WorldWideScience

Sample records for filamentation instability driven

  1. The modulational and filamentational instabilities of two coupled electromagnetic waves in plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.

    1992-01-01

    The modulational and filamentational instabilities of two coupled electromagnetic waves have been investigated, taking into account the combined effect of relativistic electron mass variations and nonresonant density fluctuations that are driven by the ponderomotive force. The relevance of our investigation to phenomena related with nonlinear mixing of electromagnetic waves is pointed out. (orig.)

  2. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  3. Generalized laser filamentation instability coupled to cooling instability

    International Nuclear Information System (INIS)

    Liang, E.P.; Wong, J.; Garrison, J.

    1984-01-01

    We consider the propagation of laser light in an initially slightly nonuniform plasma. The classical dispersion relation for the laser filamentation growth rate (see e.g., B. Langdon, in the 1980 Lawrence Livermore National Laboratory Laser Program Annual Report, pp. 3-56, UCRL-50021-80, 1981) can be generalized to include other acoustical effects. For example, we find that the inclusion of potential imbalances in the heating and cooling rates of the ambient medium due to density and temperature perturbations can cause the laser filamentation mode to bifurcate into a cooling instability mode at long acoustic wavelengths. We also attempt to study semi-analytically the nonlinear evolution of this and related instabilities. These results have wide applications to a variety of chemical gas lasers and phenomena related to laser-target interactions (e.g., jet-like behavior)

  4. Filamentation instability of a self-pinched hollow electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.; Hughes, T.P.

    1986-01-01

    Filamentation stability properties of a self-pinched hollow electron beam propagating through a collisional plasma channel are investigated within the framework of linearized Vlasov--Maxwell equations, assuming that the beam is thin and that the equilibrium and perturbed space-charge fields are neutralized by background plasma. It is further assumed that the perturbations are well tuned with kβ/sub b/c+lω/sub b/ and satisfy la 0 , where l and k are the azimuthal and axial wavenumbers, β/sub b/c and ω/sub b/ are the axial velocity and the rotational frequency of the beam, and 2a and R 0 are the thickness and mean radius of the beam. From the stability analysis, two distinctive unstable mechanisms are identified: the return-current driven instability and the resistively driven instability. It is also found that high-l-mode perturbations are easily stabilized by a spread in the canonical angular momentum. Making use of a linearized particle-in-cell code, numerical simulations are performed. The agreement between the analytical results and those of simulations is excellent

  5. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  6. Filament instability under constant loads

    Science.gov (United States)

    Monastra, A. G.; Carusela, M. F.; D’Angelo, M. V.; Bruno, L.

    2018-04-01

    Buckling of semi-flexible filaments appears in different systems and scales. Some examples are: fibers in geophysical applications, microtubules in the cytoplasm of eukaryotic cells and deformation of polymers freely suspended in a flow. In these examples, instabilities arise when a system’s parameter exceeds a critical value, being the Euler force the most known. However, the complete time evolution and wavelength of buckling processes are not fully understood. In this work we solve analytically the time evolution of a filament under a constant compressive force in the small amplitude approximation. This gives an insight into the variable force scenario in terms of normal modes. The evolution is highly sensitive to the initial configuration and to the magnitude of the compressive load. This model can be a suitable approach to many different real situations.

  7. Interaction between stimulated Brillouin scattering and the filamentation instability in plasmas

    International Nuclear Information System (INIS)

    Frycz, P.; Rozmus, W.; Samson, J.; Tikhonchuk, V.T.; Rankin, R.

    1992-01-01

    The set of equations describing Stimulated Brillouin Scattering (SBS) and the Filamentation Instability (FI) are solved numerically for a spatially periodic system. For short systems (a few wavelengths of the incident light) SBS backscatter modes and the filamentation instability are observed as expected but in addition there are some puzzling features. SBS starts after a significant time delay, is localized, and focuses during its evolution. These features disappear for a long (tens of wavelengths) system for which sidescatter modes are dominant. The energy is dispersed among many non-coherent modes in such a system and none of the modes is strong enough to drive filamentation. The analytic explanation of the ''puzzling features'' is given. (Author)

  8. Magnetic tension and instabilities in the Orion A integral-shaped filament

    Science.gov (United States)

    Schleicher, Dominik R. G.; Stutz, Amelia

    2018-03-01

    The Orion nebula is a prime example of a massive star-forming region in our galaxy. Observations have shown that gravitational and magnetic energy are comparable in its integral-shaped filament on a scale of ˜1 pc, and that the population of pre-main sequence stars appears dynamically heated compared to the protostars. These results have been attributed to a slingshot mechanism resulting from the oscillation of the filament by Stutz & Gould. In this paper, we show that radially contracting filaments naturally evolve towards a state where gravitational, magnetic, and rotational energy are comparable. While the contraction of the filament will preferentially amplify the axial component of the magnetic field, the presence of rotation leads to a helical field structure. We show how magnetic tension can give rise to a filament oscillation, and estimate a typical time-scale of 0.7 Myr for the motion of the filament to the position of maximum displacement, consistent with the characteristic time-scale of the ejected stars. Furthermore, the presence of helical magnetic fields is expected to give rise to magneto-hydrodynamical instabilities. We show here that the presence of a magnetic field significantly enhances the overall instability, which operates on a characteristic scale of about 1 pc. We expect the physics discussed here to be generally relevant in massive star-forming regions, and encourage further investigations in the future.

  9. Development of the striation and filament form of the electrothermal instability

    Science.gov (United States)

    Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.

    2017-10-01

    Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.

  10. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  11. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

  12. Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts

    Science.gov (United States)

    Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang

    2017-05-01

    Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.

  13. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  14. Current filamentation caused by the electrochemical instability in a fully ionized plasma

    International Nuclear Information System (INIS)

    Haines, M.G.; Marsh, F.

    1983-01-01

    This chapter is primarily concerned with the non-linear development of electrothermal instabilities in a fully ionized plasma discharge in which the current is predominantly carried parallel to an applied magnetic field, as in the Tokamak configuration. Discusses instabilities with wave-number K perpendicular to magnetic field B and current J; the non-linear steady state; amplitude of the filaments; and runaway electrons and ion acoustic instabilities. Concludes that the steady non-linear amplitude of the fully developed instability shows a spiky filamentary structure with the possibility of the generation of runaway electrons and ion acoustic turbulence in the current maxima. Finds that the addition of bremsstrahlung radiation loss enhances the instability, reducing the critical ratio of T /SUB e/ to T /SUB i/ for its onset, and yielding a maximum ion temperature attainable by Joule heating and equipartition

  15. Instability in the Peeling of a Polymeric Filament from a Rigid Surface

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    2000-01-01

    The 3D Lagrangian integral method is used to simulate the effects of the rheology on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates.It is shown that strain hardening materials with a negative second normal stress differe...

  16. Topographic-driven instabilities in terrestrial bodies

    Science.gov (United States)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  17. Overview of nonlinear theory of kinetically driven instabilities

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1998-09-01

    An overview is presented of the theory for the nonlinear behavior of instabilities driven by the resonant wave particle interaction. The approach should be applicable to a wide variety of kinetic systems in magnetic fusion devices and accelerators. Here the authors emphasize application to Alfven were driven instability, and the principles of the theory are used to interpret experimental data

  18. Lower hybrid parametric instabilities nonuniform pump waves and tokamak applications

    International Nuclear Information System (INIS)

    Berger, R.L.; Chen, L.; Kaw, P.K.; Perkins, F.W.

    1976-11-01

    Electrostatic lower hybrid ''pump'' waves often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasimode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a travelling or standing wave pump model is used; travelling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded

  19. Curvature-driven instabilities in a hot-electron plasma: radial analysis

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.; Spong, D.A.

    1981-12-01

    The theory of unfavorable curvature-driven instabilities is developed for a plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic theory. A z-pinch model is used to emphasize the radial structure of the problem. Stability criteria are obtained for the five possible modes of instability: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), a compressional instability, a background pressure-driven interchange, and an interacting pressure-driven interchange

  20. BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Matthew W.; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Bogdanovic, Tamara; Reynolds, Christopher S., E-mail: kunz@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: tamarab@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.

  1. Curvature-driven instabilities in the Elmo Bumpy Torus (EBT)

    International Nuclear Information System (INIS)

    Abe, H.; Spong, D.A.; Antonsen, T.M. Jr.; Tsang, K.T.; Nguyen, K.T.

    1982-01-01

    Curvature-driven instabilities are analyzed for an EBT configuration which consists of plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic (MHD) theory. Stability criteria are obtained for five possible modes: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies greater than the ion-cyclotron frequency), a compressional instability, a background plasma interchange, and an interacting pressure-driven interchange. A wide parameter regime for stable operation is found, which, however, severely deteriorates for a band of intermediate mode numbers. Finite Larmor radius effects can eliminate this deterioration; moreover, all short-wavelength curvature-driven modes are stabilized if the hot electron Larmor radius rho/sub h/ satisfies (kappa/sub perpendicular/rho/sub h/) 2 > 2Δ/[Rβ/sub h/(1 + P'/sub parallel//P'/sub perpendicular/)], where kappa/sub perpendicular/ is the transverse wavenumber, Δ is the ring half-width, R is the mid-plane radius of curvature, β/sub h/ is the hot electron beta value, and P' is the pressure gradient. Resonant wave-particle instabilities predicted by a new low frequency variational principle show that a variety of remnant instabilities may still persist

  2. Controlling chaos in the current-driven ion acoustic instability

    International Nuclear Information System (INIS)

    Fukuyama, T.; Taniguchi, K.; Kawai, Y.

    2002-01-01

    Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos

  3. The Current-Driven, Ion-Acoustic Instability in a Collisionless Plasma

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1979-01-01

    The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated, and it was ......, and it was demonstrated that the fluctuations in the plasma column behave as a classical Van der Pol oscillator. Accurate measurements of the growth rate of the instability can be performed by making explicit use of the particular properties of such a system.......The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated...

  4. Self-induced dipole force and filamentation instability of a matter wave

    DEFF Research Database (Denmark)

    Saffman, M.

    1998-01-01

    The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....

  5. Ponderomotive force effects on temperature-gradient-driven instabilities

    International Nuclear Information System (INIS)

    Sundaram, A.K.; Hershkowitz, N.

    1992-01-01

    The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed

  6. Two-dimensional simulations of magnetically-driven instabilities

    International Nuclear Information System (INIS)

    Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.

    1986-01-01

    A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program

  7. Self-modulation and filamentation of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Bingham, R.; Lashmore-Davies, C.N.

    1976-01-01

    Self-modulation and filamentation of an electromagnetic wave is considered as a problem of the non-linear interaction between electromagnetic and ion waves. A new electro-magnetic modulational instability is obtained, whose threshold is the same as that of the oscillating two-stream instability. A simple geometrical model is given of filamentation when the non-linearity is due to the ponderomotive force. The relationship between the filamentation and electromagnetic modulational instabilities and other parametric instabilities is considered. In particular, it is shown that both electromagnetic modulational and filamentation instabilities can occur at the critical density where they have the same threshold as the modulational instability of a Langmuir wave. Finally, a conservation relation (a generalization of the Manley-Rowe relation) for the wave action density is obtained for the filamentation instability. This shows clearly that this instability results from a four wave interaction. (author)

  8. A line driven Rayleigh-Taylor-type instability in hot stars

    International Nuclear Information System (INIS)

    Nelson, G.D.; Hearn, A.G.

    1978-01-01

    The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de

  9. Electrothermal instability growth in magnetically driven pulsed power liners

    International Nuclear Information System (INIS)

    Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles

    2012-01-01

    This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

  10. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    International Nuclear Information System (INIS)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux

  11. Physics of energetic particle-driven instabilities in the START spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K.G.; Gryaznevich, M.P.; Akers, R.J.; Appel, L.C.; Counsell, G.F.; Roach, C.M.; Sharapov, S.E.; Majeski, R.

    1999-01-01

    The recent use of neutral beam injection (NBI) in the UKAEA small tight aspect ratio tokamak (START) has provided the first opportunity to study experimentally the physics of energetic ions in spherical tokamak (ST) plasmas. In such devices the ratio of major radius to minor radius R 0 /a is of order unity. Several distinct classes of NBI-driven instability have been observed at frequencies up to 1 MHz during START discharges. These observations are described, and possible interpretations are given. Equilibrium data, corresponding to times of beam-driven wave activity, are used to compute continuous shear Alfven spectra: toroidicity and high plasma beta give rise to wide spectral gaps, extending up to frequencies of several times the Alfven gap frequency. In each of these gaps Alfvenic instabilities could, in principle, be driven by energetic ions. Chirping modes observed at high beta in this frequency range have bandwidths comparable to or greater than the gap widths. Instability drive in START is provided by beam ion pressure gradients (as in conventional tokamaks), and also by positive gradients in beam ion velocity distributions, which arise from velocity-dependent charge exchange losses. It is shown that fishbone-like bursts observed at a few tens of kHz can be attributed to internal kink mode excitation by passing beam ions, while narrow-band emission at several hundred kHz may be due to excitation of fast Alfven (magnetosonic) eigenmodes. In the light of our understanding of energetic particle-driven instabilities in START, the possible existence of such instabilities in larger STs is discussed. (author)

  12. Interplay between parametric instabilities in fusion - relevant laser plasmas

    International Nuclear Information System (INIS)

    Huller, St.

    2003-01-01

    The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)

  13. Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Meli, A; Mastichiadis, A [Department of Physics, National University of Athens, Panepistimiopolis, Zografos 15783 (Greece); Drury, L O C [Dublin Institute for Advanced Studies, Dublin 2 (Ireland)], E-mail: markd@tp4.rub.de

    2008-06-15

    Supernova remnant blast shells can reach the flow speed v{sub s} = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v{sub b} {approx} v{sub s}. For v{sub b} << v{sub s} the Buneman or upper-hybrid instabilities dominate, while for v{sub b} >> v{sub s} the filamentation and mixed modes grow faster. Here the relevant waves for v{sub b} {approx} v{sub s} are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v{sub s} is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to {approx}10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.

  14. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  15. Ponderomotive and thermal filamentation of laser light

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1985-01-01

    As targets are irradiated with longer, more energetic pulses of laser light, longer-scalelength plasmas are produced. Filamentation is a potentially important process in such plasmas. In this instability, perturbations in the intensity profile of an incident light beam grow in amplitude, causing the beam to break up into intense filaments. The instability arises when a local increase in the light intensity creates a depression in plasma density either directly, via the ponderomotive force, or indirectly, via enhanced collisional absorption and subsequent plasma expansion. The density depression refracts the light into the lower-density region, enhancing the intensity perturbations. The instability is termed either ponderomotive or thermal filamentation, depending on which mechanism generates the density depression. The analogous process involving the entire beam is called self-focusing. Filamentation can significantly affect laser-plasma coupling. Intensity enhancements can introduce or modify other instabilities, change the location of the energy deposition, and possibly aggravate deleterious collective effects such as hot-electron generation

  16. Oblique Alfvén instabilities driven by compensated currents

    Energy Technology Data Exchange (ETDEWEB)

    Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  17. Oblique Alfvén instabilities driven by compensated currents

    International Nuclear Information System (INIS)

    Malovichko, P.; Voitenko, Y.; De Keyser, J.

    2014-01-01

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  18. Unified formulation for inhomogeneity-driven instabilities in the lower-hybrid range

    International Nuclear Information System (INIS)

    Silveira, O.J.G.; Ziebell, L.F.; Gaelzer, R.; Yoon, Peter H.

    2002-01-01

    A local dispersion relation that describes inhomogeneity-driven instabilities in the lower-hybrid range is derived following a procedure that correctly describes energy exchange between waves and particles in inhomogeneous media, correcting some inherent ambiguities associated with the standard formalism found in the literature. Numerical solutions of this improved dispersion relation show that it constitutes a unified formulation for the instabilities in the lower-hybrid range, describing the so-called modified two-stream instability, excited by the ion cross-field drift, including the ion Weibel instability, and also describing the lower-hybrid drift instability, which is due to inhomogeneity effects on the electron population

  19. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    Science.gov (United States)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  20. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  1. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  2. Ultrastructural instability of paired helical filaments from corticobasal degeneration as examined by scanning transmission electron microscopy.

    Science.gov (United States)

    Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.

    1996-01-01

    CBD and AD differ both in stability and packing of tau and that CBD filaments, composed of two distinct protofilaments, are more labile under STEM conditions. As fixed and stained filaments from CBD have been shown to be stable and uniform in size by conventional transmission electron microscopy, STEM studies may be particularly suitable for detecting instability of unstained and unfixed filaments. The results also suggest that molecular heterogeneity and/or post-translational modifications of tau may strongly influence the morphology and stability of abnormal filaments. Images Figure 1 Figure 2 Figure 3 PMID:8702002

  3. Experimental Investigation of the End Plate Instability in the Extension of Polymer Melts in a Filament Stretch Rheometer. P.-Y. Longin, H. K. Rasmussen, A. Bach and O. Hassager

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Longin, Pierre-Yves; Bach, Anders

    2001-01-01

    We consider here a particular instability, an axis symmetry breaking meniscus instability, that occurs under certain conditions in the transient filament stretching apparatus near the endplates as the plates are separated. Spiegelberg and McKinley [1] investigated this instability development in ...

  4. Transient many-body instability in driven Dirac materials

    Science.gov (United States)

    Pertsova, Anna; Triola, Christopher; Balatsky, Alexander

    The defining feature of a Dirac material (DM) is the presence of nodes in the low-energy excitation spectrum leading to a strong energy dependence of the density of states (DOS). The vanishing of the DOS at the nodal point implies a very low effective coupling constant which leads to stability of the node against electron-electron interactions. Non-equilibrium or driven DM, in which the DOS and hence the effective coupling can be controlled by external drive, offer a new platform for investigating collective instabilities. In this work, we discuss the possibility of realizing transient collective states in driven DMs. Motivated by recent pump-probe experiments which demonstrate the existence of long-lived photo-excited states in DMs, we consider an example of a transient excitonic instability in an optically-pumped DM. We identify experimental signatures of the transient excitonic condensate and provide estimates of the critical temperatures and lifetimes of these states for few important examples of DMs, such as single-layer graphene and topological-insulator surfaces.

  5. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Charlton, L.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    The linearized neoclassical magnetohydrodynamic equations, including perturbed neoclassical flows and currents, have been solved for parameter regimes where the neoclassical pressure-gradient-driven instability becomes important. This instability is driven by the fluctuating bootstrap current term in Ohm's law. It begins to dominate the conventional resistive ballooning mode in the banana-plateau collisionality regime [μ/sub e//ν/sub e/ /approximately/ √ε/(1 + ν/sub *e/) > ε 2 ] and is characterized by a larger radial mode width and higher growth rate. The neoclassical instability persists in the absence of the usual magnetic field curvature drive and is not significantly affected by compressibility. Scalings with respect to β, n (toroidal mode number), and μ (neoclassical viscosity) are examined using a large-aspect-ratio, three-dimensional initial-value code that solves linearized equations for the magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisymmetric toroidal geometry. 13 refs., 10 figs

  6. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  7. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  8. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    Science.gov (United States)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  9. Theory of the corrugation instability of a piston-driven shock wave.

    Science.gov (United States)

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.

  10. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  11. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  12. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    International Nuclear Information System (INIS)

    Dance, R J; Butler, N M H; Gray, R J; MacLellan, D A; Rusby, D R; Xu, H; Neely, D; McKenna, P; Scott, G G; Robinson, A P L; Zielbauer, B; Bagnoud, V; Desjarlais, M P

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-10 20 Wcm −2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime. (paper)

  13. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  14. Electronically driven short-range lattice instability: Possible role in superconductive pairing

    International Nuclear Information System (INIS)

    Szasz, A.

    1991-01-01

    A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed

  15. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  16. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  17. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    Science.gov (United States)

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  18. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    Science.gov (United States)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  19. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. I. INSTABILITY OF A STATIC COLUMN

    International Nuclear Information System (INIS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Lyubarsky, Yuri; Hardee, Philip E.

    2009-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  20. Kinetic instabilities in the solar wind driven by temperature anisotropies

    Science.gov (United States)

    Yoon, Peter H.

    2017-12-01

    The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.

  1. Stimulated Raman scattering in the presence of filamentation in underdense plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.; Coutts, G.A.

    1986-01-01

    A model of stimulated Raman scattering from underdense plasmas in which the laser intensity profile and plasma density have been corrupted by the filamentation instability is described. The model accounts in a unified way for inhomogeneity in the density, for Landau damping, and for local enhancements in lightwave intensities. In shallow filaments the concentration of the light gives rise to modest increases in growth. On the other hand, for deeper filaments the inhomogeneity and Landau damping dominate to suppress the instability. In addition, backscatter is enhanced relative to sidescatter

  2. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  3. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  4. Critical condition for current-driven instability excited in turbulent heating of TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O

    1982-02-01

    Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.

  5. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  6. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  7. Surface Tension Driven Instability in the Regime of Stokes Flow

    Science.gov (United States)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  8. A numerical study of Richtmyer endash Meshkov instability driven by cylindrical shocks

    International Nuclear Information System (INIS)

    Zhang, Q.; Graham, M.J.

