dyke seepage.

  17. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    Science.gov (United States)

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-05

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.

  18. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea

    Science.gov (United States)

    Haas, A.; El-Zibdah, M.; Wild, C.

    2010-03-01

    This paper presents seasonal in situ monitoring data on benthic coverage and coral -algae interactions in high-latitude fringing reefs of the Northern Red Sea over a period of 19 months. More than 30% of all hermatypic corals were involved in interaction with benthic reef algae during winter compared to 17% during summer, but significant correlation between the occurrence of coral -algae interactions and monitored environmental factors such as temperature and inorganic nutrient availability was not detected. Between 5 and 10-m water depth, the macroalgae Caulerpa serrulata, Peyssonnelia capensis and filamentous turf algae represented almost 100% of the benthic algae involved in interaction with corals. Turf algae were most frequently (between 77 and 90% of all interactions) involved in interactions with hermatypic corals and caused most tissue damage to them. Maximum coral tissue loss of 0.75% day-1 was observed for Acropora-turf algae interaction during fall, while an equilibrium between both groups of organisms appeared during summer. Slow-growing massive corals were more resistant against negative algal influence than fast-growing branching corals. Branching corals of the genus Acropora partly exhibited a newly observed phenotypic plasticity mechanism, by development of a bulge towards the competing organism, when in interaction with algae. These findings may contribute to understand the dynamics of phase shifts in coral reefs by providing seasonally resolved in situ monitoring data on the abundance and the competitive dynamic of coral -algae interactions.

  19. Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2010-01-01

    Full Text Available Biofilm on the sandstone substrata of the bridge 'Brankov most' and on the granite substrata of the 'Monument of the Unknown Hero' contains a complex consortia of cyanobacteria, algae, and fungi. Coccoid and filamentous cyanobacteria, green algae and diatoms make up the photosynthetic part of the biofilm while hyphal fragments, chlamydospores, fruiting bodies and spores take part as fungal components. These structures make a dense layer by intertwining and overlapping the stone surface. Five cyanobacterial, 11 algal and 23 fungal taxa were found. The interaction of the biofilm's constituents results in the bioweathering of the stone substrata through mechanical penetration, acid corrosion and the production of secondary mycogenic biominerals. .

  20. Isolation of plasmid from the blue-green alga Spirulina platensis

    Science.gov (United States)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  1. Patterns of cell division in the filamentous Desmidiaceae, close green algal relatives of land plants.

    Science.gov (United States)

    Hall, John D; McCourt, Richard M; Delwiche, Charles F

    2008-06-01

    Patterns of cell division and cross wall formation vary among the charophytes, green algae closely related to land plants. One group of charophytes, the conjugating green algae (Zygnematophyceae), is species-rich and is known to vary substantially in the mode of cell division, but the details of these cell division patterns and their phylogenetic distribution remain poorly understood. We studied cross wall development in filamentous Desmidiaceae (a clade of conjugating green algae) using differential interference contrast and fluorescence light microscopy. All strains investigated had centripetal encroachment of a septum, but with several different developmental patterns. In most cases, cell wall formation was delayed with respect to the Cosmarium-type of cell division, and the cross wall was modified considerably after deposition in a manner specific to the particular clade of filamentous desmids. These characteristics were mapped on a phylogeny estimated from a data set of two organellar genes, and the evolutionary implications of the character state distribution were evaluated. The data suggest a complex history of evolution of cell division in this lineage and also imply that Desmidium and Spondylosium are polyphyletic. These results indicate that many features of the cell shape are determined at the time of cell division in conjugating green algae.

  2. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    Directory of Open Access Journals (Sweden)

    Watanabe Katsutoshi

    2010-06-01

    Full Text Available Abstract Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs varied among localities. This finding implies that

  4. Temporal and spatial dynamics of ephemeral drift-algae in eelgrass, Zostera marina, beds

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Pedersen, Morten Foldager; Olesen, Birgit

    2013-01-01

    by the eelgrass leaves. This highly dynamic nature of filamentous macroalgal aggregations in eelgrass beds should be considered when evaluating implications of macroalgal blooms for seagrass growth and survival. A frequent relocation of drift-algae at small spatial scale may moderate the formation of poor oxygen......Aggregations of unattached, filamentous macroalgae showed high temporal and spatial dynamics in two shallow and relatively sheltered eelgrass (Zostera marina) beds in Aarhus Bay and Isefjord, Denmark. The changes in algal abundance were followed in permanent plots at 1-3 days intervals during three......) suggesting that variability in algal cover may go by undetected in monthly assessments. The changes in cover were caused either by algal growth or by physical forces moving large aggregations of algae into or out of the study area. Within plots (1 m2) variability was even higher and algal cover changed...

  5. Beam distribution function after filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.; Decker, F.J.; Seeman, J.T.

    1995-05-01

    In this paper, the authors calculate the beam distribution function after filamentation (phase-mixing) of a focusing mismatch. This distribution is relevant when interpreting beam measurements and sources of emittance dilution in linear colliders. It is also important when considering methods of diluting the phase space density, which may be required for the machine protection system in future linear colliders, and it is important when studying effects of trapped ions which filament in the electron beam potential. Finally, the resulting distribution is compared with measured beam distributions from the SLAC linac.

  6. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  7. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  8. Rapid Evolution of microRNA Loci in the Brown Algae.

    Science.gov (United States)

    Cock, J Mark; Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P; Coelho, Susana M; Tarver, James E

    2017-03-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Use of Spring-Coiled Shaped Green Algae for Determination of 137Cs and Potassium Bioaccumulation

    International Nuclear Information System (INIS)

    Gonen, R.; Katorza, E.; German, U.; Pelled, O.; Dody, A.; Marco, R.; Cohen, E.; Alfassi, Z.B.

    2006-01-01

    One of the useful technologies for removing pollutants from the environment is phyto remediation. By this method, living or dead plants (including various algae and cyanobacteria) are used to concentrate pollutants from soil or from water sources by biologically active or by passive processes. We isolated from one of the water pools in the Negev green filamentous algae. They exhibited a regular spring-coiled shape typical to Spirulina filaments, but lacked the beaded filaments seen in Anabaena which belongs also to the cyanobacteria. The easily growing algae at the high temperatures of the Negev summers (35-45 degrees C) and under extremely alkaline conditions (pH=9-11), were used to test their potential to accumulate radio-isotopes. We performed our investigations by using 137 Cs, which is a fission product and is regarded as an environmental contaminant. Cesium, Rubidium, Lithium and Sodium follow the uptake route of the macro nutrient potassium and appear to share the K + transport carrier, therefore they are easily transported into plant cells. Potassium is generally considered as an effective inhibitor for radio-cesium uptake by plant roots. It was also shown that C.a. and Mag depressed the Cs uptake). Bioaccumulation factors were used to predict radionuclide concentrations in whole organisms or their tissues

  10. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  11. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  12. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...

  13. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then...

  14. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  15. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  16. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  17. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  18. Multicellularity in green algae: Upsizing in a walled complex.

    Directory of Open Access Journals (Sweden)

    David S. Domozych

    2014-11-01

    Full Text Available Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix, most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In ulvophytes, uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell-adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the extracellular matrix. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.

  19. Multicellularity in green algae: upsizing in a walled complex.

    Science.gov (United States)

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.

  20. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  1. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  2. Femtosecond Laser Filamentation for Atmospheric Sensing

    OpenAIRE

    Huai Liang Xu; See Leang Chin

    2010-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence sp...

  3. Filament Winding Of Carbon/Carbon Structures

    Science.gov (United States)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  4. Biogeochemical cycling of metals in freshwater algae from Manaus and Carajas, Brazil

    International Nuclear Information System (INIS)

    Konhauser, K.O.; Fyfe, W.S.

    1993-01-01

    Freshwater algae were analyzed in different riverine environments in Manaus and Carajas, Brazil. Filamentous algae from both locations were characterized by enhanced levels of a wide array of heavy metals. A comparison of the two main rivers in the Manaus area indicated that the algal samples from the solute-rich waters of the Rio Solimoes consistently contained higher metal concentrations than in the solute-deficient waters of the Rio Negro. A similar relationship also existed between algal samples collected from forested regions relative to adjacent deforested regions in the Carajas area. In the Rio Negro, diatoms were shown to be the most prolific eucaryotic microorganisms found in the study area. These siliceous algae were found adhering to a variety of submerged solid substrates, including wood, rocks, and leaves. The abundance of these unicellular micro-organisms suggested that the dissolved silicon levels of the Rio Negro were influenced by biological activity

  5. Biogeochemical cycling of metals in freshwater algae from Manaus and Carajas, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Konhauser, K.O.; Fyfe, W.S. (Univ. of Western Ontario, London (Canada). Dept. of Geology)

    Freshwater algae were analyzed in different riverine environments in Manaus and Carajas, Brazil. Filamentous algae from both locations were characterized by enhanced levels of a wide array of heavy metals. A comparison of the two main rivers in the Manaus area indicated that the algal samples from the solute-rich waters of the Rio Solimoes consistently contained higher metal concentrations than in the solute-deficient waters of the Rio Negro. A similar relationship also existed between algal samples collected from forested regions relative to adjacent deforested regions in the Carajas area. In the Rio Negro, diatoms were shown to be the most prolific eucaryotic microorganisms found in the study area. These siliceous algae were found adhering to a variety of submerged solid substrates, including wood, rocks, and leaves. The abundance of these unicellular micro-organisms suggested that the dissolved silicon levels of the Rio Negro were influenced by biological activity.

  6. Temporal and spatial dynamics of ephemeral drift-algae in eelgrass, Zostera marina, beds

    Science.gov (United States)

    Rasmussen, Jonas Ribergaard; Pedersen, Morten Foldager; Olesen, Birgit; Nielsen, Søren Laurentius; Pedersen, Troels Møller

    2013-03-01

    Aggregations of unattached, filamentous macroalgae showed high temporal and spatial dynamics in two shallow and relatively sheltered eelgrass (Zostera marina) beds in Aarhus Bay and the Isefjord, Denmark. The changes in algal abundance were followed in permanent plots at 1-3 days intervals during three different periods of the growth season (May-September). Drift-algal assemblages were present within the 3000 m2 study areas in relatively high and constant abundance (>47% cover) throughout the study period. However, significant changes in average site cover did occur on short timescales (days) suggesting that variability in algal cover may be undetected in monthly assessments. The changes in cover were caused either by algal growth or by physical forces moving large aggregations of algae into or out of the study area. Within plots (1 m2) variability was even higher and algal cover changed regularly between observations (days). Hence, the algae were continuously rearranged within the eelgrass beds; also during periods with no change in average algal cover. The variability in cover of individual plots was negatively correlated to eelgrass cover, suggesting that algae were retained by the eelgrass leaves. This highly dynamic nature of filamentous macroalgal aggregations in eelgrass beds should be considered when evaluating implications of macroalgal blooms for seagrass growth and survival. A frequent relocation of drift-algae at small spatial scale may moderate the formation of poor oxygen conditions within mats and shorten the duration of exposure experienced by individual shoots.

  7. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    Filaments are clouds of relatively cool and dense gas in the solar atmosphere. ... First-tier filaments may be related to a peculiar feature of the solar dynamo. .... Still, an appeal to subsurface processes should be resisted, but surface motion models have been able to reproduce neither the pattern of filament field orientations ...

  8. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  9. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    according to which, probably all the magnetic flux that emerges into the photosphere is twisted. Twisted flux forms sunspots, active regions (ARs) and filaments. The twist accumulates in filaments and coronal arcades. Eventually the accumulated, highly twisted fields become unstable and erupt. From a study of filament ...

  10. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  11. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  12. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  13. Elasticity of a Filament with Kinks

    Science.gov (United States)

    Razbin, Mohammadhosein

    2017-12-01

    Using the wormlike chain model, we analytically study the elasticity of a filament with kinks. We calculate the position probability density function and the force constant of a kinked filament with a general kink angle. Then, using the mathematical induction, we obtain the positional-orientational probability density function of a filament with regular kinks. For this filament, we compute the force constant in two different directions. In longitudinal direction of the filament, the force constant is proportional to the inverse of the number of the segments, i.e., 1 / m, while in transverse direction, it is proportional to 1/m^3.

  14. UNUSUAL FILAMENTS INSIDE THE UMBRA

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Sainz Dalda, A., E-mail: kleintl@ucar.edu [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States)

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  15. [Chitinolytic activity of filamentous fungi].

