WorldWideScience

Sample records for filamentary large scale

  1. Large-scale Filamentary Structures around the Virgo Cluster Revisited

    Science.gov (United States)

    Kim, Suk; Rey, Soo-Chang; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon

    2016-12-01

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h -1 Mpc fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h -1 Mpc < SGY < 27 h -1 Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W-M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W-M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.

  2. Large-scale filamentary structures around the Virgo cluster revisited

    CERN Document Server

    Kim, Suk; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon

    2016-01-01

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger dataset based on the HyperLeda database than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4~$h^{-1}$~Mpc~$<$ SGY~$<$ 16~$h^{-1}$ Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main-body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo~II~A and B). Behind the Virgo cluster (16~$h^{-1}$~Mpc~$<$ SGY~$<$ 27~$h^{-1}$~Mpc), we also identify a new filament elongated toward the NGC 5353/4 group ("NGC 5353/4 filament") and confirm a sheet that includes galaxi...

  3. Mapping Large-Scale CO Depletion in a Filamentary Infrared Dark Cloud

    CERN Document Server

    Hernandez, Audra K; Caselli, Paola; Butler, Michael J; Jimenez-Serra, Izaskun; Fontani, Francesco; Barnes, Peter

    2011-01-01

    Infrared Dark Clouds (IRDCs) are cold, high mass surface density and high density structures, likely to be representative of the initial conditions for massive star and star cluster formation. CO emission from IRDCs has the potential to be useful for tracing their dynamics, but may be affected by depleted gas phase abundances due to freeze-out onto dust grains. Here we analyze C18O J=1-0 and J=2-1 emission line data, taken with the IRAM 30m telescope, of the highly filamentary IRDC G035.39.-0033. We derive the excitation temperature as a function of position and velocity, with typical values of ~7K, and thus derive total mass surface densities, Sigma_C18O, assuming standard gas phase abundances and accounting for optical depth in the line, which can reach values of ~1. The mass surface densities reach values of ~0.07 g/cm^2. We compare these results to the mass surface densities derived from mid-infrared (MIR) extinction mapping, Sigma_SMF, by Butler & Tan, which are expected to be insensitive to the dust...

  4. Coherent array of branched filamentary scales along the wing margin of a small moth

    Science.gov (United States)

    Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji

    2017-04-01

    In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.

  5. Fine-Scale Filamentary Structure in Coronal Streamers

    Science.gov (United States)

    Woo, Richard; Armstrong, John W.; Bird, Michael K.; Paetzold, Martin

    1995-01-01

    Doppler scintillation measurements of a coronal streamer lasting several solar rotations have been conducted by Ulysses in 1991 over a heliocentric distance range of 14-77 R(sub 0). By showing that the solar corona is filamentary, and that Doppler frequency is the radio counterpart of white-light eclipse pictures processed to enhance spatial gradients, it is demonstrated that Doppler scintillation measurements provide the high spatial resolution that has long eluded white-light coronagraph measurements. The region of enhanced scintillation, spanning an angular extent of 1.8 deg in heliographic longitude, coincides with the radially expanding streamer stalk and represents filamentary structure with scale sizes at least as small as 340 km (0.5 sec) when extrapolated to the Sun. Within the stalk of the streamer, the fine-scale structure corresponding to scale sizes in the range of 20-340 km at the Sun and associated with closed magnetic fields amounts to a few percent of the mean density, while outside the stalk, the fine-scale structure associated with open fields is an order of magnitude lower. Clustering of filamentary structure that takes place within the stalk of the streamer is suggestive of multiple current sheets. Comparison with ISEE 3 in situ plasma measurements shows that significant evolution resulting from dynamic interaction with increasing heliocentric distance takes place by the time streamers reach Earth orbit.

  6. Ultra-fine-scale filamentary structures in the Outer Corona and the Solar Magnetic Field

    Science.gov (United States)

    Woo, Richard

    2006-01-01

    Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.

  7. Filamentary Star Formation: Observing the Evolution toward Flattened Envelopes

    CERN Document Server

    Lee, Katherine; Johnstone, Doug; Tobin, John

    2012-01-01

    Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for...

  8. Sub-ion scale intermittency and the development of filamentary current structures from the Hall effect

    Science.gov (United States)

    Chapman, S. C.; Kiyani, K. H.; Meyrand, R.; Sahraoui, F.; Osman, K.

    2014-12-01

    The distinct quantitative nature of the intermittency seen on fluid and kinetic scales in solar wind plasma turbulence is now well documented from an observational point of view. The classic high-order statistical signature rapidly transitions to a monoscaling signature as one crosses to sub-ion scales. How this scaling depends upon plasma conditions, and the underlying physical implications have yet to be fully explored. We present a study focusing on 28 intervals of solar wind magnetic field data from the Cluster spacecraft sampling a broad range of plasma parameters. We show how the scaling properties vary between these intervals and more importantly, if there are any correlations between the scaling exponents and the plasma parameter variations. We supplement this observational study with a computational investigation where we study spatial samples from an 1024^3 EMHD simulation -- a model for sub-ion scale magnetic field dynamics consisting solely of the Hall effect. From this, we show that the Hall-term can generate a topological change from current sheets at fluid scales to current filaments at sub-ion scales. We conjecture that this fundamental change in the coherent structures comprising the turbulence is also responsible for the change in the intermittency that we see from our observations; and which could also be responsible for dissipation at these scales.

  9. Multi-Scale Analysis of Magnetic Fields in Filamentary Molecular Clouds in Orion A

    CERN Document Server

    Poidevin, Frédérick; Jones, Terry J

    2011-01-01

    New visible and K-band polarization measurements on stars surrounding molecular clouds in Orion A and stars in the BN vicinity are presented. Our results confirm that magnetic fields located inside the Orion A molecular clouds and in their close neighborhood are spatially connected. On and around the BN object, we measured the angular offsets between the K-band polarization data and available submm data. We find high values of the polarization degree, P_{K}, and of the optical depth, \\tau_{K}, close to an angular offset position of 90^{\\circ} whereas lower values of P_{K} and \\tau_{K} are observed for smaller angular offsets. We interpret these results as evidence for the presence of various magnetic field components toward lines of sight in the vicinity of BN. On a larger scale, we measured the distribution of angular offsets between available H-band polarization data and the same submm data set. Here we find an increase of with angular offset which we interpret as a rotation of the magnetic field by \\lesss...

  10. ATLASGAL -- A Galaxy-wide sample of dense filamentary structures

    CERN Document Server

    Li, Guang-Xing; Leurini, S; Csengeri, T; Wyrowski, F; Menten, K M; Schuller, F

    2016-01-01

    [Abridged] Aims. We study the properties of filamentary structures from the ATLASGAL survey. Methods. We use the DisPerSE algorithm to identify spatially coherent structures located across the inner-Galaxy (300 < l < 60 and |b| < 1.5). Results. We have determined distances, masses and physical sizes for 241 of the filamentary structures. We find a median distance of 3.8 kpc, a mean mass of a few 10^3 m_sun, a mean length of ~6pc and a mass-to-length ratio of (M/L) ~200-2000M_sun/ pc. We also find that these filamentary structures are tightly correlated with the spiral arms in longitude and velocity, and that their semi-major axis is preferentially aligned parallel to the Galactic mid-plane and therefore with the direction of large-scale Galactic magnetic field. We find many examples where the dense filaments identified in ATLASGAL are associated with larger scale filamentary structures (~100 pc), and argue that this is likely to be common, and as such these may indicate a connection between large-sca...

  11. FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine; Looney, Leslie [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green St, Urbana, IL 61801 (United States); Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Tobin, John, E-mail: ijlee9@illinois.edu, E-mail: lwl@illinois.edu, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: jtobin@nrao.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-12-20

    Filamentary structures are ubiquitous from large-scale molecular clouds (a few parsecs) to small-scale circumstellar envelopes around Class 0 sources ({approx}1000 AU to {approx}0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (a few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). We show that with reasonable estimates for the column density through the flattened envelope, the CARMA D array at 3 mm wavelengths is not able to detect such filamentary structure, so previous studies would not have detected them. However, the substructures may be detected with the CARMA D+E array at 3 mm and the CARMA E array at 1 mm as a result of more appropriate resolution and sensitivity. ALMA is also capable of detecting the substructures and showing the structures in detail compared to the CARMA results with its unprecedented sensitivity. Such detection will confirm the new proposed paradigm of non-spherical star formation.

  12. The Large Scale Structure: Polarization Aspects

    Indian Academy of Sciences (India)

    R. F. Pizzo

    2011-12-01

    Polarized radio emission is detected at various scales in the Universe. In this document, I will briefly review our knowledge on polarized radio sources in galaxy clusters and at their outskirts, emphasizing the crucial information provided by the polarized signal on the origin and evolution of such sources. Successively, I will focus on Abell 2255, which is known in the literature as the first cluster for which filamentary polarized emission associated with the radio halo has been detected. By using RM synthesis on our multi-wavelength WSRT observations, we studied the 3-dimensional geometry of the cluster, unveiling the nature of the polarized filaments at the borders of the central radio halo. Our analysis points out that these structures are relics lying at large distance from the cluster center.

  13. LARGE SCALE GLAZED

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    WORLD FAMOUS ARCHITECTS CHALLENGE TODAY THE EXPOSURE OF CONCRETE IN THEIR ARCHITECTURE. IT IS MY HOPE TO BE ABLE TO COMPLEMENT THESE. I TRY TO DEVELOP NEW AESTHETIC POTENTIALS FOR THE CONCRETE AND CERAMICS, IN LARGE SCALES THAT HAS NOT BEEN SEEN BEFORE IN THE CERAMIC AREA. IT IS EXPECTED TO RESULT...

  14. Formation of large-scale structure from cosmic strings and massive neutrinos

    Science.gov (United States)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  15. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  16. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  17. Large scale tracking algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  18. Magnetic fields and the large-scale structure

    CERN Document Server

    Battaner, E

    1999-01-01

    The large-scale structure of the Universe has been observed to be characterized by long filaments, forming polyhedra, with a remarkable 100-200 Mpc periodicity, suggesting a regular network. The introduction of magnetic fields into the physics of the evolution of structure formation provides some clues to understanding this unexpected lattice structure. A relativistic treatment of the evolution of pre-recombination inhomogeneities, including magnetic fields, is presented to show that equivalent-to-present field strengths of the order of $10^{-8}$ G could have played an important role. Primordial magnetic tubes generated at inflation, at scales larger than the horizon before recombination, could have produced filamentary density structures, with comoving lengths larger than about 10 Mpc. Structures shorter than this would have been destroyed by diffusion due to the small pre-recombination conductivity. If filaments constitute a lattice, the primordial magnetic field structures that produced the post-recombinat...

  19. Large-scale data analytics

    CERN Document Server

    Gkoulalas-Divanis, Aris

    2014-01-01

    Provides cutting-edge research in large-scale data analytics from diverse scientific areas Surveys varied subject areas and reports on individual results of research in the field Shares many tips and insights into large-scale data analytics from authors and editors with long-term experience and specialization in the field

  20. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Iovane, G. [Dipartimento di Ingegneria, dell' Informazione e Matematica Applicata, Universita di Salerno, Salerno (Italy)] e-mail: iovane@diima.unisa.it; Giordano, P. [Dipartimento di Ingegneria, dell' Informazione e Matematica Applicata, Universita di Salerno, Salerno (Italy)

    2005-08-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o {sup ({infinity})} Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe.

  1. Very Large Scale Integration (VLSI).

    Science.gov (United States)

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  2. Large Scale Dynamos in Stars

    Science.gov (United States)

    Vishniac, Ethan T.

    2015-01-01

    We show that a differentially rotating conducting fluid automatically creates a magnetic helicity flux with components along the rotation axis and in the direction of the local vorticity. This drives a rapid growth in the local density of current helicity, which in turn drives a large scale dynamo. The dynamo growth rate derived from this process is not constant, but depends inversely on the large scale magnetic field strength. This dynamo saturates when buoyant losses of magnetic flux compete with the large scale dynamo, providing a simple prediction for magnetic field strength as a function of Rossby number in stars. Increasing anisotropy in the turbulence produces a decreasing magnetic helicity flux, which explains the flattening of the B/Rossby number relation at low Rossby numbers. We also show that the kinetic helicity is always a subdominant effect. There is no kinematic dynamo in real stars.

  3. Large-scale circuit simulation

    Science.gov (United States)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  4. Method and apparatus for synthesizing filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  5. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  6. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  7. Formation of large-scale structure from cosmic-string loops and cold dark matter

    Science.gov (United States)

    Melott, Adrian L.; Scherrer, Robert J.

    1987-01-01

    Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.

  8. Large scale filaments associated with Milky Way spiral arms

    CERN Document Server

    Wang, Ke; Ginsburg, Adam; Walmsley, C Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-01-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments, including 6 identified from a pilot search field plus 3 from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)$\\times10^4 \\, M_\\odot$, and beam-averaged ($28"$, or 0.4-0.7 pc) peak H$_2$ column densities of (1.7-9.3)$\\times 10^{22} \\, \\rm{cm^{-2}}$. The bulk of the filaments are relatively cold (17-21 K), whi...