    1998-01-01

    As an incident shock wave hits a material interface between two fluids of different densities, the interface becomes unstable. Small disturbances at the interface start to grow. This interfacial instability is known as a Richtmyer endash Meshkov (RM) instability. It plays an important role in the studies of inertial confinement fusion and supernova. The majority of studies of the RM instability were in plane geometry emdash namely, plane shocks in Cartesian coordinates. We present a systematic numerical study of the RM instability driven by cylindrical shocks for both the imploding and exploding cases. The imploding (exploding) case refers to a cylindrical shock colliding with the material interface from the outside in (inside out). The phenomenon of reshock caused by the waves reflected from the origin is also studied. A qualitative understanding of this system has been achieved. Detailed studies of the growth rate of the fingers at the unstable interface are presented. copyright 1998 American Institute of Physics

  9. Comparative study of the loss cone-driven instabilities in the low solar corona

    Science.gov (United States)

    Sharma, R. R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.

  10. Theory of the current-driven ion cyclotron instability in the bottomside ionosphere

    International Nuclear Information System (INIS)

    Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.

    1985-01-01

    A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes

  11. Nonlinear features of the energy beam-driven instability

    International Nuclear Information System (INIS)

    Lesur, M.; Idomura, Y.; Garbet, X.

    2009-01-01

    Full text: A concern with ignited fusion plasmas is that, as a result of the instabilities they trigger, the high-energy particles eject themselves before they could give their energy to the core to sustain the reaction. Similarities between this class of instabilities and the so-called Berk-Breizman problem motivate us to study a single-mode instability driven by an energetic particle beam. For this purpose, a one dimensional Vlasov simulation is extended to include a Krook collision operator and external damping processes. The code is benchmarked with previous work. The fully nonlinear behavior is recovered in the whole parameter space characterized by an effective relaxation rate ν a and an external damping rate γ d . Steady state, periodic and chaotic behaviors are observed in nonlinear solutions. In the regime above marginal stability where both ν a and γ d are smaller than the linear drive γ L , we observe a good agreement of steady saturation levels between the simulation and theory. Near marginal stability, the role of the normalized relaxation rate ν a /(γ L -γ d ), which is a key parameter to predict the behavior of the solution, is investigated for an initial distribution with relatively small γ L , which correspond to the situation considered in the theory. In the low relaxation rate regime, frequency sweeping events are observed, and the time-evolution of such event is investigated. (author)

  12. Comparative study of the loss cone-driven instabilities in the low solar corona

    International Nuclear Information System (INIS)

    Sharma, R.R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone--driven instabilities in the low solar corona is undertaken. The instailities considered are the electron maser, the whistler, and the electrostatic upper hybrid. We show that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strongly magnetized plasma (ω/sub e//Ω/sub e/ 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). We also show that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, we suggest that the electron cyclotron maser instability can be the explanation for intense radio bursts only when the first harmonic escapes from the low corona. We propose a possible explanation for the escape of the first harmonic from a flaring loop

  13. Effect of magnetic field on ablatively driven Richtmyer-Meshkov instability induced by interfacial nonlinear structure

    International Nuclear Information System (INIS)

    Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.

  14. Particle force model effects in a shock-driven multiphase instability

    Science.gov (United States)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  15. Transitional inertialess instabilities in driven multilayer channel flows

    Science.gov (United States)

    Papaefthymiou, Evangelos; Papageorgiou, Demetrios

    2016-11-01

    We study the nonlinear stability of viscous, immiscible multilayer flows in channels driven both by a pressure gradient and/or gravity in a slightly inclined channel. Three fluid phases are present with two internal interfaces. Novel weakly nonlinear models of coupled evolution equations are derived and we concentrate on inertialess flows with stably stratified fluids, with and without surface tension. These are 2 × 2 systems of second-order semilinear parabolic PDEs that can exhibit inertialess instabilities due to resonances between the interfaces - mathematically this is manifested by a transition from hyperbolic to elliptic behavior of the nonlinear flux functions. We consider flows that are linearly stable (i.e the nonlinear fluxes are hyperbolic initially) and use the theory of nonlinear systems of conservation laws to obtain a criterion (which can be verified easily) that can predict nonlinear stability or instability (i.e. nonlinear fluxes encounter ellipticity as they evolve spatiotemporally) at large times. In the former case the solution decays asymptotically to its base state, and in the latter nonlinear traveling waves emerge. EPSRC Grant Numbers EP/K041134 and EP/L020564.

  16. Sensitivity of RF-driven Plasma Filaments to Trace Gases

    Science.gov (United States)

    Burin, M. J.; Czarnocki, C. J.; Czarnocki, K.; Zweben, S. J.; Zwicker, A.

    2011-10-01

    Filamentary structures have been observed in many types of plasma discharges in both natural (e.g. lightning) and industrial systems (e.g. dielectric barrier discharges). Recent progress has been made in characterizing these structures, though various aspects of their essential physics remain unclear. A common example of this phenomenon can be found within a toy plasma globe (or plasma ball), wherein a primarily neon gas mixture near atmospheric pressure clearly and aesthetically displays filamentation. Recent work has provided the first characterization of these plasma globe filaments [Campanell et al., Physics of Plasmas 2010], where it was noticed that discharges of pure gases tend not to produce filaments. We have extended this initial work to investigate in greater detail the dependence of trace gases on filamentation within a primarily Neon discharge. Our preliminary results using a custom globe apparatus will be presented, along with some discussion of voltage dependencies. Newly supported by the NSF/DOE Partnership in Basic Plasma Science and Engineering.

  17. Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses

    Czech Academy of Sciences Publication Activity Database

    Yang, X.H.; Zhuo, H.B.; Xu, H.; Ge, Z.; Shao, F.; Borghesi, Marco; Ma, Y.Y.

    2016-01-01

    Roč. 23, č. 10 (2016), s. 1-8, č. článku 103110. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : Weibel instability * plasmas * target * generation * transition * ignition * beam Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  18. Current driven drift instability in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Deutsch, R.; Wobig, H.

    1978-12-01

    The instability region and growth rates of current driven drift modes in the W VII-A stellarator are calculated. Several theoretical results are evaluated for specific temperature and density profiles. It is found that in the outer region of the plasma-column (r > 6 cm) collisional drift waves with wavelengths (k 2 x + K 2 y)sup(-1/2) = 0.13 - 0.3 cm exist. In this region also the electron thermal conductivity determined experimentally appears to be large. (orig./GG) [de

  19. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  20. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  1. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei

    2015-01-01

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope

  2. Failure and nonfailure of fluid filaments in extension

    DEFF Research Database (Denmark)

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    1998-01-01

    The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain...

  3. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  4. A Study of Current Driven Electrostatic Instability on the Auroral Zone

    Directory of Open Access Journals (Sweden)

    S. Y. Kim

    1986-12-01

    Full Text Available According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimenstional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.

  5. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  6. Stability of a plasma filament with a skinned current

    International Nuclear Information System (INIS)

    Blekher, P.M.

    1984-01-01

    An effective sufficient condition of existence of ideal helical plasma filament instability in a strong longitUdinal magnetic field for skinned current profiles is deduced in the paper. The results of numerical calculations of current skinned profiles of instability diagrams are presented and these results are compared with the obtained sufficient condition. An analytical solution for one model current profile skinning and this solution also is compared with the sufficient condition of instability

  7. Simulation of a Feedback System for the Attenuation of e-Cloud Driven Instability

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Fox, J.; Rivetta, C.; de Maria, R.; Rumolo, G.

    2009-01-01

    Electron clouds impose limitations on current accelerators that may be more severe for future machines, unless adequate measures of mitigation are taken. Recently, it has been proposed to use feedback systems operating at high frequency (in the GHz range) to damp single-bunch transverse coherent oscillations that may otherwise be amplified during the interaction of the beam with ambient electron clouds. We have used the simulation package WARP-POSINST and the code Headtail to study the growth rate and frequency patterns in space-time of the electron cloud driven beam breakup instability in the CERN SPS accelerator with, or without, an idealized feedback model for damping the instability.

  8. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    Science.gov (United States)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  9. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  10. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  11. Evaporation-driven instability of the precorneal tear film.

    Science.gov (United States)

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Libration-Driven Elliptical Instability Experiments in Ellipsoidal Shells

    Science.gov (United States)

    Grannan, A. M.; Lemasquerier, D. G.; Favier, B.; Cebron, D.; Le Bars, M.; Aurnou, J. M.

    2016-12-01

    Planets and satellites can be subjected to physical libration, which consists in forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. These librations may mechanically drive turbulence in interior liquid layers such as subsurface oceans and metallic liquid cores. One possible driving-process is called the Libration-Driven Elliptical Instability (LDEI) and refers to the resonance of two inertial modes with the libration induced base flow. LDEI has been experimentally and numerically studied in the case of a full ellipsoid (e.g. Cébron et al. [2012c], Grannan et al. [2014] and Favier et al. [2015]). In this study, we address the question of the persistence of the LDEI in the theoretically complex case of an ellipsoidal shell which is more geophysically relevant to model planetary liquid layers. We use an ellipsoidal acrylic container filled with water and add spherical inner cores of different sizes. We perform direct side-view visualizations of the flow in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity extracted from the recorded movies shows that LDEI persists in a shell geometry for a libration frequency which is 4 and 2.4 time the rotation rate, and allows an identification of the mode coupling. Particle Image Velocimetry (PIV) is performed in vertical and horizontal planes on a selected case to confirm our light intensity results. Additionaly, our survey at a fixed forcing-frequency and variable Ekman number (E) allows a comparison with a local stability analysis, and shows that the libration amplitude at the threshold of the instability varies as ≈[E0.63, E0.72]. When extrapolating to planetary interiors conditions, such a scaling leads to an easier excitation of the elliptical instability than the E0.5 scaling commonly considered.

  13. Spatial and temporal instabilities in high voltage power devices

    Energy Technology Data Exchange (ETDEWEB)

    Milady, Saeed

    2010-01-29

    Dynamic avalanche can occur during the turn-off process of high voltage bipolar devices, e.g. IGBTs and p{sup +}n{sup -}n{sup +} power diodes, that may result in spatial instabilities of the homogeneous current density distribution across the device and the formation of current filaments. Filaments may cause the destruction of the device, mainly because of the high local temperatures. The first part of this work is dedicated to the current filament behavior. The positive feedback mechanisms caused by the transient current flow through the gate capacitance of an IGBT operating under short circuit conditions may result in oscillations and temporal instabilities of the IGBT current. The oscillations may cause electromagnetic interference (EMI). Furthermore, the positive feedback mechanism may accelerate the over-heating of the device and result in a thermal run-away. This is the subject of the second part of this work. In the first part of this work using the device simulation results of power diodes the underlying physical mechanisms of the filament dynamic is investigated. Simulation results of diode structures with evenly distributed doping inhomogeneities show that, the filament motion gets smoother as the distance between the inhomogeneities decreases. Hopping to faraway inhomogeneities turns into the hopping to neighboring ones and finally a smooth motion. In homogeneous structures the slow inhibitory effect of the electron-hole plasma extraction and the fast activation, due to hole current flowing along the filament, result in a smooth filament motion. An analytical model for the filament velocity under isothermal conditions is presented that can reproduce the simulation data satisfactorily. The influence of the boundary conditions on the filament behavior is discussed. The positive beveled edge termination prohibits a long stay of the filament at the edge reducing the risk of filament pinning. Self-heating effects may turn the initially electrically triggered

  14. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  15. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  16. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  17. Instabilities of line-driven stellar winds. V. Effect of an optically thick continuum

    International Nuclear Information System (INIS)

    Owocki, S.P.; Rybicki, G.B.

    1991-01-01

    Earlier analyses of the linear instability of line-driven stellar winds are extended to the case, relevant to Wolf-Rayet stars, in which the continuum remains optically thick well above the sonic point. It is found that an optically thick flow driven by pure scattering lines is stabilized by the drag effect of the diffuse, scattered radiation. However, even a relatively small photon destruction probability can cause a flow with continuum optical thickness much greater than 1 to remain unstable, with a given growth rate. The implications of these results for the variability characteristics of winds from Wolf-Rayet stars are briefly discussed. 16 refs

  18. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  19. Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs

  20. Instability and transport driven by an electron temperature gradient close to critical

    International Nuclear Information System (INIS)

    Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.

    2003-01-01

    Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)

  1. Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Ghalam, Ali; Harkay, Katherine; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; Zimmermann, Frank

    2005-01-01

    Collective instabilities caused by the formation of an electron cloud (EC) are a potential limitation to the performances of the damping rings for a future linear collider. In this paper, we present recent simulation results for the electron cloud build-up in damping rings of different circumferences and discuss the single-bunch instabilities driven by the electron cloud

  2. Sedimentation from flocculated suspensions in the presence of settling-driven gravitational interface instabilities

    Science.gov (United States)

    Rouhnia, Mohamad; Strom, Kyle

    2015-09-01

    We experimentally examine sedimentation from a freshwater suspension of clay flocs overlying saltwater in the presence of gravitational instabilities. The study seeks to determine: (1) if flocculation hampers or alters interface instability formation; (2) how the removal rates of sediment from the buoyant layer compare to those predicted by individual floc settling; and (3) whether or not it is possible to develop a model for effective settling velocity. The experiments were conducted in a tank at isothermal conditions. All experiments were initially stably stratified but later developed instabilities near the interface that grew into downward convecting plumes of fluid and sediment. Throughout, we measured sediment concentration in the upper and lower layers, floc size, and plume descent rates. The data showed that flocculation modifies the mixture settling velocity, and therefore shifts the mode of interface instability from double-diffusive (what one would expect from unflocculated clay) to settling-driven leaking and Rayleigh-Taylor instability formation. Removal rates of sediment from the upper layer in the presence of these instabilities were on the same order of magnitude as those predicted by individual floc settling. However, removal rates were found to better correlate with the speed of the interface plumes. A simple force-balance model was found to be capable of reasonably describing plume velocity based on concentration in the buoyant layer. This relation, coupled with a critical Grashof number and geometry relations, allowed us to develop a model for the effective settling velocity of the mixture based solely on integral values of the upper layer.

  3. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  4. Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability

    Science.gov (United States)

    Masood, W.; Saleem, H.; Saleem

    2013-12-01

    It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.

  5. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  6. Mechanical model for filament buckling and growth by phase ordering.

    Science.gov (United States)

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  7. Linear and nonlinear studies of velocity shear driven three dimensional electron-magnetohydrodynamics instability

    International Nuclear Information System (INIS)

    Gaur, Gurudatt; Das, Amita

    2012-01-01

    The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.

  8. Helical beating of an actuated elastic filament

    International Nuclear Information System (INIS)

    Coq, Nais; Roure, Olivia du; Fermigier, Marc; Bartolo, Denis

    2009-01-01

    We investigate the propulsive force resulting from the rotation of a flexible filament in the low Reynolds number regime. Using a simple linear model, we establish the nonlinear torque-force relations for two torque-driven actuation modes. When the rotation of the filament is induced by two perpendicular transverse oscillating torques, the propulsive force increases monotonically with the torque amplitude. Conversely, when a constant axial torque is applied, the torque-force characteristics displays an unstable branch, related to a discontinuous transition in the shape of the filament. We characterize this shape transition using two geometrical parameters, quantifying the wrapping around and the collapse on the axis of the filament. The proposed theoretical description correctly accounts for our experimental observations and reveals a strong dependence of the filament dynamics on the anchoring conditions.

  9. The stability of free-electron lasers against filamentation

    International Nuclear Information System (INIS)

    Barnard, J.J.; Scharlemann, E.T.; Yu, S.S.

    1987-01-01

    In inertial confinement fusion (ICF) experiments, the high electromagnetic fields propagating through a relatively dense plasma can result in a transverse instability, causing the matter and light to form filaments oriented parallel to the light beam. We examine whether a similar instability exists in the electron beam of a free-electron laser, where such an instability could interfere with the transfer of beam kinetic energy into optical wave energy. We heuristically examine the instability in a relativistic beam through which an intense laser beam is propagating. We ignore the FEL effects. We estimate how the altered index of refraction in an FEL affects the dispersion relation. Finally, we estimate the effect that the instability could have on the phase coherence of a particle as it transits an FEL. 10 refs., 2 tabs

  10. Critique of atomic physics instability mechanisms: Ionization-driven and radiative microinstabilities in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Ross, D.W.

    1994-01-01

    The theory of atomic-process driven microinstabilities in the tokamak edge plasma is reexamined. It is found that these instabilities, as they are usually presented, do not exist. This assertion applies both to ionization-driven modes and to radiative condensation, or thermal-driven modes. The problem is that there exists no separation of time scales between the approach to equilibrium and the growth rate of the purported instabilities. Therefore, to describe the perturbation of an inhomogeneous plasma, it is essential either to establish an equilibrium that includes both perpendicular transport and the proposed source, or, alternatively, to follow the background evolution simultaneously with the growth of the modes. Neither has been done in theoretical or numerical studies of microinstabilities driven by atomic effects in tokamaks. Very near the density limit, macroscopic modes may be unstable, leading to marfes or disruptions, but perturbations of the equilibrium transport fluxes, when taken into account, are sufficient to stabilize the microscopic modes. If the equilibrium fluxes are not included a priori, the ordering breakdown persists into the nonlinear regime. Since the atomic driving terms are the same as in the linear limit, radial decorrelation lengths would have to approach background scale lengths to yield transport of significant magnitude. Under ordinary tokamak conditions, therefore, atomic processes are unlikely to provide an important driving mechanism for the microturbulence that is presumed to cause anomalous transport

  11. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  12. Cosmic ray driven instability

    International Nuclear Information System (INIS)

    Dorfi, E.A.; Drury, L.O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma, which forms the basis of diffusive shock acceleration, leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homoeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can in addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves

  13. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Mikaelian, K O

    2009-09-28

    We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t) . Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)'s by solving a Schroedinger-like equation d{sup 2}{eta}/dt{sup 2} - g(t)kA{eta} = 0 where A is the Atwood number and k is the wavenumber of the perturbation amplitude {eta}(t). In our model a simple transformation k {yields} k{sub L} and A {yields} A{sub L} connects the linear to the nonlinear amplitudes: {eta}{sup nonlinear} (k,A) {approx} (1/k{sub L})ln{eta}{sup linear} (k{sub L}, A{sub L}). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = {integral} {radical}g(t)dt, while spike amplitudes prefer scaling with displacement {Delta}x = {integral}[{integral}g(t)dt]dt.

  14. ACCELERATION PHASES OF A SOLAR FILAMENT DURING ITS ERUPTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Fu, H.; Zhang, J.; Cheng, X.; LI, G.

    2015-01-01

    Filament eruptions often lead to coronal mass ejections (CMEs), which can affect critical technological systems in space and on the ground when they interact with the geo-magnetosphere at high speeds. Therefore, it is important to investigate the acceleration mechanisms of CMEs in solar/space physics. Based on observations and simulations, the resistive magnetic reconnection and the ideal instability of magnetic flux ropes have been proposed to accelerate CMEs. However, it remains uncertain whether both of them play a comparable role during a particular eruption. It has been extremely difficult to separate their contributions as they often work in a close time sequence during one fast acceleration phase. Here we report an intriguing filament eruption event, which shows two apparently separated fast acceleration phases and provides us an excellent opportunity to address the issue. Through analyzing the correlations between velocity (acceleration) and soft (hard) X-ray profiles, we suggest that the instability and magnetic reconnection make a major contribution during the first and second fast acceleration phases, respectively. Further, we find that both processes have a comparable contribution to the filament acceleration in this event

  15. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  16. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  17. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  18. Spontaneous generation of spiral waves by a hydrodynamic instability

    NARCIS (Netherlands)

    Habibi, M.; Møller, P.C.F.; Ribe, N.M.; Bonn, D.

    2008-01-01

    The coiling of a thin filament of viscous fluid falling onto a surface is a common and easily reproducible hydrodynamic instability. Here we report for the first time that this instability can generate regular spiral patterns, in which air bubbles are trapped in the coil and then advected

  19. Rim instability of bursting thin smectic films

    Science.gov (United States)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  20. Multispecies Weibel Instability for Intense Ion Beam Propagation Through Background Plasma

    CERN Document Server

    Davidson, Ronald C; Kaganovich, Igor D; Qin, Hong; Startsev, Edward

    2005-01-01

    In application of heavy ion beams to high energy density physics and fusion, background plasma is utilized to neutralize the beam space charge during drift compression and/or final focus of the ion beam. It is important to minimize the deleterious effects of collective instabilities on beam quality associated with beam-plasma interactions. Plasma electrons tend to neutralize both the space charge and current of the beam ions. It is shown that the presence of the return current greatly modifies the electromagnetic Weibel instability (also called the filamentation instability), i.e., the growth rate of the filamentation instability greatly increases if the background ions are much lighter than the beam ions and the plasma density is comparable to the ion beam density. This may preclude using underdense plasma of light gases in heavy ion beam applications. It is also shown that the return current may be subject to the fast electrostatic two-stream instability.

  1. Collective dynamics of populations of weakly correlated filaments of incoherent white light

    International Nuclear Information System (INIS)

    Guo, Jinxin; Sheridan, John T; Saravanamuttu, Kalaichelvi

    2013-01-01

    We examined the dynamics of two populations of self-trapped filaments of spatially and temporally incoherent white light. The populations consisted of (i) independent filaments generated through self-trapping of incandescent speckles, and (ii) co-dependent filaments created through modulation instability of a broad incandescent beam. Both filament populations were positionally stable in conditions where individual pairs of self-trapped beams interact strongly. Both also acquired significantly broad intensity distributions, which were independent of their parent optical fields; a small but persistent number of high-intensity filaments was identified in both cases. These studies provide accessible routes to weakly correlated ensembles, insight into their collective behaviour such as self-stabilization and self-selected intensity distributions, and reveal intriguing similarities between the dynamics of two populations of different origins. (paper)

  2. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  3. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  4. SPATIAL GROWTH OF CURRENT-DRIVEN INSTABILITY IN RELATIVISTIC ROTATING JETS AND THE SEARCH FOR MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)

    2016-06-10

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.