    Science.gov (United States)

    Shubakov, A A; Kucheriavykh, P S

    2004-01-01

    The chitinolytic activity of nine species of filamentous fungi, classified with seven genera (specifically, Aspergillus, Penicillium, Trichoderma, Paecilomyces, Sporotrichum, Beaueria, and Mucor), was studied. When cultured in liquid medium containing 1% crystalline chitin, all fungi produced extracellular chitosans with activity varying from 0.2 U/mg protein (Sporotrichum olivaceum, Mucor sp., etc.) to 4.0-4.2 U/mg protein (Trichoderma lignorum, Aspergillus niger).

  16. Lighting the universe with filaments.

    Science.gov (United States)

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  17. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight spectrometry.

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  18. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  19. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2011-08-01

    Full Text Available In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P of benthic algae (Spirogyra sp. and Zygnema sp. and the submerged macrophyte (Myriophyllum quitense from a high latitude wetland (local name: mallín. Besides we performed laboratory experiments in order to study the effect of ultraviolet radiation (UVR on the optical properties and nutrient release of DOM from leachates of these benthic algae and submerged macrophyte. The obtained results indicated that macrophyte leachates could contribute significantly to changes in the optical characteristics of the wetlands while benthic algae contribute with leachates with low photoreactivity. Finally, nutrient release differs among plant species and season: benthic algae leachates release more P in spring, while M. quitense releases more of this nutrient in autumn. These results suggested that the different colonization may contribute differentially to the chemical environment of the wetland.

  20. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  1. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  2. Femtosecond Laser Filamentation for Atmospheric Sensing

    Directory of Open Access Journals (Sweden)

    Huai Liang Xu

    2010-12-01

    Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

  3. [Analysis of the cable structure of blue-green algae].

    Science.gov (United States)

    Levin, S A; Potapova, T V; Skulachev, V P; Chaĭlakhian, L M

    1982-01-01

    Peculiarities of electrical responses under local illumination of filamentous cyanobacteria (blue-green algae). Phormidium uncinatum were studied by means of extracellular electrodes. Recording of electrical responses at different distances from the exposure place and comparison of these data with the results obtained on physical model of Ph. uncinatum end expected response parameters computed made it possible to estimate the parameters of the cable which can serve as the object model: RC=440 c/cm2 and lambda min greater than or equal to 0.07 cm. According to these values and taking membrane capacity as C=10(-6) phi/cm2, intracellular resistance Rm=10(7) Ohm and conductivity of the surface membrane G less than or equal to 10(-6) I/Ohm cm2 were estimated.

  4. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  5. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    Science.gov (United States)

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  6. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  7. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae.

    Science.gov (United States)

    Lee, Yi-Chao; Chang, Shui-Ping

    2011-05-01

    The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Assembly of Superparamagnetic Filaments in External Field.

    Science.gov (United States)

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.

  9. Chaperonin filaments: The archaeal cytoskeleton?

    Science.gov (United States)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  10. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  11. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  12. Subcutaneous implants of polypropylene filaments.

    Science.gov (United States)

    Liebert, T C; Chartoff, R P; Cosgrove, S L; McCuskey, R S

    1976-11-01

    Extruded filaments of unmodified polypropylene (PP) with and without antioxidant were implanted subcutaneously in hamsters in order to determine their rate of degradation. Specimens were removed periodically during a 5 month test period and analyzed by infrared spectroscopy and dynamic mechanical testing. The analyses show that degradation beigns to occur after only a few days. Although the reaction sequence is not known, several factors suggest that the in vivo degradation process is similar to autoxidation which occurs in air or oxygen. The infrared data indicate that the hydroxyl content of the implants increases at a rate of 0.061 mg/g polypropylene per day during the initiation phase of the reaction. An induction time of 108 days was extablished. Carbonyl bonds appear after an implantation time of 50--90 days and increase therafter. Mechanical tests indicate a decrease in the dynamic loss tangent, tan delta, during the first month of implantation for unmodified polypropylene. No change in the infrared spectra or tan delta was observed, however, for implants containing an antioxidant. Thus, it is apparent that polypropylene filaments implanted subcutaneously in hamsters degrade by an oxidation process which is retarded effectively by using an antioxidant. While the findings reported are specific to subcutaneous polypropylene implants, they suggest that degradation of other systems may involve similar processes. This notion suggests directions for further research on increasing the in vivo stability of synthetic polymers. Long-term effects of polymer implantation upon tissue were not studied in this work.

  13. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  14. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  15. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available This paper reports on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological...

  16. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne.

    Science.gov (United States)

    Dahlgren, Elin; Enhus, Carolina; Lindqvist, Dennis; Eklund, Britta; Asplund, Lillemor

    2015-11-01

    In the Baltic Sea, high concentrations of toxic brominated aromatic compounds have been detected in all compartments of the marine food web. A growing body of evidence points towards filamentous algae as a natural producer of these chemicals. However, little is known about the effects of environmental factors and life history on algal production of brominated compounds. In this study, several congeners of methoxylated polybrominated diphenyl ethers (MeO-PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and brominated phenols (BPs) were identified in a naturally growing filamentous red algal species (Ceramium tenuicorne) in the Baltic Sea. The identified substances displayed large seasonal variations in the alga with a concentration peak in July. Production of MeO-/OH-PBDEs and BPs by C. tenuicorne was also established in isolated clonal material grown in a controlled laboratory setting. Based on three replicates, herbivory, as well as elevated levels of light and salinity in the culture medium, significantly increased the production of 2,4,6-tribromophenol (2,4,6-TBP). Investigation of differences in production between the isomorphic female, male and diploid clonal life stages of the alga grown in the laboratory revealed a significantly higher production of 2,4,6-TBP in the brackish water female gametophytes, compared to the corresponding marine gametophytes. Even higher concentrations of 2,4,6-TBP were produced by marine male gametophytes and sporophytes.

  17. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  18. Brown algae as a model for plant organogenesis.

    Science.gov (United States)

    Bogaert, Kenny A; Arun, Alok; Coelho, Susana M; De Clerck, Olivier

    2013-01-01

    Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.

  19. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  20. A First Approach to Filament Dynamics

    Science.gov (United States)

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  1. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  2. Theory of Semiflexible Filaments and Networks

    Directory of Open Access Journals (Sweden)

    Fanlong Meng

    2017-02-01

    Full Text Available We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.

  3. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  4. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  5. Kinetics of filamentous phage assembly

    Science.gov (United States)

    Ploss, Martin; Kuhn, Andreas

    2010-12-01

    Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.

  6. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved...... in polarity establishment and maintenance, cytoskeleton dynamics and intracellular transport. The first part of this thesis addresses the A. gossypii Arf3 small GTPase and its GEF- and GAP regulators; Yel1 and Gts1, which has been implicated in polar growth in a wide range of organisms. We could demonstrate......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...

  7. Polar patterns of driven filaments.

    Science.gov (United States)

    Schaller, Volker; Weber, Christoph; Semmrich, Christine; Frey, Erwin; Bausch, Andreas R

    2010-09-02

    The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system

  8. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  9. Subcellular Sequestration and Impact of Heavy Metals on the Ultrastructure and Physiology of the Multicellular Freshwater Alga Desmidium swartzii

    Directory of Open Access Journals (Sweden)

    Ancuela Andosch

    2015-05-01

    Full Text Available Due to modern life with increasing traffic, industrial production and agricultural practices, high amounts of heavy metals enter ecosystems and pollute soil and water. As a result, metals can be accumulated in plants and particularly in algae inhabiting peat bogs of low pH and high air humidity. In the present study, we investigated the impact and intracellular targets of aluminum, copper, cadmium, chromium VI and zinc on the filamentous green alga Desmidium swartzii, which is an important biomass producer in acid peat bogs. By means of transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS it is shown that all metals examined are taken up into Desmidium readily, where they are sequestered in cell walls and/or intracellular compartments. They cause effects on cell ultrastructure to different degrees and additionally disturb photosynthetic activity and biomass production. Our study shows a clear correlation between toxicity of a metal and the ability of the algae to compartmentalize it intracellularly. Cadmium and chromium, which are not compartmentalized, exert the most toxic effects. In addition, this study shows that the filamentous alga Desmidium reacts more sensitively to aluminum and zinc when compared to its unicellular relative Micrasterias, indicating a severe threat to the ecosystem.

  10. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  11. USAGE OF ALGAE SPECIES CHAETOMORPHA GRACILIS AND CH. AEREA FOR DEPURATION PROCESS OF THE RESIDUAL WATERS

    Directory of Open Access Journals (Sweden)

    SALARU VICTOR

    2008-11-01

    Full Text Available Rapid increase of the population on the globe scale imposes maximum exploration of the natural resources and first of all of the aquatic resources. As a result are obtained an enormous quantity of residual waters which pollute the waters from rivers, lakes, freatic and underground waters. Elaboration of the depuration methods for residual waters the quantity of which grows continuously, is one of the most up to dated issue of the world. The physical-chemical depuration methods of the residual waters are very expensive and lack the efficiency we would like to have. The most efficient method proved to be the biological method using some species of algae and superior aquatic plants. In our experiences we have involved filamentous green algae Chaetomorpha gracilis and Ch. aerea for depuration of the sewerage water from town Cimishlia. The concentration of the mineral nitrogen compounds in the residual water is around 92,5 mg/l, and of the phosphates 10,1 mg/l. There were used the following concentration of the sewerage water: 10%, 25% and 50%. The most intense development of algae Chaetomorpha aerea was observed in the variant with 10% of residual water, in which the total concentration of the nitrogen was 10,24 mg/l, and of the phosphates 1,05 mg/l. For this variant the depuration water level was about 56,9%. For the case with Chaetomorpha gracilis, the depuration level for the same concentration of the residual water constituted 55,9 %. Increase of the concentration of the polluted water inhibits development of the algae reducing to the minimum their capacity to assimilate the nitrogen and the phosphor. In the solutions with 50 % of residual waters, the algae didn't die, but at the same time they didn't develop. From this results that both algae may be used in the phytoamelioration of the residual waters being diluted at 10% with purified water.

  12. Synthetic polyester from algae oil.

    Science.gov (United States)

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Growing swimming algae for bioenergy

    Science.gov (United States)

    Croze, Ottavio

    Biofuel production from photosynthetic microalgae is not commercially viable due to high processing costs. New engineering and biological solutions are being sought to reduce these costs by increasing processing efficiency (productivity per energy input). Important physics, however, is ignored. For example, the fluid dynamics of algal suspensions in photobioreactors (ponds or tube arrays) is non-trivial, particularly if the algae swim. Cell reorientation by passive viscous and gravitational torques (gyrotaxis) or active reorientation by light (phototaxis) cause swimming algae in suspension to structure in flows, even turbulent ones. This impacts the distribution and dispersion of swimmers, with significant consequences for photobioreactor operation and design. In this talk, I will describe a theory that predicts swimmer dispersion in laminar pipe flows. I will then then present experimental tests of the theory, as well as new results on the circadian suspension dynamics of the algaChlamydomonas reinhardtii in lab-scale photobioreactors. Finally, I will briefly consider the implications of our work, and related active matter research, for improving algal bioprocessing efficiency. Winton Programme for the Physics of Sustainability.

  14. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  15. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  16. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  17. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    Science.gov (United States)

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  18. Microbiota influences morphology and reproduction of the brown alga Ectocarpus sp.

    Directory of Open Access Journals (Sweden)

    Javier Esteban Tapia

    2016-02-01

    Full Text Available Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  19. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  20. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  1. Current filamentation in high-current diodes

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Kuksov, P.V.; Fanchenko, S.D.; Shuvaev, V.Y.

    1988-01-01

    Experimental data are reported on the filamentation of a high-current relativistic electron beam in the Kal'mar-1 relativistic-electron-beam source. A possible mechanism for this filamentation is studied theoretically. It is shown that the experimental results on the number of filaments into which the relativistic electron beam breaks up can be explained on the basis of an azimuthal nonuniformity of the current. This nonuniformity develops in the plasma near the cathode as the result of a Rayleigh--Taylor electron instability

  2. Membrane Buckling Induced by Curved Filaments

    Science.gov (United States)

    Lenz, Martin; Crow, Daniel J. G.; Joanny, Jean-François

    2009-07-01

    We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.