  9. Strings and large scale magnetohydrodynamics

    CERN Document Server

    Olesen, P

    1995-01-01

    From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.

  10. Testing gravity on Large Scales

    OpenAIRE

    Raccanelli Alvise

    2013-01-01

    We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep...

  11. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    Science.gov (United States)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  12. Models of large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S. (Physics Dept., Univ. of Durham (UK))

    1991-01-01

    The ingredients required to construct models of the cosmic large scale structure are discussed. Input from particle physics leads to a considerable simplification by offering concrete proposals for the geometry of the universe, the nature of the dark matter and the primordial fluctuations that seed the growth of structure. The remaining ingredient is the physical interaction that governs dynamical evolution. Empirical evidence provided by an analysis of a redshift survey of IRAS galaxies suggests that gravity is the main agent shaping the large-scale structure. In addition, this survey implies large values of the mean cosmic density, {Omega}> or approx.0.5, and is consistent with a flat geometry if IRAS galaxies are somewhat more clustered than the underlying mass. Together with current limits on the density of baryons from Big Bang nucleosynthesis, this lends support to the idea of a universe dominated by non-baryonic dark matter. Results from cosmological N-body simulations evolved from a variety of initial conditions are reviewed. In particular, neutrino dominated and cold dark matter dominated universes are discussed in detail. Finally, it is shown that apparent periodicities in the redshift distributions in pencil-beam surveys arise frequently from distributions which have no intrinsic periodicity but are clustered on small scales. (orig.).

  13. Nonlinear evolution of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-08-15

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.

  14. Filamentary and hierarchical pictures - Kinetic energy criterion

    Science.gov (United States)

    Klypin, Anatoly A.; Melott, Adrian L.

    1992-01-01

    We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.

  15. Fragmentation in filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Rathborne, Jill M; Sanhueza, Patricio

    2015-01-01

    Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the over-densities (clumps). In this paper, we present a multi-wavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage' instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find t...

  16. Large scale cluster computing workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  17. Large-Scale Galaxy Bias

    CERN Document Server

    Desjacques, Vincent; Schmidt, Fabian

    2016-01-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a pedagogical proof of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which includes the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in i...

  18. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  19. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  20. Testing gravity on Large Scales

    Directory of Open Access Journals (Sweden)

    Raccanelli Alvise

    2013-09-01

    Full Text Available We show how it is possible to test general relativity and different models of gravity via Redshift-Space Distortions using forthcoming cosmological galaxy surveys. However, the theoretical models currently used to interpret the data often rely on simplifications that make them not accurate enough for precise measurements. We will discuss improvements to the theoretical modeling at very large scales, including wide-angle and general relativistic corrections; we then show that for wide and deep surveys those corrections need to be taken into account if we want to measure the growth of structures at a few percent level, and so perform tests on gravity, without introducing systematic errors. Finally, we report the results of some recent cosmological model tests carried out using those precise models.

  1. Conference on Large Scale Optimization

    CERN Document Server

    Hearn, D; Pardalos, P

    1994-01-01

    On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con­ ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program­ ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At­ tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com­ puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abro...

  2. Large Scale Correlation Clustering Optimization

    CERN Document Server

    Bagon, Shai

    2011-01-01

    Clustering is a fundamental task in unsupervised learning. The focus of this paper is the Correlation Clustering functional which combines positive and negative affinities between the data points. The contribution of this paper is two fold: (i) Provide a theoretic analysis of the functional. (ii) New optimization algorithms which can cope with large scale problems (>100K variables) that are infeasible using existing methods. Our theoretic analysis provides a probabilistic generative interpretation for the functional, and justifies its intrinsic "model-selection" capability. Furthermore, we draw an analogy between optimizing this functional and the well known Potts energy minimization. This analogy allows us to suggest several new optimization algorithms, which exploit the intrinsic "model-selection" capability of the functional to automatically recover the underlying number of clusters. We compare our algorithms to existing methods on both synthetic and real data. In addition we suggest two new applications t...

  3. Large-Scale Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  4. Probing large-scale structure with radio observations

    Science.gov (United States)

    Brown, Shea D.

    This thesis focuses on detecting magnetized relativistic plasma in the intergalactic medium (IGM) of filamentary large-scale structure (LSS) by observing synchrotron emission emitted by structure formation shocks. Little is known about the IGM beyond the largest clusters of galaxies, and synchrotron emission holds enormous promise as a means of probing magnetic fields and relativistic particle populations in these low density regions. I'll first report on observations taken at the Very Large Array and the Westerbork Synthesis Radio Telescope of the diffuse radio source 0809+39. I use these observations to demonstrate that 0809+39 is likely the first "radio relic" discovered that is not associated with a rich |"X-ray emitting cluster of galaxies. I then demonstrate that an unconventional reprocessing of the NVSS polarization survey can reveal structures on scales from 15' to hundreds of degrees, far larger than the nominal shortest-baseline scale. This yields hundreds of new diffuse sources as well as the identification of a new nearby galactic loop . These observations also highlight the major obstacle that diffuse galactic foreground emission poses for any search for large-scale, low surface- brightness extragalactic emission. I therefore explore the cross-correlation of diffuse radio emission with optical tracers of LSS as a means of statistically detecting the presence of magnetic fields in the low-density regions of the cosmic web. This initial study with the Bonn 1.4 GHz radio survey yields an upper limit of 0.2 mG for large-scale filament magnetic fields. Finally, I report on new Green Bank Telescope and Westerbork Synthesis Radio Telescope observations of the famous Coma cluster of galaxies. Major findings include an extension to the Coma cluster radio relic source 1253+275 which makes its total extent ~2 Mpc, as well as a sharp edge, or "front", on the Western side of the radio halo which shows a strong correlation with merger activity associated with an

  5. Large Scale Magnetostrictive Valve Actuator

    Science.gov (United States)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  6. Supersonic turbulence, filamentary accretion,and the rapid assembly of massive stars and disks

    CERN Document Server

    Banerjee, R; Anderson, D W; Banerjee, Robi; Pudritz, Ralph E.; Anderson, Dave W.

    2006-01-01

    We present a detailed computational study of the assembly of protostellar disks and massive stars in molecular clouds with supersonic turbulence. We follow the evolution of large scale filamentary structures in a cluster-forming clump down to protostellar length scales by means of very highly resolved, 3D adaptive mesh refined (AMR) simulations, and show how accretion disks and massive stars form in such environments. We find that an initially elongated cloud core which has a slight spin from oblique shocks collapses first to a filament and later develops a turbulent disk close to the center of the filament. The continued large scale flow that shocks with the filament maintains the high density and pressure within it. Material within the cooling filament undergoes gravitational collapse and an outside-in assembly of a massive protostar. Our simulations show that very high mass accretion rates of up to 10^-2 Msol/yr and high, supersonic, infall velocities result from such filamentary accretion. Accretion at th...

  7. Handbook of Large-Scale Random Networks

    CERN Document Server

    Bollobas, Bela; Miklos, Dezso

    2008-01-01

    Covers various aspects of large-scale networks, including mathematical foundations and rigorous results of random graph theory, modeling and computational aspects of large-scale networks, as well as areas in physics, biology, neuroscience, sociology and technical areas

  8. Conundrum of the Large Scale Streaming

    CERN Document Server

    Malm, T M

    1999-01-01

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  9. Large-Scale Damage Control Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs large‑scale fire protection experiments that simulate actual Navy platform conditions. Remote control firefighting systems are also tested....

  10. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  11. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... existing buildings in and around Copenhagen that are covered with mosaic tiles or glazed tiles; buildings such as Nanna Ditzel’s House in Klareboderne, Arne Jacobsen’s gas station, Erik Møller’s Industriens Hus, Bent Helweg Møller’s Berlingske Hus, Arne Jacobsen’s Stellings Hus and Toms Chocolate Factories...... and finally Lene Tranberg and Bøje Lungård’s Elsinore water purification plant. These buildings have qualities that I would like applied, perhaps transformed or most preferably, if possible, interpreted anew, for the large glazed concrete panels I shall develop. The article is ended and concluded...

  12. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  13. Large-scale perspective as a challenge

    NARCIS (Netherlands)

    Plomp, M.G.A.

    2012-01-01

    1. Scale forms a challenge for chain researchers: when exactly is something ‘large-scale’? What are the underlying factors (e.g. number of parties, data, objects in the chain, complexity) that determine this? It appears to be a continuum between small- and large-scale, where positioning on that cont

  14. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  15. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    S F King

    2004-02-01

    We review experimental and theoretical developments in inflation and its application to structure formation, including the curvation idea. We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which the Higgs scalar field is responsible for large scale structure, show how such a theory is completely natural in the framework extra dimensions with an intermediate string scale.

  16. Large Scale Metal Additive Techniques Review

    Energy Technology Data Exchange (ETDEWEB)

    Nycz, Andrzej [ORNL; Adediran, Adeola I [ORNL; Noakes, Mark W [ORNL; Love, Lonnie J [ORNL

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environment friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.

  17. What is a large-scale dynamo?

    Science.gov (United States)

    Nigro, G.; Pongkitiwanichakul, P.; Cattaneo, F.; Tobias, S. M.

    2017-01-01

    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number (Rm). We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations.

  18. A molecular line study of the filamentary infrared dark cloud G304.74+01.32

    CERN Document Server

    Miettinen, Oskari

    2012-01-01

    The aim of this study is to better understand the physical and chemical properties of the filamentary IRDC G304.74+01.32. In particular, we aim to investigate the kinematics and dynamical state of the cloud and clumps within it, and the amount of CO depletion. All the submillimetre peak positions in the cloud identified from our previous LABOCA 870-micron map were observed in C17O(2-1) with APEX. Selected positions were also observed in the 13CO(2-1), SiO(5-4), and CH3OH(5_k-4_k) transitions at ~1 mm wavelength. The C17O lines were detected towards all target positions at similar radial velocities, indicating that G304.74 is a coherent filamentary structure. CO does not appear to be significantly depleted in the clumps. Two- to three methanol 5_k-4_k lines near ~241.8 GHz were detected towards all selected target positions, whereas SiO(5-4) was seen in only one of these positions. The 13CO(2-1) lines show blue asymmetric profiles, indicating large-scale infall motions. The clumps show trans- to supersonic non...

  19. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  20. Network robustness under large-scale attacks

    CERN Document Server

    Zhou, Qing; Liu, Ruifang; Cui, Shuguang

    2014-01-01

    Network Robustness under Large-Scale Attacks provides the analysis of network robustness under attacks, with a focus on large-scale correlated physical attacks. The book begins with a thorough overview of the latest research and techniques to analyze the network responses to different types of attacks over various network topologies and connection models. It then introduces a new large-scale physical attack model coined as area attack, under which a new network robustness measure is introduced and applied to study the network responses. With this book, readers will learn the necessary tools to evaluate how a complex network responds to random and possibly correlated attacks.

  1. Large-scale dynamics of magnetic helicity

    Science.gov (United States)

    Linkmann, Moritz; Dallas, Vassilios

    2016-11-01

    In this paper we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a nonlocal inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic field. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  2. Large-scale galaxy distribution in the Las Campanas Redshift Survey

    Science.gov (United States)

    Doroshkevich, A. G.; Tucker, D. L.; Fong, R.; Turchaninov, V.; Lin, H.

    2001-04-01

    We make use of three-dimensional clustering analysis, inertia tensor methods, and the minimal spanning tree technique to estimate some physical and statistical characteristics of the large-scale galaxy distribution and, in particular, of the sample of overdense regions seen in the Las Campanas Redshift Survey (LCRS). Our investigation provides additional evidence for a network of structures found in our core sampling analysis of the LCRS: a system of rich sheet-like structures, which in turn surround large underdense regions criss-crossed by a variety of filamentary structures. We find that the overdense regions contain ~40-50 per cent of LCRS galaxies and have proper sizes similar to those of nearby superclusters. The formation of such structures can be roughly described as a non-linear compression of protowalls of typical cross-sectional size ~20-25h-1Mpc this scale is ~5 times the conventional value for the onset of non-linear clustering - to wit, r0, the autocorrelation length for galaxies. The comparison with available simulations and theoretical estimates shows that the formation of structure elements with parameters similar to those observed is presently possible only in low-density cosmological models, Ωmh~0.2-0.3, with a suitable large-scale bias between galaxies and dark matter.

  3. Large scale-small scale duality and cosmological constant

    CERN Document Server

    Darabi, F

    1999-01-01

    We study a model of quantum cosmology originating from a classical model of gravitation where a self interacting scalar field is coupled to gravity with the metric undergoing a signature transition. We show that there are dual classical signature changing solutions, one at large scales and the other at small scales. It is possible to fine-tune the physics in both scales with an infinitesimal effective cosmological constant.