  5. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  6. Dynamical instabilities in magnetohydrodynamic wind-cloud interactions

    Science.gov (United States)

    Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent

    2015-08-01

    We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.

  7. Magnetic islands in tokamaks induced by thermal filamentation

    International Nuclear Information System (INIS)

    Dubois, M.A.; Mohamed-Benkadda, M.S.

    1991-11-01

    The thermal instability of filamentation is revisited in the fully nonlinear regime of a system of cool magnetic island chains, taking into account: the different transport processes inside and outside island cores, and a realistic temperature dependence of radiative losses. This mechanism is found to be a plausible candidate to explain the anomalous electron energy transport

  8. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J. [U.S. Naval Research Laboratory, Washington DC 20375 (United States); Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C. [Research Support Instruments, Lanham, Maryland 20905 (United States); Phillips, L. [Alogus Research Corporation, McLean, Virginia 22101 (United States); Afeyan, B. [Polymath Research, Inc., Pleasanton, California 94566 (United States); Seely, J.; Feldman, U. [Berkeley Research Associates, Inc., Beltsville, Maryland 20705 (United States)

    2013-02-15

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  9. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    International Nuclear Information System (INIS)

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C.; Phillips, L.; Afeyan, B.; Seely, J.; Feldman, U.

    2013-01-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×10 15 W/cm 2 ). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  10. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.

    2013-02-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  11. A cosmic ray driven instability

    Science.gov (United States)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    The interaction between energetic charged particles and thermal plasma which forms the basis of diffusive shock acceleration leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homogeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves.

  12. Anisotropy-Driven Instability in Intense Charged Particle Beams

    CERN Document Server

    Startsev, Edward; Qin, Hong

    2005-01-01

    In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...

  13. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  14. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?

    Science.gov (United States)

    Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander

    2013-09-03

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225–0.506

    International Nuclear Information System (INIS)

    Busquet, Gemma; Zhang, Qizhou; Ho, Paul T. P.; Palau, Aina; Girart, Josep M.; Liu, Hauyu Baobab; Sánchez-Monge, Álvaro; Estalella, Robert; De Gregorio-Monsalvo, Itziar; Pillai, Thushara; Wyrowski, Friedrich; Santos, Fábio P.; Franco, Gabriel A. P.

    2013-01-01

    We present the results of combined NH 3 (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225–0.506. The NH 3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T rot ∼ 15 K, non-thermal velocity dispersion σ NT ∼ 1 km s –1 , and exhibit signs of star formation, while filaments appear to be more quiescent (T rot ∼ 11 K and σ NT ∼ 0.6 km s –1 ). Filaments are parallel in projection and distributed mainly along two directions, at P.A. ∼ 10° and 60°, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ∼0.33 ± 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the s ausage - type instability. The network of parallel filaments observed in G14.225–0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  16. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. Magnetically-Driven Convergent Instability Growth platform on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benage, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jenkins, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-01

    Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the team executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.

  18. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Murphy, G C; O'C Drury, L; Bret, A; Romagnani, L; Ynnerman, A

    2012-01-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally. (paper)

  19. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    Science.gov (United States)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  20. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    Science.gov (United States)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  1. Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear

    International Nuclear Information System (INIS)

    Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.

    2012-11-01

    We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)

  2. Filamentation instability of lower hybrid waves in a plasma

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1976-02-01

    It is shown that a strong lower hybrid wave is modulationally unstable to perturbations propagating along its own wave vector. The instability relies critically on the finite thermal corrections to the lower hybrid dispersion relation

  3. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  4. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    Science.gov (United States)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  5. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  6. Bernstein instability driven by thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  7. Bernstein instability driven by thermal ring distribution

    International Nuclear Information System (INIS)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-01-01

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function

  8. Inhomogeneity driven by Higgs instability in a gapless superconductor

    International Nuclear Information System (INIS)

    Giannakis, Ioannis; Hou Defu; Huang Mei; Ren Haicang

    2007-01-01

    The fluctuations of the Higgs and pseudo Nambu-Goldstone fields in the 2-flavor color superconductivity (2SC) phase with mismatched pairing are described in the nonlinear realization framework of the gauged Nambu-Jona-Lasinio model. In the gapless 2SC phase, not only Nambu-Goldstone currents can be spontaneously generated, but also the Higgs field exhibits instablity. The Nambu-Goldstone currents generation indicates the formation of the single plane wave Larkin-Ovchinnikov-Fulde-Ferrel state and breaks rotation symmetry, while the Higgs instability favors spatial inhomogeneity and breaks translation invariance. In this paper, we focus on the Higgs instability which has not drawn much attention yet. The Higgs instability cannot be removed without a long range force, thus it persists in the gapless superfluidity and induces phase separation. In the case of gapless 2-flavor color superconductivity state, the Higgs instability can only be partially removed by the electric Coulomb energy. However, it is not excluded that the Higgs instability might be completely removed in the charge neutral gapless color-flavor locked phase by the color Coulomb energy

  9. Topology of interaction between titin and myosin thick filaments.

    Science.gov (United States)

    Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt

    2018-05-05

    Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  11. Tangential neutral-beam--driven instabilities in the Princeton beta experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Bol, K.; Buchenauer, D.

    1986-01-01

    During tangential neutral-beam injection into the PBX tokamak, bursts of two types of instabilities are observed. One instability occurs in the frequency range 120--210 kHz and the other oscillates predominantly near the frequency of bulk plasma rotation (20--30 kHz). Both instabilities correlate with drops in neutron emission and bursts in charge-exchange neutral flux, indicating that beam ions are removed from the center of the plasma by the instabilities. The central losses are comparable to the losses induced by the fishbone instability during perpendicular injection

  12. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  13. Composition driven structural instability in perovskite ferroelectrics

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2017-04-01

    Full Text Available Ferroelectric solid solutions usually exhibit enhanced functional properties at the morphotropic phase boundary separating two ferroelectric phases with different orientations of polarization. The underlying mechanism is generally associated with polarization rotational instability and the flattened free energy profile. In this work we show that the polarization extensional instability can also be induced at the morphotropic phase boundary beyond the reported polar-nonpolar phase boundary. The piezoelectricity enhanced by this mechanism exhibits excellent thermal stability, which helps to develop high performance piezoelectric materials with good temperature stability.

  14. Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?

    Science.gov (United States)

    Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander

    2013-01-01

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660

  15. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  16. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-01-01

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes

  17. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  18. Spike morphology in blast-wave-driven instability experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.

    2010-01-01

    The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

  19. Tangential neutral-beam-driven instabilities in the princeton beta experiment

    OpenAIRE

    Heidbrink, WW; Bol, K; Buchenauer, D; Fonck, R; Gammel, G; Ida, K; Kaita, R; Kaye, S; Kugel, H; LeBlanc, B; Morris, W; Okabayashi, M; Powell, E; Sesnic, S; Takahashi, H

    1986-01-01

    During tangential neutral-beam injection into the PBX tokamak, bursts of two types of instabilities are observed. One instability occurs in the frequency range 120-210 kHz and the other oscillates predominantly near the frequency of bulk plasma rotation (20-30 kHz). Both instabilities correlate with drops in neutron emission and bursts in charge-exchange neutral flux, indicating that beam ions are removed from the center of the plasma by the instabilities. The central losses are comparable to...

  20. Instability of a Vacuum Arc Centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Bosco, E. del; Simpson, S.W.

    2003-01-01

    Ever since conception of the Vacuum Arc Centrifuge (VAC) in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a VAC. Our theoretical and experimental research suggests that these fluctuations are in fact a pressure-gradient driven drift mode. In this work, we summarise the properties of a theoretical model describing the range of instabilities in the VAC plasma column, present theoretical predictions and compare with detailed experiments conducted on the PCEN centrifuge at the Brazilian National Space Research Institute (INPE). We conclude that the observed instability is a 'universal' instability, driven by the density-gradient, in a plasma with finite conductivity

  1. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  2. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko

    2003-01-01

    The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability

  3. MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Bai Xuening

    2011-01-01

    Non-ideal MHD effects play an important role in the gas dynamics in protoplanetary disks (PPDs). This paper addresses the influence of non-ideal MHD effects on the magnetorotational instability (MRI) and angular momentum transport in PPDs using the most up-to-date results from numerical simulations. We perform chemistry calculations using a complex reaction network with standard prescriptions for X-ray and cosmic-ray ionizations. We first show that whether or not grains are included, the recombination time is at least one order of magnitude less than the orbital time within five disk scale heights, justifying the validity of local ionization equilibrium and strong coupling limit in PPDs. The full conductivity tensor at different disk radii and heights is evaluated, with the MRI active region determined by requiring that (1) the Ohmic Elsasser number Λ be greater than 1 and (2) the ratio of gas to magnetic pressure β be greater than β min (Am) as identified in the recent study by Bai and Stone, where Am is the Elsasser number for ambipolar diffusion. With full flexibility as to the magnetic field strength, we provide a general framework for estimating the MRI-driven accretion rate M-dot and the magnetic field strength in the MRI active layer. We find that the MRI active layer always exists at any disk radius as long as the magnetic field in PPDs is sufficiently weak. However, the optimistically predicted M-dot in the inner disk (r = 1-10 AU) appears insufficient to account for the observed range of accretion rates in PPDs (around 10 -8 M sun yr -1 ) even in the grain-free calculation, and the presence of solar abundance sub-micron grains further reduces M-dot by one to two orders of magnitude. Moreover, we find that the predicted M-dot increases with radius in the inner disk where accretion is layered, which would lead to runaway mass accumulation if disk accretion is solely driven by the MRI. Our results suggest that stronger sources of ionization and

  4. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.

    2010-01-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  5. Interaction of Two Active Region Filaments Observed by NVST and SDO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liheng; Yan, Xiaoli; Xue, Zhike; Xiang, Yongyuan [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, Ting, E-mail: yangliheng@ynao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-04-01

    Using high spatial and temporal resolution H α data from the New Vacuum Solar Telescope (NVST) and simultaneous observations from the Solar Dynamics Observatory , we present the rare event of the interaction between two filaments (F1 and F2) in AR 11967 on 2014 January 31. The adjacent two filaments were almost perpendicular to each other. Their interaction was driven by the movement of F1 and started when the two filaments collided with each other. During the interaction, the threads of F1 continuously slipped from the northeast to the southwest, and were accompanied by the brightenings at the junction of two filaments and the northeast footpoint of F2. Part of F1 and the main body of F2 became invisible in H α wavelength due to the heating and the motion of F2. At the same time, bright material initiated from the junction of two filaments were observed to move along F1. The magnetic connectivities of F1 were found to be changed after their interaction. These observations suggest that magnetic reconnection was involved in the interaction of two filaments and resulted in the eruption of one filament.

  6. Laser induced ablatively driven interfacial nonlinear fluid instabilities in multilayer targets

    International Nuclear Information System (INIS)

    Manoranjan Khan; Gupta, M.R.; Mandal, L.K.; Roy, S.; Banerjee, R.

    2010-01-01

    Complete text of publication follows. High power laser driven shock waves in condensed matter have important application for studying equation of state (EOS) and high pressure physics. This is an important phenomenon in fuel compression for Inertial Confinement Fusion (ICF) experiments where multilayer targets of differing shock impedance are interacted by laser induced shocks. The interface between the two fluid becomes unstable when driven by the impulsive force (Richtmyer-Meshkov) due to such a shock wave or a continuously acting force e.g., gravity (Rayleigh-Taylor). In the nonlinear stage, the fluid interface is found to develop structures having finger-like shapes. The structures resemble a bubble (spike) accordingly as a lighter (heavier) fluid pushes in a heavier (lighter) fluid. These effects need to be mitigated for efficient compression in ICF experiment. We have studied the effect of density variation on R-T and R-M instability on the temporal development of nonlinear two fluid interfacial structures like bubble and spike. It is shown that the velocity of bubble or spike decreases leading to stabilization if the density of the fluids leads to lowering of the Atwood number. The Atwood number A = ρ a -ρ b / ρ a +ρ b changes to A* = ρ a *ρ b */ ρ a *ρ b * where ρ* m = ρ m (1-1/γ m ), m = [a,b], assuming ρ a > ρ b . It has been seen that the stabilization or destabilization (depending on the algebraic sign of the gradient) will be proportional to the pressure p 0 at the interface. The set of equation describing the dynamics of the bubbles and spikes in presence of fluid density variation are not analytically integrable in closed form. All the results are derived by numerical methods and are represented and interpreted. Analytical calculations are performed (not presented here) to modify the dynamical boundary condition between the two fluids and we have finally arrived at the following expression for the asymptotic bubble velocity ν b 2 = 2(r

  7. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1992-01-01

    We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented

  8. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  9. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  10. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  11. Filament heater current modulation for increased filament lifetime

    International Nuclear Information System (INIS)

    Paul, J.D.; Williams, H.E. III.

    1996-01-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  12. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  13. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Pariat, Étienne [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Wiegelmann, Thomas [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, D-37077 Göttingen (Germany); Liu, Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Kleint, Lucia, E-mail: chang.liu@njit.edu [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  14. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  15. Ion-cyclotron instability in magnetic mirrors

    International Nuclear Information System (INIS)

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  16. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  17. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    Science.gov (United States)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  18. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  19. Majority of Solar Wind Intervals Support Ion-Driven Instabilities

    Science.gov (United States)

    Klein, K. G.; Alterman, B. L.; Stevens, M. L.; Vech, D.; Kasper, J. C.

    2018-05-01

    We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2 + temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2 + components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He2 + drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.

  20. SLOW RISE AND PARTIAL ERUPTION OF A DOUBLE-DECKER FILAMENT. I. OBSERVATIONS AND INTERPRETATION

    International Nuclear Information System (INIS)

    Liu Rui; Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.; Lionello, Roberto; Linker, Jon A.; Liu Chang; Wang Haimin

    2012-01-01

    We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This 'double-decker' configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade.

  1. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Su Yang; Veronig, Astrid; Temmer, Manuela [IGAM-Kanzelhoehe Observatory, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Wang Tongjiang [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Gan Weiqun, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  2. ARCADE IMPLOSION CAUSED BY A FILAMENT ERUPTION IN A FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.; Hannah, I. G. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Hudson, H. S., E-mail: j.wang.4@research.gla.ac.uk [SSL/UC, Berkeley, CA (United States)

    2016-12-20

    Coronal implosions—the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure—can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including the magnetic flux-rope instability and distortion, followed by a filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in the expansion or eruption of an overlying field, flux-rope instability can also simultaneously implode an unopened field due to magnetic energy transfer. It demonstrates the “partial opening of the field” scenario, which is one of the ways in 3D to produce a magnetic eruption without violating the Aly–Sturrock hypothesis. In the framework of this observation, we also propose a unification of three main concepts for active region magnetic evolution, namely the metastable eruption model, the implosion conjecture, and the standard “CSHKP” flare model.

  3. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO2 dissolution in water

    International Nuclear Information System (INIS)

    Outeda, R.; D'Onofrio, A.; El Hasi, C.; Zalts, A.

    2014-01-01

    Density driven instabilities produced by CO 2 (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO 2 pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO 2 pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm −1 ) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO 2 pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator

  4. About the magneto-acoustic instabilities in mirrors

    International Nuclear Information System (INIS)

    Zvonkov, A.V.; Timofeev, A.V.

    1984-01-01

    It is shown that the characteristic of a plasma in mirrors anisotropy of io on distribution function versus velocities may results in the drive of magneto-acoustic instabilities. This instability, in contast to the well known Alyven oscillation instability, is driven on ion cyclotron frequency harmonics The instability in question has been possibly observed during the experiments a at the tmx device, where the oscillations have been excited both at the ion cycl tron frequency and harmonics

  5. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  6. Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock

    Science.gov (United States)

    Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.

    2018-06-01

    Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.

  7. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  8. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    Science.gov (United States)

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  9. Coupled-bunch instabilities in the APS ring

    International Nuclear Information System (INIS)

    Emery, L.

    1991-01-01

    A study of coupled bunch instabilities for the APS storage ring is presented. The instabilities are driven by the higher-order modes of the fifteen 352-MHz single-cell RF cavities. These modes are modeled using the 2-D cavity program URMEL. The program ZAP is then used to estimate the growth time of the instabilities for an equally-spaced bunch pattern. The cavity modes most responsible for the instabilities will be singles out for damping. 7 refs., 5 tabs

  10. Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy

    Science.gov (United States)

    Lebiga, O.; Santos-Lima, R.; Yan, H.

    2018-05-01

    The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.

  11. Collisional effect on the Weibel instability in the limit of high plasma ...

    Indian Academy of Sciences (India)

    Davidson and Hammer [12] studied the wave instabilities which included transverse electromagnetic WI driven by kinetic energy anisotropy in an unmag- netized plasma (e.g., electromagnetic instabilities driven by thermal anisotropy or directed counter-streaming motion). Zaki [13] studied the excitation of electromagnetic ...

  12. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    Science.gov (United States)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  13. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J. [Research Center in the Physics of Matter and Radiation (PMR), Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), University of Namur, B-5000 Namur (Belgium); Nau, S.; Sax, S. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E. J. W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, A-8010 Graz (Austria); Novak, J.; Banerjee, R.; Schreiber, F. [Institute of Applied Physics, Eberhard-Karls-Universität Tübingen, D-72076 Tübingen (Germany)

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filaments and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.

  14. White-light parametric instabilities in plasmas.

    Science.gov (United States)

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  15. Linear instability and nonlinear motion of rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.

    1985-01-01

    Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation

  16. Characterization of type-I ELM induced filaments in the far scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Andreas

    2008-03-18

    This thesis focuses on the characterization of filaments and their propagation in the ASDEX Upgrade tokamak. The aim is to provide experimental measurements for understanding the filament formation process and their temporal evolution, and to provide a comprehensive database for an extrapolation to future fusion devices. For this purpose, a new magnetically driven probe for filament measurements has been developed and installed in ASDEX Upgrade. The probe carries several Langmuir probes and a magnetic coil in between. The Langmuir probes allow for measurements of the radial and poloidal/toroidal propagation of filaments as well as for measurements of filament size, density, and their radial (or temporal) evolution. The magnetic coil on the filament probe allows for measurements of currents in the filaments. A set of 7 coils, measuring 3 field components at different positions along the filament, has been used to measure the magnetic signature during an ELM. The aim was, on the one hand, to study which role filaments play for the magnetic structure, and on the other hand if the parallel currents predicted by the sheath damped model could be verified. Filament temperatures have been derived and the corresponding heat transport mechanisms have been studied. (orig.)

  17. Characterization of type-I ELM induced filaments in the far scrape-off layer of ASDEX upgrade

    International Nuclear Information System (INIS)

    Schmid, Andreas

    2008-01-01

    This thesis focuses on the characterization of filaments and their propagation in the ASDEX Upgrade tokamak. The aim is to provide experimental measurements for understanding the filament formation process and their temporal evolution, and to provide a comprehensive database for an extrapolation to future fusion devices. For this purpose, a new magnetically driven probe for filament measurements has been developed and installed in ASDEX Upgrade. The probe carries several Langmuir probes and a magnetic coil in between. The Langmuir probes allow for measurements of the radial and poloidal/toroidal propagation of filaments as well as for measurements of filament size, density, and their radial (or temporal) evolution. The magnetic coil on the filament probe allows for measurements of currents in the filaments. A set of 7 coils, measuring 3 field components at different positions along the filament, has been used to measure the magnetic signature during an ELM. The aim was, on the one hand, to study which role filaments play for the magnetic structure, and on the other hand if the parallel currents predicted by the sheath damped model could be verified. Filament temperatures have been derived and the corresponding heat transport mechanisms have been studied. (orig.)

  18. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

    Science.gov (United States)

    Yang, Qiang; Li, Huizeng; Li, Mingzhu; Li, Yanan; Chen, Shuoran; Bao, Bin; Song, Yanlin

    2017-11-29

    Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 printing electronics and biotechnologies.

  19. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2008-01-01

    Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P ζ is most important. Once a mode is driven unstable, a wide variety of

  20. Evidence for the electromagnetic decay instability driven by two plasmon decay

    International Nuclear Information System (INIS)

    Baker, K.L.; Afeyan, B.B.; Estabrook, K.G.; Drake, R.P.

    1997-01-01

    This paper examines the electromagnetic decay instability (EDI) and its role in laser-produced plasmas. The electromagnetic decay instability provides another channel through which parametric instabilities involving Langmuir waves can saturate. In the case where EDI is pumped by the Langmuir waves associated with two plasmon decay, EDI is shown to present an explanation for ω o /2 emission from laser-produced plasmas which is consistent with experimental observations

  1. Plasma physics and instabilities

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.