  3. Bacterial Enhancement of Vinyl Fouling by Algae

    OpenAIRE

    Holmes, Paul E.

    1986-01-01

    The role of bacteria in the development of algae on low-density vinyl was investigated. Unidentified bacterial contaminants in unialgal stock cultures of Phormidium faveolarum and Pleurochloris pyrenoidosa enhanced, by 1 to 2 orders of magnitude, colonization of vinyl by these algae, as determined by epifluorescence microscopy counts and chlorophyll a in extracts of colonized vinyl. Colonization by bacteria always preceded that by algae. Scanning electron microscopy of the colonized Phormidiu...

  4. Antioxidant Activity of Hawaiian Marine Algae

    OpenAIRE

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that cou...

  5. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  6. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Two-step solar filament eruptions

    Science.gov (United States)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  8. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  9. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen MJ; Stricker RB

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  10. A Robust Actin Filaments Image Analysis Framework.

    Directory of Open Access Journals (Sweden)

    Mitchel Alioscha-Perez

    2016-08-01

    Full Text Available The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale. Based on this observation, we propose a three-steps actin filaments extraction methodology: (i first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in

  11. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  12. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  13. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  14. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography–time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  15. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, Rene J. J.; Pel, Roel

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  16. Dynamics of contracting surfactant-covered filaments

    Science.gov (United States)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  17. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  18. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    Science.gov (United States)

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  19. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    Science.gov (United States)

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  1. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits; Frank, J.; van der Mei, R.; den Boer, A.; Bosman, J.; Bouman, N.; van Dam, S.; Verhoef, C.

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  2. SSMILes: Measuring the Nutrient Tolerance of Algae.

    Science.gov (United States)

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  3. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  4. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  5. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  7. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime.

    Science.gov (United States)

    Skrodzki, P J; Burger, M; Jovanovic, I

    2017-10-06

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. We investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficiencies for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr . Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr , emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.

  9. Role of multiple filaments in self-accelerating actions of laser filamentation in air

    Science.gov (United States)

    Hu, Yuze; Nie, Jinsong; Sun, Ke

    2017-11-01

    The nonlinear dynamics of multiple filaments in self-accelerating actions by using corrected accelerating parabolic beams (CAPBs) are numerically investigated. By increasing the number of main lobes, the curved filaments can be elongated, leading to a longer displacement. The replenished energy originating from curved multiple filaments (MFs) that constructively interfere with the central one plays a crucial role in the phenomenon. At the bifurcation position, a beam pattern in which secondary lobes tightly follow the main lobes is formed, which is beneficial for the accelerating action of MFs. A new curved filament is generated due to the merging of side-curved MFs, and its accelerating strength decreases gradually with further propagation. Moreover, a special spatiotemporal profile that enhances the possibility of acceleration is also formed. The use of the accelerating beam with the appropriate amount of main lobes provides a new approach to elongate curved filaments.

  10. Filamentous Influenza Virus Enters Cells via Macropinocytosis

    Science.gov (United States)

    Rossman, Jeremy S.; Leser, George P.

    2012-01-01

    Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes. PMID:22875971

  11. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  12. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  13. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  14. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Structure of Flexible Filamentous Plant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald (IIT); (BU-M); (Vanderbilt); (Kentucky); (BNL)

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  16. Interaction of Two Filaments in a Long Filament Channel Associated with Twin Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Du, Guohui; Li, Chuanyang [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209 Weihai (China); Zhang, Qingmin [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yang, Kai, E-mail: ruishengzheng@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2017-02-20

    Using the high-quality observations of the Solar Dynamics Observatory , we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanied by post-eruption loops and flare ribbons. This likely indicated a large-scale eruption involving the long filament channel, which resulted from the interaction between F1 and the east filament (F2). Some bright plasma flew over F2, and F2 stayed at rest during the eruption, likely due to the confinement of its overlying lower magnetic field. Interestingly, the impulsive F1 pushed its overlying magnetic arcades to form the first CME, and F1 finally evolved into the second CME after the collision with the nearby coronal hole. We suggest that the interaction of F1 and the overlying magnetic field of F2 led to the merging reconnection that forms a longer eruptive filament loop. Our results also provide a possible picture of the origin of twin CMEs and show that the large-scale magnetic topology of the coronal hole is important for the eventual propagation direction of CMEs.

  17. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  18. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  19. Morphological and community changes of turf algae in competition with corals

    Science.gov (United States)

    Cetz-Navarro, Neidy P.; Quan-Young, Lizette I.; Espinoza-Avalos, Julio

    2015-08-01

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.

  20. The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens

    Directory of Open Access Journals (Sweden)

    Aurélien Tartar

    2013-07-01

    Full Text Available Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae, and represent the first described entomopathogenic algae. This review provides an overview of (i the morphology of Helicosporidium cell types, (ii the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv the documented host range for this novel group of entomopathogens.

  1. The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens.

    Science.gov (United States)

    Tartar, Aurélien

    2013-07-17

    Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae), and represent the first described entomopathogenic algae. This review provides an overview of (i) the morphology of Helicosporidium cell types, (ii) the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii) the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv) the documented host range for this novel group of entomopathogens.

  2. The Ectocarpus genome and the independent evolution of multicellularity in brown algae.

    Science.gov (United States)

    Cock, J Mark; Sterck, Lieven; Rouzé, Pierre; Scornet, Delphine; Allen, Andrew E; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, François; Aury, Jean-Marc; Badger, Jonathan H; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J; Charrier, Bénédicte; Cho, Ga Youn; Coelho, Susana M; Collén, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M M; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Küpper, Frithjof C; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Hervé; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A; Nelson, David R; Nyvall-Collén, Pi; Peters, Akira F; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A; Ritter, Andrés; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C; Ségurens, Béatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, Patrick

    2010-06-03

    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.

  3. On reproduction in red algae: further research needed at the molecular level.

    Science.gov (United States)

    García-Jiménez, Pilar; Robaina, Rafael R

    2015-01-01

    Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention the intricate alternation of generations in the edible "sushi-alga" nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s), including day length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation, and accessible genomes may also facilitate our task.

  4. On reproduction in red algae: further research needed at the molecular level

    Directory of Open Access Journals (Sweden)

    Pilar eGarcía-Jiménez

    2015-02-01

    Full Text Available Multicellular red algae (Rhodophyta have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte and tetrasporophyte life cycle, not to mention the intricate alternation of generations in the edible sushi-alga nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s, including day length, light quality, temperature and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation and accessible genomes may also facilitate our task.

  5. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  7. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  8. Snow algae in an ice core drilled on Grigoriev Ice cap in the Kyrgyz Tien Shen Mountains

    Science.gov (United States)

    Honda, M.; Takeuchi, N.; Sera, S.; Fujita, K.; Okamoto, S.; Naoki, K.; Aizen, V. B.

    2012-12-01

    Snow algae are photosynthetic microorganisms and are living on the surfase of glaciers. They grow on melting surface from spring to summer and their biomass and community structure are changed with physical and chemical conditions on glaciers. Ice cores drilled from glaciers also contain snow algae that grew in the past. Studying biomass and community structure of snow algae in ice cores could reveal the temporal variation in snow algae in the past, and also environmental conditions relating propagation of snow algae. In this study, we anlalyzed snow algae preserved in an ice core of Grigoriev Ice cap located in eastern Kyrgyzstan of the central Asia, and to describe their temporal variations for the last 200 years. The ice core drilling was carried out on September in 2007 on the Grigoriev Ice cap in the Kyrgyz Tien Shen Mountains. A 87 m long ice core from the surface to the bedrock was recovered at the top of the ice cap. The core was horizontally cut every 5 cm (total 1212 samples). The samples were melted and preserved as a 3% formalin solution. After the sample water was filtered through a hydrophilized PTFE membrane filter, observed by microscope. Snow algae in the sample water were counting. The algal biomass was represented by the cell number per unit water volume. Here, we showed the results between the surface to the 64 m in depth. We also analyzed the snow algal communities on the surface of the ice cap collected from five different sites from the top down to the terminus. Microscopy revealed that the ice core contained three taxa of filamentous cyanobacteria, an unicellular cyanobacterium, and two green algae. They were also found on the ice or snow surface of the i Ice cap. The quantitative analyses of the algae in the part of upper 64 m deep of the ice core samples revealed that the algal biomass varied significantly and showed many peaks. Furthermore, the biomass profile differed among the taxa. The filamentous cyanobacterium varied from 0.0 to 4

  9. Algae: putting carbon dioxide in a bind

    Energy Technology Data Exchange (ETDEWEB)

    Ewers, J.; Wiechers, G. [RWE Power (Germany)

    2009-03-15

    German utility RWE Power has initiated a cutting edge project that is investigating the use of marine microalgae to capture carbon dioxide produced during lignite combustion. At its Niederaussem power plant, a pilot plant has been erected for the production of microalgae. Flue gas is withdrawn from the lignite-based power plant and transported through polyethylene pipes to the microalgae production plant. The CO{sub 2} in the flue gas is dissolved in the algae suspension and adsorbed by the algae for growth in photobioreactors, developed by Noragreen Projektmanagement GmbH. The photobioreactors which consist of clear plastic hoses, fixed in V shape to supports. The study is aiming to optimise the entire algae production process and subsequent conversion and use of the algae biomass produced. Uses being investigated include hydrothermal carbonization to obtain hydrocarbon products. 1 figs., 1 photo.

  10. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  11. Collection, Isolation and Culture of Marine Algae.

    Science.gov (United States)

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  12. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  13. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S; De; Kamat, S

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  14. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  15. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  16. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  17. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  18. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo...

  19. Evolution of genetic systems in filamentous ascomycetes

    NARCIS (Netherlands)

    Nauta, M.J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied,

  20. Featured Image: A Filament Forms and Erupts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    This dynamic image of active region NOAA 12241 was captured by the Solar Dynamics Observatorys Atmospheric Imaging Assembly in December 2014. Observations of this region from a number of observatories and instruments recently presented by Jincheng Wang (University of Chinese Academy of Sciences) and collaborators reveal details about the formation and eruption of a long solar filament. Wang and collaborators show that the right part of the filament formed by magnetic reconnection between two bundles of magnetic field lines, while the left part formed as a result of shearing motion. When these two parts interacted, the filament erupted. You can read more about the teams results in the article linked below. Also, check out this awesome video of the filament formation and eruption, again by SDO/AIA:http://cdn.iopscience.com/images/0004-637X/839/2/128/Full/apjaa6bf3f1_video.mp4CitationJincheng Wang et al 2017 ApJ 839 128. doi:10.3847/1538-4357/aa6bf3

  1. Unraveling Intermediate Filaments : The super resolution solution

    NARCIS (Netherlands)

    Nahidiazar, L.

    2017-01-01

    Intermediate Filaments (IFs) carry out major functions in cells. Several diseases have been associated with malfunctioning IFs in the cells and among them are certain sub types of cancer. To determine the structure and organization of IFs, we have used Single Molecule Localization Microscopy (SMLM)

  2. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    The 'seeing' dependent contrast of the Hα pictures is the source of uncertainties during the measurements on ... Results of measurements and conclusions. Heliographic position of the filaments is measured on the full disc Hα pictures taken ... consecutive magnetic synoptic charts. Two arrays of corresponding velocities are ...

  3. Mapping the filaments in NGC 1275

    Science.gov (United States)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  4. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  5. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  6. Standing waves in a counter-rotating vortex filament pair

    Science.gov (United States)

    García-Azpeitia, Carlos

    2018-03-01

    The distance among two counter-rotating vortex filaments satisfies a beam-type of equation according to the model derived in [15]. This equation has an explicit solution where two straight filaments travel with constant speed at a constant distance. The boundary condition of the filaments is 2π-periodic. Using the distance of the filaments as bifurcating parameter, an infinite number of branches of periodic standing waves bifurcate from this initial configuration with constant rational frequency along each branch.

  7. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  8. In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea.

    Science.gov (United States)

    Jessen, Christian; Roder, Cornelia; Villa Lizcano, Javier Felipe; Voolstra, Christian R; Wild, Christian

    2013-01-01

    Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if

  9. In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea.

    Directory of Open Access Journals (Sweden)

    Christian Jessen

    Full Text Available Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication and herbivore exclosure (simulation of overfishing on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1 was significantly lowered in the combined treatment relative to controls (26±2. Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for

  10. In-Situ Effects of Simulated Overfishing and Eutrophication on Benthic Coral Reef Algae Growth, Succession, and Composition in the Central Red Sea.