  4. Ultra-Large-Scale Systems: Scale Changes Everything

    Science.gov (United States)

    2008-03-06

    Statistical Mechanics, Complexity Networks Are Everywhere Recurring “scale free” structure • internet & yeast protein structures Analogous dynamics...Design • Design Representation and Analysis • Assimilation • Determining and Managing Requirements 43 Ultra-Large-Scale Systems Linda Northrop: March

  5. Large-scale Complex IT Systems

    CERN Document Server

    Sommerville, Ian; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challenges and issues in the development of large-scale complex, software-intensive systems. Central to this is the notion that we cannot separate software from the socio-technical environment in which it is used.

  6. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  7. Evaluating Large-Scale Interactive Radio Programmes

    Science.gov (United States)

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  8. Computing in Large-Scale Dynamic Systems

    NARCIS (Netherlands)

    Pruteanu, A.S.

    2013-01-01

    Software applications developed for large-scale systems have always been difficult to de- velop due to problems caused by the large number of computing devices involved. Above a certain network size (roughly one hundred), necessary services such as code updating, topol- ogy discovery and data dissem

  9. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion

    CERN Document Server

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood

    2016-01-01

    The gravitational instability of a filamentary molecular cloud in non-ideal magnetohydrodynamics is investigated. The filament is assumed to be in hydrostatic equilibrium. We add the effect of ambipolar diffusion to the filament which is threaded by an initial uniform axial magnetic field along its axis. We write down the fluid equations in cylindrical coordinates and perform linear perturbation analysis. We integrate the resultant differential equations and then derive the numerical dispersion relation. We find that, a more efficient ambipolar diffusion leads to an enhancement of the growth of the most unstable mode, and to increase of the fragmentation scale of the filament.

  10. Topological Routing in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    A new routing scheme, Topological Routing, for large-scale networks is proposed. It allows for efficient routing without large routing tables as known from traditional routing schemes. It presupposes a certain level of order in the networks, known from Structural QoS. The main issues in applying...... Topological Routing to large-scale networks are discussed. Hierarchical extensions are presented along with schemes for shortest path routing, fault handling and path restoration. Further reserach in the area is discussed and perspectives on the prerequisites for practical deployment of Topological Routing...

  11. Topological Routing in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    A new routing scheme, Topological Routing, for large-scale networks is proposed. It allows for efficient routing without large routing tables as known from traditional routing schemes. It presupposes a certain level of order in the networks, known from Structural QoS. The main issues in applying...... Topological Routing to large-scale networks are discussed. Hierarchical extensions are presented along with schemes for shortest path routing, fault handling and path restoration. Further reserach in the area is discussed and perspectives on the prerequisites for practical deployment of Topological Routing...

  12. Neutrino footprint in Large Scale Structure

    CERN Document Server

    Jimenez, Raul; Verde, Licia

    2016-01-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys, implying a direct determination of the absolute neutrino mass scale. The measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. Detection of a lack of small-scale power, however, could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties can be related to the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature can not be easily mimicked by systematic uncertainties or modifications in ...

  13. Assembly of filamentary void galaxy configurations

    NARCIS (Netherlands)

    Rieder, Steven; van de Weijgaert, Rien; Cautun, Marius; Beygu, Burcu; Zwart, Simon Portegies

    2013-01-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Lambda cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently

  14. Large-scale instabilities of helical flows

    CERN Document Server

    Cameron, Alexandre; Brachet, Marc-Étienne

    2016-01-01

    Large-scale hydrodynamic instabilities of periodic helical flows are investigated using $3$D Floquet numerical computations. A minimal three-modes analytical model that reproduce and explains some of the full Floquet results is derived. The growth-rate $\\sigma$ of the most unstable modes (at small scale, low Reynolds number $Re$ and small wavenumber $q$) is found to scale differently in the presence or absence of anisotropic kinetic alpha (\\AKA{}) effect. When an $AKA$ effect is present the scaling $\\sigma \\propto q\\; Re\\,$ predicted by the $AKA$ effect theory [U. Frisch, Z. S. She, and P. L. Sulem, Physica D: Nonlinear Phenomena 28, 382 (1987)] is recovered for $Re\\ll 1$ as expected (with most of the energy of the unstable mode concentrated in the large scales). However, as $Re$ increases, the growth-rate is found to saturate and most of the energy is found at small scales. In the absence of \\AKA{} effect, it is found that flows can still have large-scale instabilities, but with a negative eddy-viscosity sca...

  15. Transition from large-scale to small-scale dynamo.

    Science.gov (United States)

    Ponty, Y; Plunian, F

    2011-04-15

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  16. Large-scale simulations of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  17. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  18. Large-scale structure of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, S.F.; Doroshkevich, A.G.; Zel' dovich, Ya.B. (Inst. Prikladnoj Matematiki, Moscow, USSR)

    1983-01-01

    A review of theory of the large-scale structure of the Universe is given, including formation of clusters and superclusters of galaxies as well as large voids. Particular attention is paid to the theory of neutrino dominated Universe - the cosmological model where neutrinos with the rest mass of several tens eV dominate the mean density. Evolution of small perturbations is discussed, estimates of microwave backgorund radiation fluctuations is given for different angular scales. Adiabatic theory of the Universe structure formation, known as ''cake'' scenario and their successive fragmentation is given. This scenario is based on approximate nonlinear theory of gravitation instability. Results of numerical experiments, modeling the processes of large-scale structure formation are discussed.

  19. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  20. Large scale topic modeling made practical

    DEFF Research Database (Denmark)

    Wahlgreen, Bjarne Ørum; Hansen, Lars Kai

    2011-01-01

    Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number of docume......Topic models are of broad interest. They can be used for query expansion and result structuring in information retrieval and as an important component in services such as recommender systems and user adaptive advertising. In large scale applications both the size of the database (number...... topics at par with a much larger case specific vocabulary....

  1. Large-scale multimedia modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G. Jr.; Buck, J.W.; Whelan, G.; Strenge, D.L.; Castleton, K.J.; Gelston, G.M.

    1995-08-01

    Over the past decade, the US Department of Energy (DOE) and other agencies have faced increasing scrutiny for a wide range of environmental issues related to past and current practices. A number of large-scale applications have been undertaken that required analysis of large numbers of potential environmental issues over a wide range of environmental conditions and contaminants. Several of these applications, referred to here as large-scale applications, have addressed long-term public health risks using a holistic approach for assessing impacts from potential waterborne and airborne transport pathways. Multimedia models such as the Multimedia Environmental Pollutant Assessment System (MEPAS) were designed for use in such applications. MEPAS integrates radioactive and hazardous contaminants impact computations for major exposure routes via air, surface water, ground water, and overland flow transport. A number of large-scale applications of MEPAS have been conducted to assess various endpoints for environmental and human health impacts. These applications are described in terms of lessons learned in the development of an effective approach for large-scale applications.

  2. Large-scale neuromorphic computing systems

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  3. Configuration management in large scale infrastructure development

    NARCIS (Netherlands)

    Rijn, T.P.J. van; Belt, H. van de; Los, R.H.

    2000-01-01

    Large Scale Infrastructure (LSI) development projects such as the construction of roads, rail-ways and other civil engineering (water)works is tendered differently today than a decade ago. Traditional workflow requested quotes from construction companies for construction works where the works to be

  4. Sensitivity analysis for large-scale problems

    Science.gov (United States)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  5. Ensemble methods for large scale inverse problems

    NARCIS (Netherlands)

    Heemink, A.W.; Umer Altaf, M.; Barbu, A.L.; Verlaan, M.

    2013-01-01

    Variational data assimilation, also sometimes simply called the ‘adjoint method’, is used very often for large scale model calibration problems. Using the available data, the uncertain parameters in the model are identified by minimizing a certain cost function that measures the difference between t

  6. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  7. Quantum Signature of Cosmological Large Scale Structures

    CERN Document Server

    Capozziello, S; De Siena, S; Illuminati, F; Capozziello, Salvatore; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1998-01-01

    We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.

  8. Large-scale structure of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, S.F.; Doroshkevich, A.G.; Zel' dovich, Y.B.

    1983-01-01

    A survey is given of theories for the origin of large-scale structure in the universe: clusters and superclusters of galaxies, and vast black regions practically devoid of galaxies. Special attention is paid to the theory of a neutrino-dominated universe: a cosmology in which electron neutrinos with a rest mass of a few tens of electron volts would contribute the bulk of the mean density. The evolution of small perturbations is discussed, and estimates are made for the temperature anisotropy of the microwave background radiation on various angular scales. The nonlinear stage in the evolution of smooth irrotational perturbations in a low-pressure medium is described in detail. Numerical experiments simulating large-scale structure formation processes are discussed, as well as their interpretation in the context of catastrophe theory.

  9. Neutrino footprint in large scale structure

    Science.gov (United States)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  10. Galaxy alignment on large and small scales

    Science.gov (United States)

    Kang, X.; Lin, W. P.; Dong, X.; Wang, Y. O.; Dutton, A.; Macciò, A.

    2016-10-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.

  11. Galaxy alignment on large and small scales

    CERN Document Server

    Kang, X; Wang, Y O; Dutton, A; Macciò, A

    2014-01-01

    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some ex...

  12. Filamentary Switching: Synaptic Plasticity through Device Volatility

    CERN Document Server

    La Barbera, Selina; Alibart, Fabien

    2015-01-01

    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show tha...

  13. Large-Scale PV Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  14. Large-Scale Collective Entity Matching

    CERN Document Server

    Rastogi, Vibhor; Garofalakis, Minos

    2011-01-01

    There have been several recent advancements in Machine Learning community on the Entity Matching (EM) problem. However, their lack of scalability has prevented them from being applied in practical settings on large real-life datasets. Towards this end, we propose a principled framework to scale any generic EM algorithm. Our technique consists of running multiple instances of the EM algorithm on small neighborhoods of the data and passing messages across neighborhoods to construct a global solution. We prove formal properties of our framework and experimentally demonstrate the effectiveness of our approach in scaling EM algorithms.

  15. Stabilization Algorithms for Large-Scale Problems

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg

    2006-01-01

    The focus of the project is on stabilization of large-scale inverse problems where structured models and iterative algorithms are necessary for computing approximate solutions. For this purpose, we study various iterative Krylov methods and their abilities to produce regularized solutions. Some......-curve. This heuristic is implemented as a part of a larger algorithm which is developed in collaboration with G. Rodriguez and P. C. Hansen. Last, but not least, a large part of the project has, in different ways, revolved around the object-oriented Matlab toolbox MOORe Tools developed by PhD Michael Jacobsen. New...

  16. The large-scale structure of vacuum

    CERN Document Server

    Albareti, F D; Maroto, A L

    2014-01-01

    The vacuum state in quantum field theory is known to exhibit an important number of fundamental physical features. In this work we explore the possibility that this state could also present a non-trivial space-time structure on large scales. In particular, we will show that by imposing the renormalized vacuum energy-momentum tensor to be conserved and compatible with cosmological observations, the vacuum energy of sufficiently heavy fields behaves at late times as non-relativistic matter rather than as a cosmological constant. In this limit, the vacuum state supports perturbations whose speed of sound is negligible and accordingly allows the growth of structures in the vacuum energy itself. This large-scale structure of vacuum could seed the formation of galaxies and clusters very much in the same way as cold dark matter does.

  17. Growth Limits in Large Scale Networks

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip

    the fundamental technological resources in network technologies are analysed for scalability. Here several technological limits to continued growth are presented. The third step involves a survey of major problems in managing large scale networks given the growth of user requirements and the technological...... limitations. The rising complexity of network management with the convergence of communications platforms is shown as problematic for both automatic management feasibility and for manpower resource management. In the fourth step the scope is extended to include the present society with the DDN project as its...... main focus. Here the general perception of the nature and role in society of large scale networks as a fundamental infrastructure is analysed. This analysis focuses on the effects of the technical DDN projects and on the perception of network infrastructure as expressed by key decision makers...

  18. Process Principles for Large-Scale Nanomanufacturing.

    Science.gov (United States)

    Behrens, Sven H; Breedveld, Victor; Mujica, Maritza; Filler, Michael A

    2017-06-07

    Nanomanufacturing-the fabrication of macroscopic products from well-defined nanoscale building blocks-in a truly scalable and versatile manner is still far from our current reality. Here, we describe the barriers to large-scale nanomanufacturing and identify routes to overcome them. We argue for nanomanufacturing systems consisting of an iterative sequence of synthesis/assembly and separation/sorting unit operations, analogous to those used in chemicals manufacturing. In addition to performance and economic considerations, phenomena unique to the nanoscale must guide the design of each unit operation and the overall process flow. We identify and discuss four key nanomanufacturing process design needs: (a) appropriately selected process break points, (b) synthesis techniques appropriate for large-scale manufacturing, (c) new structure- and property-based separations, and (d) advances in stabilization and packaging.

  19. Condition Monitoring of Large-Scale Facilities

    Science.gov (United States)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  20. Wireless Secrecy in Large-Scale Networks

    CERN Document Server

    Pinto, Pedro C; Win, Moe Z

    2011-01-01

    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.