    1981-01-01

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  2. Simulations of diocotron instability using a special-purpose computer, MDGRAPE-2

    International Nuclear Information System (INIS)

    Yatsuyanagi, Yuichi; Kiwamoto, Yasuhito; Ebisuzaki, Toshikazu; Hatori, Tadatsugu; Kato, Tomokazu

    2003-01-01

    The diocotron instability in a low-density non-neutral electron plasma is examined via numerical simulations. For the simulations, a current-vortex filament model and a special-purpose computer, MDGRAPE-2 are used. In the previous work, a simulation method based on the current-vortex filament model, which is called 'current-vortex method', is developed. It is assumed that electric current and vorticity have discontinuous filamentary distributions, and both point electric current and point vortex are confined in a filament, which is called 'current-vortex filament'. In this paper, the current-vortex method with no electric current is applied to simulations of the non-neutral electron plasma. This is equivalent to the traditional point-vortex method. MDGRAPE-2 was originally designed for molecular dynamics simulations. It accelerates calculations of the Coulomb interactions, the van der Waals interactions and so on. It can also be used to accelerate calculations of the Biot-Savart integral. The diocotron modes reproduced by the simulations agree with the result predicted by linear theory. This indicates that the current-vortex method is applicable to problems of the non-neutral plasma. The linear growth rates of the diocotron instability in the simulations also agree with the theoretical ones. This implies that MDGRAPE-2 gives the sufficiently accurate results for the calculations of the current-vortex method. A mechanism of merging of electron clumps is demonstrated by the simulations. It is concluded that the electric field induced by the conducting wall makes the nonlinear stage unstable and causes the clumps to merge

  3. Approaching Pomeranchuk instabilities from ordered phase: A crossing-symmetric equation method

    International Nuclear Information System (INIS)

    Reidy, Kelly; Quader, Khandker; Bedell, Kevin

    2014-01-01

    We explore features of a 3D Fermi liquid near generalized Pomeranchuk instabilities using a tractable crossing-symmetric equation method. We approach the instabilities from the ordered ferromagnetic phase. We find “quantum multi-criticality” as approach to the ferromagnetic instability drives instability in other channel(s). It is found that a charge nematic instability precedes and is driven by Pomeranchuk instabilities in both the ℓ=0 spin and density channels

  4. Filament Channel Formation, Eruption, and Jet Generation

    Science.gov (United States)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  5. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    International Nuclear Information System (INIS)

    Belova, E.V.; Gorelenkov, N.N.; Cheng, C.Z.; Fredrickson, E.D.

    2003-01-01

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects

  6. Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor

    Science.gov (United States)

    Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui

    2017-11-01

    Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.

  7. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.

    Science.gov (United States)

    Kang, Sung-Min; Hwang, Sora; Jin, Si-Hyung; Choi, Chang-Hyung; Kim, Jongmin; Park, Bum Jun; Lee, Daeyeon; Lee, Chang-Soo

    2014-03-18

    We present a facile and inexpensive approach without any fluorinated chemistry to create superhydrophobic surface with exceptional liquid repellency, transportation of oil, selective capture of oil, optical bar code, and self-cleaning. Here we show experimentally that the control of evaporation is important and can be used to form superhydrophobic surface driven by Marangoni instability: the method involves in-situ photopolymerization in the presence of a volatile solvent and porous PDMS cover to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The porous PDMS cover significantly affects Marangoni convection of coating fluid, inducing composition gradients at the same time. In addition, the change of concentration of ethanol is able to produce versatile surfaces from hydrophilic to superhydrophobic and as a consequence to determine contact angles as well as roughness factors. In conclusion, the control of evaporation under the polymerization provides a convenient parameter to fabricate the superhydrophobic surface, without application of fluorinated chemistry and the elegant nanofabrication technique.

  8. Diffusive instabilities in hyperbolic reaction-diffusion equations

    Science.gov (United States)

    Zemskov, Evgeny P.; Horsthemke, Werner

    2016-03-01

    We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.

  9. Concerning the dynamic instability of actin homolog ParM

    International Nuclear Information System (INIS)

    Popp, David; Yamamoto, Akihiro; Iwasa, Mitsusada; Narita, Akihiro; Maeda, Kayo; Maeda, Yuichiro

    2007-01-01

    Using in vitro TIRF- and electron-microscopy, we reinvestigated the dynamics of native ParM, a prokaryotic DNA segregation protein and actin homolog. In contrast to a previous study, which used a cysteine ParM mutant, we find that the polymerization process of wild type ATP-ParM filaments consists of a polymerization phase and a subsequent steady state phase, which is dynamically unstable, like that of microtubules. We find that the apparent bidirectional polymerization of ParM, is not due to the intrinsic nature of this filament, but results from ParM forming randomly oriented bundles in the presence of crowding agents. Our results imply, that in the bacterium, ParM filaments spontaneously form bipolar bundles. Due to their intrinsic dynamic instability, ParM bundles can efficiently 'search' the cytoplasmic lumen for DNA, bind it equally well at the bipolar ends and segregate it approximately symmetrically, by the insertion of ParM subunits at either end

  10. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  11. Instabilities in the 'on' phase of the plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1990-07-01

    In the operation of large plasma focus devices, e.g. POSEIDON, there appear saturation phenomena in the neutron production when the charging energy of the condensor bank approaches its nominal value. This saturation is attributed to the action of impurities. It is assumed that there appear instabilities which are in part caused by impurities. In order to be able to answer this question, the linear dispersion relation was derived from a three-fluid theory (electrons, ions and neutrals) with the aid of the computer algebra (CA) code MACSYMA. The inversion of the 17x17 matrix (it is assumed that v a =v i and T a =T i ) and solution of the determinant was carried out on a CONVEX C 120 computer using the CA code MAPLE. The calculation of the zeros was done with a modified CPZERO program from the SLATEC library. There appear four instabilities in the rundown phase of the plasma focus, two of them gradient driven. The first two are unstable electrostatic waves with very high phase velocities, thus they do not contribute to anomalous dissipation. The third is identified as a gradient driven space charge instability which may possibly lead to current chopping. The electron acoustic wave instability, here gradient driven, is the fourth. It was found in a previous study of MPD thruster instabilities. (orig.)

  12. The magnetized electron-acoustic instability driven by a warm, field-aligned electron beam

    International Nuclear Information System (INIS)

    Sooklal, A.; Mace, R.L.

    2004-01-01

    The electron-acoustic instability in a magnetized plasma having three electron components, one of which is a field-aligned beam of intermediate temperature, is investigated. When the plasma frequency of the cool electrons exceeds the electron gyrofrequency, the electron-acoustic instability 'bifurcates' at sufficiently large propagation angles with respect to the magnetic field to yield an obliquely propagating, low-frequency electron-acoustic instability and a higher frequency cyclotron-sound instability. Each of these instabilities retains certain wave features of its progenitor, the quasiparallel electron-acoustic instability, but displays also new magnetic qualities through its dependence on the electron gyrofrequency. The obliquely propagating electron-acoustic instability requires a lower threshold beam speed for its excitation than does the cyclotron-sound instability, and for low to intermediate beam speeds has the higher maximum growth rate. When the plasma is sufficiently strongly magnetized that the plasma frequency of the cool electrons is less than the electron gyrofrequency, the only instability in the electron-acoustic frequency range is the strongly magnetized electron-acoustic instability. Its growth rate and real frequency exhibit a monotonic decrease with wave propagation angle and it grows at small to intermediate wave numbers where its parallel phase speed is approximately constant. The relevance of the results to the interpretation of cusp auroral hiss and auroral broadband electrostatic noise is briefly discussed

  13. Simulation and quasilinear theory of proton firehose instability

    Energy Technology Data Exchange (ETDEWEB)

    Seough, Jungjoon [Korean Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Faculty of Human Development, University of Toyama, 3190, Gofuku, Toyama City, Toyama, 930-8555 (Japan); Yoon, Peter H. [University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Hwang, Junga [Korean Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Korea, University of Science and Technology, Daejeon (Korea, Republic of)

    2015-01-15

    The electromagnetic proton firehose instability is driven by excessive parallel temperature anisotropy, T{sub ∥} > T{sub ⊥} (or more precisely, parallel pressure anisotropy, P{sub ∥} > P{sub ⊥}) in high-beta plasmas. Together with kinetic instabilities driven by excessive perpendicular temperature anisotropy, namely, electromagnetic proton cyclotron and mirror instabilities, its role in providing the upper limit for the temperature anisotropy in the solar wind is well-known. A recent Letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] employed quasilinear kinetic theory for these instabilities to explain the observed temperature anisotropy upper bound in the solar wind. However, the validity of quasilinear approach has not been rigorously tested until recently. In a recent paper [Seough et al., Phys. Plasmas 21, 062118 (2014)], a comparative study is carried out for the first time in which quasilinear theory of proton cyclotron instability is tested against results obtained from the particle-in-cell simulation method, and it was demonstrated that the agreement was rather excellent. The present paper addresses the same issue involving the proton firehose instability. Unlike the proton cyclotron instability, however, it is found that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime. Possible causes and mechanisms responsible for the discrepancies are speculated and discussed.

  14. Mutation-specific effects on thin filament length in thin filament myopathy.

    Science.gov (United States)

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  15. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO{sub 2} dissolution in water

    Energy Technology Data Exchange (ETDEWEB)

    Outeda, R.; D' Onofrio, A. [Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); El Hasi, C.; Zalts, A. [Instituto de Ciencias, Universidad Nacional General Sarmiento, J. M. Gutiérrez 1150, B1613GSX, Los Polvorines, Provincia de Buenos Aires (Argentina)

    2014-03-15

    Density driven instabilities produced by CO{sub 2} (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO{sub 2} pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO{sub 2} pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm{sup −1}) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO{sub 2} pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.

  16. Polymer dynamics driven by a helical filament

    Science.gov (United States)

    Balin, Andrew; Shendruk, Tyler; Zoettl, Andreas; Yeomans, Julia

    Microbial flagellates typically inhabit complex suspensions of extracellular polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena. We study the hydrodynamic and steric influence of a rotating helical filament on suspended polymers using Stokesian Dynamics simulations. Our results show that as a stationary rotating helix pumps fluid along its long axis, nearby polymers migrate radially inwards and are elongated in the process. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. At larger Weissenberg numbers, this accumulation of polymers within the vicinity of the helix is greater. Further, we have analysed the stochastic work performed by the helix on the polymers and we show that this quantity is positive on average and increases with polymer contour length. Our results provide a basis for understanding the microscopic interactions that govern cell dynamics in complex media. This work was supported through funding from the ERC Advanced Grant 291234 MiCE and we acknowledge EMBO funding to TNS (ALTF181-2013).

  17. The Origin of Solar Filament Plasma Inferred from In Situ Observations of Elemental Abundances

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Li, L. P. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhao, L. [Department of Climate and Space sciences and Engineering, University of Michigan, Ann Arbor, MI 48105 (United States); He, J. S.; Duan, D. [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Cheng, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, J., E-mail: hqsong@sdu.edu.cn [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States)

    2017-02-10

    Solar filaments/prominences are one of the most common features in the corona, which may lead to energetic coronal mass ejections (CMEs) and flares when they erupt. Filaments are about 100 times cooler and denser than the coronal material, and physical understanding of their material origin remains controversial. Two types of scenarios have been proposed: one argues that the filament plasma is brought into the corona from photosphere or chromosphere through a siphon or evaporation/injection process, while the other suggests that the material condenses from the surrounding coronal plasma due to thermal instability. The elemental abundance analysis is a reasonable clue to constrain the models, as the siphon or evaporation/injection model would predict that the filament material abundances are close to the photospheric or chromospheric ones, while the condensation model should have coronal abundances. In this Letter, we analyze the elemental abundances of a magnetic cloud that contains the ejected filament material. The corresponding filament eruption occurred on 1998 April 29, accompanying an M6.8 class soft X-ray flare located at the heliographic coordinates S18E20 (NOAA 08210) and a fast halo CME with the linear velocity of 1374 km s{sup −1} near the Sun. We find that the abundance ratios of elements with low and high first ionization potential such as Fe/O, Mg/O, and Si/O are 0.150, 0.050, and 0.070, respectively, approaching their corresponding photospheric values 0.065, 0.081, and 0.066, which does not support the coronal origin of the filament plasma.

  18. Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. I - General theory and stationary stability results

    Science.gov (United States)

    Hardin, G. R.; Sani, R. L.; Henry, D.; Roux, B.

    1990-01-01

    The buoyancy-driven instability of a monocomponent or binary fluid completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and the resulting linear stability problem is solved using a Galerkin technique. The analysis considers fluid mixtures ranging from gases to liquid metals. The flow structure is found to depend strongly on both the cylinder aspect ratio and the magnitude of the Soret effect. The predicted stability limits are shown to agree closely with experimental observations.

  19. A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Auddy, Sayantan; Basu, Shantanu [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Kudoh, Takahiro, E-mail: sauddy3@uwo.ca, E-mail: basu@uwo.ca, E-mail: kudoh@nagasaki-u.ac.jp [Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan)

    2016-11-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which is essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.

  20. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments

    Directory of Open Access Journals (Sweden)

    James M. Wagstaff

    2017-05-01

    Full Text Available Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ, we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ’s conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.

  1. Numerical simulation of Rayleigh-Taylor instability in ablation driven systems

    International Nuclear Information System (INIS)

    Verdon, C.P.

    1984-01-01

    Two-dimensional numerical simulations of ablatively accelerated thin shells subject to Rayleigh-Taylor instability are presented. Results for both single wavelength and multiwavelength perturbations show that the nonlinear effects of the instability are evident mainly in the bubble rather than the spike. Approximate roles for predicting the dominant nonlinear mode-mode interactions, which limit shell performance, are also discussed. The work concludes with a discussion of recommendations for future work in this area

  2. Neutron star pulsations and instabilities

    International Nuclear Information System (INIS)

    Lindblom, L.

    2001-01-01

    Gravitational radiation (GR) drives an instability in certain modes of rotating stars. This instability is strong enough in the case of the r-modes to cause their amplitudes to grow on a timescale of tens of seconds in rapidly rotating neutron stars. GR emitted by these modes removes angular momentum from the star at a rate which would spin it down to a relatively small angular velocity within about one year, if the dimensionless amplitude of the mode grows to order unity. A pedagogical level discussion is given here on the mechanism of GR instability in rotating stars, on the relevant properties of the r-modes, and on our present understanding of the dissipation mechanisms that tend to suppress this instability in neutron stars. The astrophysical implications of this GR driven instability are discussed for young neutron stars, and for older systems such as low mass x-ray binaries. Recent work on the non-linear evolution of the r-modes is also presented. (author)

  3. High-resolution Observations of Downflows at One End of a Pre-eruption Filament

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin, E-mail: ql47@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

    2017-06-01

    Studying the dynamics of filaments at the pre-eruption phase can shed light on the precursor of eruptive events. Such high-resolution studies (of the order of 0.″1) are highly desirable yet very rare. In this work, we present a detailed observation of a pre-eruption evolution of a filament obtained by the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO). One end of the filament is anchored at the sunspot in the NOAA active region (AR) 11515, which is well observed by NST H α off-bands from four hours before to one hour after the filament eruption. A M1.6 flare is associated with the eruption. We observed persistent downflowing materials along the H α multi-threaded component of the loop toward the AR end during the pre-eruption phase. We traced the trajectories of plasma blobs along the H α threads and obtained a plane-of-sky velocity of 45 km s{sup −1} on average. Furthermore, we estimated the real velocities of the downflows and the altitude of the filament by matching the observed H α threads with magnetic field lines extrapolated from a nonlinear force-free field model. Observations of chromospheric brightenings at the footpoints of the falling plasma blobs are also presented. The lower limit of the kinetic energy per second of the downflows through the brightenings is found to be ∼10{sup 21} erg. Larger FOV observations from BBSO full-disk H α images show that the AR end of the filament started ascending four hours before the flare. We attribute the observed downflows at the AR end of the filament to the draining effect of the filament rising prior to its eruption. During the slow-rise phase, the downflows continuously drained away ∼10{sup 15}g mass from the filament over a few hours, which is believed to be essential for the instability, and could be an important precursor of eruptive events.

  4. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions.

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A; Frey, Erwin; Bausch, Andreas R

    2015-10-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11-13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  5. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  6. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    Science.gov (United States)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  7. Hosing, sausaging, filamentation and side-scatter of a high-intensity short-pulse laser in an under-dense plasma

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Clark, E.L.; Salvati, M.; Santala, M.I.K.; Tatarakis, M.; Dangor, A.E.

    2000-01-01

    Previous studies of high-intensity short-pulse laser beams propagating in under-dense plasma have relied on spectrally integrated Thomson scattering images. Though interesting, many significant features of the interaction cannot be diagnosed by this method. We report on shadow-graphy and spectrally resolved Thomson scattering of such an interaction. These images reveal many processes previously predicted but unseen, such as the Raman side-scatter and filamentation instabilities. Also the interaction is shown to clearly demonstrate many propagation instabilities such as 'sausaging' and 'hosing' for the first time. (authors)

  8. Instabilities and vortex dynamics in shear flow of magnetized plasmas

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.

    1990-03-01

    Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab

  9. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-01-01

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time

  10. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  11. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    Science.gov (United States)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  12. Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.

    Science.gov (United States)

    Proll, J H E; Helander, P; Connor, J W; Plunk, G G

    2012-06-15

    It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.

  13. Kinetic theory of tearing instability

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Dobrott, D.; Wang, T.S.

    1975-01-01

    The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments

  14. Radiation-induced genomic instability driven by de novo chromosomal rearrangement hot spots

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Allen, R.N.; Moore, S.R.

    2003-01-01

    Genomic instability has become generally recognized as a critical contributor to tumor progression by generating the necessary number of genetic alterations required for expression of a clinically significant malignancy. Our study of chromosomal instability investigates the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in instability acting predominantly in cis. Here we present an analysis of the karyotypic distribution of instability associated chromosomal rearrangements in TK6 and derivative human lymphoblasts. Karyotypic analysis performed on a total of 455 independent clones included 183 rearrangements distributed among 100 separate unstable clones. The results demonstrate that the breakpoints of chromosomal rearrangements in unstable clones are non-randomly distributed throughout the genome. This pattern is statistically significant, and incompatible with expectations for random breakage associated with loss or alteration of a trans-acting factor. Furthermore, specific chromosomal breakage hot spots associated with instability have been identified; these occur in several independent unstable clones and are often repeatedly broken and rejoined during the outgrowth of an individual clone. In complimentary studies, genomic instability was generated without any exposure to a DNA-damaging agent, but rather by transfection with alpha heterochromatin DNA. In a prospective analysis, human-hamster hybrid AL cells containing a single human chromosome 11 were transfected with heterochromatic alpha DNA repeats and clones were analyzed by chromosome 11 painting. Transfection with alpha DNA was associated with karyotypic heterogeneity in 40% of clones examined; control transfections with plasmid alone did not lead to karyotypic heterogeneity

  15. Kinetic theory of tearing instabilities

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1977-01-01

    The transition of the tearing instability from the collisional to the collisionless regime is investigated kinetically using a Fokker--Planck collision operator to represent electron-ion collisions. As a function of the collisionality of the plasma, the tearing instability falls into three regions, which are referred to as collisionless, semi-collisional, and collisional. The width Δ of the singular layer around kxB 0 =0 is limited by electron thermal motion along B 0 in the collisional and semi-collisional regimes and is typically smaller than rho/sub i/, the ion Larmor radius. Previously accepted theories, which are based on the assumption Δvery-much-greater-thanrho/sub i/, are found to be valid only in the collisional regime. The effects of density and temperature gradients on the instabilities are also studied. The tearing instability is only driven by the temperature gradient in the collisional and semi-collisional regimes. Numerical calculations indicate that the semi-collisional tearing instability is particularly relevant to present day high temperature tokamak discharges

  16. ELMs and the role of current-driven instabilities in the edge

    International Nuclear Information System (INIS)

    Snyder, P.B.; Wilson, H.R.

    2001-01-01

    Edge localized modes (ELMs) can limit tokamak performance both directly, via large transient heat loads, and indirectly, through constraints placed on the H-mode pedestal height which impact global confinement. Theoretical understanding of the physics of ELMs should allow optimisation of existing experiments, and lead to greater confidence in projections for Next Step devices. However, understanding ELMs has proved challenging, in part because the sharp edge pressure gradients and consequent large bootstrap currents in the pedestal region provide drive for a variety of modes over a wide range of toroidal mode numbers (n). Here we present a brief discussion of ELM phenomenology, focussing primarily on ELMs whose frequency increases with input power. Theories of ELMs will be reviewed, emphasizing those which incorporate current-driven instabilities such as kink or 'peeling' modes. Parallel current plays a dual role in the edge, enhancing second stability access for ballooning modes while providing drive for peeling modes. The strong collisionality dependence of the edge bootstrap current introduces separate density and temperature dependence into pedestal MHD stability. We give a detailed description of recent work on coupled peeling-ballooning modes, including a model for ELM characteristics and temperature pedestal limits. Peeling-ballooning stability analysis of experimental discharges will be discussed, emphasising comparisons of different ELM regimes, such as the comparison between 'giant' and 'grassy' ELM shots on JT-60U. (orig.)

  17. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua; Sacco, Alessandra; Fowler, Velia M

    2014-03-01

    Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.