    KAUST Repository

    Jessen, Christian

    2013-06-19

    Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if

  11. Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina).

    Science.gov (United States)

    Baffico, Gustavo D

    2010-04-01

    The epilithic algae distribution along a pH gradient and the relationship between the chemical gradient and biomass development were studied in Río Agrio, a naturally acidic river located in Patagonia (Argentina). The epilithic community was monitored during the summer of three consecutive years in sites located above and below the entrance of tributaries. The epilithic community showed differences between sites based on the chemical composition of the water and the precipitates that appear on the streambed of the river. The lowest biomass, diversity, and number of species were found at the most extreme part of the river in terms of pH (ca. 2) and element concentrations. Euglena mutabilis was the dominant species in this section of the river. As pH increased (ca. 3), the community changed to be dominated by filamentous green algae (Ulothrix spp., Mougeotia sp., Klebsormidium sp.) showing luxuriant growths in terms of biomass. With the inflow of a neutral tributary, the pH of Río Agrio increased above 3, and the precipitates of orange-red iron hydroxides appeared. The algal community was not affected by these precipitates or the low P concentrations, along the next 30 km of river downstream from this site. The apparent physical stress that the precipitates impose on algae is in fact a dynamic reservoir of P because diel cycle of Fe could be promoting precipitation and redissolution processes that binds and releases P from these precipitates. Where the pH increased above 6, precipitates of aluminum hydroxides appeared. At this site, the epilithic biomass and density decreased, some algae species changed, but the diversity and the number of species in general remained consistent with the upstream values. The physical stress of the Al precipitates on the algae is added to the chemical stress that represents the sequestering of P in these precipitates that are not redissolved, resulting P a limiting nutrient for algae growth.

  12. Biogas production experimental research using algae.

    Science.gov (United States)

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  13. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  14. Antioxidant activity of Hawaiian marine algae.

    Science.gov (United States)

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  15. Fluorescence Properties of Chlorella sp. Algae

    Directory of Open Access Journals (Sweden)

    Tibor Teplicky

    2017-01-01

    Full Text Available Water quality and its fast and reliable monitoring is the challenge of the future. Design of appropriate biosensors that would be capable of non-invasive identification of water pollution is an important prerequisite for such challenge. Chlorophylls are pigments, naturally presented in all plants that absorb light. The main forms of chlorophyll in algae are chlorophyll a and chlorophyll b, other pigments include xantophylls and beta-carotenes. Our aim was to characterize endogenous fluorescence of the Chlorella sp. algae, present naturally in drinking water. We recorded spatial, spectral and lifetime fluorescence distribution in the native algae. We noted that the fluorescence was evenly distributed in the algae cytosol, but lacked in the nucleus and reached maximum at 680-690 nm. Fluorescence decay of chlorella sp. was double-exponential, and clearly shorter than that of its isolated pigments. For the first time, fluorescence lifetime image of the algae is presented. Study of the fluorescence properties of algae is aimed at the improvement of water supply contamination detection and cleaning.

  16. Fabrication of Polylactide Nanocomposite Filament Using Melt Extrusion and Filament Characterization for 3D Printing

    Science.gov (United States)

    Jain, Shrenik Kumar

    Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.

  17. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    Science.gov (United States)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  18. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef

    Science.gov (United States)

    Fricke, A.; Titlyanova, T. V.; Nugues, M. M.; Bischof, K.

    2011-12-01

    Lobophora variegata is a dominant macroalga on coral reefs across the Caribbean. Over the last two decades, it has expanded its vertical distribution to both shallow and deep reefs along the leeward coast of the island of Curaçao, Southern Caribbean. However, the ecological implications of this expansion and the role of L. variegata as a living substratum are poorly known. This study compared epiphytic algal communities on L. variegata blades along two depth transects (6-40 m). The epiphytic community was diverse with a total of 70 species of which 49 were found directly attached to L. variegata. The epiphytic community varied significantly between blade surface, depth and site. The greatest number of genera per blade was found growing on the underside of the blades regardless of site and depth. Filamentous red algae (e.g. Neosiphonia howei) were commonly found on the upperside of the blades over the whole depth gradient, whereas the underside was mainly colonized by calcifying (e.g. Hydrolithon spp., Jania spp., Amphiroa fragillissima), fleshy red algae (e.g. Champia spp., Gelidiopsis spp., Hypnea spinella) and foliose brown alga (e.g. Dictyota spp.). Anotrichum tenue, a red alga capable of overgrowing corals, was a common epiphyte of both blade surfaces. L. variegata plays an important role as a newly available substratum. Thus, its spread may influence other algal species and studies of benthic macroalgae such as L. variegata should also take into consideration their associated epiphytic algal communities.

  19. The value of algae as a substrate for intertidal invertebrates in the White Sea

    Directory of Open Access Journals (Sweden)

    Chovgan O. V.

    2017-06-01

    Full Text Available The paper is devoted to researching zoobenthos communities of the intertidal zone, where the role of the substrate is represented by littoral phytobenthos. Macrophytes are subject to changes in time and are part of the trophic structure of marine communities as comparing with an inert ground substrate. The comprehensive study of littoral biocenoses allows reveal interrelation of benthic organisms with the vegetable substrate where they inhabit. The aim of the work is the investigation of structure and distribution features of epibenthic communities on the littoral macrophytes of the Chupa inlet (the White Sea. The investigations were conducted at The White Sea Biological Station "Kartesh" (WSBS during the summer period of three years (2012–2015. The material was being collected on the intertidal zone of the Levaya bay, Kruglaya bay, and Sel'dyanaya bay of the Chupa inlet by the method of vertical transects using the accounting frame (0.25 m2 in the three-fold repetition. In the processing of samples, the abundance of algae and epibionts has been defined; the biomass and number of macrophytes and invertebrates have been measured. In the course of the work, it has been revealed that Fucus algae create a favorable habitat for epibenthos including moving animals. A variety of seaweed substrates contributes to increase of invertebrates' biomass. The only exceptions are parts of the bays, where seaweed Ascophyllum nodosum and Pelvetia caniculata are abundant. These algae are not favourable substrate for most of epibenthic organisms and serve as habitat mainly of sedentary invertebrates due to the morphology of the thallus. Mussels Mytilus edulis are dominant invertebrates in the communities, where Fucus is the substrate. Filamentous algae contribute to active development of Hydrobia ulvae communities.

  20. Chemical Composition and Biological Activities of Trans-Himalayan Alga Spirogyra porticalis (Muell.) Cleve

    Science.gov (United States)

    Kumar, Jatinder; Dhar, Priyanka; Tayade, Amol B.; Gupta, Damodar; Chaurasia, Om P.; Upreti, Dalip K.; Toppo, Kiran; Arora, Rajesh; Suseela, M. R.; Srivastava, Ravi B.

    2015-01-01

    The freshwater alga Spirogyra porticalis (Muell.) Cleve, a filamentous charophyte, collected from the Indian trans-Himalayan cold desert, was identified on the basis of morpho-anatomical characters. Extracts of this alga were made using solvents of varying polarity viz. n-hexane, acetonitrile, methanol and water. The antioxidant capacities and phenolic profile of the extracts were estimated. The methanol extract showing highest antioxidant capacity and rich phenolic attributes was further investigated and phytochemical profiling was conducted by gas chromatography-mass spectrometry (GC/MS) hyphenated technique. The cytotoxic activity of methanol extract was evaluated on human hepatocellular carcinoma HepG2 and colon carcinoma RKO cell lines. The anti-hypoxic effect of methanol extract of the alga was tested on in vivo animal system to confirm its potential to ameliorate oxidative stress. The antioxidant assays viz. ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities, β-carotene-linoleic acid bleaching property and lipid peroxidation exhibited analogous results, wherein the algal extracts showed significantly high antioxidant potential. The extracts were also found to possess high content of total proanthocyanidin, flavonoid and polyphenol. GC/MS analysis revealed the presence of thirteen chemotypes in the methanol extract representing different phytochemical groups like fatty acid esters, sterols, unsaturated alcohols, alkynes etc. with substantial phyto-pharmaceutical importance. The methanol extract was observed to possess anticancer activity as revealed from studies on HepG2 and RKO cell lines. In the present study, S. porticalis methanol extract also provided protection from hypoxia-induced oxidative stress and accelerated the onset of adaptative changes in rats during exposure to hypobaric hypoxia. The

  1. Synthesis and functionalization of coiled carbon filaments

    Science.gov (United States)

    Hikita, Muneaki

    Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs

  2. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance.

    Science.gov (United States)

    Herburger, Klaus; Remias, Daniel; Holzinger, Andreas

    2016-08-01

    Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats. © FEMS 2016.

  3. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    Science.gov (United States)

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  4. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  5. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  7. Algae Biofuel in the Nigerian Energy Context

    Directory of Open Access Journals (Sweden)

    Elegbede Isa

    2016-05-01

    Full Text Available The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author’s deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  8. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  9. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  10. Morphogenesis of filaments growing in flexible confinements

    Science.gov (United States)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2014-07-01

    Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.

  11. SWAYING THREADS OF A SOLAR FILAMENT

    International Nuclear Information System (INIS)

    Lin, Y.; Engvold, O.; Langangen, Oe.; Rouppe van der Voort, L. H. M.; Soler, R.; Ballester, J. L.; Oliver, R.

    2009-01-01

    From recent high-resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory characters of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic (MHD) theory. Kink MHD waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfven speed and magnetic field strength by means of seismological arguments.

  12. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  13. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii , Borrelia miyamotoi , and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  14. Statistical study of solar filaments since 1919

    Science.gov (United States)

    Aboudarham, Jean

    2016-04-01

    Science board of Paris Observatory funded the data capture of tables associated with Meudon synoptic maps of Solar activity, which were published for observations ranging from 1919 to 1992. The EU HELIO project developed automatic recognition codes, especially concerning filaments based on observations between 1996 en 2014 (and soon, up to now). We plan to fill the gap between the two catalogues in the short term. But it is already possible to study filaments behavior over quite long periods of time. We present here the first series of results obtained from this analysis which give some clue about the way Solar activity behaves in various parts of the cycle, and about the way if depends on the hemisphere where activity occurs. This information could then be correlated with events catalogues (e.g. flares, CMEs, …) in order to link those phenomena with concrete Solar activity.

  15. Actin organization and dynamics in filamentous fungi.

    Science.gov (United States)

    Berepiki, Adokiye; Lichius, Alexander; Read, Nick D

    2011-11-02

    Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.

  16. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  17. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface. We...... observed the chemotactic patterns of single filaments in a transparent agar medium and scored their reversals and the glided distances between reversals. Filaments within the preferred microenvironment glided distances shorter than their own length between reversals that anchored them in their position...... as a microbial mat. Filaments in the oxic region above the mat or in the sulfidic, anoxic region below the mat glided distances longer than the filament length between reversals. This reversal behavior resulted in a diffusion-like spreading of the filaments. A numerical model of such gliding filaments...

  18. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  19. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  20. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  1. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  3. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  4. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  5. Controlled regular locomotion of algae cell microrobots.

    Science.gov (United States)

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  6. A first approach to filament dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  7. The Magnetic Structure of Filament Barbs

    Science.gov (United States)

    Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk

    2005-06-01

    There is a controversy about how features protruding laterally from filaments, called barbs, are magnetically structured. On 2004 August 3, we observed a filament that had well-developed barbs. The observations were performed using the 10 inch refractor of the Big Bear Solar Observatory. A fast camera was employed to capture images at five different wavelengths of the Hα line and successively record them on the basis of frame selection. The terminating points of the barbs were clearly discernable in the Hα images without any ambiguity. The comparison of the Hα images with the magnetograms taken by SOHO MDI revealed that the termination occurred above the minor polarity inversion line dividing the magnetic elements of the major polarity and those of the minor polarity. There is also evidence that the flux cancellation proceeded on the polarity inversion line. Our results together with similar other recent observations support the idea that filament barbs are cool matter suspended in local dips of magnetic field lines, formed by magnetic reconnection in the chromosphere.