  1. ELASTIC: A Large Scale Dynamic Tuning Environment

    Directory of Open Access Journals (Sweden)

    Andrea Martínez

    2014-01-01

    Full Text Available The spectacular growth in the number of cores in current supercomputers poses design challenges for the development of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins, called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.

  2. Measuring Bulk Flows in Large Scale Surveys

    CERN Document Server

    Feldman, H A; Feldman, Hume A.; Watkins, Richard

    1993-01-01

    We follow a formalism presented by Kaiser to calculate the variance of bulk flows in large scale surveys. We apply the formalism to a mock survey of Abell clusters \\'a la Lauer \\& Postman and find the variance in the expected bulk velocities in a universe with CDM, MDM and IRAS--QDOT power spectra. We calculate the velocity variance as a function of the 1--D velocity dispersion of the clusters and the size of the survey.

  3. Statistical characteristics of Large Scale Structure

    OpenAIRE

    Demianski; Doroshkevich

    2002-01-01

    We investigate the mass functions of different elements of the Large Scale Structure -- walls, pancakes, filaments and clouds -- and the impact of transverse motions -- expansion and/or compression -- on their statistical characteristics. Using the Zel'dovich theory of gravitational instability we show that the mass functions of all structure elements are approximately the same and the mass of all elements is found to be concentrated near the corresponding mean mass. At high redshifts, both t...

  4. Topologies for large scale photovoltaic power plants

    OpenAIRE

    Cabrera Tobar, Ana; Bullich Massagué, Eduard; Aragüés Peñalba, Mònica; Gomis Bellmunt, Oriol

    2016-01-01

    © 2016 Elsevier Ltd. All rights reserved. The concern of increasing renewable energy penetration into the grid together with the reduction of prices of photovoltaic solar panels during the last decade have enabled the development of large scale solar power plants connected to the medium and high voltage grid. Photovoltaic generation components, the internal layout and the ac collection grid are being investigated for ensuring the best design, operation and control of these power plants. This ...

  5. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  6. Large-Scale Visual Data Analysis

    Science.gov (United States)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  7. Dark Matter on small scales; Telescopes on large scales

    CERN Document Server

    Gilmore, G

    2007-01-01

    This article reviews recent progress in observational determination of the properties of dark matter on small astrophysical scales, and progress towards the European Extremely Large Telescope. Current results suggest some surprises: the central DM density profile is typically cored, not cusped, with scale sizes never less than a few hundred pc; the central densities are typically 10-20GeV/cc; no galaxy is found with a dark mass halo less massive than $\\sim5.10^7M_{\\odot}$. We are discovering many more dSphs, which we are analysing to test the generality of these results. The European Extremely Large Telescope Design Study is going forward well, supported by an outstanding scientific case, and founded on detailed industrial studies of the technological requirements.

  8. The Large Scale Organization of Turbulent Channels

    CERN Document Server

    del Alamo, Juan C

    2013-01-01

    We have investigated the organization and dynamics of the large turbulent structures that develop in the logarithmic and outer layers of high-Reynolds-number wall flows. These structures have sizes comparable to the flow thickness and contain most of the turbulent kinetic energy. They produce a substantial fraction of the skin friction and play a key role in turbulent transport. In spite of their significance, there is much less information about the large structures far from the wall than about the small ones of the near-wall region. The main reason for this is the joint requirements of large measurement records and high Reynolds numbers for their experimental analysis. Their theoretical analysis has been hampered by the lack of succesful models for their interaction with the background small-scale turbulence.

  9. RESTRUCTURING OF THE LARGE-SCALE SPRINKLERS

    Directory of Open Access Journals (Sweden)

    Paweł Kozaczyk

    2016-09-01

    Full Text Available One of the best ways for agriculture to become independent from shortages of precipitation is irrigation. In the seventies and eighties of the last century a number of large-scale sprinklers in Wielkopolska was built. At the end of 1970’s in the Poznan province 67 sprinklers with a total area of 6400 ha were installed. The average size of the sprinkler reached 95 ha. In 1989 there were 98 sprinklers, and the area which was armed with them was more than 10 130 ha. The study was conducted on 7 large sprinklers with the area ranging from 230 to 520 hectares in 1986÷1998. After the introduction of the market economy in the early 90’s and ownership changes in agriculture, large-scale sprinklers have gone under a significant or total devastation. Land on the State Farms of the State Agricultural Property Agency has leased or sold and the new owners used the existing sprinklers to a very small extent. This involved a change in crop structure, demand structure and an increase in operating costs. There has also been a threefold increase in electricity prices. Operation of large-scale irrigation encountered all kinds of barriers in practice and limitations of system solutions, supply difficulties, high levels of equipment failure which is not inclined to rational use of available sprinklers. An effect of a vision of the local area was to show the current status of the remaining irrigation infrastructure. The adopted scheme for the restructuring of Polish agriculture was not the best solution, causing massive destruction of assets previously invested in the sprinkler system.

  10. Supporting large-scale computational science

    Energy Technology Data Exchange (ETDEWEB)

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  11. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias; McMahon, Jeff; Miller, Nathan; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2017-01-01

    The Cosmology Large Angular Scale Surveryor (CLASS) is a ground based telescope array designed to measure the large-angular scale polarization signal of the Cosmic Microwave Background (CMB). The large-angular scale CMB polarization measurement is essential for a precise determination of the optical depth to reionization (from the E-mode polarization) and a characterization of inflation from the predicted polarization pattern imprinted on the CMB by gravitational waves in the early universe (from the B-mode polarization). CLASS will characterize the primordial tensor-to-scalar ratio, r, to 0.01 (95% CL).CLASS is uniquely designed to be sensitive to the primordial B-mode signal across the entire range of angular scales where it could possibly dominate over the lensing signal that converts E-modes to B-modes while also making multi-frequency observations both high and low of the frequency where the CMB-to-foreground signal ratio is at its maximum. The design enables CLASS to make a definitive cosmic-variance-limited measurement of the optical depth to scattering from reionization.CLASS is an array of 4 telescopes operating at approximately 40, 90, 150, and 220 GHz. CLASS is located high in the Andes mountains in the Atacama Desert of northern Chile. The location of the CLASS site at high altitude near the equator minimizes atmospheric emission while allowing for daily mapping of ~70% of the sky.A rapid front end Variable-delay Polarization Modulator (VPM) and low noise Transition Edge Sensor (TES) detectors allow for a high sensitivity and low systematic error mapping of the CMB polarization at large angular scales. The VPM, detectors and their coupling structures were all uniquely designed and built for CLASS.We present here an overview of the CLASS scientific strategy, instrument design, and current progress. Particular attention is given to the development and status of the Q-band receiver currently surveying the sky from the Atacama Desert and the development of

  12. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  13. Cold flows and large scale tides

    Science.gov (United States)

    van de Weygaert, R.; Hoffman, Y.

    1999-01-01

    Within the context of the general cosmological setting it has remained puzzling that the local Universe is a relatively cold environment, in the sense of small-scale peculiar velocities being relatively small. Indeed, it has since long figured as an important argument for the Universe having a low Ω, or if the Universe were to have a high Ω for the existence of a substantial bias between the galaxy and the matter distribution. Here we investigate the dynamical impact of neighbouring matter concentrations on local small-scale characteristics of cosmic flows. While regions where huge nearby matter clumps represent a dominating component in the local dynamics and kinematics may experience a faster collapse on behalf of the corresponding tidal influence, the latter will also slow down or even prevent a thorough mixing and virialization of the collapsing region. By means of N-body simulations starting from constrained realizations of regions of modest density surrounded by more pronounced massive structures, we have explored the extent to which the large scale tidal fields may indeed suppress the `heating' of the small-scale cosmic velocities. Amongst others we quantify the resulting cosmic flows through the cosmic Mach number. This allows us to draw conclusions about the validity of estimates of global cosmological parameters from local cosmic phenomena and the necessity to take into account the structure and distribution of mass in the local Universe.

  14. Large-Scale Quasi-geostrophic Magnetohydrodynamics

    Science.gov (United States)

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  15. Large Scale Quasi-geostrophic Magnetohydrodynamics

    CERN Document Server

    Balk, Alexander M

    2014-01-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the "shallow water" beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra invariant. Its presence is shown to imply energy accumulation ...

  16. Clumps in large scale relativistic jets

    CERN Document Server

    Tavecchio, F; Celotti, A

    2003-01-01

    The relatively intense X-ray emission from large scale (tens to hundreds kpc) jets discovered with Chandra likely implies that jets (at least in powerful quasars) are still relativistic at that distances from the active nucleus. In this case the emission is due to Compton scattering off seed photons provided by the Cosmic Microwave Background, and this on one hand permits to have magnetic fields close to equipartition with the emitting particles, and on the other hand minimizes the requirements about the total power carried by the jet. The emission comes from compact (kpc scale) knots, and we here investigate what we can predict about the possible emission between the bright knots. This is motivated by the fact that bulk relativistic motion makes Compton scattering off the CMB photons efficient even when electrons are cold or mildly relativistic in the comoving frame. This implies relatively long cooling times, dominated by adiabatic losses. Therefore the relativistically moving plasma can emit, by Compton sc...

  17. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  18. Conformal Anomaly and Large Scale Gravitational Coupling

    CERN Document Server

    Salehi, H

    2000-01-01

    We present a model in which the breackdown of conformal symmetry of a quantum stress-tensor due to the trace anomaly is related to a cosmological effect in a gravitational model. This is done by characterizing the traceless part of the quantum stress-tensor in terms of the stress-tensor of a conformal invariant classical scalar field. We introduce a conformal frame in which the anomalous trace is identified with a cosmological constant. In this conformal frame we establish the Einstein field equations by connecting the quantum stress-tensor with the large scale distribution of matter in the universe.

  19. Large Scale Quantum Simulations of Nuclear Pasta

    Science.gov (United States)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  20. Large scale wind power penetration in Denmark

    DEFF Research Database (Denmark)

    Karnøe, Peter

    2013-01-01

    he Danish electricity generating system prepared to adopt nuclear power in the 1970s, yet has become the world's front runner in wind power with a national plan for 50% wind power penetration by 2020. This paper deploys a sociotechnical perspective to explain the historical transformation of "net...... expertise evolves and contributes to the normalization and large-scale penetration of wind power in the electricity generating system. The analysis teaches us how technological paths become locked-in, but also indicates keys for locking them out....

  1. Large scale phononic metamaterials for seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Aravantinos-Zafiris, N. [Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Stylianou Typaldou ave., Lixouri 28200 (Greece); Sigalas, M. M. [Department of Materials Science, University of Patras, Patras 26504 (Greece)

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  2. Hiearchical Engine for Large Scale Infrastructure Simulation

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-15

    HELICS ls a new open-source, cyber-physlcal-energy co-simulation framework for electric power systems. HELICS Is designed to support very-large-scale (100,000+ federates) co­simulations with off-the-shelf power-system, communication, market, and end-use tools. Other key features Include cross platform operating system support, the integration of both eventdrlven (e.g., packetlzed communication) and time-series (e.g.,power flow) simulations, and the ability to co-Iterate among federates to ensure physical model convergence at each time step.

  3. Colloquium: Large scale simulations on GPU clusters

    Science.gov (United States)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  4. Accelerated large-scale multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Lloyd Scott

    2011-12-01

    Full Text Available Abstract Background Multiple sequence alignment (MSA is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware. Results We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor. Conclusions Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from http://dna.cs.byu.edu/msa/.

  5. Large-scale ATLAS production on EGEE

    Science.gov (United States)

    Espinal, X.; Campana, S.; Walker, R.

    2008-07-01

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  6. Large-scale ATLAS production on EGEE

    CERN Document Server

    Espinal, X; Walker, R

    2008-01-01

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  7. Large-scale ATLAS production on EGEE

    Energy Technology Data Exchange (ETDEWEB)

    Espinal, X [PIC - Port d' Informacio cientifica, Universitat Autonoma de Barcelona, Edifici D 08193 Bellaterra, Barcelona (Spain); Campana, S [CERN, European Laboratory for Particle Physics, Rue de Geneve 23 CH 1211 Geneva (Switzerland); Walker, R [TRIUMF, Tri - University Meson Facility, 4004 Wesbrook Mall Vancouver, BC (Canada)], E-mail: espinal@ifae.es

    2008-07-15

    In preparation for first data at the LHC, a series of Data Challenges, of increasing scale and complexity, have been performed. Large quantities of simulated data have been produced on three different Grids, integrated into the ATLAS production system. During 2006, the emphasis moved towards providing stable continuous production, as is required in the immediate run-up to first data, and thereafter. Here, we discuss the experience of the production done on EGEE resources, using submission based on the gLite WMS, CondorG and a system using Condor Glide-ins. The overall wall time efficiency of around 90% is largely independent of the submission method, and the dominant source of wasted cpu comes from data handling issues. The efficiency of grid job submission is significantly worse than this, and the glide-in method benefits greatly from factorising this out.

  8. Analysis using large-scale ringing data

    Directory of Open Access Journals (Sweden)

    Baillie, S. R.