  18. Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory

    Science.gov (United States)

    Berger, Richard; Chapman, Thomas; Brunner, Stephan

    2013-10-01

    The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  19. Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity

    Science.gov (United States)

    Meca, Esteban; Münch, Andreas; Wagner, Barbara

    2018-01-01

    We study numerically and analytically the instabilities associated with phase separation in a solid layer on which an external material flux is imposed. The first instability is localized within a boundary layer at the exposed free surface by a process akin to spinodal decomposition. In the limiting static case, when there is no material flux, the coherent spinodal decomposition is recovered. In the present problem, stability analysis of the time-dependent and nonuniform base states as well as numerical simulations of the full governing equations are used to establish the dependence of the wavelength and onset of the instability on parameter settings and its transient nature as the patterns eventually coarsen into a flat moving front. The second instability is related to the Mullins-Sekerka instability in the presence of elasticity and arises at the moving front between the two phases when the flux is reversed. Stability analyses of the full model and the corresponding sharp-interface model are carried out and compared. Our results demonstrate how interface and bulk instabilities can be analyzed within the same framework which allows us to identify and distinguish each of them clearly. The relevance for a detailed understanding of both instabilities and their interconnections in a realistic setting is demonstrated for a system of equations modeling the lithiation and delithiation processes within the context of lithium ion batteries.

  20. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, CCHEN, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Castillo, Fermin [Universidad Nacional Autónoma de México, Cuernavaca, México (Mexico); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago (Chile); Auluck, S. K. H. [Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  1. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  2. Photoemission starting of induction rf-driven multicusp ion sources

    International Nuclear Information System (INIS)

    Pickard, D.S.; Leung, K.N.; Perkins, L.T.; Ponce, D.M.; Young, A.T.

    1996-01-01

    It has been demonstrated that pulsed and continuous wave, rf-driven hydrogen discharges can be started with photoemission. The extracted H - current from a photoemission-started plasma has been investigated and does not differ significantly from that of a filament-started plasma. The minimum pressure for photoemissive starting was found to be higher than that of filament starting, 17 mTorr compared to 7 mTorr, respectively, in this particular configuration. copyright 1996 American Institute of Physics

  3. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  4. MHD kink-driven instabilities in net-current-free stellarators

    International Nuclear Information System (INIS)

    Rewoldt, G.; Johnson, J.L.

    1984-02-01

    The Pfirsch-Schlueter current, which is induced in a toroidal device to keep the plasma current diverence-free, is shown to drive a free-boundary instability in a model of a net-current-free ATF-1 stellarator if = 2.6%

  5. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    International Nuclear Information System (INIS)

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-01-01

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  6. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  7. Nonlinear saturated states of the magnetic-curvature-driven Rayleigh-Taylor instability in three dimensions

    International Nuclear Information System (INIS)

    Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter

    2005-01-01

    Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits

  8. Linear waves and instabilities

    International Nuclear Information System (INIS)

    Bers, A.

    1975-01-01

    The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)

  9. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  10. Hydrodynamic instabilities in inertial confinement fusion

    International Nuclear Information System (INIS)

    Hoffman, N.M.

    1995-01-01

    The focus of these (two) lectures is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. (author)

  11. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  12. Localized nonlinear waves on quantized superfluid vortex filaments in the presence of mutual friction and a driving normal fluid flow.

    Science.gov (United States)

    Shah, Rehan; Van Gorder, Robert A

    2016-03-01

    We demonstrate the existence of localized structures along quantized vortex filaments in superfluid helium under the quantum form of the local induction approximation (LIA), which includes mutual friction and normal fluid effects. For small magnitude normal fluid velocities, the dynamics are dissipative under mutual friction. On the other hand, when normal fluid velocities are sufficiently large, we observe parametric amplification of the localized disturbances along quantized vortex filaments, akin to the Donnelly-Glaberson instability for regular Kelvin waves. As the waves amplify they will eventually cause breakdown of the LIA assumption (and perhaps the vortex filament itself), and we derive a characteristic time for which this breakdown occurs under our model. More complicated localized waves are shown to occur, and we study these asymptotically and through numerical simulations. Such solutions still exhibit parametric amplification for large enough normal fluid velocities, although this amplification may be less uniform than would be seen for more regular filaments such as those corresponding to helical curves. We find that large rotational velocities or large wave speeds of nonlinear waves along the filaments will result in more regular and stable structures, while small rotational velocities and wave speeds will permit far less regular dynamics.

  13. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    Science.gov (United States)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  14. Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Sunahara, Atsushi; Nishihara, Katsunobu; Johzaki, Tomoyuki; Shiraga, Hiroyuki; Shigemori, Keisuke; Nakai, Mitsuo; Ikegawa, Tadashi; Murakami, Masakatsu; Nagai, Keiji; Norimatsu, Takayoshi; Azechi, Hiroshi; Yamanaka, Tatsuhiko; Ohnishi, Naofumi

    2004-01-01

    A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately--one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme

  15. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  16. Tearing instabilities in turbulence

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2009-01-01

    Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial

  17. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  18. Mononucleotide precedes dinucleotide repeat instability during colorectal tumour development in Lynch syndrome patients

    NARCIS (Netherlands)

    Ferreira, Ana M.; Westers, Helga; Sousa, Sonia; Wu, Ying; Niessen, Renee C.; Olderode-Berends, Maran; van der Sluis, Tineke; Reuvekamp, Peter T. W.; Seruca, Raquel; Kleibeuker, Jan H.; Hollema, Harry; Sijmons, Rolf H.; Hofstra, Robert M. W.

    A progressive accumulation of genetic alterations underlies the adenoma-carcinoma sequence of colorectal cancer. This accumulation of mutations is driven by genetic instability, of which there are different types. Microsatellite instability (MSI) is the predominant type present in the tumours of

  19. Radial mode structure of curvature-driven instabilities in EBT

    International Nuclear Information System (INIS)

    Spong, D.A.

    1983-01-01

    Viewgraphs describe the theoretical treatment of the radial mode structure of plasma instabilities in the Elmo Bumpy Torus. The calculation retains nonlocal structure of the modes, connects inner and outer ring regions together, uses a self-consistent finite β, includes the relativistic effects for the hot electron ring, and examines a wide range of parameters

  20. Nonlinear growth of the quasi-interchange instability

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1988-07-01

    In this paper nonlinear effects on the growth of a pressure-driven, interchange-like mode are investigated. This mode is thought to be responsible for the sawtooth crashes observed in JET and successfully accounts for most of their features. The analysis presented here differs from previous bifurcation calculations by the inclusion of toroidal coupling effects. Toroidal curvature, which is important for pressure-driven modes, destroys the helical symmetry which is typical of kink-like instabilities. 14 refs., 3 figs

  1. Self-Field Effects in Magneto-Thermal Instabilities for Nb-Sn Strands

    CERN Document Server

    Bordini, B; Fehér, S; Rossi, L; Zlobin, A V

    2008-01-01

    Recent advancements in the critical current density (Jc) of Nb$_{3}$Sn conductors, coupled with a large effective filament size, have drawn attention to the problem of magnetothermal instabilities. At low magnetic fields, the quench current of such high Jc Nb$_{3}$Sn strands is significantly lower than their critical current because of the above-mentioned instabilities. An adiabatic model to calculate the minimum current at which a strand can quench due to magneto-thermal instabilities is developed. The model is based on an 'integral' approach already used elsewhere [1]. The main difference with respect to the previous model is the addition of the self-field effect that allows to describe premature quenches of non-magnetized Nb$_{3}$Sn strands and to better calculate the quench current of strongly magnetized strands. The model is in good agreement with experimental results at 4.2 K obtained at Fermilab using virgin Modified Jelly Roll (MJR) strands with a low Residual Resistivity Ratio (RRR) of the stabilizin...

  2. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-01-01

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M ⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ −1 in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade

  3. Ordinary mode instability associated with thermal ring distribution

    Science.gov (United States)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  4. Ordinary mode instability associated with thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, F.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  5. Effect of initial conditions on two-dimensional Rayleigh-Taylor instability and transition to turbulence in planar blast-wave-driven systems

    International Nuclear Information System (INIS)

    Miles, A.R.; Edwards, M.J.; Greenough, J.A.

    2004-01-01

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime

  6. The longitudinal wall impedance instability in a heavy-ion fusion driver

    International Nuclear Information System (INIS)

    Callahan, D.A.; Langdon, A.B.; Friedman, A.; Haber, I.

    1997-01-01

    For more than ten years [J. Bisognano, I. Haber, L. Smith, IEEE Trans. Nucl. Sci. NS-30, 2501 (1983)], the longitudinal wall impedance instability was thought to be a serious threat to the success of heavy-ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability, driven by the impedance of the induction modules used to accelerate the beam. Early estimates of the instability growth rate predicted tens of e-folds due to the instability which would modulate the current and increase the longitudinal momentum spread and prevent focusing the ion beam on the small spot needed at the target. We have simulated this instability using an r-z particle-in-cell code which includes a model for the module impedance. These simulations, using driver parameters, show that growth due to the instability is smaller than in previous calculations. We have seen that growth is mainly limited to one head to tail transit by a space-charge wave. In addition, the capacitive component of the module impedance, which was neglected in the early work of Lee [E. P. Lee, Proc. Linear Accelerator Conference, (UCRL-86452), Santa Fe, NM, 1981] significantly reduces the growth rate. We have also included in the simulation intermittently applied axial confining fields which are thought to be the major source of perturbations to seed the longitudinal instability. Simulations show the beam can adjust to a systematic error in the longitudinal confining fields while a random error excites the most unstable wavelength of the instability. These simulations show that the longitudinal instability must be taken into account in a driver design, but it is not the major factor it was once thought to be. copyright 1997 American Institute of Physics

  7. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    Science.gov (United States)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

  8. A new necessary condition for Turing instabilities.

    Science.gov (United States)

    Elragig, Aiman; Townley, Stuart

    2012-09-01

    Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  10. Modeling Thermally Driven Flow Problems with a Grid-Free Vortex Filament Scheme: Part 1

    Science.gov (United States)

    2018-02-01

    simulation FMM Fast Multipole Method GPUs graphic processing units LES Large Eddy Simulation M-O Monin-Obukhov MPI Message Passing Interface Re Reynolds...mail.mil>. Grid-free representation of turbulent flow via vortex filaments offers a means for large eddy simulations that faithfully and efficiently...particle, Lagrangian, turbulence, grid-free, large eddy simulation , natural convection, thermal bubble 56 Pat Collins 301-394-5617Unclassified

  11. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  12. Filamentation of a surface plasma wave over a semiconductor-free space interface

    Science.gov (United States)

    Kumar, Gagan; Tripathi, V. K.

    2007-12-01

    A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.

  13. Temporal symmetry of individual filaments in different spatial symmetry filaments pattern in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dong, L. F.; Xiao, H.; Fan, W. L.; Yin, Z. Q.; Zhao, H. T.

    2010-01-01

    The temporal behavior of individual filament in different spatial symmetry filaments patterns in dielectric barrier discharge is investigated by using an optical method. A series of return maps of the discharge moments of individual filaments is given. It is found that the temporal symmetry of individual filament changes with the change of the spatial symmetry of filaments pattern as the applied voltage increases. The role of wall charges for this phenomenon is analyzed.

  14. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  15. New features of current-driven low-frequency instabilities in a Q-machine plasma

    International Nuclear Information System (INIS)

    Dimitriu, Dan-Gheorghe; Ignatescu, Valerian; Lozneanu, Erzilia; Sanduloviciu, Mircea; Ionita, Codrina; Schrittwieser, Roman Wolfgang

    2001-01-01

    Among the instabilities in a low-density magnetized plasma column, the electrostatic ion-cyclotron instability (EICI) and the potential relaxation instability (PRI) are the best known and most thoroughly investigated. Both instabilities are excited by drawing an electron current parallel to the magnetic field towards a circular collector (CO), which is inserted into the plasma column perpendicular to the axis. For the PRI, the radius of CO must be considerably larger than the ion gyroradius so that the ion trajectories can be approximated as one-dimensional. For the EICI, the radius of CO must be considerably smaller than that of the plasma column, but also larger than one ion gyroradius. A transition from the PRI into the EICI was reported earlier. A certain range of CO radii was found where both instabilities could be excited simultaneously. We report on a strong modulation of the EICI by the PRI, obtained for gradually increasing the CO bias, with the EICI appearing at first, and later the PRI. The EICI frequency was about four times larger than that of the PRI. The modulation not only affects the amplitude but also the frequency of the EICI. This leads to the formation of sidebands in the spectrum around f EICI with a frequency difference equal to ± f PRI . In addition, we find that the EICI frequency depends not only on the magnetic field strength but also on the CO current. Our data also show a strong non-linear dependence of the PRI frequency on the magnetic field strength. To explain these features, we propose a new phenomenological model, which is able to clarify the role of complex space charge configurations for low frequency instabilities in a low-density magnetized plasma column. (authors)

  16. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  17. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  18. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  19. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  20. Global simulation of edge pedestal micro-instabilities

    Science.gov (United States)

    Wan, Weigang; Parker, Scott; Chen, Yang

    2011-10-01

    We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.

  1. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available extensively used for the deposition of various materials, including diamond [1], polymers [2], silicon thin films [3], boron-carbon-nitride layers [4] and carbon nanotubes (CNTs) [5]. The process relies on the catalytic decomposition of precursor gases... (Ho) twice as efficient as a W filament during the deposition of microcrystalline silicon thin films [6]. Reactions between the precursor gases and the heated filament result in changes of the structural properties of the filaments; a process...

  2. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  3. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  4. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  5. Cooperative motion of intrinsic and actuated semiflexible swimmers

    Science.gov (United States)

    Llopis, I.; Pagonabarraga, I.; Cosentino Lagomarsino, M.; Lowe, C. P.

    2013-03-01

    We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e.g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements.

  6. Low-field Instabilities in Nb$_{3}$Sn Multifilamentary Wires the Possible Role of Unreacted Nb

    CERN Document Server

    Devred, A; Celentano, G; Fabbricatore, P; Ferdeghini, C; Greco, M; Gambardella, U

    2007-01-01

    We report an experimental study aiming to demonstrate the not negligible role of unreacted Nb on the magnetic instabilities in superconducting Nb$_{3}$Sn multifilamentary wires, observable through partial flux jumps at magnetic field values below 0.5 T. The analysed wires were recently developed for use as dipoles required in future high-energy proton accelerators and are based on powder-in-tube technology. We studied both unreacted (only involving Nb filaments) and reacted wires, finding flux jump instabilities in both cases when performing magnetic measurements. The results can be interpreted on the basis of the critical state model and are coherent with the intrinsic stability criterion.

  7. Methods for Simulating the Heavy Core Instability

    Directory of Open Access Journals (Sweden)

    Chang Philip

    2013-04-01

    Full Text Available Vortices have been proposed as the sites of planet formation, where dust collects and grows into planetesimals, the building blocks of planets. However, for very small dust particles that can be treated as a pressure-less fluid, we have recently discovered the “heavy core” instability, driven by the density gradient in the vortex. In order to understand the eventual outcome of this instability, we need to study its non-linear development. Here, we describe our ongoing work to develop highly accurate numerical models of a vortex with a density gradient embedded within a protoplanetary disk.

  8. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  9. Non-linear development of secular gravitational instability in protoplanetary disks

    Science.gov (United States)

    Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.

    2018-01-01

    We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.

  10. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  11. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  12. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  13. Development of Rayleigh-Taylor and bulk convection instabilities in the dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent

  14. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  15. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  16. Considerations of ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.

    1991-02-01

    The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs

  17. Filaments and clusters of galaxies

    International Nuclear Information System (INIS)

    Soltan, A.

    1987-01-01

    A statistical test to investigate filaments of galaxies is performed. Only particular form of filaments is considered, viz. filaments connecting Abell clusters of galaxies. Relative position of triplets ''cluster - field object - cluster'' is analysed. Though neither cluster sample nor field object sample are homogeneous and complete only peculiar form of selection effects could affect the present statistics. Comparison of observational data with simulations shows that less than 15 per cent of all field galaxies is concentrated in filaments connecting rich clusters. Most of the field objects used in the analysis are not normal galaxies and it is possible that this conclusion is not in conflict with apparent filaments seen in the Lick counts and in some nearby 3D maps of the galaxy distribution. 26 refs., 2 figs. (author)

  18. Alfvénic instabilities driven by runaways in fusion plasmas

    International Nuclear Information System (INIS)

    Fülöp, T.; Newton, S.

    2014-01-01

    Runaway particles can be produced in plasmas with large electric fields. Here, we address the possibility that such runaway ions and electrons excite Alfvénic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions

  19. Demonstration of various rotor instabilities (exhibit of Bently Rotor Dynamics Research Corporation Laborator rigs at symposium on instability in rotaing machinery)

    Science.gov (United States)

    Muszynska, A.

    1985-01-01

    The operation of rotor rigs used to demonstrate various instability phenomena occurring in rotating machines is described. The instability phenomena demonstrated included oil whirl/whip antiswirl, rub, loose rotating parts, water-lubricated bearing instabilities, and cracked shaft. The rotor rigs were also used to show corrective measures for preventing instabilities. Vibrational response data from the rigs were taken with modern, computerized instrumentation. The rotor nonsynchronous perturbation rig demonstrated modal identification techniques for rotor/bearing systems. Computer-aided data acquisition and presentation, using the dynamic stiffness method, makes it possible to identify rotor and bearing parameters for low modes. The shaft mode demonstrator presented the amplified modal shape line of the shaft excited by inertia forces of unbalance (synchronous perturbation). The first three bending modes of the shaft can be demonstrated. The user-friendly software, Orbits, presented a simulation of rotor precessional motion that is characteristic of various instability phenomena. The data presentation demonstration used data measured on a turbine driven compressor train as an example of how computer aided data acquisition and presentation assists in identifying rotating machine malfunctions.

  20. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  1. Direct Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Venturini, M.

    2011-01-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the buildup and interaction of electron clouds with a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons.

  2. Electron-temperature-gradient-induced instability in tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Y.A.; Xu, X.Q.

    1992-08-01

    An electron temperature instability driven by the Kunkel-Guillory sheath impedance, has been applied to the scrape-off layer of tokamaks. The formalism has been generalized to more fully account for parallel wavelength dynamics, to differentiate between electromagnetic and electrostatic perturbations and to account for particle recycling effects. It is conjectured that this conducting wall instability leads to edge fluctuations in tokamaks that produce scrape-off widths of many ion Larmor radii ≅10. The predicted instability characteristics correlate somewhat with DIII-D edge fluctuation data, and the scrape-off layer width in the DIII-D experiment agrees with theoretical estimates that can be derived from mixing lenght theory

  3. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  4. Local instabilities in magnetized rotational flows: A short-wavelength approach

    OpenAIRE

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  5. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  6. Laser-sheet imaging of HE-driven interfaces

    International Nuclear Information System (INIS)

    Benjamin, R.F.; Rightley, P.M.; Kinkead, S.; Martin, R.A.; Critchfield, R.; Sandoval, D.L.; Holmes, R.; Gorman, T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors made substantial progress in developing the MILSI (Multiple Imaging of Laser-Sheet Illumination) technique for high explosive (HE)-driven fluid interfaces. They observed the instability, but have not yet measured the instability growth rate. They developed suitable sample containers and optical systems for studying the Rightmyer-Meshkov instability of perturbed water/bromoform interfaces and they successfully fielded the new MILSI diagnostic at two firing-site facilities. The problem continues to be of central importance to the inertial confinement fusion (ICF) and weapons physics communities

  7. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges

    International Nuclear Information System (INIS)

    Haruki, Takayuki; Yousefi, Hamid Reza; Masugata, Katsumi; Sakai, Jun-Ichi; Mizuguchi, Yusuke; Makino, Nao; Ito, Hiroaki

    2006-01-01

    In an experimental plasma, high-energy particles were observed by using a plasma focus device, to obtain energies of a few hundred keV for electrons, up to MeV for ions. In order to study the mechanism of high-energy particle production in pinched plasma discharges, a numerical simulation was introduced. By use of a three-dimensional relativistic and fully electromagnetic particle-in-cell code, the dynamics of a Z-pinch plasma, thought to be unstable against sausage and kink instabilities, are investigated. In this work, the development of sausage and kink instabilities and subsequent high-energy particle production are shown. In the model used here, cylindrically distributed electrons and ions are driven by an external electric field. The driven particles spontaneously produce a current, which begins to pinch by the Lorentz force. Initially the pinched current is unstable against a sausage instability, and then becomes unstable against a kink instability. As a result high-energy particles are observed

  8. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    Science.gov (United States)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  9. H I anisotropies associated with radio-polarimetric filaments . Steep power spectra associated with cold gas

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.

    2017-10-01

    Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium

  10. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  11. Influence of Stationary Crossflow Modulation on Secondary Instability

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  12. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  13. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  14. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  15. Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B. [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Abdi, M. R. [Department of Physics, Faculty of Science, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Sadighzadeh, A.; Rasouli, C. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2016-07-15

    The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instability moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.

  16. A parametric investigation on the cyclotron maser instability driven by ring-beam electrons with intrinsic Alfvén waves

    Science.gov (United States)

    Tong, Zi-Jin; Wang, Chuan-Bing; Zhang, Pei-Jin; Liu, Jin

    2017-05-01

    The electron-cyclotron maser is a process that generates the intense and coherent radio emission in the plasma. In this paper, we present a comprehensive parametric investigation on the electron-cyclotron-maser instability driven by non-thermal ring-beam electrons with intrinsic Alfvén waves, which pervade the solar atmosphere and interplanetary space. It is found that both forward propagating and backward propagating waves can be excited in the fast ordinary (O) and extraordinary (X) electromagnetic modes. The growth rates of X1 mode are almost always weakened by Alfvén waves. The average pitch-angle ϕ 0 of electrons is a key parameter for the effect of Alfvén waves on the growth rate of modes O1, O2, and X2. For a beam-dominated electron distribution ( ϕ 0 ≲ 30 ° ), the growth rates of the maser instability for O1, O2, and X2 modes are enhanced with the increase of the Alfvén wave energy density. In other conditions, the growth rates of O1, O2, and X2 modes weakened with the increasing Alfvén wave intensity, except that the growth of the O1 mode may also be enhanced by Alfvén waves for a ring distribution. The results may be important for us in analyzing the mechanism of radio bursts with various fine structures observed in space and astrophysical plasmas.