  8. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  9. A first approach to filament dynamics

    International Nuclear Information System (INIS)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  10. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  11. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  12. Algae and cyanobacteria on painted surfaces in Southern Brazil Algas e cianobactérias em superfícies pintadas no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Peter M. Gaylarde

    1999-07-01

    Full Text Available Algae and cyanobacteria disfigure the external surfaces of buildings and may cause their physico-chemical deterioration. Even though the climate in Brazil is humid, there is no published literature on this problem. The objective of this work was to identify the major phototrophs present on Brazilian constructions in residential, urban and rural sites. The algal and cyanobacterial types present on discolored surfaces of painted buildings in nine different municipalities in Brazil, all lying between latitudes 19° South and 30° South, were examined. A total of 816 different organisms was detected in 58 sites. Approximately 63% were single-celled or colonial organisms. The cyanobacterial genus, Synechocystis, was the most biodiverse and frequently comprised the major biomass. It was present in 63.4% of sites. Second and third most frequently detected were Oscillatoria and the algal genus, Chlorella, respectively. The latter organism showed the most widespread occurrence (72.4%. Cyanobacteria were the most important colonizers, especially at urban sites, where over 62% of the organisms detected belonged to this class. Filamentous phototrophs were found in smaller numbers than non-filamentous at all locations.Algas e cianobactérias produzem coloração nas superfícies externas de construções e podem causar a sua deterioração físico-química. Apesar a clima úmida do Brasil, não existe no pais uma literatura sobre este problema. O objetivo deste trabalho foi identificar os microrganismos fototróficos mais importantes nas superfícies de construções, em áreas residenciais, urbanas e rurais do Brasil. Foram avaliados os tipos de algas e cianobactérias presentes em superfícies pintadas coloradas, em nove municípios do Brasil localizados entre 19° Sul e 30° Sul. Aproximadamente 63% destes foram células simples, ou organismos coloniais. O gênero, Synechocystis, foi o organismo que mostrou-se o mais diverso e, frequentemente, compõe a

  13. Effect of algae on flocculation of suspended bed sediments in a large shallow lake. Consequences for ecology and sediment transport processes

    Science.gov (United States)

    de Lucas Pardo, Miguel Angel; Sarpe, Dirk; Winterwerp, Johan Christian

    2015-06-01

    Lake Markermeer, a large shallow lake in The Netherlands, suffers from turbidity and ecology problems. As part of a study aiming to mitigate these problems, we study flocculation processes in the lake; in particular, the possible mutual flocculation between algae and re-suspended bed sediments. We show that sediment re-suspended from the bed of the lake can flocculate, forming flocs for which size is a function of the turbulence level in the water column. Moreover, we also demonstrate that algae and re-suspended bed sediments can mutually flocculate, yielding organic-inorganic aggregates. These aggregates have different features to those of their individual components, some of which have been measured and characterized in this paper. Furthermore, the characteristics of the resulting organic-inorganic flocs are strongly influenced by the type of algae in the aggregate. We found that, in the case of flocs consisting of bed sediments and filamentous algae, flocculation yields smaller flocs than for bed sediments only, resulting in an increased turbidity in the water column. In the case of flocs consisting of bed sediments and colonial algae, flocs grow faster and become larger than bed sediment flocs, which may result in the depletion of most colonies from the water column.

  14. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  15. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  16. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  17. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  18. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. © 2015. Published by The Company of Biologists Ltd.

  19. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  20. Patterns of molecular motors that guide and sort filaments.

    Science.gov (United States)

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  1. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity. The aim of t...

  2. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, A; Weinhart, T; Bokhove, O; Zhang, B; Sar, van der, DM; Kumar, K Kundan; Pisarenco, M Maxim; Rudnaya, M Maria; Savcenco, V Valeriu; Rademacher, JDM; Zijlstra, J; Szabelska, A; Zyprych, J; Schans, van der, M Martin; Timperio, V

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity . The aim o...

  3. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  4. [Comparative chemical composition of the Barents Sea brown algae].

    Science.gov (United States)

    Obluchinskaia, E D

    2008-01-01

    Comparative study of phytochemical compositions of the most widespread brown algae species (one laminarian and four fucoid algae) from Barents Sea has been performed. A modified technique for mannitol determination in brown algae is proposed. It was revealed that fucus algae (fam. Fucaceae) contain 3% (of total dry weight) less mannitol than laminaria (Laminaria saccharina). The contents of alginic acid and laminaran in the Barents Sea fucoids are more than 10% less compared to laminaria. The alga L. saccharina contains almost two times more iodine than the species of fam. Fucaceae. The amounts of fucoidan and sum lipids in the Barents Sea fucoid algae is higher than in Laminaria saccharina (4-7% and 1-3%, respectively). In terms of contents of main biologically active compounds, fucus and laminarian algae from Barents Sea are inferior to none of the Far-Eastern species. The Barents Sea algae may become an important source of biologically active compounds.

  5. Use of Brown Algae to Demonstrate Natural Products Techniques.

    Science.gov (United States)

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  6. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  7. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  8. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  9. Induction of mutations in the blue-green alga Plectonema boryanum Gomont

    International Nuclear Information System (INIS)

    Singh, R.N.; Kashyap, A.K.

    1977-01-01

    Mutations to cyanophage and streptomycin resistance were induced in the filamentous blue-gree alga Plectonema boryanum IU 594 after treatment with ultraviolet irradiation, N-methyl-N'-nitro-Nnitrosoguanidine, acriflavine, 2-aminopurine and caffeine. Phage-resistant mutants were obtained with all the mutagens tested. Their efficiencies were in the order: MNNG>UV>acriflavine >2-AP>caffeine. In contrast, the drug-resistant mutants were not induced by base analogues: the efficiencies were: acriflavine>MNNG>UV. Lethal and mutational lesions induced with UV were efficiently repaired under photo-reactivating conditions whereas post-treatment with caffeine resulted in enhanced mutation frequencies especially at low UV doses. Neither survival nor mutagenesis was enhanced by keeping the MNNG-treated population in subdued light

  10. Enhanced Desiccation Tolerance in Mature Cultures of the Streptophytic Green Alga Zygnema circumcarinatum Revealed by Transcriptomics.

    Science.gov (United States)

    Rippin, Martin; Becker, Burkhard; Holzinger, Andreas

    2017-12-01

    Desiccation tolerance is commonly regarded as one of the key features for the colonization of terrestrial habitats by green algae and the evolution of land plants. Extensive studies, focused mostly on physiology, have been carried out assessing the desiccation tolerance and resilience of the streptophytic genera Klebsormidium and Zygnema. Here we present transcriptomic analyses of Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. circumcarinatum grown in liquid medium or on agar plates were desiccated at ∼86% relative air humidity until the effective quantum yield of PSII [Y(II)] ceased. In general, the response to dehydration was much more pronounced in Z. circumcarinatum cultured in liquid medium for 1 month compared with filaments grown on agar plates for 7 and 12 months. Culture on solid medium enables the alga to acclimate to dehydration much better and an increase in desiccation tolerance was clearly correlated to increased culture age. Moreover, gene expression analysis revealed that photosynthesis was strongly repressed upon desiccation treatment in the liquid culture while only minor effects were detected in filaments cultured on agar plates for 7 months. Otherwise, both samples showed induction of stress protection mechanisms such as reactive oxygen species scavenging (early light-induced proteins, glutathione metabolism) and DNA repair as well as the expression of chaperones and aquaporins. Additionally, Z. circumcarinatum cultured in liquid medium upregulated sucrose-synthesizing enzymes and strongly induced membrane modifications in response to desiccation stress. These results corroborate the previously described hardening and associated desiccation tolerance in Zygnema in response to seasonal fluctuations in water availability. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. The Significance of New Records of Benthic Red Algae (Rhodophyta for Hainan Island (and China between 1990 and 2016

    Directory of Open Access Journals (Sweden)

    Tamara V. Titlyanova

    2017-05-01

    Full Text Available We present an annotated list of new finds of red algae from Hainan Island, Southern China, including those found in 1990 and 1992 during the German-Chinese expeditions to Hainan Island and in 2008–2016 by Titlyanova, Titlyanov, and Li. Between 1990 and 1992, a total of 64 taxa of red algae were newly recorded for Hainan Island. Of these 15 species were new records for China. During the period 2008–2016, a further 54 taxa were newly recorded for Hainan Island, of which 20 were new records for China. The full list of new taxa includes taxonomic forms, dates, and locales, together with known biogeographical distributions. During both periods, the apparent enrichment of red algal marine flora has occurred in a similar way—mainly at the expense of epiphytes with filamentous, thin-filamentous, and finely branched forms. We believe that the changes in the flora of Hainan Island have been influenced by both anthropogenic and natural factors including in particular exploitation of herbivores, nutrient pollution, and coral bleaching.

  12. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  13. Relationships between algae taxa and physico-chemical ...

    African Journals Online (AJOL)

    A study of algae flora was performed on 16 samples collected in different aquatic environments in Bamenda (Cameroon) in order to evidence the relationships between algae assemblages and physico-chemical parameters of the milieu. A total of 22 algae species were identified, the most represented class being ...

  14. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  15. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  16. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  17. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  18. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  19. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  20. The algae of Gaborone wastewater stabilization ponds: Implications ...

    African Journals Online (AJOL)

    The types of algae found in the wastewater stabilization ponds in Gaborone were studied. Being the base of the food chain in any aquatic habitat, algae contribute significantly to the functioning and value of the ponds. The (liversit)' and abundance of the algae in the two pond systems at Broadhurst and Phakalane were ...

  1. The mitochondrial genome of the entomoparasitic green alga helicosporidium.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi. METHODOLOGY/PRINCIPAL FINDINGS: The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron. CONCLUSIONS/SIGNIFICANCE: The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close

  2. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta

    Directory of Open Access Journals (Sweden)

    Chen Charlotte

    2012-06-01

    Full Text Available Abstract Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods. The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total was found for Spirogyra (41 NHS and for each clade (totaling 73 NHS. This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae.

  3. Filament Eruptions, Jets, and Space Weather

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  4. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  5. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  6. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    Science.gov (United States)

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  7. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  8. The elastic modulus of isolated polytetrafluoroethylene filaments

    Directory of Open Access Journals (Sweden)

    Patrick Drawe

    2014-09-01

    Full Text Available We report vibrational Raman spectra of small extended perfluoro-n-alkanes (CnF2n+2 with n = 6, 8–10, 12–14 isolated in supersonic jet expansions and use wavenumbers of longitudinal acoustic vibrations to extrapolate the elastic modulus of cold, isolated polytetrafluoroethylene filaments. The derived value E = 209(10 GPa defines an upper limit for the elastic modulus of the perfectly crystalline, noninteracting polymer at low temperatures and serves as a benchmark for quantum chemical predictions.

  9. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  10. Photoprotection strategies of the alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Chukhutsina, Volha U.; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-01-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical

  11. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  13. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  14. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  15. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  16. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  17. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  18. Taxonomic Challenges and Distribution of Gracilarioid Algae ...

    African Journals Online (AJOL)

    This paper reviews the taxonomical literature of the gracilarioid algae from Tanzania, and provides information about their ecology and distribution based on an intensive regime of local collection. Its aim was to provide names, even if on a preliminary basis, for local gracilarioid taxa. Our revision shows that species ...

  19. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  20. Usos industriales de las algas diatomeas.

    OpenAIRE

    Illana Esteban, Carlos

    2007-01-01

    Las diatomeas son algas microscópicas que habitan tanto en aguas dulces como marinas. Aparte de su destacado papel en la cadena trófica de los ecosistemas acuáticos, con el tiempo forman depósitos a los que el hombre ha encontrado abundantes aplicaciones prácticas.

  1. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... This book, extensively illustrated and thoroughly referenced, will provide the source material for students, and experienced as well as new research workers should find it of great value. A series of short appendices summarize details of culture collections, media and some specialized aspects of growing blue-green algae.

  2. Spirulina: The Alga That Can End Malnutrition.

    Science.gov (United States)

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  3. Sterol chemotaxonomy of marine pelagophyte algae.

    Science.gov (United States)

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  4. Multiple filamentation generated by focusing femtosecond laser with axicon.

    Science.gov (United States)

    Sun, Xiaodong; Gao, Hui; Zeng, Bin; Xu, Shengqi; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan; Mu, Guoguang

    2012-03-01

    Multiple filamentation has been observed when focusing a femtosecond laser pulse into a methanol solution with an axicon. It is found that multiple long filaments are located on the central spot and ring structures of the quasi-Bessel beam created by the axicon. Since the quasi-Bessel profile is determined by the axicon properties, the axicon has been suggested as a simple optics to control multiple filaments. © 2012 Optical Society of America

  5. Observations of the Growth of an Active Region Filament

    Science.gov (United States)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  6. Native bare zone assemblage nucleates myosin filament assembly.