    2004-06-01

    Full Text Available Birds are highly mobile organisms and there is increasing evidence that studies at large spatial scales are needed if we are to properly understand their population dynamics. While classical metapopulation models have rarely proved useful for birds, more general metapopulation ideas involving collections of populations interacting within spatially structured landscapes are highly relevant (Harrison, 1994. There is increasing interest in understanding patterns of synchrony, or lack of synchrony, between populations and the environmental and dispersal mechanisms that bring about these patterns (Paradis et al., 2000. To investigate these processes we need to measure abundance, demographic rates and dispersal at large spatial scales, in addition to gathering data on relevant environmental variables. There is an increasing realisation that conservation needs to address rapid declines of common and widespread species (they will not remain so if such trends continue as well as the management of small populations that are at risk of extinction. While the knowledge needed to support the management of small populations can often be obtained from intensive studies in a few restricted areas, conservation of widespread species often requires information on population trends and processes measured at regional, national and continental scales (Baillie, 2001. While management prescriptions for widespread populations may initially be developed from a small number of local studies or experiments, there is an increasing need to understand how such results will scale up when applied across wider areas. There is also a vital role for monitoring at large spatial scales both in identifying such population declines and in assessing population recovery. Gathering data on avian abundance and demography at large spatial scales usually relies on the efforts of large numbers of skilled volunteers. Volunteer studies based on ringing (for example Constant Effort Sites [CES

  9. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  10. Large-scale Globally Propagating Coronal Waves

    Directory of Open Access Journals (Sweden)

    Alexander Warmuth

    2015-09-01

    Full Text Available Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  11. The Large-Scale Polarization Explorer (LSPE)

    CERN Document Server

    Aiola, S; Battaglia, P; Battistelli, E; Baù, A; de Bernardis, P; Bersanelli, M; Boscaleri, A; Cavaliere, F; Coppolecchia, A; Cruciani, A; Cuttaia, F; Addabbo, A D'; D'Alessandro, G; De Gregori, S; Del Torto, F; De Petris, M; Fiorineschi, L; Franceschet, C; Franceschi, E; Gervasi, M; Goldie, D; Gregorio, A; Haynes, V; Krachmalnicoff, N; Lamagna, L; Maffei, B; Maino, D; Masi, S; Mennella, A; Wah, Ng Ming; Morgante, G; Nati, F; Pagano, L; Passerini, A; Peverini, O; Piacentini, F; Piccirillo, L; Pisano, G; Ricciardi, S; Rissone, P; Romeo, G; Salatino, M; Sandri, M; Schillaci, A; Stringhetti, L; Tartari, A; Tascone, R; Terenzi, L; Tomasi, M; Tommasi, E; Villa, F; Virone, G; Withington, S; Zacchei, A; Zannoni, M

    2012-01-01

    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar sh...

  12. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  13. Filamentary ion flow theory and experiments

    CERN Document Server

    Lattarulo, Francesco

    2014-01-01

    Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational elect

  14. Introducing Large-Scale Innovation in Schools

    Science.gov (United States)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  15. Fast large-scale reionization simulations

    Science.gov (United States)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelić, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Mellema, Garrelt; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod

    2009-02-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter haloes are embedded with sources of radiation whose properties are either based on semi-analytical prescriptions or derived from hydrodynamical simulations. These sources could either be stars or power-law sources with varying spectral indices. Assuming spherical symmetry, ionized bubbles are created around these sources, whose radial ionized fraction and temperature profiles are derived from a catalogue of one-dimensional radiative transfer experiments. In case of overlap of these spheres, photons are conserved by redistributing them around the connected ionized regions corresponding to the spheres. The efficiency with which these maps are created allows us to span the large parameter space typically encountered in reionization simulations. We compare our results with other, more accurate, three-dimensional radiative transfer simulations and find excellent agreement for the redshifts and the spatial scales of interest to upcoming 21-cm experiments. We generate a contiguous observational cube spanning redshift 6 to 12 and use these simulations to study the differences in the reionization histories between stars and quasars. Finally, the signal is convolved with the Low Frequency Array (LOFAR) beam response and its effects are analysed and quantified. Statistics performed on this mock data set shed light on possible observational strategies for LOFAR.

  16. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  17. Large-scale parametric survival analysis.

    Science.gov (United States)

    Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S

    2013-10-15

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

  18. Curvature constraints from Large Scale Structure

    CERN Document Server

    Di Dio, Enea; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-01-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter $\\Omega_K$ with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on the spatial curvature parameter estimation. We show that constraints on the curvature para...

  19. Large-Scale Tides in General Relativity

    CERN Document Server

    Ip, Hiu Yan

    2016-01-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation ...

  20. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  1. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  2. Constructing sites on a large scale

    DEFF Research Database (Denmark)

    Braae, Ellen Marie; Tietjen, Anne

    2011-01-01

    for setting the design brief in a large scale urban landscape in Norway, the Jaeren region around the city of Stavanger. In this paper, we first outline the methodological challenges and then present and discuss the proposed method based on our teaching experiences. On this basis, we discuss aspects...... within the development of our urban landscapes. At the same time, urban and landscape designers are confronted with new methodological problems. Within a strategic transformation perspective, the formulation of the design problem or brief becomes an integrated part of the design process. This paper...... discusses new design (education) methods based on a relational concept of urban sites and design processes. Within this logic site survey is not simply a pre-design activity nor is it a question of comprehensive analysis. Site survey is an integrated part of the design process. By means of active site...

  3. Recent progress towards a quantitative description of filamentary SOL transport

    DEFF Research Database (Denmark)

    Carralero, D.; Siccinio, M.; Komm, M.

    2017-01-01

    A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formatio...

  4. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  5. Large scale mechanical metamaterials as seismic shields

    Science.gov (United States)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  6. Large scale probabilistic available bandwidth estimation

    CERN Document Server

    Thouin, Frederic; Rabbat, Michael

    2010-01-01

    The common utilization-based definition of available bandwidth and many of the existing tools to estimate it suffer from several important weaknesses: i) most tools report a point estimate of average available bandwidth over a measurement interval and do not provide a confidence interval; ii) the commonly adopted models used to relate the available bandwidth metric to the measured data are invalid in almost all practical scenarios; iii) existing tools do not scale well and are not suited to the task of multi-path estimation in large-scale networks; iv) almost all tools use ad-hoc techniques to address measurement noise; and v) tools do not provide enough flexibility in terms of accuracy, overhead, latency and reliability to adapt to the requirements of various applications. In this paper we propose a new definition for available bandwidth and a novel framework that addresses these issues. We define probabilistic available bandwidth (PAB) as the largest input rate at which we can send a traffic flow along a pa...

  7. Gravitational redshifts from large-scale structure

    CERN Document Server

    Croft, Rupert A C

    2013-01-01

    The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sight distortion of the cross-correlation function of massive galaxies and lower mass galaxies to estimate the gravitational redshift profile of clusters out to 4 Mpc/h. Here we use a halo model of clustering to predict the distortion due to gravitational redshifts of the cross-correlation function on scales from 1 - 100 Mpc/h. We compare our predictions to simulations and use the simulations to make mock catalogues relevant to current and future galaxy redshift surveys. Without formulating an optimal estimator, we find that the full BOSS survey should be able to detect gravitational redshifts from large-scale structure at the ~4 sigma level. Upcoming redshift surveys will greatly increase the number of galaxies useable in such studies and the BigBOSS and Euclid exper...

  8. Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS

    CERN Document Server

    Tempel, E; Saar, E; Martinez, V J; Liivamägi, L J; Castellan, G

    2013-01-01

    The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large scale structure is an important property of the galaxy distribution. Here we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (SDSS). We search for filaments in the galaxy distribution having a radius of about 0.5 Mpc/h. We divide the detected network into single filaments and present a public catalogue of filaments. We study the filament length distribution and show that the longest filaments reach the length of 60 Mpc/h. The filaments contain 35-40% of the total gal...

  9. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  10. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Large-scale wind turbine structures

    Science.gov (United States)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  12. Large-scale screens of metagenomic libraries.

    Science.gov (United States)

    Pham, Vinh D; Palden, Tsultrim; DeLong, Edward F

    2007-01-01

    Metagenomic libraries archive large fragments of contiguous genomic sequences from microorganisms without requiring prior cultivation. Generating a streamlined procedure for creating and screening metagenomic libraries is therefore useful for efficient high-throughput investigations into the genetic and metabolic properties of uncultured microbial assemblages. Here, key protocols are presented on video, which we propose is the most useful format for accurately describing a long process that alternately depends on robotic instrumentation and (human) manual interventions. First, we employed robotics to spot library clones onto high-density macroarray membranes, each of which can contain duplicate colonies from twenty-four 384-well library plates. Automation is essential for this procedure not only for accuracy and speed, but also due to the miniaturization of scale required to fit the large number of library clones into highly dense spatial arrangements. Once generated, we next demonstrated how the macroarray membranes can be screened for genes of interest using modified versions of standard protocols for probe labeling, membrane hybridization, and signal detection. We complemented the visual demonstration of these procedures with detailed written descriptions of the steps involved and the materials required, all of which are available online alongside the video.

  13. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  14. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  15. Large-scale autostereoscopic outdoor display

    Science.gov (United States)

    Reitterer, Jörg; Fidler, Franz; Saint Julien-Wallsee, Ferdinand; Schmid, Gerhard; Gartner, Wolfgang; Leeb, Walter; Schmid, Ulrich

    2013-03-01

    State-of-the-art autostereoscopic displays are often limited in size, effective brightness, number of 3D viewing zones, and maximum 3D viewing distances, all of which are mandatory requirements for large-scale outdoor displays. Conventional autostereoscopic indoor concepts like lenticular lenses or parallax barriers cannot simply be adapted for these screens due to the inherent loss of effective resolution and brightness, which would reduce both image quality and sunlight readability. We have developed a modular autostereoscopic multi-view laser display concept with sunlight readable effective brightness, theoretically up to several thousand 3D viewing zones, and maximum 3D viewing distances of up to 60 meters. For proof-of-concept purposes a prototype display with two pixels was realized. Due to various manufacturing tolerances each individual pixel has slightly different optical properties, and hence the 3D image quality of the display has to be calculated stochastically. In this paper we present the corresponding stochastic model, we evaluate the simulation and measurement results of the prototype display, and we calculate the achievable autostereoscopic image quality to be expected for our concept.

  16. Management of large-scale multimedia conferencing

    Science.gov (United States)

    Cidon, Israel; Nachum, Youval

    1998-12-01

    The goal of this work is to explore management strategies and algorithms for large-scale multimedia conferencing over a communication network. Since the use of multimedia conferencing is still limited, the management of such systems has not yet been studied in depth. A well organized and human friendly multimedia conference management should utilize efficiently and fairly its limited resources as well as take into account the requirements of the conference participants. The ability of the management to enforce fair policies and to quickly take into account the participants preferences may even lead to a conference environment that is more pleasant and more effective than a similar face to face meeting. We suggest several principles for defining and solving resource sharing problems in this context. The conference resources which are addressed in this paper are the bandwidth (conference network capacity), time (participants' scheduling) and limitations of audio and visual equipment. The participants' requirements for these resources are defined and translated in terms of Quality of Service requirements and the fairness criteria.

  17. Large-scale tides in general relativity

    Science.gov (United States)

    Ip, Hiu Yan; Schmidt, Fabian

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the "separate universe" paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  18. Food appropriation through large scale land acquisitions

    Science.gov (United States)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  19. Large-scale clustering of cosmic voids

    Science.gov (United States)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  20. Large scale digital atlases in neuroscience

    Science.gov (United States)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  1. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  2. Developing Large-Scale Bayesian Networks by Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...