  17. Theory of 'strong' turbulence - Application to the ion acoustic instability

    International Nuclear Information System (INIS)

    Abdel-Gawad, Hamdy Ibrahim

    1984-01-01

    In this thesis, we apply the techniques recently developed in the theory of turbulence to study the evolution of the current-driven ion acoustic instability. We present a method allow to describe analytically and with a self-coherent manner the dynamic of the deformation of the distribution function of particles in the same time as the evolution of the turbulent energy. We have also discerned the saturation mechanisms of the instability as well as their domain of validity. (author) [fr

  18. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  19. Hydrodynamic instabilities in inertial confinement fusion

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1977-01-01

    Inertial confinement fusion targets generally consist of hollow high-density spheres filled with low density thermonuclear fuel. Targets driven ablatively by electrons, ions, or lasers are potentially unstable during the initial acceleration phase. Later in time, the relatively low density fuel decelerates the dense inner portion of the sphere (termed the pusher), permitting unstable growth at the fuel-pusher interface. The instabilities are of the Rayleigh-Taylor variety, modified by thermal and viscous diffusion and convection. These problems have been analyzed by many in recent years using both linearized perturbation methods and direct numerical simulation. Examples of two-dimensional simulations of the fuel-pusher instability in electron beam fusion targets will be presented, along with a review of possible stabilization mechanisms

  20. Quantifying the impact of an upwelling filament on the physical-chemical-biological interactions off SW Iberia

    Science.gov (United States)

    Cravo, A.; Sanchez, R.; Monteiro, C.; Cardeira, S.; Madureira, M.; Rita, F.; Relvas, P.

    2017-12-01

    Upwelling filaments are mesoscale structures of cold water that stretch seaward in a tongue-like shape with origin in the coastal upwelling zone. Filaments off the Iberian Peninsula are recurrent, showing similarities with those in the Californian coast. The Cape São Vicente, the SW tip of the Iberian Peninsula, is the root of recurrent filaments observed in the satellite imagery during the upwelling season. However, the understanding of its physical and chemical impact on the biological productivity is rather limited. There, a relatively small filament ( 80 km long) was investigated through remote sensing and in situ multidisciplinary observations during an upwelling favourable wind relaxation event, but just after an intense upwelling period. A total of 42 CTD+Rosette casts up to 400 m depth were distributed on an almost regular grid of 15 km mean spacing guided by guided by satellite SST imagery transmitted to the ship in near-real time. The parameters sampled during the sea campaign included: velocity field sampled along the ship track through a hull-mounted 38 kHz RDI ADCP, meteorological variables, temperature, salinity, chlorophyll a, dissolved oxygen, nitrate, phosphate, silicate, cadmium, lead and zinc. The extent of the impact of the filament was evaluated by quantifying the cross-shelf transports of several properties. The amounts conveyed by the filament were much stronger than those expected by the wind-driven Ekman mechanism, showing that it represents an efficient feature for the exchange of water, dissolved and particulate matter from the productive shelf towards the oligotrophic offshore region. Considering the periods of strong upwelling events and the extent of their duration along the year, the amounts of exported matter will certainly enhance the biological productivity of these waters, including its fisheries. These filament data contribute to better understand the physical-chemical-biological interactions of this regional ecosystem.

  1. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Max Karasik

    1999-01-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  2. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  3. TAE Saturation of Alpha Particle Driven Instability in TFTR

    International Nuclear Information System (INIS)

    Berk, H.L.; Chen, Y.; Gorelenkov, N.N.; White, R.B.

    1998-01-01

    A nonlinear theory of kinetic instabilities near threshold [H.L. Berk, et al., Plasma Phys. Rep. 23, (1997) 842] is applied to calculate the saturation level of Toroidicity-induced Alfvn Eigenmodes (TAE) and be compared with the predictions of (delta)f method calculations [Y. Chen, Ph.D. Thesis, Princeton University, 1998]. Good agreement is observed between the predictions of both methods and the predicted saturation levels are comparable with experimentally measured amplitudes of the TAE oscillations in TFTR [D.J. Grove and D.M. Meade, Nucl. Fusion 25, (1985) 1167

  4. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  5. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  6. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.

    Science.gov (United States)

    Piriz, A R; Sun, Y B; Tahir, N A

    2015-03-01

    A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.

  7. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  8. Potential for the Vishniac instability in ionizing shock waves propagating into cold gases

    Science.gov (United States)

    Robinson, A. P. L.; Pasley, J.

    2018-05-01

    The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.

  9. Boolean gates on actin filaments

    International Nuclear Information System (INIS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  10. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  11. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  12. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  13. Prediction of Solar Eruptions Using Filament Metadata

    Science.gov (United States)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  14. Effect of ion cyclotron acceleration on frequency chirping beam-driven instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  15. Effect of Ion Cyclotron Acceleration on Frequency Chirping Beam-Driven Instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  16. Laboratory Study of Magnetorotational Instability and Hydrodynamic Stability at Large Reynolds Numbers

    Science.gov (United States)

    Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.

    2006-01-01

    Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.

  17. Stable solutions of inflation driven by vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  18. Stable solutions of inflation driven by vector fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-01-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  19. Temperature distributions of a conductively heated filament

    International Nuclear Information System (INIS)

    Tamura, Koji; Ohba, Hironori; Shibata, Takemasa

    1999-07-01

    Temperature distributions of a heated filament were measured. A W-Re(5%) filament (0.25 mm in diameter, 24.7 mm in length) was conductively heated by currents between 5A and 7A with a DC power supply, and the surface of the filament was imaged with a charge coupled device (CCD) camera through a monochromatic filter. The spectral radiation intensity at the filament center region was almost uniform. Since the temperature distribution was also uniform and the energy loss by thermal conduction was negligible, temperature in this region was determined from the energy balance between applied power and radiation loss. Temperature distribution of the filament was determined based on the Planck's law of radiation from the spectral radiation intensity ratio of the filament surface using obtained temperature as a reference. It was found that temperature distribution of a filament was easily measured by this method. (author)

  20. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  1. Measuring Filament Orientation: A New Quantitative, Local Approach

    Science.gov (United States)

    Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  2. Measuring Filament Orientation: A New Quantitative, Local Approach

    International Nuclear Information System (INIS)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A.; Dawson, J. R.; Novak, G.; Fissel, L. M.

    2017-01-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  3. Health disparities among wage workers driven by employment instability in the Republic of Korea.

    Science.gov (United States)

    Jung, Minsoo

    2013-01-01

    Even though labor market flexibility continues to be a source of grave concern in terms of employment instability, as evidenced by temporary employment, only a few longitudinal studies have examined the effects of employment instability on the health status of wage workers. Against this backdrop, this study assesses the manner in which changes in employment type affect the health status of wage workers. The data originate from the Korean Labor and Income Panel Study's health-related surveys for the first through fourth years (n = 1,789; 1998 to 2001). This study estimates potential damage to self-rated health through the application of a generalized estimating equation, according to specific levels of employment instability. While controlling for age, socioeconomic position, marital status, health behavior, and access to health care, the study analysis confirms that changes in employment type exert significant and adverse effects on health status for a given year (OR = 1.47; 95% CII 1.10-1.96), to an extent comparable to the marked effects of smoking on human health (OR = 1.47; 95% CI 1.05-2.04). Given the global prevalence of labor flexibility, policy interventions must be implemented if employment instability triggers broad discrepancies not only in social standing, wage, and welfare benefits, but also in health status.

  4. Modeling of second order space charge driven coherent sum and difference instabilities

    Directory of Open Access Journals (Sweden)

    Yao-Shuo Yuan

    2017-10-01

    Full Text Available Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew modes have recently been shown in [Phys. Plasmas 23, 090705 (2016PHPAEN1070-664X10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on “Chernin’s equations.” This has the advantage that accurate information on growth rates can be obtained and gathered in a “tune diagram.” In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The “tilting instability” obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  5. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  6. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  7. Determining advection mechanism of plasma filaments in the scrape-off layer of MAST

    International Nuclear Information System (INIS)

    Higgins, D; Hnat, B; Kirk, A; Tamain, P; Ben Ayed, N

    2012-01-01

    The scrape-off layer (SOL) of fusion devices is typically composed of filamentary structures that propagate with a high radial velocity away from the bulk plasma. When radial and parallel transport times are comparable, these coherent structures constitute an intermittent heat and particle flux which can reach the material wall; in time causing wear to plasma facing components. Qualitative models predict that the parallel currents, driven by the divertor sheath, have a direct impact on this radial velocity. In this work, the predictions for radial velocity of plasma filaments in the SOL from models are tested against data from the MAST tokamak and simulation. We apply a statistical method of window averaging to MAST Langmuir probe data in order to examine the scaling of the radial velocity of filaments with the plasma density inside the filaments. Our analysis strongly suggests that the radial dynamics emerge from the competition of multiple mechanisms and not from a single process. At intermediate distances from the bulk plasma, a new model proposed here, in which the parallel current depends on a constant target density appears to be the most relevant for the MAST plasma. This is confirmed using a TOKAM2D simulation with a modified parallel current term.

  8. Dynamics and mechanics of motor-filament systems

    Science.gov (United States)

    Kruse, K.; Jülicher, F.

    2006-08-01

    Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.

  9. Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields

    Science.gov (United States)

    Burge, C. A.; Van Loo, S.; Falle, S. A. E. G.; Hartquist, T. W.

    2016-11-01

    Context. In giant molecular clouds (GMCs), the fractional ionisation is low enough that the neutral and charged particles are weakly coupled. A consequence of this is that the magnetic flux redistributes within the cloud, allowing an initially magnetically supported region to collapse. Aims: We aim to elucidate the effects of ambipolar diffusion on the evolution of infinitely long filaments and the effect of decaying turbulence on that evolution. Methods: First, in ideal magnetohydrodynamics (MHD), a two-dimensional cylinder of an isothermal magnetised plasma with initially uniform density was allowed to evolve to an equilibrium state. Then, the response of the filament to ambipolar diffusion was followed using an adaptive mesh refinement multifluid MHD code. Various ambipolar resistivities were chosen to reflect different ratios of Jeans length to ambipolar diffusion length scale. To study the effect of turbulence on the ambipolar diffusion rate, we perturbed the equilibrium filament with a turbulent velocity field quantified by a rms sonic Mach number, Mrms, of 10, 3 or 1. Results: We numerically reproduce the density profiles for filaments that are in magnetohydrostatic and pressure equilibrium with their surroundings obtained in a published model and show that these equilibria are dynamically stable. If the effect of ambipolar diffusion is considered, these filaments lose magnetic support initiating cloud collapse. The filaments do not lose magnetic flux. Rather the magnetic flux is redistributed within the filament from the dense centre towards the diffuse envelope. The rate of the collapse is inversely proportional to the fractional ionisation and two gravitationally-driven ambipolar diffusion regimes for the collapse are observed as predicted in a published model. For high values of the ionisation coefficient, that is X ≥ 10-7, the gas is strongly coupled to the magnetic field and the Jeans length is larger than the ambipolar diffusion length scale. Then

  10. The effects of polymer molecular weight on filament thinning and drop breakup in microchannels

    International Nuclear Information System (INIS)

    Arratia, P E; Cramer, L-A; Gollub, J P; Durian, D J

    2009-01-01

    We investigate the effects of fluid elasticity on the dynamics of filament thinning and drop breakup processes in a cross-slot microchannel. Elasticity effects are examined using dilute aqueous polymeric solutions of molecular weight (MW) ranging from 1.5x10 3 to 1.8x10 7 . Results for polymeric fluids are compared to those for a viscous Newtonian fluid. The shearing or continuous phase that induces breakup is mineral oil. All fluids possess similar shear-viscosity (∼0.2 Pa s) so that the viscosity ratio between the oil and aqueous phases is close to unity. Measurements of filament thickness as a function of time show different thinning behavior for the different aqueous fluids. For Newtonian fluids, the thinning process shows a single exponential decay of the filament thickness. For low MW fluids (10 3 , 10 4 and 10 5 ), the thinning process also shows a single exponential decay, but with a decay rate that is slower than for the Newtonian fluid. The decay time increases with polymer MW. For high MW (10 6 and 10 7 ) fluids, the initial exponential decay crosses over to a second exponential decay in which elastic stresses are important. We show that the decay rate of the filament thickness in this exponential decay regime can be used to measure the steady extensional viscosity of the fluids. At late times, all fluids cross over to an algebraic decay which is driven mainly by surface tension.

  11. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  12. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  13. Simulation of Instability at Transition Energy with a New Impedance Model for CERN PS

    CERN Document Server

    Wang, Na; Biancacci, Nicolo; Migliorati, Mauro; Persichelli, Serena; Sterbini, Guido

    2016-01-01

    Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neu-tron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated meas-urement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitu-dinal emittances and beam intensities were studied.

  14. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  15. An experimental platform for generating Richtmyer-Meshkov instabilities on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Eric; Martin, Matthew

    2013-04-01

    The Richtmyer-Meshkov (RM) instability results when a shock wave crosses a rippled interface between two different materials. The shock deposited vorticity causes the ripples to grow into long spikes. Ultimately this process encourages mixing in many warm dense matter and plasma flows of interest. However, generating pure RM instabilities from initially solid targets is difficult because longlived, steady shocks are required. As a result only a few relevant experiments exist, and current theoretical understanding is limited. Here we propose using a flyer-plate driven target to generate RM instabilities with the Z machine. The target consists of a Be impact layer with sinusoidal perturbations and is followed by a low-density carbon foam. Simulation results show that the RM instability grows for 60 ns before release waves reach the perturbation. This long drive time makes Z uniquely suited for generating the high-quality data that is needed by the community.

  16. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ning; Hennebelle, Patrick [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Chabrier, Gilles, E-mail: yueh-ning.lee@cea.fr [École normale supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, F-69364 Lyon Cedex 07 (France)

    2017-10-01

    Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle and Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is then convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.

  17. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  18. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  19. Turing instability for a two-dimensional Logistic coupled map lattice

    International Nuclear Information System (INIS)

    Xu, L.; Zhang, G.; Han, B.; Zhang, L.; Li, M.F.; Han, Y.T.

    2010-01-01

    In this Letter, stability analysis is applied to a two-dimensional Logistic coupled map lattice with the periodic boundary conditions. The conditions of Turing instability are obtained, and various patterns can be exhibited by numerical simulations in the Turing instability region. For example, space-time periodic structures, periodic or quasiperiodic traveling wave solutions, stationary wave solutions, spiral waves, and spatiotemporal chaos, etc. have been observed. In particular, the different pattern structures have also been observed for same parameters and different initial values. That is, pattern structures also depend on the initial values. The similar patterns have also been seen in relevant references. However, the present Letter owes to pattern formation via diffusion-driven instabilities because the system is stable in the absence of diffusion.

  20. Striation and convection in penumbral filaments

    Science.gov (United States)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  1. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    International Nuclear Information System (INIS)

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  2. Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2015-01-01

    Roč. 81, č. 1 (2015), s. 1-14 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : magnetic-field * solar- wind * mirror instability * Langevin representation * Coulomb collisions * nonlinear-theory * fluid model * evolution * turbulence * threshold Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.981, year: 2015 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9525437

  3. Experimental investigation of tearing-instability phenomena for structural materials

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Gudas, J.P.; Joyce, J.A.

    1982-08-01

    The objective of this investigation was to extend the range of tearing-instability validation experiments utilizing the compact specimen to include high-toughness alloys. J-Integral tests of ASTM A106; ASTM A516, Grade 70; ASTM A533B; HY-80; and HY-130 steels were performed in a variably compliant screw-driven test machine. Results were analyzed with respect to the materials J/sub I/-R curves and various models of T/sub applied/ for the compact specimen. Tearing instability theory was validated for these high-toughess materials. For the cases of highly curved J/sub I/-R curves, it was shown that the actual value of T/sub material/ at the point of instability should be employed rather than the average T/sub material/ value. The T/sub applied/ analysis of Paris and coworkers applied to the compact specimen appears to be nonconservative in predicting the point of instability; whereas, the T/sub applied/ analysis of Ernst and coworkers appears to be accurate, but requires precision beyond that displayed in this program. The generalized Paris analysis applied to the compact specimen and evaluated at maximum load was most consistent in predicting instability. 16 figures, 3 tables

  4. Experimental investigation of tearing-instability phenomena for structural materials

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Gudas, J.P.; Joyce, J.A.

    1982-04-01

    Objective was to extend the range of tearing instability validation experiments utilizing the compact specimen to include high toughness alloys. J-Integral tests of ASTM A106; ASTM A516, Grade 70; ASTM A533B; HY-80; and HY-130 steels were performed in a variably compliant screw-driven test machine. Results were analyzed with respect to the materials J/sub I/-R curves and various models of T/sub applied/ for the compact specimen. Tearing instability theory was validated for these high toughness materials. For the cases of highly curved J/sub I/-R curves, it was shown that the actual value of T/sub material/ at the point of instability should be employed rather than the average of T/sub material/ value. The T/sub applied/ analysis of Paris and coworkers applied to the compact specimen appears to be nonconservative in predicting the point of instability; whereas, the T/sub applied/ analysis of Ernst and coworkers appears to be accurate, but requires precision beyond that displayed in this program. The generalized Paris analysis applied to the compact specimen and evaluated at maximum load was most consistent in predicting instability. 16 figures, 3 tables

  5. Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner

  6. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho

    2016-01-01

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames

  7. Spatially and spectrally resolved filamentary structures in the (3/2)omega 0 emission from laser produced plasmas

    International Nuclear Information System (INIS)

    Lin, Z.; Willi, O.; Rumsby, P.T.

    This study was conducted to explore the problem of filamentation of laser light in the underdense plasma corona surrounding ablatively imploded spherical targets, a phenomenon which may prevent the realization of laser-driven fusion schemes. Preliminary observations were made of filamentary structures in the (3/2)(omega sub o) emission from microballoon targets irradiated in the ablative mode. Time integrated spectroscopy showed double and single peaked (3/2)(omega sub o) emission spectra. A simple model for the growth and collapse of filaments was based on the movement of the density contours at the bottom of the filament with large velocity. Here the laser intensity was high and various decay instabilities and scattering processes took place. In particular the two plasmon decay instability occurred where the electron density was nc/4, a region of (3/2)(omega sub o) emission. The model was consistent with the experimentally observed spectra and predicted the type of omega sub o and 2 omega sub o that should be observed in future experiments

  8. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  9. Filamentation of Campylobacter in broth cultures

    Directory of Open Access Journals (Sweden)

    Nacheervan M Ghaffar

    2015-06-01

    Full Text Available The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg than spiral forms (0.99 to 1.7 fg and showed enhanced survival in water at 4oC and 37oC compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical and environmental sources.

  10. Plasma Brightenings in a Failed Solar Filament Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-03-20

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the corona to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.

  11. Plasma vertical instability in a tokamak with rail limiters

    International Nuclear Information System (INIS)

    Belashob, V.I.; Brevnov, N.N.; Gribov, Yu.V.; Putvinskij, S.V.

    1989-01-01

    An effect of currents between rail limiters on plasma equilibrium in the tokamak is studied theoretically and experimentally. Limiter currents can emerge at fast changes of plasma position along rail limiters for example when compression along major radius takes place and result in additional electrodynamic loadings on to the chamber and limiters. It is shown that at high currents between the limiters, the behaviour of discharge depends on limiter voltage polarity. When the plasma - limiter contact points are asymmetrically located respective to an equatorial plane a radial component of the limiter current emerges. The interaction of the component with the toroidal magnetic field can result in a vertical plasma filament instability. 9 refs.; 10 figs

  12. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    International Nuclear Information System (INIS)

    Jacquet, Emmanuel; Krumholz, Mark R.

    2011-01-01

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  13. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  14. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  15. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  16. Thick Filament Protein Network, Functions, and Disease Association.

    Science.gov (United States)

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  17. Lattice Boltzmann methods for global linear instability analysis

    Science.gov (United States)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  18. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    Science.gov (United States)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  19. Effect of cold plasma on the Kelvin-Helmholtz instability

    International Nuclear Information System (INIS)

    Melander, B.G.

    1978-01-01

    The thesis studies the effect of a two-component plasma (hot and cold) on the shear driven Kelvin-Helmholtz instability. An ion distribution with a shear flow parallel to the ambient magnetic field and a density gradient parallel to the shear direction is used. Both the electrostatic and electromagnetic versions of the instability are studied in the limit of hydromagnetic frequencies. The dispersion relation is obtained in the electrostatic case by solving the Vlasov equation for the perturbed ion and electron densities and then using the quasineutrality condition. In the electromagnetic case the coupled Vlasov and Maxwell's equations are solved to obtain the dispersion relation

  20. Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial Instabilities

    Science.gov (United States)

    Strom, K.; Rouhnia, M.