    Science.gov (United States)

    Niederman, R; Peters, L K

    1982-11-15

    Native myosin filaments from rabbit psoas muscle are always 1.5 micrometer long. The regulated assembly of these filaments is generally considered to occur by an initial antiparallel and subsequent parallel aggregation of identical myosin subunits. In this schema myosin filament length is controlled by either a self-assembly or a Vernier process. We present evidence which refines these ideas. Namely, that the intact myosin bare zone assemblage nucleates myosin filament assembly. This suggestion is based on the following experimental evidence. (1) A native bare zone assemblage about 0.3 micrometer long can be formed by dialysis of native myosin filaments to either a pH 8 or a 0.2 M-KCl solution. (2) Upon dialysis back to 0.1 M-KCl, bare zone assemblages and distal myosin molecules recombine to form 1.5 micrometer long bipolar filaments. (3) The bare zone assemblage can be separated from the distal myosin molecules by column chromatography in 0.2 M-KCl. Upon dialysis of the fractionated subsets back to 0.1 M-KCl, the bare zone assemblage retains its length of about 0.3 micrometer. However, the distal molecules reassemble to form filaments about 5 micrometers long. (4) Filaments are formed from mixes of the isolated subsets. The lengths of these filaments vary with the amount of distal myosin present. (5) When native filaments, isolated bare zone assemblages or distal myosin molecules are moved sequentially to 0.6 M-KCl and then to 0.1 M-KCl, the final filament lengths are all about 5 micrometers. The capacity of the bare zone assemblage to nucleate filament assembly may be due to the bare zone myosin molecules, the associated M band components or both.

  7. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  8. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae.

    Directory of Open Access Journals (Sweden)

    Stefan Bengtson

    2017-03-01

    Full Text Available The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae. The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, "cell fountains," and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.

  9. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  10. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  11. Statistical Study of the Magnetic Field Orientation in Solar Filaments

    Science.gov (United States)

    Hanaoka, Yoichiro; Sakurai, Takashi

    2017-12-01

    We have carried out a statistical study of the average orientation of the magnetic field in solar filaments with respect to their axes for more than 400 samples, based on data taken with daily full-Sun, full-Stokes spectropolarimetric observations using the He I 1083.0 nm line. The major part of the samples are the filaments in the quiet areas, but those in the active areas are included as well. The average orientation of the magnetic field in filaments shows a systematic property depending on the hemisphere; the direction of the magnetic field in filaments in the northern (southern) hemisphere mostly deviates clockwise (counterclockwise) from their axes, which run along the magnetic polarity inversion line. The deviation angles of the magnetic field from the axes are concentrated between 10° and 30°. This hemispheric pattern is consistent with that revealed for chirality of filament barbs, filament channels, and for other solar features found to possess chirality. For some filaments, it was confirmed that their magnetic field direction is locally parallel to their structure seen in Hα images. Our results for the first time confirmed this hemispheric pattern with the direct observation of the magnetic field in filaments. Interestingly, the filaments which show the opposite magnetic field deviation to the hemispheric pattern, are in many cases found above the polarity inversion line whose ambient photospheric magnetic field has the polarity alignment being opposite to that of active regions following the Hale–Nicholson law.

  12. Spatial evolution of laser filaments in turbulent air

    Science.gov (United States)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  13. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  14. MATERIAL SUPPLY AND MAGNETIC CONFIGURATION OF AN ACTIVE REGION FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: fangc@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-11-10

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  15. Cytoskeleton and Morphogenesis in Brown Algae

    OpenAIRE

    KATSAROS, CHRISTOS; KARYOPHYLLIS, DEMOSTHENES; GALATIS, BASIL

    2006-01-01

    • Background Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres.

  16. Biogenic Weathering: Solubilization of Iron from Minerals by Epilithic Freshwater Algae and Cyanobacteria.

    Science.gov (United States)

    Mustoe, George E

    2018-01-15

    A sandstone outcrop exposed to freshwater seepage supports a diverse assemblage of photosynthetic microbes. Dominant taxa are two cyanophytes ( Oscillatoria sp., Rivularia sp.) and a unicellular green alga ( Palmellococcus sp.). Less abundant taxa include a filamentous green alga, Microspora , and the desmid Cosmarium . Biologic activity is evidenced by measured levels of chlorophyll and lipids. Bioassay methods confirm the ability of these microbes to dissolve and metabolize Fe from ferruginous minerals. Chromatographic analysis reveals citric acid as the likely chelating agent; this low molecular weight organic acid is detectable in interstitial fluid in the sandstone, measured as 0.0756 mg/mL. Bioassays using a model organism, Synechoccus elongates strain UTEX 650, show that Fe availability varies among different ferruginous minerals. In decreasing order of Fe availability: magnetite > limonite > biotite > siderite > hematite. Biotite was selected for detailed study because it is the most abundant iron-bearing mineral in the sandstone. SEM images support the microbiologic evidence, showing weathering of biotite compared to relatively undamaged grains of other silicate minerals.

  17. Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation)

    Science.gov (United States)

    Sapozhnikov, Ph. V.; Kalinina, O. Yu.; Nikitin, M. A.; Samylina, O. S.

    2016-01-01

    In 2012, expeditions of the Institute of Microbiology, Russian Academy of Sciences, delivered samples of algo-bacterial mats from Kulunda steppe alkaline lakes (Petukhovskoe alkaline lake, Tanatar VI, and Gorchina III). The filamentous alga Ctenocladus circinnatus (Chlorophyta) acted as an edificator of the mats. The composition of cenoses algocomponents also included chlorophytes Dunaliella viridis and Picocystis salinarum as well as diatoms Anomeoneis sphaerophora, Brachysira brebissonii, B. zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, N. cf. communis, and Nitzschia sp. 1. The composition and structure of phototrophic algae cenoses (including diatom taxocenes) were described for the investigated lakes for the first time. For the period from 2011 to 2012, the total mineralization significantly increased in lakes. This involved sensible alterations of cenoses. B. zellensis was the most permanent component of diatom taxocenes in both seasons. In the summer of 2011, it was often accompanied by A. sphaerophora and B. brebissonii. In the summer of 2012, A. sphaerophora was found only singularly in Lake Gorchina III, and some biotopes of Lake Tanatar VI were massively inhabited by N. cf. communis, including colonies that had not been previously described for the species. The genetic analysis of three diatoms, which are markedly different from each other in their appearance and were sampled from different lakes but were all determined as Nitzschia cf. communis, showed their complete similarity to each other with the 18S rRNA gene fragment and the highest similarity of all the three diatoms with the species Nitzschia communis.

  18. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae.

    Science.gov (United States)

    Saint-Marcoux, Denis; Billoud, Bernard; Langdale, Jane A; Charrier, Bénédicte

    2015-01-01

    Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  19. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae

    Directory of Open Access Journals (Sweden)

    Denis eSaint-Marcoux

    2015-02-01

    Full Text Available Laser capture microdissection (LCM facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga, Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  20. On reproduction in red algae: further research needed at the molecular level

    Science.gov (United States)

    García-Jiménez, Pilar; Robaina, Rafael R.

    2015-01-01

    Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention the intricate alternation of generations in the edible “sushi-alga” nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s), including day length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation, and accessible genomes may also facilitate our task. PMID:25755663

  1. Recent environmental changes and filamentous algal mats in shallow bays on the Swedish west coast — A result of climate change?

    Science.gov (United States)

    Cossellu, Michele; Nordberg, Kjell

    2010-04-01

    Over the last thirty years, many shallow estuarine bays, located in Scandinavian sheltered coastal environments, have been subject to the increased dominance of opportunistic species of filamentous green algae, oxygen deficiency in bottom waters and the alteration of flora and fauna. Human-induced eutrophication has been held responsible for these recent changes, but from this study the importance of climatic factors emerges. This research is based on the analysis of sediment cores from 8 shallow areas ( d induced modifications (overfishing and eutrophication), increased the possibility of opportunistic explosions, which in turn determined a reduced water exchange, the increased deposition of fine sediments and organic matter and evolving hypoxic conditions.

  2. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  3. Morgellons disease: a filamentous borrelial dermatitis

    Directory of Open Access Journals (Sweden)

    Middelveen MJ

    2016-10-01

    Full Text Available Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. Keywords: Morgellons disease, dermatitis, Lyme disease, Borrelia burgdorferi, spirochetes

  4. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  5. The effect of filamentous turf algal removal on the development of gametes of the coral Orbicella annularis.

    Directory of Open Access Journals (Sweden)

    Neidy P Cetz-Navarro

    Full Text Available Macroalgae and filamentous turf algae (FTA are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS and the maximum diameter of eggs (MDE; or egg size of Orbicella annularis were used to evaluate the effect of long- (7-10 months and short-term (2.5 months FTA removal (treatments T1 and T2, respectively at both the beginning (May and the end (August of gametogenesis. Ramets (individual lobes of a colony surrounded by FTA (T3 or crustose coralline algae (CCA; T4 were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August, most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost

  6. The effect of filamentous turf algal removal on the development of gametes of the coral Orbicella annularis.

    Science.gov (United States)

    Cetz-Navarro, Neidy P; Carpizo-Ituarte, Eugenio J; Espinoza-Avalos, Julio; Chee-Barragán, Guillermina

    2015-01-01

    Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7-10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost complete

  7. Sprectroradiometric characteristics of inland water bodies infestated by Oscillatoria rubescens algae

    Science.gov (United States)

    Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino

    2010-10-01

    In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in

  8. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  10. A catalytic oligomeric motor that walks along a filament track

    Science.gov (United States)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  11. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  12. Application of digital holography to filament size analysis

    NARCIS (Netherlands)

    Semin, N.V.; Poelma, C.; Drost, S.; Westerweel, J.

    2010-01-01

    The potential of in-line digital holography to locate and measure the size and position of filaments, i.e. thin wire-like objects, distributed throughout a thick volume has been investigated. In this paper two approaches are introduced to study filaments of varying diameter. (1) It is shown

  13. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  14. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  15. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  16. Method for simultaneously coating a plurality of filaments

    Science.gov (United States)

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  17. Cellulase activity of filamentous fungi induced by rice husk | Oliveros ...

    African Journals Online (AJOL)

    Cellulase activity of filamentous fungi induced by rice husk. DF Oliveros, N Guarnizo, EM Perea, WM Arango. Abstract. The objective of this study was to determine the potential of different filamentous fungi to degrade cellulose in rice husk pre-treated with steam explosion or alkaline hydrolysis. A preliminary test performed ...

  18. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  19. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  20. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  1. Bioconcentration of tetrachlorobenzene in marine algae

    Science.gov (United States)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  2. [Chemical constituents from red alga Corallina pilulifera].

    Science.gov (United States)

    Yuan, Zhao-Hui; Han, Li-Jun; Fan, Xiao; Li, Shuai; Shi, Da-Yong; Sun, Jie; Ma, Ming; Yang, Yong-Chun; Shi, Jian-Gong

    2006-11-01

    To investigate the chemical constituents of red alga Corallina pilulifera. Compounds were isolated by normal phase silica gel and Sephadex LH - 20 gel column chromatography, reverse phase HPLC and recrystallization. Their structures were elucidated by spectroscopic methods including MS, 1H-NMR, 13C-NMR, HSQC, HMBC. Cytotoxicity of the compounds was screened by using standard MTT method. Seven compounds were isolated from red alga C. pilulifera, their structures were identified as (E) -phytol epoxide (1), phytenal (2), phytol (3), dehydrovomifoliol (4), loliolide (5), 3beta-hydroxy-5alpha, 6alpha-epoxy-7-megastigmene-9-one (6), 4-hydroxybenzaldehyde (7). All of the compounds were obtained from this species for the first time. These compounds were inactive (IC50 > 10 microg x mL(-1)) in the MTT assay.

  3. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  4. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  5. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, M.; Rosenvinge, F. S.; Spillum, E.

    2015-01-01

    Background: Antibiotics of the beta-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... displaying different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 beta-lactam antibiotics or beta-lactam-beta-lactamase inhibitor combinations were analyzed...... in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results: Three E. coli strains...

  6. Bursting of filaments in the plasma focus

    International Nuclear Information System (INIS)

    Gratton, F.T.L.