  3. Distributed large-scale dimensional metrology new insights

    CERN Document Server

    Franceschini, Fiorenzo; Maisano, Domenico

    2011-01-01

    Focuses on the latest insights into and challenges of distributed large scale dimensional metrology Enables practitioners to study distributed large scale dimensional metrology independently Includes specific examples of the development of new system prototypes

  4. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  5. Sensitivity technologies for large scale simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias (Rice University, Houston, TX); Wilcox, Lucas C. (Brown University, Providence, RI); Hill, Judith C. (Carnegie Mellon University, Pittsburgh, PA); Ghattas, Omar (Carnegie Mellon University, Pittsburgh, PA); Berggren, Martin Olof (University of UppSala, Sweden); Akcelik, Volkan (Carnegie Mellon University, Pittsburgh, PA); Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  6. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  7. Large Scale Flame Spread Environmental Characterization Testing

    Science.gov (United States)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  8. Synchronization of coupled large-scale Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangfei, E-mail: li-fangfei@163.com [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  9. Synchronization of coupled large-scale Boolean networks

    Science.gov (United States)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  10. Multitree Algorithms for Large-Scale Astrostatistics

    Science.gov (United States)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    Common astrostatistical operations. A number of common "subroutines" occur over and over again in the statistical analysis of astronomical data. Some of the most powerful, and computationally expensive, of these additionally share the common trait that they involve distance comparisons between all pairs of data points—or in some cases, all triplets or worse. These include: * All Nearest Neighbors (AllNN): For each query point in a dataset, find the k-nearest neighbors among the points in another dataset—naively O(N2) to compute, for O(N) data points. * n-Point Correlation Functions: The main spatial statistic used for comparing two datasets in various ways—naively O(N2) for the 2-point correlation, O(N3) for the 3-point correlation, etc. * Euclidean Minimum Spanning Tree (EMST): The basis for "single-linkage hierarchical clustering,"the main procedure for generating a hierarchical grouping of the data points at all scales, aka "friends-of-friends"—naively O(N2). * Kernel Density Estimation (KDE): The main method for estimating the probability density function of the data, nonparametrically (i.e., with virtually no assumptions on the functional form of the pdf)—naively O(N2). * Kernel Regression: A powerful nonparametric method for regression, or predicting a continuous target value—naively O(N2). * Kernel Discriminant Analysis (KDA): A powerful nonparametric method for classification, or predicting a discrete class label—naively O(N2). (Note that the "two datasets" may in fact be the same dataset, as in two-point autocorrelations, or the so-called monochromatic AllNN problem, or the leave-one-out cross-validation needed in kernel estimation.) The need for fast algorithms for such analysis subroutines is particularly acute in the modern age of exploding dataset sizes in astronomy. The Sloan Digital Sky Survey yielded hundreds of millions of objects, and the next generation of instruments such as the Large Synoptic Survey Telescope will yield roughly

  11. Large scale dynamics of protoplanetary discs

    Science.gov (United States)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from

  12. Large scale structure from viscous dark matter

    Science.gov (United States)

    Blas, Diego; Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-11-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale km for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale km, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with N-body simulations up to scales k=0.2 h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.

  13. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...... are presented as the small-scale model underpredicts the overtopping discharge....

  14. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  15. On the scaling of small-scale jet noise to large scale

    Science.gov (United States)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  16. Fast large-scale reionization simulations

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod; Mellema, G.

    2009-01-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter h

  17. Large scale parallel document image processing

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Valentijn, Edwin; Yanikoglu, BA; Berkner, K

    2008-01-01

    Building a system which allows to search a very large database of document images. requires professionalization of hardware and software, e-science and web access. In astrophysics there is ample experience dealing with large data sets due to an increasing number of measurement instruments. The probl

  18. Fast large-scale reionization simulations

    NARCIS (Netherlands)

    Thomas, Rajat M.; Zaroubi, Saleem; Ciardi, Benedetta; Pawlik, Andreas H.; Labropoulos, Panagiotis; Jelic, Vibor; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Harker, Geraint J. A.; Koopmans, Leon V. E.; Pandey, V. N.; Schaye, Joop; Yatawatta, Sarod; Mellema, G.

    2009-01-01

    We present an efficient method to generate large simulations of the epoch of reionization without the need for a full three-dimensional radiative transfer code. Large dark-matter-only simulations are post-processed to produce maps of the redshifted 21-cm emission from neutral hydrogen. Dark matter

  19. Large scale parallel document image processing

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Valentijn, Edwin; Yanikoglu, BA; Berkner, K

    2008-01-01

    Building a system which allows to search a very large database of document images. requires professionalization of hardware and software, e-science and web access. In astrophysics there is ample experience dealing with large data sets due to an increasing number of measurement instruments. The

  20. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  1. The "Nessie" Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud

    CERN Document Server

    Jackson, James M; Chambers, Edward T; Rathborne, Jill M; Simon, Robert

    2010-01-01

    The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.5 degrees x 0.01 degrees, or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within +/- 3.4 km/s, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ~ 4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over...

  2. Statistical equilibria of large scales in dissipative hydrodynamic turbulence

    CERN Document Server

    Dallas, Vassilios; Alexakis, Alexandros

    2015-01-01

    We present a numerical study of the statistical properties of three-dimensional dissipative turbulent flows at scales larger than the forcing scale. Our results indicate that the large scale flow can be described to a large degree by the truncated Euler equations with the predictions of the zero flux solutions given by absolute equilibrium theory, both for helical and non-helical flows. Thus, the functional shape of the large scale spectra can be predicted provided that scales sufficiently larger than the forcing length scale but also sufficiently smaller than the box size are examined. Deviations from the predictions of absolute equilibrium are discussed.

  3. The fractal octahedron network of the large scale structure

    CERN Document Server

    Battaner, E

    1998-01-01

    In a previous article, we have proposed that the large scale structure network generated by large scale magnetic fields could consist of a network of octahedra only contacting at their vertexes. Assuming such a network could arise at different scales producing a fractal geometry, we study here its properties, and in particular how a sub-octahedron network can be inserted within an octahedron of the large network. We deduce that the scale of the fractal structure would range from $\\approx$100 Mpc, i.e. the scale of the deepest surveys, down to about 10 Mpc, as other smaller scale magnetic fields were probably destroyed in the radiation dominated Universe.

  4. Electrodialysis system for large-scale enantiomer separation

    NARCIS (Netherlands)

    Ent, van der E.M.; Thielen, T.P.H.; Cohen Stuart, M.A.; Padt, van der A.; Keurentjes, J.T.F.

    2001-01-01

    In contrast to analytical methods, the range of technologies currently applied for large-scale enantiomer separations is not very extensive. Therefore, a new system has been developed for large-scale enantiomer separations that can be regarded as the scale-up of a capillary electrophoresis system. I

  5. Electrodialysis system for large-scale enantiomer separation

    NARCIS (Netherlands)

    Ent, van der E.M.; Thielen, T.P.H.; Cohen Stuart, M.A.; Padt, van der A.; Keurentjes, J.T.F.

    2001-01-01

    In contrast to analytical methods, the range of technologies currently applied for large-scale enantiomer separations is not very extensive. Therefore, a new system has been developed for large-scale enantiomer separations that can be regarded as the scale-up of a capillary electrophoresis system.

  6. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...

  7. A Virialized Filamentary Infrared Dark Cloud

    CERN Document Server

    Hernandez, Audra K; Kainulainen, Jouni; Caselli, Paola; Butler, Michael J; Jimenez-Serra, Izaskun; Fontani, Francesco

    2012-01-01

    The initial conditions of massive star and star cluster formation are expected to be cold, dense and high column density regions of the interstellar medium, which can reveal themselves via near, mid and even far-infrared absorption as Infrared Dark Clouds (IRDCs). Elucidating the dynamical state of IRDCs thus constrains theoretical models of these complex processes. In particular, it is important to assess whether IRDCs have reached virial equilibrium, where the internal pressure balances that due to the self-gravitating weight of the cloud plus the pressure of the external environmental. We study this question for the filamentary IRDC G035.39-00.33 by deriving mass from combined NIR & MIR extinction maps and velocity dispersion from C18O (1-0) & (2-1) line emission. In contrast to our previous moderately super-virial results based on 13CO emission and MIR-only extinction mapping, with improved mass measurements we now find that the filament is consistent with being in virial equilibrium, at least in ...

  8. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  9. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    Pavel Ambrož; Alfred Schroll

    2000-09-01

    Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.

  10. Modified gravity and large scale flows, a review

    Science.gov (United States)

    Mould, Jeremy

    2017-02-01

    Large scale flows have been a challenging feature of cosmography ever since galaxy scaling relations came on the scene 40 years ago. The next generation of surveys will offer a serious test of the standard cosmology.

  11. Metastrategies in large-scale bargaining settings

    NARCIS (Netherlands)

    Hennes, D.; Jong, S. de; Tuyls, K.; Gal, Y.

    2015-01-01

    This article presents novel methods for representing and analyzing a special class of multiagent bargaining settings that feature multiple players, large action spaces, and a relationship among players' goals, tasks, and resources. We show how to reduce these interactions to a set of bilateral

  12. Large-Scale Organizational Performance Improvement.

    Science.gov (United States)

    Pilotto, Rudy; Young, Jonathan O'Donnell

    1999-01-01

    Describes the steps involved in a performance improvement program in the context of a large multinational corporation. Highlights include a training program for managers that explained performance improvement; performance matrices; divisionwide implementation, including strategic planning; organizationwide training of all personnel; and the…

  13. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...

  14. Large scale scientific computing - future directions

    Science.gov (United States)

    Patterson, G. S.

    1982-06-01

    Every new generation of scientific computers has opened up new areas of science for exploration through the use of more realistic numerical models or the ability to process ever larger amounts of data. Concomitantly, scientists, because of the success of past models and the wide range of physical phenomena left unexplored, have pressed computer designers to strive for the maximum performance that current technology will permit. This encompasses not only increased processor speed, but also substantial improvements in processor memory, I/O bandwidth, secondary storage and facilities to augment the scientist's ability both to program and to understand the results of a computation. Over the past decade, performance improvements for scientific calculations have come from algoeithm development and a major change in the underlying architecture of the hardware, not from significantly faster circuitry. It appears that this trend will continue for another decade. A future archetectural change for improved performance will most likely be multiple processors coupled together in some fashion. Because the demand for a significantly more powerful computer system comes from users with single large applications, it is essential that an application be efficiently partitionable over a set of processors; otherwise, a multiprocessor system will not be effective. This paper explores some of the constraints on multiple processor architecture posed by these large applications. In particular, the trade-offs between large numbers of slow processors and small numbers of fast processors is examined. Strategies for partitioning range from partitioning at the language statement level (in-the-small) and at the program module level (in-the-large). Some examples of partitioning in-the-large are given and a strategy for efficiently executing a partitioned program is explored.

  15. GPS for large-scale aerotriangulation

    Science.gov (United States)

    Rogowksi, Jerzy B.

    The application of GPS (Global Positioning System) measurements to photogrammetry is presented. The technology of establishment of a GPS network for aerotriangulation as a base for mapping at scales from 1:1000 has been worked out at the Institute of Geodesy and Geodetical Astronomy of the Warsaw University of Technology. This method consists of the design, measurement, and adjustment of this special network. The results of several pilot projects confirm the possibility of improving the aerotriangulation accuracy. A few-centimeter accuracy has been achieved.

  16. Development of large-scale structure in the Universe

    CERN Document Server

    Ostriker, J P

    1991-01-01

    This volume grew out of the 1988 Fermi lectures given by Professor Ostriker, and is concerned with cosmological models that take into account the large scale structure of the universe. He starts with homogeneous isotropic models of the universe and then, by considering perturbations, he leads us to modern cosmological theories of the large scale, such as superconducting strings. This will be an excellent companion for all those interested in the cosmology and the large scale nature of the universe.

  17. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    Science.gov (United States)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  18. Measurement of ionospheric large-scale irregularity

    Institute of Scientific and Technical Information of China (English)

    韩文焌; 郑怡嘉; 张喜镇

    1996-01-01

    Based on the observations of a meter-wave aperture synthesis radio telescope,as the scale length of ionospheric irregularity is greatly larger than the baseline length of interferometer,the phase error induced by the output signal of interferometer due to ionosphere is proportional to the baseline length and accordingly the expressions for extracting the information about ionosphere are derived.By using the ray theory and considering that the antenna is always tracking to the radio source in astronomical observation,the wave motion expression of traveling ionospheric disturbance observed in the total electron content is also derived,which is consistent with that obtained from the conception of thin-phase screen;then the Doppler velocity due to antenna tracking is introduced.Finally the inversion analysis for the horizontal phase velocity of TID from observed data is given.

  19. Large Scale Demand Response of Thermostatic Loads

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana

    This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting...... the temperature limits and other operational constraints, and by using only limited communication, it is possible to make use of the individual thermostat deadband flexibility to step-up or step-down the power consumption of the population as if it were a power plant. The individual thermostatic loads experience...

  20. Large-scale GW software development

    Science.gov (United States)

    Kim, Minjung; Mandal, Subhasish; Mikida, Eric; Jindal, Prateek; Bohm, Eric; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn; Ismail-Beigi, Sohrab

    Electronic excitations are important in understanding and designing many functional materials. In terms of ab initio methods, the GW and Bethe-Saltpeter Equation (GW-BSE) beyond DFT methods have proved successful in describing excited states in many materials. However, the heavy computational loads and large memory requirements have hindered their routine applicability by the materials physics community. We summarize some of our collaborative efforts to develop a new software framework designed for GW calculations on massively parallel supercomputers. Our GW code is interfaced with the plane-wave pseudopotential ab initio molecular dynamics software ``OpenAtom'' which is based on the Charm++ parallel library. The computation of the electronic polarizability is one of the most expensive parts of any GW calculation. We describe our strategy that uses a real-space representation to avoid the large number of fast Fourier transforms (FFTs) common to most GW methods. We also describe an eigendecomposition of the plasmon modes from the resulting dielectric matrix that enhances efficiency. This work is supported by NSF through Grant ACI-1339804.

  1. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the

  2. Large Scale CW ECRH Systems: Some considerations

    Directory of Open Access Journals (Sweden)

    Turkin Y.