    2016-12-01

    Previous studies have suggested that sedimentation from buoyant, muddy plumes lofting over clear saltwater can take place at rates higher than that expected from individual particle settling (i.e., CWs). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurements were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a floc camera and image analysis routines. This presentation will provide an overview of the stagnant tank experiments, but will focus on results from the stratified flume experiments and an analysis that attempts to synthesizes the results from the entirety of the study. The results from the stratified flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and that the rate increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to URi-2. The resulting effective settling velocity models developed from these experiments are then used to examine the rates and potential locations of operations of these mechanism over the length of a river mouth plume.

  1. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption.

    Science.gov (United States)

    Kadry, Hossam; Al-Hilal, Taslim A; Keshavarz, Ali; Alam, Farzana; Xu, Changxue; Joy, Abraham; Ahsan, Fakhrul

    2018-04-20

    Three-dimensional printing (3DP), though developed for nonmedical applications and once regarded as futuristic only, has recently been deployed for the fabrication of pharmaceutical products. However, the existing feeding materials (inks and filaments) that are used for printing drug products have various shortcomings, including the lack of biocompatibility, inadequate extrudability and printability, poor drug loading, and instability. Here, we have sought to develop a filament using a single pharmaceutical polymer, with no additives, which can be multi-purposed and manipulated by computational design for the preparation of tablets with desired release and absorption patterns. As such, we have used hydroxypropyl-methylcellulose (HPMC) and diltiazem, a model drug, to prepare both drug-free and drug-impregnated filaments, and investigated their thermal and crystalline properties, studied the cytotoxicity of the filaments, designed and printed tablets with various infill densities and patterns. By alternating the drug-free and drug-impregnated filaments, we fabricated various types of tablets, studied the drug release profiles, and assessed oral absorption in rats. Both diltiazem and HPMC were stable at extrusion and printing temperatures, and the drug loading was 10% (w/w). The infill density, as well as infill patterns, influenced the drug release profile, and thus, when the infill density was increased to 100%, the percentage of drug released dramatically declined. Tablets with alternating drug-free and drug-loaded layers showed delayed and intermittent drug release, depending on when the drug-loaded layers encountered the dissolution media. Importantly, the oral absorption patterns accurately reproduced the drug release profiles and showed immediate, extended, delayed and episodic absorption of the drug from the rat gastrointestinal tract (GIT). Overall, we have demonstrated here that filaments for 3D printers can be prepared from a pharmaceutical polymer with no

  2. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  3. Transport barriers in bootstrap-driven tokamaks

    Science.gov (United States)

    Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.

    2018-05-01

    Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.

  4. Sausage instabilities in the electron current layer and its role in the concept of fast ignition

    International Nuclear Information System (INIS)

    Das, Amita; Jain, Neeraj; Kaw, Predhiman; Sengupta, Sudip

    2004-01-01

    The fast ignition concept of laser fusion utilizes hot electrons produced at the surface of the target by an incident intense laser pulse for the creation of the hot spot for ignition. As the hot electrons move inwards to the core of the precompressed target, the electrons from the background plasma provide a return shielding current. Three dimensional PIC simulations have shown that intense Weibel, tearing and coalescence instabilities take place which organize the current distribution into a few current filaments. In each of these filaments the central core region constitutes a current due to the fast electrons propagating inwards towards the pellet core, while the outer cylindrical shell region carries the return shielding current. The presence of instabilities and their subsequent nonlinear development can hinder the propagation of fast electrons towards the core influencing the location of the hot spot for ignition. Earlier studies showing the existence of sausage-like modes were carried out in the nonrelativistic limit and under the assumption of equal electron densities of the fast and the cold electrons. The fast electron density, in general, differs considerably from the background plasma density as it is dependent on the incident laser intensity. This paper incorporates relativistic effects and also studies the dependence of the growth rate on the fast electron density. Finally, nonlinear saturation of the instability and its impact on the stopping of the fast electron motion towards the core have also been investigated using numerical simulations. The simulations have, however, currently been carried out for non-relativistic dynamics. The results show that the sheared velocity profile of the channel gets flattened, causing an effective drop in the inward moving current. (author)

  5. Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2015-01-01

    Roč. 81, č. 1 (2015), 305810103/1-305810103/14 ISSN 0022-3778 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : magnetic field * solar wind * mirror instability Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 0.981, year: 2015

  6. Three-dimensional Langmuir wave instabilities in type III solar radio bursts

    International Nuclear Information System (INIS)

    Bardwell, S.; Goldman, M.V.

    1976-01-01

    Assuming that type III solar radio bursts are associated with electron streams moving at about c/3, Langmuir waves should be strongly excited. We have studied all of the Langmuir-wave linear parametric instabilities excited in cylindrical symmetry by an electron-stream--driven Langmuir wave-pump propagating along the stream axis. Included in this unified homogeneous treatment are induced backscattering off ions, the oscillating two-stream instability, and a new ''stimulated modulational instability,'' previously unconsidered in this context. Near a few solar radii, the latter two deposit Langmuir wave energy into a forward-scattering cone about the stream axis. It is concluded that the linear stage of the forward-scattering instabilities involves transfer of energy to Langmuir waves which remain in resonance with the stream, and therefore probably do not prevent rapid depletion of the electron stream due to quasilinear plateau formation at these distances from the Sun

  7. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  8. Beam-beam instability driven by wakefield effects in linear colliders

    CERN Document Server

    Brinkmann, R; Schulte, Daniel

    2002-01-01

    The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.

  9. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  10. Solar filament impact on 21 January 2005: Geospace consequences

    Science.gov (United States)

    Kozyra, J. U.; Liemohn, M. W.; Cattell, C.; De Zeeuw, D.; Escoubet, C. P.; Evans, D. S.; Fang, X.; Fok, M.-C.; Frey, H. U.; Gonzalez, W. D.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W. B.; Mende, S.; Paxton, L. J.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M. W.; Tsurutani, B. T.; Verkhoglyadova, O.

    2014-07-01

    On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere—an unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks—high enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1-2 h and intensified the

  11. Anisotropic instability of the photoelectrons generated by soft x-ray radiation of the laser-produced plasma focus

    International Nuclear Information System (INIS)

    Klumov, B.A.; Tarakanov, V.P.

    1994-01-01

    The electron field with the anisotropic distribution function is being formed when the gas is being affected with ionizing radiation. The anisotropy of the distribution function occurs due to the fact that photoelectrons fly mainly in the direction perpendicular to that of ionizing radiation quantum propagation. In order to emphasize the most typical features of the developed anisotropic instability, photoelectrons were believed to fly strictly across the photon propagation direction. Two-dimensional electromagnetic particle simulations have been carried out to study high-frequency disturbances in the plasma produced by ionizing radiation. Elastic processes were taken into account. It has been shown, in particular, that the energy of anisotropic electrons transforms mainly into that of magnetic pulsations (approximately 7% of the energy transforms into that of magnetic pulsations). Development of the anisotropic instability result in a space stratification into current filaments. The anisotropic instability study can be important for an interpretation of electromagnetic emission spectra for a plasma disturbed by radiation

  12. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  13. Fluid instabilities and wakes in a soap-film tunnel

    International Nuclear Information System (INIS)

    Vorobieff, P.; Ecke, R.E.

    1999-01-01

    We present a compact, low-budget two-dimensional hydrodynamic flow visualization system based on a tilted, gravity-driven soap film tunnel. This system is suitable for demonstrations and studies of a variety of fluid mechanics problems, including turbulent wakes past bluff bodies and lifting surfaces, Kelvin - Helmholtz instability, and grid turbulence. copyright 1999 American Association of Physics Teachers

  14. Measurements of beam-ion confinement during tangential beam-driven instabilities in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Kaita, R.; Takahashi, H.; Gammel, G.; Hammett, G.W.; Kaye, S.

    1987-01-01

    During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists

  15. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    Science.gov (United States)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  16. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma

    KAUST Repository

    Bond, D.

    2017-11-03

    We computationally investigate the Richtmyer–Meshkov instability of a density interface with a single-mode perturbation in a two-fluid, ion–electron plasma with no initial magnetic field. Self-generated magnetic fields arise subsequently. We study the case where the density jump across the initial interface is due to a thermal discontinuity, and select plasma parameters for which two-fluid plasma effects are expected to be significant in order to elucidate how they alter the instability. The instability is driven via a Riemann problem generated precursor electron shock that impacts the density interface ahead of the ion shock. The resultant charge separation and motion generates electromagnetic fields that cause the electron shock to degenerate and periodically accelerate the electron and ion interfaces, driving Rayleigh–Taylor instability. This generates small-scale structures and substantially increases interfacial growth over the hydrodynamic case.

  17. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  18. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  19. Resistive instabilities of current sheets in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [CNR, Laboratorio per il Plasma nello Spazio, Frascati, Italy; Trussoni, E [CNR, Laboratorio di Cosmo-Geofisica, Turin, Italy

    1979-03-01

    Resistive magnetohydrodynamic instabilities are investigated numerically for non-antisymmetric magnetic field profiles similar to those indicated in spacecraft data on solar wind discontinuities. The eigenvalue problem derived for the growth rate of possible instabilities from dimensionless equations for velocity and magnetic field perturbations is solved starting from the outer regions where the plasma is frozen to the magnetic field. For an antisymmetric magnetic profile, calculations show only tearing modes to be present, with instabilities occurring only at long wavelengths, while for a non-antisymmetric magnetic profile resembling the observed solar wind, calculations indicate the presence of rippling modes driven by resistivity gradients, in addition to the tearing modes. Calculations of the scale lengths of variation of the reversing component based on a scaling law relating the maximum growth rate to the magnetic Reynolds number are found to agree with observed solar current sheet scale lengths.

  20. Fundamentals of Filament Interaction

    Science.gov (United States)

    2017-05-19

    AFRL-AFOSR-VA-TR-2017-0110 FUNDAMENTALS OF FILAMENT INTERACTION Martin Richardson UNIVERSITY OF CENTRAL FLORIDA Final Report 06/02/2017 DISTRIBUTION...of Filament Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA95501110001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Richardson 5d. PROJECT...NAME OF RESPONSIBLE PERSON Martin Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) 407-823-6819 Standard Form

  1. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  2. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  3. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  4. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  5. Onset of current-driven turbulence on application of a low toroidal electric field

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi

    1982-01-01

    The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability. (author)

  6. Onset of current-driven turbulence on application of a low toroidal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-06-01

    The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability.

  7. Dissipative-drift wave instability in the presence of impurity radiation

    International Nuclear Information System (INIS)

    Bharuthram, R.; Shukla, P.K.

    1992-01-01

    It is believed that electrostatic fluctuations in edge plasmas are usually triggered by micro and macroscopic plasma instabilities. The latter involve dissipative-drift waves as well as tearing and rippling modes in nonuniform plasmas. However, if the plasma edge contains impurity radiation, then the radiative condensation instability could be the cause of nonthermal fluctuations. The radiative condensation instabilities have been extensively investigated in a homogeneous plasma by many authors. The effect of equilibrium density and electron temperature inhomogeneities in the study of radiative condensation instabilities has been examined by Shukla and Yu. They found new drift-like modes driven by the combined effect of impurity radiation loss and the equilibrium density and temperature gradients. The analyses of Shukla and Yu is, however, limited to low-frequency, long wavelength collisionless drift waves. Since the edge plasma of toroidal devices is highly collisional, the results of collisionless theories cannot be directly applied to explain the origin of nonthermal fluctuations. In this paper, we study the influence of impurity radiation on the dissipative-drift wave instability in a collision-dominated nonuniform plasma embedded in a homogeneous magnetic field. (author) 6 refs

  8. Ultraviolet treatment on high performance filaments

    International Nuclear Information System (INIS)

    Gu Huang

    2005-01-01

    Quartz, Kevlar, carbon, and glass filaments were irradiated by ultraviolet ray with various periods. Tensile strength of the treated fibres was tested and analyzed, and the outward appearance of the treated filaments was shown

  9. Rayleigh-Taylor instability in inertial confinement fusion

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1987-01-01

    This report summarises the main results of theoretical analysis on the problem of Rayleigh-Tylor instability in inertial confinement fusion (ICF). Work presented in this report essentially covers four basic problems. Firstly, an analytical formulation to analyse the effects of plasma density inhomogeneities on the growth of the instability in plane geometry is presented. As a result of this analysis it is concluded that, for minimizing the growth rate of the instability, it may be advantageous to use the driver laser beams of higher irradiance and an optimum wave length in an ICF experiment. Secondly, a new formulation for the analysis of the instability in curved (cylindrical and spherical) geometries is presented. A general eigenvalue equation for the growth rate of the instability which is applicable for both plane and curved geometries is derived. A comparative study is made between the plane, cylindrical and spherical geometries. Also analytical expressions for the growth rates are obtained in the cases of spherical and cylindrical shell targets and their variations with respect to the aspect ratios of the shells are discussed. Thirdly, a semi-analytical analysis of the instability where the growth rate is obtained by solving numerically a (2N-1)x(2N-1) determinantal equation is presented. The semi-analytical analysis developed is applicable for the study of the growth of the instability in the present day multi-structured spherical shell targets. Finally, a dynamic analysis of the growth of the instability for a representative spherical solid target driven by laser beams symmetrically from all the sides is carried out numerically using a computer code developed for this purpose. This study confirms analytical predictions. Further, it is observed that an approximate analytical analysis with time independent density profile gives conservative estimates for the growth rate. In passing, the computer code is also used to estimate the pellet gain for spin

  10. Instabilities due to anisotropic velocity distributions. Progress report, June 1, 1974--June 1, 1975

    International Nuclear Information System (INIS)

    Harris, E.G.

    1975-01-01

    A continuing theoretical study of plasma instabilities and related phenomena including nonlinear effects, particle and energy transport and heating schemes is presented. In the past year, a study of linear resistive instabilities with applications to Tokamaks was almost completed and is being prepared for publication. A sigma stability analysis is being worked on at the present time. Some thought was given to a nonlinear resistive instability analysis but not much progress has been made. A study of equilibrium and stability of elliptical cross section Tokamaks was completed. Considerable work was completed on plasma heating by rf waves at the lower hybrid frequency and by Alfven waves. This work is continuing. A study of instabilities excited by runaway beams of electrons in Tokamaks was largly completed. Some work was done on trapped particle instabilities in Tokamaks and their relation to other instabilities driven by gradients of density or temperature. Work is underway on diffusion and thermal conduction in the bumpy torus. (U.S.)

  11. Observations of the Growth of an Active Region Filament

    Science.gov (United States)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  12. Colored fused filament fabrication

    OpenAIRE

    Song, Haichuan; Lefebvre, Sylvain

    2017-01-01

    Filament fused fabrication is the method of choice for printing 3D models at low cost, and is the de-facto standard for hobbyists, makers and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating ...

  13. The influence of dual-recycling on parametric instabilities at Advanced LIGO

    International Nuclear Information System (INIS)

    Green, A C; Brown, D D; Dovale-Álvarez, M; Collins, C; Miao, H; Mow-Lowry, C M; Freise, A

    2017-01-01

    Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability : the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry–Perot arm cavities of the interferometer, where the instabilities are first generated. In this paper we model the full dual-recycled Advanced LIGO design with inherent imperfections. We find that the addition of the power- and signal-recycling cavities shapes the interferometer response to mechanical modes, resulting in up to four times as many peaks. Changes to the accumulated phase or Gouy phase in the signal-recycling cavity have a significant impact on the parametric gain, and therefore which modes require suppression. (paper)

  14. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    Science.gov (United States)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  15. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  16. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.

    Directory of Open Access Journals (Sweden)

    Kohei Iwase

    Full Text Available We examined the movement of an actin filament sliding on a mixture of normal and genetically modified myosin molecules that were attached to a glass surface. For this purpose, we used a Dictyostelium G680V mutant myosin II whose release rates of Pi and ADP were highly suppressed relative to normal myosin, leading to a significantly extended life-time of the strongly bound state with actin and virtually no motility. When the mixing ratio of G680V mutant myosin II to skeletal muscle HMM (heavy myosin was 0.01%, the actin filaments moved intermittently. When they moved, their sliding velocities were about two-fold faster than the velocity of skeletal HMM alone. Furthermore, sliding movements were also faster when the actin filaments were allowed to slide on skeletal muscle HMM-coated glass surfaces in the motility buffer solution containing G680V HMM. In this case no intermittent movement was observed. When the actin filaments used were copolymerized with a fusion protein consisting of Dictyostelium actin and Dictyostelium G680V myosin II motor domain, similar faster sliding movements were observed on skeletal muscle HMM-coated surfaces. The filament sliding velocities were about two-fold greater than the velocities of normal actin filaments. We found that the velocity of actin filaments sliding on skeletal muscle myosin molecules increased in the presence of a non-motile G680V mutant myosin motor.

  17. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  18. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  19. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    Science.gov (United States)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  20. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  1. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  2. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-01-01

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  3. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  4. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  5. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    Science.gov (United States)

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  7. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  8. X-RAY STRIPES IN TYCHO'S SUPERNOVA REMNANT: SYNCHROTRON FOOTPRINTS OF A NONLINEAR COSMIC-RAY-DRIVEN INSTABILITY

    International Nuclear Information System (INIS)

    Bykov, Andrei M.; Osipov, Sergei M.; Uvarov, Yury A.; Ellison, Donald C.; Pavlov, George G.

    2011-01-01

    High-resolution Chandra observations of Tycho's supernova remnant (SNR) have revealed several sets of quasi-steady, high-emissivity, nearly parallel X-ray stripes in some localized regions of the SNR. These stripes are most likely the result of cosmic-ray (CR) generated magnetic turbulence at the SNR blast wave. However, for the amazingly regular pattern of these stripes to appear, simultaneous action of a number of shock-plasma phenomena is required, which is not predicted by most models of magnetic field amplification. A consistent explanation of these stripes yields information on the complex nonlinear plasma processes connecting efficient CR acceleration and magnetic field fluctuations in strong collisionless shocks. The nonlinear diffusive shock acceleration (NL-DSA) model described here, which includes magnetic field amplification from a CR-current-driven instability, does predict stripes consistent with the synchrotron observations of Tycho's SNR. We argue that the local ambient mean magnetic field geometry determines the orientation of the stripes and therefore it can be reconstructed with the high-resolution X-ray imaging. The estimated maximum energy of the CR protons responsible for the stripes is ∼10 15 eV. Furthermore, the model predicts that a specific X-ray polarization pattern, with a polarized fraction ∼50%, accompanies the stripes, which can be tested with future X-ray polarimeter missions.

  9. Effect of viscosity and surface tension on the growth of Rayleigh-Taylor instability and Richtmyer-Meshkov instability under nonlinear domain

    International Nuclear Information System (INIS)

    Rahul Banerjee; Khan, M.; Mandal, L.K.; Roy, S.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. The Rayleigh-Taylor (R-T) instability and Richtmyer-Meshkov (R-M) instability are well known problems in the formation of some astrophysical structures such as the supernova remnants in the Eagle and Crab nebula. A core collapse supernova is driven by an externally powerful shock, and strong shocks are the breeding ground of hydrodynamic instability such as Rayleigh-Taylor instability or Richtmyer-Meshkov instability. These instabilities are also important issues in the design of targets for inertial confinement fusion (ICF). In an ICF target, a high density fluid is frequently accelerated by the pressure of a low density fluid and after ablation the density quickly decays. So, small ripples at such an interface will grow. Under potential flow model, the perturbed interface between heavier fluid and lighter fluid form bubble and spike like structures. The bubbles are in the form of columns of lighter fluid interleaved by falling spike of heavy fluid. In this paper, we like to presented the effect of viscosity and surface tension on Rayleigh-Taylor instability and Richtmyer-Meshkov instability under the non-linear Layzer's approach and described the displacement curvature, growth and velocity of the tip of the bubble as well as spike. It is seen that, in absence of surface tension the lowering of the asymptotic velocity of the tip of the bubble which is formed when the lighter fluid penetrates into the denser fluid and thus encounters the viscous drag due to the denser fluid, which depends only on the denser fluid's viscosity coefficient. On the other hand the asymptotic velocity of the tip of the spike formed as the denser fluid penetrates into the lighter fluid is reduced by an amount which depends only on the viscosity coefficient of the lighter fluid and the spike is resisted by the viscous drag due to the lighter fluid. However, in presence of surface tension the asymptotic velocity of the tip of the bubble (spike) and

  10. Instability and dynamics of volatile thin films

    Science.gov (United States)

    Ji, Hangjie; Witelski, Thomas P.

    2018-02-01

    Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.

  11. Selected Topics in Microwave Instabilities and Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-01

    The Shanghai Institute of Applied Physics (SINAP) is embarking on its first X-ray free-electron laser (FEL) project. It is a cascading high-gain harmonic generation FEL. Microwave instabilities driven by various effects, especially the space-charge force, will degrade the qual- ity of the electron beam before entering into the undulator. However, inside the undulator, the occurrence of microbunching becomes an ut- most important ingredient for the generation of coherent radiation. In short, controlled and uncontrolled microwave instabilities must be fully understood in such a project. These are the slides of a series of eight-hour lectures given at the SINAP in June of 2013, with the intention of a fully understanding of the microbunching phenomenon. The sections of wake field and impedance theory are added as an in- troduction for those who are not familiar with the subject.

  12. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  13. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  14. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  15. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  16. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  17. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  18. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    Science.gov (United States)

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  19. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  20. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  1. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  2. Beam wandering of femtosecond laser filament in air.