    1976-01-01

    Photographs of the current sheath of (low energy) plasma focus show a disruption of the filaments. This phenomenon is interpreted as a vortex breakdown. Physical parameters which support this hypothesis are obtained from measurements, from the theoretical thickness of the current sheath given by Nardi and from some models of the plasma flow. The widening of a vortex due to axial velocity increase is analyzed by means of magnetohydrodynamic collinear models. The main results are: (1) the existence of a limit separating supercritical from subcritical regimes (their character changes with the ratio between kinetic and magnetic energy); (2) the existence of flow regimes where the vortex radius remains approximately constant for moderate increments of the external velocity; (3) the structure of the vortex may change substantially for a sufficiently large increment of the external velocity, even in subcritical states; (4) the possibility that a burst of the vortex may occur when the external velocity suffers a slowdown

  7. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  8. Engineering of filamentous bacteriophage for protein sensing

    Science.gov (United States)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  9. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  10. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  11. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  12. Multiplicity of viral infection in brown algae

    OpenAIRE

    Stevens, Kim

    2014-01-01

    Brown algae are important primary producers and habitat formers in coastal environments and are believed to have evolved multicellularity independently of the other eukaryotes. The phaeoviruses that infect them form a stable lysogenic relationship with their host via genome integration, but have only been extensively studied in two genera: Ectocarpus and Feldmannia. In this study I aim to improve our understanding of the genetic diversity, host range and distribution of phaeoviruses. Seq...

  13. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  14. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  15. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  16. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  17. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  18. Attachment, penetration and early host defense mechanisms during the infection of filamentous brown algae by Eurychasma dicksonii.

    Science.gov (United States)

    Tsirigoti, Amerssa; Beakes, Gordon W; Hervé, Cécile; Gachon, Claire M M; Katsaros, Christos

    2015-05-01

    Eurychasma dicksonii is one of the most common and widespread marine pathogens and attacks a broad spectrum of more than 45 brown algal species. The present study focuses on the mechanism used by the pathogen to attach on the host cell wall and force its way into algal cells. Ultrastructural examination revealed a needle-like structure which develops within the attached spore and extends along its main axis. Particular cell wall modifications are present at the basal part of the spore (adhesorium pad) and guide the needle-like tool to penetrate perpendicularly the host cell wall. The unique injection mechanism is shared with Haptoglossa species which suggests that this is an important characteristic of early diverging oomycetes. Furthermore, the encystment and adhesion mechanism of E. dicksonii shows significant similarities with other oomycetes, some of which are plant pathogens. Staining and immunolabelling techniques showed the deposition of β-1,3-glucans on the host cell wall at the pathogen penetration site, a strategy similar to physical responses previously described only in infected plant cells. It is assumed that the host defense in terms of callose-like deposition is an ancient response to infection.

  19. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Czech Academy of Sciences Publication Activity Database

    Žouželka, Radek; Čiháková, P.; Říhová Ambrožová, J.; Rathouský, Jiří

    2016-01-01

    Roč. 23, č. 19 (2016), s. 8317-8326 ISSN 0944-1344 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : silver nanoparticles * silver ions * concentration of silver ions in equilibrium with silver nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.741, year: 2016

  20. Regulating cellular trace metal economy in algae.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2017-10-01

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  2. Functional properties of carotenoids originating from algae.

    Science.gov (United States)

    Christaki, Efterpi; Bonos, Eleftherios; Giannenas, Ilias; Florou-Paneri, Panagiota

    2013-01-15

    Carotenoids are isoprenoid molecules which are synthesised de novo by photosynthetic plants, fungi and algae and are responsible for the orange, yellow and some red colours of various fruits and vegetables. Carotenoids are lipophilic compounds, some of which act as provitamins A. These compounds can be divided into xanthophylls and carotenes. Many macroalgae and microalgae are rich in carotenoids, where these compounds aid in the absorption of sunlight. Industrially, these carotenoids are used as food pigments (in dairy products, beverages, etc.), as feed additives, in cosmetics and in pharmaceuticals, especially nowadays when there is an increasing demand by consumers for natural products. Production of carotenoids from algae has many advantages compared to other sources; for example, their production is cheap, easy and environmentally friendly; their extraction is easier, with higher yields, and there is no lack of raw materials or limited seasonal variation. Recently, there has been considerable interest in dietary carotenoids with respect to their antioxidant properties and their ability to reduce the incidence of some chronic diseases where free radicals are involved. Possibly, carotenoids protect cells from oxidative stress by quenching singlet oxygen damage with various mechanisms. Therefore, carotenoids derived from algae could be a leading natural resource in the research for potential functional ingredients. Copyright © 2012 Society of Chemical Industry.

  3. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    Science.gov (United States)

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  4. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  5. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  6. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  7. Microwave structure of quiescent solar filaments at high resolution

    International Nuclear Information System (INIS)

    Gary, D.E.

    1986-01-01

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  8. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  9. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  10. Antimicrobial Activity of Extracts from Six Green Algae from Tanzania

    OpenAIRE

    Mtolera, M.S.P.; Semesi, A.

    1996-01-01

    Many algae species have been shown to have bactericidal or bacteriostatic substances (Glombitza, I979;Michaneck, 1979; Caccamese et al., 1980; Fenical & Paul, 1984; Niang& Hung, 1984). The antibacterialagents found in the algae include amino acids, terpenoids, phlorotannins, acrylic acid, phenoliccompounds, steroids, halogenated ketones and alkanes, cyclic polysulphides and fatty acids. In a large numberof marine algae antimicrobial activities are attributed to the presence of acrylic acid.

  11. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  12. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  13. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  14. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  15. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  16. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  17. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  18. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Teixeira, Paula S. [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180, Wien (Austria); Zapata, Luis A., E-mail: satoko_t@asiaa.sinica.edu.tw [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan 58090 (Mexico)

    2013-01-20

    We present a high angular resolution map of the 850 {mu}m continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 Multiplication-Sign 2.'0 (0.88 Multiplication-Sign 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H{sub 2} mass between 0.3-5.7 M {sub Sun} and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n{sub H{sub 2}}{>=}10{sup 6} cm{sup -3}), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of Almost-Equal-To 17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud ( Almost-Equal-To 35 pc), large-scale clumps ( Almost-Equal-To 1.3 pc), and small-scale clumps ( Almost-Equal-To 0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  19. Failure and nonfailure of fluid filaments in extension

    DEFF Research Database (Denmark)

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    1998-01-01

    The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain...

  20. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  1. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring viscoela......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...... to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially...

  2. The Apis mellifera Filamentous Virus Genome

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  3. Snow algae and lichen algae differ in their resistance to freezing temperature: An ice nucleation study

    Czech Academy of Sciences Publication Activity Database

    Hajek, J.; Kvíderová, Jana; Worland, R.; Barták, M.; Elster, Josef; Vaczi, P.

    2009-01-01

    Roč. 48, č. 4 (2009), s. 37-38 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo] R&D Projects: GA AV ČR IAA600050702; GA AV ČR KJB601630808 Institutional research plan: CEZ:AV0Z60050516 Keywords : ice nucleation * algae * freezing Subject RIV: EF - Botanics

  4. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  5. Toxicity of chlorinated benzenes to marine algae

    Science.gov (United States)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCBNannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  6. Diterpenes from the Brown Alga Dictyota crenulata

    Directory of Open Access Journals (Sweden)

    Valéria Laneuville Teixeira

    2008-06-01

    Full Text Available The crude extract of the Brazilian brown alga Dictyota crenulata was analyzed by NMR spectroscopy and HRGC-MS techniques. Seven diterpenes were identified: pachydictyol A, dictyodial, 4β-hydroxydictyodial A, 4β-acetoxydictyodial A, isopachydictyol A, dictyol C and dictyotadiol. Xeniane diterpenes have previously been found in D. crenulata from the Pacific Ocean. The results characterize D. crenulata as a species that provides prenylated guaiane (group I and xeniane diterpenes (group III, thus making it a new source of potential antiviral products.

  7. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  8. Health Risks Associated with Exposure to Filamentous Fungi

    Science.gov (United States)

    Egbuta, Mary Augustina; Mwanza, Mulunda

    2017-01-01

    Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties. PMID:28677641

  9. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    Keywords: activated sludge, denitrification, glycogen accumulating organisms, filamentous bacteria, phosphorus removal. Introduction. Biological nutrient removal (BNR) has gained attention over chemical nutrient removal because of the high cost of the chemi- cal process and the large sludge volumes produced.

  10. Method for preparing metallated filament-wound structures

    Science.gov (United States)

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  11. Positrusion Filament Recycling System for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Positrusion ISS Recycler enables recycling of scrap and waste plastics into high-quality filament for 3D printers to enable sustainable in-situ manufacturing on...

  12. UHECR acceleration in dark matter filaments of cosmological structure formation

    Science.gov (United States)

    Malkov, M. A.; Sagdeev, R. Z.; Diamond, P. H.

    2011-04-01

    A mechanism for proton acceleration to ~ 1021 eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by E × B drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p⊥2/B(r). Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this `betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax = eBR for an accelerator with magnetic field B and the orbit radius R (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. To escape the filament, accelerated particles must have gyro-radii comparable with the filament radius. Therefore, the mechanism requires pre-acceleration that is likely to occur in large scale shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators, with a firm upper limit ~ 1019.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy ~ 1021 eV. A customary requirement on accelerator power to reach a given Emax, which is placed by the accelerator energy dissipation proptoEmax2/Z0 due to the finite vacuum impedance Z0, is circumvented by the cyclic operation of the accelerator.

  13. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    Science.gov (United States)

    2015-02-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 29-04-2015 Journal Article Impact of submesoscale processes on dynamics of phytoplankton ...in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a...filaments are 3 -4 times weaker. coastal processes; upwelling, submesoscale processes, phytoplankton filaments Unclassified Unclassified Unclassified UU 13 Igor Shulman (228) 688-5646 Reset

  14. The architecture and fine structure of gill filaments in the brown ...

    African Journals Online (AJOL)

    Special attention was paid to filament architecture, ennervation of filaments, number and type of cells populating filament epithelia and variations in epithelial cell morphology and cilia ultrastructure. Filament shape was maintained by thickened chi-tln and strategically placed smooth myocytes. The epithelium was populated ...

  15. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  16. Treadmilling of actin filaments via Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2010-10-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

  17. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  18. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  19. The electric toothbrush: analysis of filaments under stereomicroscope.

    Science.gov (United States)

    Checchi, L; Farina, E; Felice, P; Montevecchi, M

    2004-08-01

    The use of manual and electric toothbrushes has a fundamental role in primary prevention in oral hygiene. However, aggressive use of the toothbrush, especially those with non-rounded filaments, can result in lesions in both soft and hard oral tissue. Without doubt, the electric toothbrush is a useful aid for the patient, and it is therefore interesting to evaluate not only its effectiveness in plaque removal, but also the relationship between morphology of filaments and incidence of muco-gingival pathologies. The aim of this research was to evaluate various forms of bristles of electric toothbrushes under a stereomicroscope vision. Brushes tested included two samples of toothbrushes from six different types. Tufts from the same position on the toothbrush head were removed and examined under stereomicroscope. In this study the percentage of rounded filaments that is considered acceptable and non-traumatic was evaluated according to the Silverstone and Featherstone classification. Morphological analysis of electric toothbrush filaments revealed a low percentage of rounded filaments. In only four of 12 electric toothbrushes tested there were more than 50% of the filaments rounded in appearance.

  20. Effect of Filament Fineness on Composite Yarn Residual Torque

    Directory of Open Access Journals (Sweden)

    Sarıoğlu Esin

    2018-03-01

    Full Text Available Yarn residual torque or twist liveliness occurs when the twist is imparted to spin the fibers during yarn formation. It causes yarn snarling, which is an undesirable property and can lead the problems for further processes such as weaving and knitting. It affects the spirality of knitted fabrics and skewness of woven fabrics. Generally, yarn residual torque depends on yarn twist, yarn linear density, and fiber properties used. Composite yarns are widely produced to exploit two yarns with different properties such on optimum way at the same time and these yarns can be produced by wrapping sheath fibers around filament core fiber with a certain twist. In this study, the effect of filament fineness used as core component of composite yarn on residual torque was analyzed. Thus, the false twist textured polyester filament yarns with different filament fineness were used to produce composite yarns with different yarn count. The variance analysis was performed to determine the significance of twist liveliness of filament yarns and yarn count on yarn twist liveliness. Results showed that there is a statistically significant differences at significance level of α=0.05 between filament fineness and yarn residual torque of composite yarns.