    2012-09-01

    Full Text Available Electron Cyclotron Resonance Heating (ECRH is a key component in the heating arsenal for the next step fusion devices like W7-X and ITER. These devices are equipped with superconducting coils and are designed to operate steady state. ECRH must thus operate in CW-mode with a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configurationand MHD - control. The request for many different sophisticated applications results in a growing complexity, which is in conflict with the request for high availability, reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a test bed for advanced components. Proposals for future developments are presented together with improvements of gyrotrons, transmission components and launchers.

  3. Carbon dioxide recovery: large scale design trends

    Energy Technology Data Exchange (ETDEWEB)

    Mariz, C. L.

    1998-07-01

    Carbon dioxide recovery from flue gas streams for use in enhanced oil recovery were examined, focusing on key design and operating issues and trends that appear promising in reducing plant investment and operating costs associated with this source of carbon dioxide. The emphasis was on conventional processes using chemical solvents, such as the Fluor Daniel ECONAMINE FG{sup S}M process. Developments in new tower packings and solvents and their potential impact on plant and operating costs were reviewed, along with the effects on these costs of the flue gas source. Sample operating and capital recovery cost data is provided for a 1,000 tonne/day plant. This size plant would be one large enough to support an enhanced oil recovery project. 11 refs., 4 figs.

  4. Python for large-scale electrophysiology

    Directory of Open Access Journals (Sweden)

    Martin A Spacek

    2009-01-01

    Full Text Available Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54 channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analyzing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (dimstim; one for electrophysiological waveform visualization and spike sorting (spyke; and one for spike train and stimulus analysis (neuropy. All three are open source and available for download (http://swindale.ecc.ubc.ca/code. The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  5. Python for large-scale electrophysiology.

    Science.gov (United States)

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation ("dimstim"); one for electrophysiological waveform visualization and spike sorting ("spyke"); and one for spike train and stimulus analysis ("neuropy"). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  6. Optimizing Large-Scale ODE Simulations

    CERN Document Server

    Mulansky, Mario

    2014-01-01

    We present a strategy to speed up Runge-Kutta-based ODE simulations of large systems with nearest-neighbor coupling. We identify the cache/memory bandwidth as the crucial performance bottleneck. To reduce the required bandwidth, we introduce a granularity in the simulation and identify the optimal cluster size in a performance study. This leads to a considerable performance increase and transforms the algorithm from bandwidth bound to CPU bound. By additionally employing SIMD instructions we are able to boost the efficiency even further. In the end, a total performance increase of up to a factor three is observed when using cache optimization and SIMD instructions compared to a standard implementation. All simulation codes are written in C++ and made publicly available. By using the modern C++ libraries Boost.odeint and Boost.SIMD, these optimizations can be implemented with minimal programming effort.

  7. Galaxy Formation and Large Scale Structure

    CERN Document Server

    Ellis, R

    1999-01-01

    Galaxies represent the visible fabric of the Universe and there has been considerable progress recently in both observational and theoretical studies. The underlying goal is to understand the present-day diversity of galaxy forms, masses and luminosities in the context of theories for the growth of structure. Popular models predict the bulk of the galaxy population assembled recently, in apparent agreement with optical and near-infrared observations. However, detailed conclusions rely crucially on the choice of the cosmological parameters. Although the star formation history has been sketched to early times, uncertainties remain, particularly in connecting to the underlying mass assembly rate. I discuss the expected progress in determining the cosmological parameters and address the question of which observations would most accurately check contemporary models for the origin of the Hubble sequence. The new generation of ground-based and future space-based large telescopes, equipped with instrumentation approp...

  8. Large-Scale Pattern Discovery in Music

    Science.gov (United States)

    Bertin-Mahieux, Thierry

    This work focuses on extracting patterns in musical data from very large collections. The problem is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide researchers access to commercial-size datasets. Second, we use this collection to study cover song recognition which involves finding harmonic patterns from audio features. Regarding the Million Song Dataset, we detail how we built the original collection from an online API, and how we encouraged other organizations to participate in the project. The result is the largest research dataset with heterogeneous sources of data available to music technology researchers. We demonstrate some of its potential and discuss the impact it already has on the field. On cover song recognition, we must revisit the existing literature since there are no publicly available results on a dataset of more than a few thousand entries. We present two solutions to tackle the problem, one using a hashing method, and one using a higher-level feature computed from the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential to be a relevant representation for any task involving audio harmonic content. Finally, we discuss the future of the dataset and the hope of seeing more work making use of the different sources of data that are linked in the Million Song Dataset. Regarding cover songs, we explain how this might be a first step towards defining a harmonic manifold of music, a space where harmonic similarities between songs would be more apparent.

  9. Galaxy Formation through Filamentary Accretion at z = 6.1

    Science.gov (United States)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.

    2017-08-01

    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C ii] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C ii] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C ii] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C ii] tail joins smoothly into the main galaxy velocity field. The [C ii] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  10. Irradiation of onions on a large scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Koji; Hayashi, Toru; Uozumi, J.; Sugimoto, Toshio; Aoki, Shohei

    1984-03-01

    A large number of onions of var. Kitamiki and Ohotsuku were irradiated in September followed by storage at 0 deg C or 5 deg C. The onions were shifted from cold-storage facilities to room temperature in mid-March or in mid-April in the following year. Their sprouting, rooting, spoilage characteristics and sugar content were observed during storage at room temperature. Most of the unirradiated onions sprouted either outside or inside bulbs during storage at room temperature, and almost all of the irradiated ones showed small buds with browning inside the bulb in mid-April irrespective of the storage temperature. Rooting and/or expansion of bottom were observed in the unirradiated samples. Although the irradiated materials did not have root, they showed expansion of bottom to some extent. Both the irradiated and unirradiated onions spoiled slightly unless they sprouted, and sprouted onions were easily spoiled. There was no difference in the glucose content between the unirradiated and irradiated onions, but the irradiated ones yielded higher sucrose content when stored at room temperature. Irradiation treatment did not have an obvious effect on the quality of freeze-dried onion slices. (author).

  11. A Large Scale Virtual Gas Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  12. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  13. Large Scale Flows from Orion-South

    CERN Document Server

    Henney, W J; Zapata, L A; Garcia-Diaz, M T; Rodríguez, L F; Robberto, M; Zapata, Luis A.; Garcia-Diaz, Ma. T.; Rodriguez, Luis F.; Robberto, Massimo

    2007-01-01

    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and th...

  14. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stark, Casey; White, Martin [Department of Astronomy, University of California at Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 (United States); Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Schlegel, David J. [University of California Observatories, Lick Observatory, 1156 High Street, Santa Cruz, CA 95064 (United States); Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí Franquès 1, E-08028 Barcelona (Spain); Suzuki, Nao [Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa-shi, Chiba (Japan); Croft, Rupert A. C. [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Caputi, Karina I. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Cassata, Paolo [Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Casilla 5030, Valparaiso (Chile); Ilbert, Olivier; Le Brun, Vincent; Le Fèvre, Olivier [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Garilli, Bianca [INAF-IASF, Via Bassini 15, I-20133, Milano (Italy); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Maccagni, Dario [INAF-Osservatorio Astronomico di Bologna, Via Ranzani,1, I-40127 Bologna (Italy); Nugent, Peter, E-mail: lee@mpia.de [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatial resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.

  15. Safeguards instruments for Large-Scale Reprocessing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A. [Los Alamos National Lab., NM (United States); Case, R.S.; Sonnier, C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    Between 1987 and 1992 a multi-national forum known as LASCAR (Large Scale Reprocessing Plant Safeguards) met to assist the IAEA in development of effective and efficient safeguards for large-scale reprocessing plants. The US provided considerable input for safeguards approaches and instrumentation. This paper reviews and updates instrumentation of importance in measuring plutonium and uranium in these facilities.

  16. Prospects for large scale electricity storage in Denmark

    DEFF Research Database (Denmark)

    Krog Ekman, Claus; Jensen, Søren Højgaard

    2010-01-01

    In a future power systems with additional wind power capacity there will be an increased need for large scale power management as well as reliable balancing and reserve capabilities. Different technologies for large scale electricity storage provide solutions to the different challenges arising w...

  17. Distribution probability of large-scale landslides in central Nepal

    Science.gov (United States)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  18. Balancing modern Power System with large scale of wind power

    OpenAIRE

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the s...

  19. A Census of Large-Scale ($\\ge$ 10 pc), Velocity-Coherent, Dense Filaments in the Northern Galactic Plane: Automated Identification Using Minimum Spanning Tree

    CERN Document Server

    Wang, Ke; Burkert, Andreas; Walmsley, C Malcolm; Beuther, Henrik; Henning, Thomas

    2016-01-01

    Large-scale gaseous filaments with length up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium. Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both observational and theoretical point of view. Previous "by-eye" searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results to be drawn. Here, we present (1) a new, automated method to identify large-scale velocity-coherent dense filaments, and (2) the first statistics and the Galactic distribution of these filaments. We use a customized minimum spanning tree algorithm to identify filaments by connecting voxels in the position-position-velocity space, using the Bolocam Galactic Plane Survey spectroscopic catalog. In the range of $7.^{\\circ}5 \\le l \\le 194^{\\circ}$, we have identified 54 large-scale filaments and der...

  20. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  1. A study of MLFMA for large-scale scattering problems

    Science.gov (United States)

    Hastriter, Michael Larkin

    This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.

  2. Large-scale-vortex dynamos in planar rotating convection

    CERN Document Server

    Guervilly, Céline; Jones, Chris A

    2016-01-01

    Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ($100 \\lesssim Rm \\lesssim 550$, with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, out of phase with the oscillating amplitude of the large-scale vortex. The dynamo mechanism relies on those components of the flow that have length scales lying between that of the large-scale vortex and the typical convective cell size; smaller-scale flows are not required. The large-scale vortex plays a crucial role in the magnetic induction despite being essentially two-dimensional. For larger magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum that peaks at the scale of the convective cells. In this case, ...

  3. Needs, opportunities, and options for large scale systems research

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  4. Organised convection embedded in a large-scale flow

    Science.gov (United States)

    Naumann, Ann Kristin; Stevens, Bjorn; Hohenegger, Cathy

    2017-04-01

    In idealised simulations of radiative convective equilibrium, convection aggregates spontaneously from randomly distributed convective cells into organized mesoscale convection despite homogeneous boundary conditions. Although these simulations apply very idealised setups, the process of self-aggregation is thought to be relevant for the development of tropical convective systems. One feature that idealised simulations usually neglect is the occurrence of a large-scale background flow. In the tropics, organised convection is embedded in a large-scale circulation system, which advects convection in along-wind direction and alters near surface convergence in the convective areas. A large-scale flow also modifies the surface fluxes, which are expected to be enhanced upwind of the convective area if a large-scale flow is applied. Convective clusters that are embedded in a large-scale flow therefore experience an asymmetric component of the surface fluxes, which influences the development and the pathway of a convective cluster. In this study, we use numerical simulations with explicit convection and add a large-scale flow to the established setup of radiative convective equilibrium. We then analyse how aggregated convection evolves when being exposed to wind forcing. The simulations suggest that convective line structures are more prevalent if a large-scale flow is present and that convective clusters move considerably slower than advection by the large-scale flow would suggest. We also study the asymmetric component of convective aggregation due to enhanced surface fluxes, and discuss the pathway and speed of convective clusters as a function of the large-scale wind speed.

  5. Large-scale streaming motions and microwave background anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L. (Cantabria Universidad, Santander (Spain))

    1989-12-01

    The minimal microwave background radiation is calculated on each angular scale implied by the existence of large-scale streaming motions. These minimal anisotropies, due to the Sachs-Wolfe effect, are obtained for different experiments, and give quite different results from those found in previous work. They are not in conflict with present theories of galaxy formation. Upper limits are imposed on the scale at which large-scale streaming motions can occur by extrapolating results from present double-beam-switching experiments. 17 refs.

  6. Probabilistic cartography of the large-scale structure

    CERN Document Server

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    2015-01-01

    The BORG algorithm is an inference engine that derives the initial conditions given a cosmological model and galaxy survey data, and produces physical reconstructions of the underlying large-scale structure by assimilating the data into the model. We present the application of BORG to real galaxy catalogs and describe the primordial and late-time large-scale structure in the considered volumes. We then show how these results can be used for building various probabilistic maps of the large-scale structure, with rigorous propagation of uncertainties. In particular, we study dynamic cosmic web elements and secondary effects in the cosmic microwave background.

  7. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  8. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  9. The large-scale dynamics of magnetic helicity

    CERN Document Server

    Linkmann, Moritz

    2016-01-01

    In this Letter we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a non-local inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic fields. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero-flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  10. USAGE OF DISSIMILARITY MEASURES AND MULTIDIMENSIONAL SCALING FOR LARGE SCALE SOLAR DATA ANALYSIS

    Data.gov (United States)

    National Aeronautics and Space Administration — USAGE OF DISSIMILARITY MEASURES AND MULTIDIMENSIONAL SCALING FOR LARGE SCALE SOLAR DATA ANALYSIS Juan M Banda, Rafal Anrgyk ABSTRACT: This work describes the...