    Science.gov (United States)

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  3. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  4. Dimensional quantization effects in the thermodynamics of conductive filaments

    Science.gov (United States)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  5. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  6. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  7. Transition from linear- to nonlinear-focusing regime in filamentation

    Science.gov (United States)

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  8. Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability

    KAUST Repository

    Mostert, W.; Wheatley, V.; Samtaney, Ravi; Pullin, D. I.

    2015-01-01

    The effects of seed magnetic fields on the Richtmyer-Meshkov instability driven by converging cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Two different seed field configurations at various strengths are applied over a cylindrical or spherical density interface which has a single-dominant-mode perturbation. The shocks that excite the instability are generated with appropriate Riemann problems in a numerical formulation and the effect of the seed field on the growth rate and symmetry of the perturbations on the density interface is examined. We find reduced perturbation growth for both field configurations and all tested strengths. The extent of growth suppression increases with seed field strength but varies with the angle of the field to interface. The seed field configuration does not significantly affect extent of suppression of the instability, allowing it to be chosen to minimize its effect on implosion distortion. However, stronger seed fields are required in three dimensions to suppress the instability effectively.

  9. Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability

    KAUST Repository

    Mostert, W.

    2015-10-06

    The effects of seed magnetic fields on the Richtmyer-Meshkov instability driven by converging cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Two different seed field configurations at various strengths are applied over a cylindrical or spherical density interface which has a single-dominant-mode perturbation. The shocks that excite the instability are generated with appropriate Riemann problems in a numerical formulation and the effect of the seed field on the growth rate and symmetry of the perturbations on the density interface is examined. We find reduced perturbation growth for both field configurations and all tested strengths. The extent of growth suppression increases with seed field strength but varies with the angle of the field to interface. The seed field configuration does not significantly affect extent of suppression of the instability, allowing it to be chosen to minimize its effect on implosion distortion. However, stronger seed fields are required in three dimensions to suppress the instability effectively.

  10. Molecular cloud formation by gravitational instabilities in a clumpy interstellar medium

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1989-01-01

    A dispersion relation is derived for gravitational instabilities in a medium with cloud collisional cooling, using a time-dependent energy equation instead of the adiabatic equation of state. The instability extends to much smaller length scales than in the conventional Jeans analysis, and, in regions temporarily without cloud stirring, it has a large growth rate down to the cloud collision mean free path. These results suggests that gravitational instabilities in a variety of environments, such as galactic density wave shocks, swept-up shells, and extended, quiescent regions of the interstellar medium, can form molecular clouds with masses much less than the conventional Jeans mass, e.g., from 100 to 10 million solar masses for the ambient medium, and they can do this even when the unperturbed velocity dispersion remains high. Similar processes operating inside existing clouds might promote gravitationally driven fragmentation. 29 refs

  11. Non-linear 3D simulations of current-driven instabilities in jets

    International Nuclear Information System (INIS)

    Ivanovski, S.; Bonanno, A.

    2009-01-01

    We present global 3D nonlinear simulations of the Taylor instability in the presence of vertical fields. The initial configuration is in equilibrium, which is achieved by a pressure gradient or an external potential force. The non linear evolution of the system leads to a stable equilibrium with a current free toroidal field. We find the that presence of a vertical poloidal field stabilize the system if B φ ∼B z . The implication of our findings for the physics of astrophysical jets are discussed.

  12. Large scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  13. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  14. rf driven multicusp H- ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1991-01-01

    An rf driven multicusp source capable of generating 1-ms H - beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H - current density achieved is about 200 mA/cm 2

  15. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    Science.gov (United States)

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  17. The role of multidimensional instabilities in direct initiation of gaseous detonations in free space

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2017-01-01

    We numerically investigate the direct initiation of detonations driven by the propagation of a blast wave into a unconfined gaseous combustible mixture to study the role played by multidimensional instabilities in direct initiation of stable

  18. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  19. Stable propagation of light-ion beam in inertial confinement fusion

    International Nuclear Information System (INIS)

    Okada, T.; Murakami, H.

    1996-01-01

    The stabilization mechanism of the filamentation instability for a light ion beam (LIB) penetrating plasma is investigated. For the stabilization of the filamentation instability, external magnetic field which is parallel to the direction of the light ion beam propagation is applied. Linear growth rates of filamentation instabilities in a light ion beam-plasma system with an external magnetic field were obtained by means of a dispersion relation. Numerical simulations were carried out using the particle-in-cell (PIC) method. The stabilizing mechanism of the filamentation instability is described. The theory and simulation comparisons illustrate the results. (author). 1 tab., 1 fig., 10 refs

  20. Stable propagation of light-ion beam in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T; Murakami, H [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1997-12-31

    The stabilization mechanism of the filamentation instability for a light ion beam (LIB) penetrating plasma is investigated. For the stabilization of the filamentation instability, external magnetic field which is parallel to the direction of the light ion beam propagation is applied. Linear growth rates of filamentation instabilities in a light ion beam-plasma system with an external magnetic field were obtained by means of a dispersion relation. Numerical simulations were carried out using the particle-in-cell (PIC) method. The stabilizing mechanism of the filamentation instability is described. The theory and simulation comparisons illustrate the results. (author). 1 tab., 1 fig., 10 refs.

  1. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  2. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  3. Laser-induced filaments in the mid-infrared

    International Nuclear Information System (INIS)

    Zheltikov, A M

    2017-01-01

    Laser-induced filamentation in the mid-infrared gives rise to unique regimes of nonlinear wave dynamics and reveals in many ways unusual nonlinear-optical properties of materials in this frequency range. The λ 2 scaling of the self-focusing threshold P cr , with radiation wavelength λ , allows the laser powers transmitted by single mid-IR filaments to be drastically increased without the loss of beam continuity and spatial coherence. When extended to the mid-infrared, laser filamentation enables new methods of pulse compression. Often working around the universal physical limitations, it helps generate few-cycle and subcycle field waveforms within an extraordinarily broad range of peak powers, from just a few up to hundreds of P cr . As a part of a bigger picture, laser-induced filamentation in the mid-infrared offers important physical insights into the general properties of the nonlinear-optical response of matter as a function of the wavelength. Unlike their near-infrared counterparts, which can be accurately described within the framework of perturbative nonlinear optics, mid-infrared filaments often entangle perturbative and nonperturbative nonlinear-optical effects, showing clear signatures of strong-field optical physics. With the role of nonperturbative nonlinear-optical phenomena growing, as a general tendency, with the field intensity and the driver wavelength, extension of laser filamentation to even longer driver wavelengths, toward the long-wavelength infrared, promises a hic sunt dracones land. (topical review)

  4. In-silico investigation of Rayleigh instability in ultra-thin copper nanowire in premelting regime

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Amlan [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 098 (India); Chatterjee, Swastika; Raychaudhuri, A. K. [Unit for Nanoscience and Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 098 (India); Moitra, Amitava [Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 098 (India); Saha-Dasgupta, T. [Thematic Unit of Excellence on Computational Materials Science, and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 098 (India)

    2014-06-28

    Motivated by the recent experimental reports, we explore the formation of Rayleigh-like instability in metallic nanowires during the solid state annealing, a concept originally introduced for liquid columns. Our molecular dynamics study using realistic interatomic potential reveals instability induced pattern formation at temperatures even below the melting temperature of the wire, in accordance with the experimental observations. We find that this is driven by the surface diffusion, which causes plastic slips in the system initiating necking in the nanowire. We further find the surface dominated mass-transport is of subdiffusive nature with time exponent less than unity. Our study provides an atomistic perspective of the instability formation in nanostructured solid phase.

  5. Disintegration of an eruptive filament via interactions with quasi-separatrix layers

    Science.gov (United States)

    Liu, Rui; Chen, Jun; Wang, YuMing

    2018-06-01

    The disintegration of solar filaments via mass drainage is a frequently observed phenomenon during a variety of filament activities. It is generally considered that the draining of dense filament material is directed by both gravity and magnetic field, yet the detailed process remains elusive. Here we report on a partial filament eruption during which filament material drains downward to the surface not only along the filament's legs, but to a remote flare ribbon through a fan-out curtain-like structure. It is found that the magnetic configuration is characterized by two conjoining dome-like quasi-sepratrix layers (QSLs). The filament is located underneath one QSL dome, whose footprint apparently bounds the major flare ribbons resulting from the filament eruption, whereas the remote flare ribbon matches well with the other QSL dome's far-side footprint. We suggest that the interaction of the filament with the overlying QSLs results in the splitting and disintegration of the filament.

  6. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  7. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  8. Microwave structure of quiescent solar filaments at high resolution

    International Nuclear Information System (INIS)

    Gary, D.E.

    1986-01-01

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  9. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  10. The effect of phase front deformation on the growth of the filamentation instability in laser–plasma interactions

    International Nuclear Information System (INIS)

    Higson, E; Norreys, P A; Trines, R; Bingham, R; Lancaster, K L; Jiang, J; Davies, J R

    2013-01-01

    Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of Iλ 2 ⩾ 10 14 W cm −2 μm 2 , even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser–plasma interactions that require high degrees of uniform irradiation are discussed. (paper)

  11. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  12. Coherent betatron instability driven by electrostatic separators: Stability analysis of the Tevatron

    International Nuclear Information System (INIS)

    Harfoush, F.A.; Bogacz, S.A.

    1989-03-01

    This paper outlines possible intensity limits due to the coherent betatron motion for the upgraded Tevatron with the electrostatic separators. Numerical simulation shows that this new vacuum chamber structure dominates the high frequency part of the coupling impedance spectrum and more likely will excite a slow head-tail instability. A simple stability analysis yields the characteristic growth-time of the unstable modes. 4 refs., 4 figs., 1 tab

  13. Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, Jean-Luc

    2012-01-01

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS, and a feedback system to control the instabilities is under active development. We present the latest improvements to the Warp-Posinst simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS.

  14. Hot Ta filament resistance in-situ monitoring under silane containing atmosphere

    International Nuclear Information System (INIS)

    Grunsky, D.; Schroeder, B.

    2008-01-01

    Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric Ta X Si Y alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes

  15. Numerical simulation of feedback stabilization of axisymmetric modes in tokamaks using driven halo currents

    International Nuclear Information System (INIS)

    Jardin, S.C.; Schmidt, J.A.

    1998-01-01

    The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)

  16. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  17. Large-scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  18. Studies of the trapped particle and ion temperature gradient instabilities in the Columbia Linear Machine

    International Nuclear Information System (INIS)

    Mathey, O.H.

    1989-01-01

    In the first part of the work, the effects of weak Coulomb and neutral collisions on the collisionless curvature driven trapped particle mode are studied in the Columbia Linear Machine (CLM) [Phys. Rev. Lett. 57, 1729, (1986)]. Low Coulomb collisionality yields a small stabilizing correction to the magnetohydrodynamic (MHD) collisionless mode, which scales as v, using the Krook model, and ν ec 1/2 using a Lorentz pitch angle operator. In higher collisionality regimes, both models tend to yield similar scalings. In view of relative high neutral collisionality in CLM, both types of collisionality are then combined, modeling neutral collisions with the conserving Krook and Coulomb collisions with a Lorentz model. The dispersion relation is then integrated over velocity space. This combination yields results in very good accord with the available experimental data. The Ion Temperature Gradient Instability is then investigated. It is shown that anisotropy in gradient has a substantial effect on the ion temperature gradient driven mode. A gradient in the parallel temperature is needed for an instability to occur, and a gradient in the perpendicular temperature gradient further enhances the instability indirectly as long as the frequency of the mode is near ion resonance. The physical reason for this important role difference is presented. The Columbia Linear Machine is being redesigned to produce and identify the ion temperature gradient driven η i mode. Using the expected parameters, the author has developed detailed predictions of the mode characteristics in the CLM. Strong multi mode instabilities are expected. As the ion parallel and perpendicular ion temperature gradients are expected to differ significantly, we differentiate between η i parallel and ν i perpendicular and explore the physical differences between them, which leads to a scheme for stabilization of the mode

  19. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  20. Instability of a planar expansion wave

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Zalesak, S.T.; Metzler, N.; Wouchuk, J.G.

    2005-01-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent γ. At γ>3, the mass modulation amplitude δm in a rippled expansion wave exhibits a power-law growth with time ∝t β , where β=(γ-3)/(γ-1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme γ-1 -1/2 , and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low γ. Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results

  1. SIMULATION OF E-CLOUD DRIVEN INSTABILITY AND ITS ATTENUATION USING A FEEDBACK SYSTEM IN THE CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Byrd, J.M.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.; Hofle, W.

    2010-01-01

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS (1), and a feedback system to control the instabilities is under active development (2). We present the latest improvements to the Warp-Posinst simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS.

  2. Plasma instability issues for ITER and their possible impact on plasma performance

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Campbell, D.

    2009-01-01

    Full text: There are many types of plasma instabilities that may affect ITER performance. Prediction of their impact, however, is complicated by scaling relative to present plasmas. Here we summarize some of the potential impacts of a variety of instabilities on ITER performance and the uncertainties in evaluating those impacts. ELMs are one of the most significant issues because of the high localized heat loads on the plasma facing components walls caused by the filamentary structures. ITER presently plans to employ two methods to attempt to amelioriate the localized damage from large ELMS: resonant magnetic perturbations and pellet pacing. In either case, the net effect on confinement must be minimized relative to the expected confinement under natural ELMy conditions. Pacing ELMs with high frequency pellet injection raises at least two fundamental physics questions: i) how effective are very localized perturbations from the pellet cloud at triggering ELMs?, and ii) can we assure that the local perturbation does not lock the ELMs into a pattern of localized deposition? It is expected that answering these questions would require 3-D models, while present models are based on peeling-ballooning stability with 1-D models for plasma profiles. A similar set of complicating factors can be identified for other instabilities. Alfven eigenmodes in ITER are expected to be driven primarily by the energetic alphas, but MeV neutral beam injection of up to 33 MW raises the issue of synergistic effects (e.g., loss of NB fast ions from AEs driven by fast alphas), and non-linear interaction among a 'sea' of many high-n potentially unstable modes expected from ITER's large size. Instabilities that are weakened by the strong toroidal rotation (e.g. turbulence or resistive wall modes) in present NB-heated machines may be more robust under the much weaker external torque provided by ITER's high energy beams. A better understanding of extrinsic rotation driven largely by conditions at

  3. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  4. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  5. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  6. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  7. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  8. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  9. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  10. Trapped-particle instabilities in quasi-isodynamic stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine Henriette Elise

    2014-01-28

    The confinement of energy has always been a challenge in magnetic confinement fusion devices. Due to their toroidal shape there exist regions of high and low magnetic field, so that the particles are divided into two classes - trapped ones that are periodically reflected in regions of high magnetic field with a characteristic frequency, and passing particles, whose parallel velocity is high enough that they largely follow a magnetic field line around the torus without being reflected. The radial drift that a particle experiences due to the field inhomogeneity depends strongly on its position, and the net drift therefore depends on the path taken by the particle. While the radial drift is close to zero for passing particles, trapped particles experience a finite radial net drift and are therefore lost in classical stellarators. These losses are described by the so-called neoclassical transport theory. Recent optimised stellarator geometries, however, in which the trapped particles precess around the torus poloidally and do not experience any net drift, promise to reduce the neoclassical transport down to the level of tokamaks. In these optimised stellarators, the neoclassical transport becomes small enough so that turbulent transport may limit the confinement instead. The turbulence is driven by small-scale-instabilities, which tap the free energy of density or temperature gradients in the plasma. Some of these instabilities are driven by the trapped particles and therefore depend strongly on the magnetic geometry, so the question arises how the optimisation affects the stability. In this thesis, collisionless electrostatic microinstabilities are studied both analytically and numerically. Magnetic configurations where the action integral of trapped-particle bounce motion, J, only depends on the radial position in the plasma and where its maximum is in the plasma centre, so-called maximum-J configurations, are of special interest. This condition can be achieved

  11. Trapped-particle instabilities in quasi-isodynamic stellarators

    International Nuclear Information System (INIS)

    Proll, Josefine Henriette Elise

    2014-01-01

    The confinement of energy has always been a challenge in magnetic confinement fusion devices. Due to their toroidal shape there exist regions of high and low magnetic field, so that the particles are divided into two classes - trapped ones that are periodically reflected in regions of high magnetic field with a characteristic frequency, and passing particles, whose parallel velocity is high enough that they largely follow a magnetic field line around the torus without being reflected. The radial drift that a particle experiences due to the field inhomogeneity depends strongly on its position, and the net drift therefore depends on the path taken by the particle. While the radial drift is close to zero for passing particles, trapped particles experience a finite radial net drift and are therefore lost in classical stellarators. These losses are described by the so-called neoclassical transport theory. Recent optimised stellarator geometries, however, in which the trapped particles precess around the torus poloidally and do not experience any net drift, promise to reduce the neoclassical transport down to the level of tokamaks. In these optimised stellarators, the neoclassical transport becomes small enough so that turbulent transport may limit the confinement instead. The turbulence is driven by small-scale-instabilities, which tap the free energy of density or temperature gradients in the plasma. Some of these instabilities are driven by the trapped particles and therefore depend strongly on the magnetic geometry, so the question arises how the optimisation affects the stability. In this thesis, collisionless electrostatic microinstabilities are studied both analytically and numerically. Magnetic configurations where the action integral of trapped-particle bounce motion, J, only depends on the radial position in the plasma and where its maximum is in the plasma centre, so-called maximum-J configurations, are of special interest. This condition can be achieved

  12. Saturation of alpha particle driven instability in Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Chen, Y.; White, R.B.; Berk, H.L.

    1999-01-01

    A nonlinear theory of kinetic instabilities near threshold [Berk et al., Plasma Phys. Rep. 23, 842 (1997)] is applied to calculate the saturation level of toroidicity-induced Alfven eigenmodes (TAE), and to be compared with the predictions of δf method calculations (Y. Chen, Ph.D. thesis, Princeton University, 1998). Good agreement is observed between the predictions of both methods and the predicted saturation levels are comparable to experimentally measured amplitudes of the TAE oscillations in Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. copyright 1999 American Institute of Physics

  13. Partition instability in water-immersed granular systems.

    Science.gov (United States)

    Clement, C P; Pacheco-Martinez, H A; Swift, Michael R; King, P J

    2009-07-01

    It is well known that a system of grains, vibrated vertically in a cell divided into linked columns, may spontaneously move into just one of the columns due to the inelastic nature of their collisions. Here we study the behavior of a water-immersed system of spherical barium titanate particles in a rectangular cell which is divided into two columns, linked by two connecting holes, one at the top and one at the bottom of the cell. Under vibration the grains spontaneously move into just one of the columns via a gradual transfer of grains through the connecting hole at the base of the cell. We have developed numerical simulations that are able to reproduce this behavior and provide detailed information on the instability mechanism. We use this knowledge to propose a simple analytical model for this fluid-driven partition instability based on two coupled granular beds vibrated within an incompressible fluid.

  14. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  15. Filament to filament bridging and its influence on developing high critical current density in multifilamentary Bi2Sr2CaCu2Ox round wires

    International Nuclear Information System (INIS)

    Shen, T; Jiang, J; Kametani, F; Trociewitz, U P; Larbalestier, D C; Schwartz, J; Hellstrom, E E

    2010-01-01

    Increasing the critical current density (J c ) of the multifilamentary round wire Ag/Bi 2 Sr 2 CaCu 2 O x (2212) requires understanding its complicated microstructure, in which extensive bridges between filaments are prominent. In this first through-process quench study of 2212 round wire, we determined how its microstructure develops during a standard partial-melt process and how filament bridging occurs. We found that filaments can bond together in the melt state. As 2212 starts to grow on subsequent cooling, we observed that two types of 2212 bridges form. One type, which we call Type-A bridges, forms within filaments that bonded in the melt; Type-A bridges are single grains that span multiple bonded filaments. The other type, called Type-B bridges, form between discrete filaments through 2212 outgrowths that penetrate into the Ag matrix and intersect with other 2212 outgrowths from adjacent filaments. We believe the ability of these two types of bridges to carry inter-filament current is intrinsically different: Type-A bridges are high- J c inter-filament paths whereas Type-B bridges contain high-angle grain boundaries and are typically weak linked. Slow cooling leads to more filament bonding, more Type-A bridges and a doubling of J c without changing the flux pinning. We suggest that Type-A bridges create a 3D current flow that is vital to developing high J c in multifilamentary 2212 round wire.

  16. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  17. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  18. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2011-08-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

  19. In situ ellipsometric study of surface immobilization of flagellar filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kurunczi, S., E-mail: kurunczi@mfa.kfki.hu [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Nemeth, A.; Huelber, T. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Kozma, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Petrik, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Jankovics, H. [Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Sebestyen, A. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Vonderviszt, F. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Institute of Enzymology, Karolina ut 29-33, Budapest, H-1113 (Hungary); and others

    2010-10-15

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  20. Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment

    International Nuclear Information System (INIS)

    Janka, H.-T.; Buras, R.; Kitaura Joyanes, F.S.; Marek, A.; Rampp, M.; Scheck, L.

    2005-01-01

    New simulations demonstrate that low-mode, nonradial hydrodynamic instabilities of the accretion shock help starting hot-bubble convection in supernovae and thus support explosions by the neutrino-heating mechanism. The prevailing conditions depend on the high-density equation of state which governs stellar core collapse, core bounce, and neutron star formation. Tests of this sensitivity to nuclear physics variations are shown for spherically symmetric models. Implications of current explosion models for r-process nucleosynthesis are addressed