  1. Optical and electrical properties of a spiral LED filament

    Science.gov (United States)

    Wang, Liping; Zou, Jun; Yang, Bobo; Li, Wenbo; Li, Yang; Shi, Mingming; Zhu, Wei; Zhang, Canyun; Wang, Fengchao; Lin, Yujie

    2018-02-01

    This paper introduces a new type of spiral white light-emitting diodes (WLED) filament with high luminous efficiency and uniform optical performance. The optical and thermal properties of the flexible filament were investigated at different stretching heights, namely 0, 1, 2, and 3 cm. The results indicated that the filament showed the best optical characteristics at the stretching height of 2 cm, because of good heat dissipation. In addition, the radiation temperature of the filament was inversely proportional to the output luminous flux. The reliability of the filament at a stretching height of 2 cm was also evaluated after 1000 h of use. The result demonstrated that the luminous flux decay of the bulb was only 0.85%. The flexible spiral WLED filament exhibiting high luminous flux and good reliability could be adapted to promote industrial development in the near future. Project supported by the National Nature Science Foundation of China (No. 51302171), the Science and Technology Commission of Shanghai Municipality (CN) (No. 14500503300), the Shanghai Municipal Alliance Program (No. Lm201547), the Shanghai Cooperative Project (No. ShanghaiCXY-2013-61), and the Jiashan County Technology Program (No. 20141316).

  2. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  3. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  4. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  5. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  6. Dissolved Air Flotation Process for Algae Removal | Mulaku ...

    African Journals Online (AJOL)

    This study investigated the performance of the Dissolved Air Flotation (DAF) process as an alternative to sedimentation for algae removal in surface water treatment in Kenya. Batch DAF experiments were carried out in the laboratory using algae laden surface water samples collected from the river and laboratory cultured ...

  7. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  8. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  9. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  10. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  11. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  12. Potential of wastewater grown algae for biodiesel production and CO

    African Journals Online (AJOL)

    Potential of wastewater grown algae for biodiesel production and CO 2 sequestration. ... African Journal of Biotechnology ... Mixed algae sample showed the highest CO2 fixation rate, followed by Chlorella sp., Scenedesmus incrassatulus, Scenedesmus dimorphus and Chroococcus cohaerens (2.807, 1.627, 1.501, 1.270 ...

  13. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  14. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  15. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  16. Experimental study of infrared filaments under different initial conditions

    Science.gov (United States)

    Mirell, Daniel Joseph

    In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light

  17. Filamented plasmas in laser ablation of solids

    Science.gov (United States)

    Davies, J. R.; Fajardo, M.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.

    2009-03-01

    We report results from laser-solid experiments at PALS using an x-ray laser probe with a pulse length of 0.1 ns and a wavelength of 21.2 nm. A laser with a pulse length of 0.3 ns, a peak intensity of up to 5 × 1013 W cm-2 and a wavelength of 1.3 µm was focused to a 0.15 mm wide line on 3 mm long zinc and 1 mm long iron targets and the probe was passed along the length of the plasma formed. The results show plasma 'hairs', or filaments, appearing only below the critical density, 0.1 ns before the peak of the laser pulse. The plasma around the critical density was clearly imaged and remained uniform. Magneto-hydrodynamic modelling indicates that this is caused by a magnetic field that diffuses from the critical surface, where it is generated, leading to a magnetic pressure comparable to the plasma pressure below the critical density. A dispersion relation is derived for density perturbations perpendicular to a temperature gradient in the presence of an existing magnetic field, which shows that such perturbations always grow, with the growth rate being the greatest for small wavelength perturbations and at low densities. These results indicate that the hair-like structures should be a typical feature of laser ablated plasmas below the critical density following significant plasma expansion, in agreement with numerous experimental results. The implications for x-ray lasers and fast ignition inertial confinement fusion are discussed.

  18. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  19. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  20. Seagrass response to CO₂ contingent on epiphytic algae: indirect effects can overwhelm direct effects.

    Science.gov (United States)

    Burnell, Owen W; Russell, Bayden D; Irving, Andrew D; Connell, Sean D

    2014-11-01

    Increased availability of dissolved CO2 in the ocean can enhance the productivity and growth of marine plants such as seagrasses and algae, but realised benefits may be contingent on additional conditions (e.g. light) that modify biotic interactions between these plant groups. The combined effects of future CO2 and differing light on the growth of seagrass and their algal epiphytes were tested by maintaining juvenile seagrasses Amphibolis antarctica under three different CO2 concentrations representing ambient, moderate future and high future forecasts (i.e. 390, 650 vs. 900 µl l(-1)) and two light levels representing low and high PAR (i.e. 43 vs. 167 µmol m(-2) s(-1)). Aboveground and belowground biomass, leaf growth, epiphyte cover, tissue chemistry and photosynthetic parameters of seagrasses were measured. At low light, there was a neutral to positive effect of elevated CO2 on seagrass biomass and growth; at high light, this effect of CO2 switched toward negative, as growth and biomass decreased at the highest CO2 level. These opposing responses to CO2 appeared to be closely linked to the overgrowth of seagrass by filamentous algal epiphytes when high light and CO2 were combined. Importantly, all seagrass plants maintained positive leaf growth throughout the experiment, indicating that growth was inhibited by some experimental conditions but not arrested entirely. Therefore, while greater light or elevated CO2 provided direct physiological benefits for seagrasses, such benefits were likely negated by overgrowth of epiphytic algae when greater light and CO2 were combined. This result demonstrates how indirect ecological effects from epiphytes can modify independent physiological predictions for seagrass associated with global change.

  1. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  2. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  3. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  4. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    Directory of Open Access Journals (Sweden)

    Paul Pawelzyk

    Full Text Available Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1 and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.

  5. Closely spaced fine filament multifilamentary NbTi strands

    International Nuclear Information System (INIS)

    Gregory, E.; Liu, H.; Seuntjens, J.M.

    1994-01-01

    A series of papers showing the advantages of close spacing and matrix alloying for the development of high J c , fine filament, NbTi materials which have low electrical coupling have appeared in the last seven years. In order to achieve the highest J c 's, it has been shown that close spacing has many advantages. This, however, leads to proximity coupling which has to be overcome by the addition of alloying elements to the matrix between the filaments. Of the three alloying materials normally used for this purpose, Ni, Si, and Mn, the most effective is Mn, which operates by a spin flip scattering mechanism whereas Ni and Si produce decoupling by less effective resistive scattering. Ni and Si, however, harden the matrix more than does the small amount of Mn, [0.5wt%], which has been used in most of the past work on the reduction of proximity coupling. This hardening allows the filaments to be separated to a greater extent than is possible in the case of a pure copper matrix without a significant increase in filament sausaging and a resultant J c decrease. Silicon also has one additional advantage over the other alloying elements in that it reduces the formation of compounds on the surface of the filaments, thus it may obviate the necessity for a Nb barrier layer and thus allow an even greater increase in J c . In this paper the authors explore further some of the effects of the addition of manganese and/or silicon to the matrix between the filaments in an effort to optimize properties at the smaller filament sizes

  6. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  7. Antileishmanial properties of tropical marine algae extracts.

    Science.gov (United States)

    Freile-Pelegrin, Y; Robledo, D; Chan-Bacab, M J; Ortega-Morales, B O

    2008-07-01

    Aqueous and organic extracts of twenty-seven species of marine algae (14 species of Rhodophyta, 5 species of Phaeophyta and 8 species of Chlorophyta) collected from the Gulf of Mexico and Caribbean coast of the Yucatan Peninsula (Mexico) were evaluated for their antileishmanial in vitro activity against Leishmania mexicana promastigote forms. The cytotoxicity of these extracts was also assessed using brine shrimp. Organic extracts from Laurencia microcladia (Rhodophyta), Dictyota caribaea, Turbinaria turbinata and Lobophora variegata (Phaeophyta) possessed promising in vitro activity against L. mexicana promastigotes (LC(50) values ranging from 10.9 to 49.9 microg/ml). No toxicity of algal extracts against Artemia salina was observed with LC50 ranging from 119 to >or=1000 microg/ml. Further studies on bio-guided fractionation, isolation and characterization of pure compounds from these species as well as in vivo experiments are needed and are already in progress.

  8. An algae-covered alligator rests warily

    Science.gov (United States)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  9. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  11. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  12. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  13. Rapid Formation and Disappearance of a Filament Barb

    Science.gov (United States)

    Joshi, Anand D.; Srivastava, Nandita; Mathew, Shibu K.; Martin, Sara F.

    2013-11-01

    We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.

  14. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  15. Morphological indictors of the chirality of solar filaments

    Science.gov (United States)

    Filippov, B. P.

    2017-10-01

    There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous "barbs"; i.e., those whose jagged side is located on the opposite side of the axis compared to most ("normal") filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.

  16. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  17. Studies of the laser filament instability in a semicollisional plasma

    International Nuclear Information System (INIS)

    Michel, P.; Labaune, C.; Weber, S.; Tikhonchuk, V.T.; Bonnaud, G.; Riazuelo, G.; Walraet, F.

    2003-01-01

    The stability and nonlinear evolution of a laser filament in an underdense, semicollisional plasma are studied with a simulation code accounting for the ponderomotive and thermal effects together with the nonlocal electron transport. It is found that the filament is stable at low intensities, where the trapped laser power is below the self-focusing threshold. For larger powers, the filament is unstable with respect to bending. This instability, though predicted in theory (the m=1 mode), has not been seen so far in monospeckle modelling probably because of simulation symmetry. In our simulations an artificial noise source has been implemented in order to make nonsymmetric features appear. The instability leads to a complete breakup of the filament which reconstructs itself after some time and the process then repeats itself. Due to the filament instability the plasma sets in a regime of self-supported oscillations and results in temporal modulation and angular spreading of transmitted light. The numerical simulations are compared with theoretical predictions and experimental observations of speckle dynamics in the interaction of a randomized laser beam with preformed plasmas

  18. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  19. The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina.

    Science.gov (United States)

    Domozych, David S; Sørensen, Iben; Willats, William G T

    2009-11-01

    The production of multicellular gametangia in green plants represents an early evolutionary development that is found today in all land plants and advanced clades of the Charophycean green algae. The processing of cell walls is an integral part of this morphogenesis yet very little is known about cell wall dynamics in early-divergent green plants such as the Charophycean green algae. This study represents a comprehensive analysis of antheridium development and spermatogenesis in the green alga, Chara corallina. Microarrays of cell wall components and immunocytochemical methods were employed in order to analyse cell wall macromolecules during antheridium development. Cellulose and pectic homogalacturonan epitopes were detected throughout all cell types of the developing antheridium including the unique cell wall protuberances of the shield cells and the cell walls of sperm cell initials. Arabinogalactan protein epitopes were distributed only in the epidermal shield cell layers and anti-xyloglucan antibody binding was only observed in the capitulum region that initially yields the sperm filaments. During the terminal stage of sperm development, no cell wall polymers recognized by the probes employed were found on the scale-covered sperm cells. Antheridium development in C. corallina is a rapid event that includes the production of cell walls that contain polymers similar to those found in land plants. While pectic and cellulosic epitopes are ubiquitous in the antheridium, the distribution of arabinogalactan protein and xyloglucan epitopes is restricted to specific zones. Spermatogenesis also includes a major switch in the production of extracellular matrix macromolecules from cell walls to scales, the latter being a primitive extracellular matrix characteristic of green plants.

  20. Uptake of technetium by marine algae: autoradiographic localization

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, S.; Nuyts, G.; Robbrecht, V.; Cogneau, M.; Ben, D. van der

    1988-02-01

    The uptake of technetium (sup(95m)Tc) by marine algae was localized by autoradiography. In the brown (Ascophyllum nodosum, Fucus spiralis and F. vesiculosus) as well as in the red (Porphyra umbilicalis) species, the distribution of technetium was heterogeneous, this radioelement being mostly accumulated in the parts of the plant which bear reproductive cells or which contain young tissues. Since brown algae have high concentration factors, they could constitute an important link in the transfer of technetium through the food chain. On the contrary, the edible alga Porphyra umbilicalis shows a very low incorporation of technetium.