  11. The theory of large-scale ocean circulation

    National Research Council Canada - National Science Library

    Samelson, R. M

    2011-01-01

    "This is a concise but comprehensive introduction to the basic elements of the theory of large-scale ocean circulation for advanced students and researchers"-- "Mounting evidence that human activities...

  12. Learning networks for sustainable, large-scale improvement.

    Science.gov (United States)

    McCannon, C Joseph; Perla, Rocco J

    2009-05-01

    Large-scale improvement efforts known as improvement networks offer structured opportunities for exchange of information and insights into the adaptation of clinical protocols to a variety of settings.

  13. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Document Server

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  14. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    An evaluation framework for large-scale network structures is presented, which facilitates evaluations and comparisons of different physical network structures. A number of quantitative and qualitative parameters are presented, and their importance to networks discussed. Choosing a network...

  15. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU Qiang

    2004-01-01

    @@ The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.

  16. Some perspective on the Large Scale Scientific Computation Research

    Institute of Scientific and Technical Information of China (English)

    DU; Qiang

    2004-01-01

    The "Large Scale Scientific Computation (LSSC) Research"project is one of the State Major Basic Research projects funded by the Chinese Ministry of Science and Technology in the field ofinformation science and technology.……

  17. PetroChina to Expand Dushanzi Refinery on Large Scale

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ A large-scale expansion project for PetroChina Dushanzi Petrochemical Company has been given the green light, a move which will make it one of the largest refineries and petrochemical complexes in the country.

  18. Efficient algorithms for collaborative decision making for large scale settings

    DEFF Research Database (Denmark)

    Assent, Ira

    2011-01-01

    Collaborative decision making is a successful approach in settings where data analysis and querying can be done interactively. In large scale systems with huge data volumes or many users, collaboration is often hindered by impractical runtimes. Existing work on improving collaboration focuses...... to bring about more effective and more efficient retrieval systems that support the users' decision making process. We sketch promising research directions for more efficient algorithms for collaborative decision making, especially for large scale systems....

  19. Large-scale microwave anisotropy from gravitating seeds

    Science.gov (United States)

    Veeraraghavan, Shoba; Stebbins, Albert

    1992-01-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. We examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. We describe the pattern of the resulting large angular scale microwave anisotropy.

  20. Temporal Variation of Large Scale Flows in the Solar Interior

    Indian Academy of Sciences (India)

    Sarbani Basu; H. M. Antia

    2000-09-01

    We attempt to detect short-term temporal variations in the rotation rate and other large scale velocity fields in the outer part of the solar convection zone using the ring diagram technique applied to Michelson Doppler Imager (MDI) data. The measured velocity field shows variations by about 10 m/s on the scale of few days.

  1. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  2. Vector dissipativity theory for large-scale impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Haddad Wassim M.

    2004-01-01

    Full Text Available Modern complex large-scale impulsive systems involve multiple modes of operation placing stringent demands on controller analysis of increasing complexity. In analyzing these large-scale systems, it is often desirable to treat the overall impulsive system as a collection of interconnected impulsive subsystems. Solution properties of the large-scale impulsive system are then deduced from the solution properties of the individual impulsive subsystems and the nature of the impulsive system interconnections. In this paper, we develop vector dissipativity theory for large-scale impulsive dynamical systems. Specifically, using vector storage functions and vector hybrid supply rates, dissipativity properties of the composite large-scale impulsive systems are shown to be determined from the dissipativity properties of the impulsive subsystems and their interconnections. Furthermore, extended Kalman-Yakubovich-Popov conditions, in terms of the impulsive subsystem dynamics and interconnection constraints, characterizing vector dissipativeness via vector system storage functions, are derived. Finally, these results are used to develop feedback interconnection stability results for large-scale impulsive dynamical systems using vector Lyapunov functions.

  3. Bisous model-Detecting filamentary patterns in point processes

    Science.gov (United States)

    Tempel, E.; Stoica, R. S.; Kipper, R.; Saar, E.

    2016-07-01

    The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Identifying and describing the filamentary network is not a trivial task due to the overwhelming complexity of the structure, its connectivity and the intrinsic hierarchical nature. To detect and quantify galactic filaments we use the Bisous model, which is a marked point process built to model multi-dimensional patterns. The Bisous filament finder works directly with the galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field. Using these two fields, we can extract filament spines from the data. Together with this paper we publish the computer code for the Bisous model that is made available in GitHub. The Bisous filament finder has been successfully used in several cosmological applications and further development of the model will allow to detect the filamentary network also in photometric redshift surveys, using the full redshift posterior. We also want to encourage the astro-statistical community to use the model and to connect it with all other existing methods for filamentary pattern detection and characterisation.

  4. Thermodynamics of Phase Transitions and Bipolar Filamentary Switching in Resistive Random-Access Memory

    Science.gov (United States)

    Karpov, V. G.; Niraula, D.; Karpov, I. V.; Kotlyar, R.

    2017-08-01

    We present a phenomenological theory of bipolar filamentary resistive random-access memory describing the commonly observed features of their current-voltage characteristics. Our approach follows the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold switches and largely independent of their microscopic details. It explains, without adjustable parameters, such features as the domains of filament formation and switching, voltage-independent current in set and current-independent voltage in reset regimes, the relation between the set and reset voltages, filament resistance independent of its length, etc. Furthermore, it expresses the observed features through the material and circuitry parameters, thus paving the way to device improvements.

  5. Reliability Evaluation considering Structures of a Large Scale Wind Farm

    DEFF Research Database (Denmark)

    Shin, Je-Seok; Cha, Seung-Tae; Wu, Qiuwei

    2012-01-01

    evaluation on wind farm is necessarily required. Also, because large scale offshore wind farm has a long repair time and a high repair cost as well as a high investment cost, it is essential to take into account the economic aspect. One of methods to efficiently build and to operate wind farm is to construct......Wind energy is one of the most widely used renewable energy resources. Wind power has been connected to the grid as large scale wind farm which is made up of dozens of wind turbines, and the scale of wind farm is more increased recently. Due to intermittent and variable wind source, reliability...

  6. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    Science.gov (United States)

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  7. GroFi: Large-scale fiber placement research facility

    Directory of Open Access Journals (Sweden)

    Christian Krombholz

    2016-03-01

    and processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high exibility of the research platform is achieved. This allows the investigation of new materials, technologies and processes on both, small coupons, but also large components such as wing covers or fuselage skins.

  8. Large Scale Survey Data in Career Development Research

    Science.gov (United States)

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  9. Cost Overruns in Large-scale Transportation Infrastructure Projects

    DEFF Research Database (Denmark)

    Cantarelli, Chantal C; Flyvbjerg, Bent; Molin, Eric J. E

    2010-01-01

    Managing large-scale transportation infrastructure projects is difficult due to frequent misinformation about the costs which results in large cost overruns that often threaten the overall project viability. This paper investigates the explanations for cost overruns that are given in the literature...

  10. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  11. How large-scale subsidence affects stratocumulus transitions (discussion paper)

    NARCIS (Netherlands)

    Van der Dussen, J.J.; De Roode, S.R.; Siebesma, A.P.

    2015-01-01

    Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP) budget from large-eddy simulation (LES) results of

  12. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured...

  13. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  14. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  15. Magnetic fields of our Galaxy on large and small scales

    CERN Document Server

    Han, Jinlin

    2007-01-01

    Magnetic fields have been observed on all scales in our Galaxy, from AU to kpc. With pulsar dispersion measures and rotation measures, we can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the inner-most arm (Norma) to the outer arm (Perseus). The Zeeman splitting measurements of masers in HII regions or star-formation regions not only show the structured fields inside clouds, but also have a clear pattern in the global Galactic distribution of all measured clouds which indicates the possible connection of the large-scale and small-scale magnetic fields.

  16. A relativistic signature in large-scale structure

    Science.gov (United States)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  17. Large Scale Structure Setting the Stage for the Galaxy Formation Saga

    CERN Document Server

    Van de Weygaert, R

    1998-01-01

    Over the past three decades the established view of a nearly homogeneuous, featureless Universe on scales larger than a few Megaparsec has been completely overhauled. In particular through the advent of ever larger galaxy redshift surveys we were revealed a galaxy distribution displaying an intriguing cellular pattern in which filamentary and wall-like structures, as well as huge regions devoid of galaxies, are amongst the most conspicuous morphological elements. In this contribution we will provide an overview of the present observational state of affairs concerning the distribution of galaxies and the structure traced out by the matter distribution in our Universe. In conjunction with the insight on the dynamics of the structure formation process obtained through the mapping of the peculiar velocities of galaxies in our local Universe and the information on the embryonic circumstances that prevailed at the epoch of Recombination yielded by the various Cosmic Microwave Background experiments, we seek to arri...

  18. Large-Scale Inverse Problems and Quantification of Uncertainty

    CERN Document Server

    Biegler, Lorenz; Ghattas, Omar

    2010-01-01

    Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca

  19. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  20. Large-Scale Integrated Carbon Nanotube Gas Sensors

    OpenAIRE

    Kim, Joondong

    2012-01-01

    Carbon nanotube (CNT) is a promising one-dimensional nanostructure for various nanoscale electronics. Additionally, nanostructures would provide a significant large surface area at a fixed volume, which is an advantage for high-responsive gas sensors. However, the difficulty in fabrication processes limits the CNT gas sensors for the large-scale production. We review the viable scheme for large-area application including the CNT gas sensor fabrication and reaction mechanism with a practical d...

  1. Acoustic Studies of the Large Scale Ocean Circulation

    Science.gov (United States)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  2. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  3. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...

  4. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  5. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  6. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  7. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  8. Ultra-large scale cosmology with next-generation experiments

    CERN Document Server

    Alonso, David; Ferreira, Pedro G; Maartens, Roy; Santos, Mario G

    2015-01-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for a range of future large-scale structure surveys: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and continuum surveys of radio galaxies. Our forecasts show that next-generation experiments, reaching out to redshifts z ~ 4, will not be able to detect previously-undetected general-relativistic effects from the single-tracer power spectra alone, although they may be able to measure the lensing magnification in the auto-correlation. We also perform a rigorous joint forecast for the detection of primordial non-...

  9. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  10. Observational signatures of modified gravity on ultra-large scales

    CERN Document Server

    Baker, Tessa

    2015-01-01

    Extremely large surveys with future experiments like Euclid and the SKA will soon allow us to access perturbation modes close to the Hubble scale, with wavenumbers $k \\sim {\\cal H}$. If a modified gravity theory is responsible for cosmic acceleration, the Hubble scale is a natural regime for deviations from General Relativity (GR) to become manifest. The majority of studies to date have concentrated on the consequences of alternative gravity theories for the subhorizon, quasi-static regime, however. We investigate how modifications to the gravitational field equations affect perturbations around the Hubble scale, and how this translates into deviations of ultra large-scale relativistic observables from their GR behaviour. Adopting a model-independent ethos that relies only on the broad physical properties of gravity theories, we find that the deviations of the observables are small unless modifications to GR are drastic. The angular dependence and redshift evolution of the deviations is highly parameterisatio...

  11. Small-scale eruptive filaments on the quiet sun

    Science.gov (United States)

    Hermans, Linda M.; Martin, Sara F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments.

  12. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  13. Human pescadillo induces large-scale chromatin unfolding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; FANG Yan; HUANG Cuifen; YANG Xiao; YE Qinong

    2005-01-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  14. Transport of Large Scale Poloidal Flux in Black Hole Accretion

    CERN Document Server

    Beckwith, Kris; Krolik, Julian H

    2009-01-01

    We perform a global, three-dimensional GRMHD simulation of an accretion torus embedded in a large scale vertical magnetic field orbiting a Schwarzschild black hole. This simulation investigates how a large scale vertical field evolves within a turbulent accretion disk and whether global magnetic field configurations suitable for launching jets and winds can develop. We identify a ``coronal mechanism'' of magnetic flux motion, which dominates the global flux evolution. In this coronal mechanism, magnetic stresses driven by orbital shear create large-scale half-loops of magnetic field that stretch radially inward and then reconnect, leading to discontinuous jumps in the location of magnetic flux. This mechanism is supplemented by a smaller amount of flux advection in the accretion flow proper. Because the black hole in this case does not rotate, the magnetic flux on the horizon determines the mean magnetic field strength in the funnel around the disk axis; this field strength is regulated by a combination of th...

  15. First Mile Challenges for Large-Scale IoT

    KAUST Repository

    Bader, Ahmed

    2017-03-16

    The Internet of Things is large-scale by nature. This is not only manifested by the large number of connected devices, but also by the sheer scale of spatial traffic intensity that must be accommodated, primarily in the uplink direction. To that end, cellular networks are indeed a strong first mile candidate to accommodate the data tsunami to be generated by the IoT. However, IoT devices are required in the cellular paradigm to undergo random access procedures as a precursor to resource allocation. Such procedures impose a major bottleneck that hinders cellular networks\\' ability to support large-scale IoT. In this article, we shed light on the random access dilemma and present a case study based on experimental data as well as system-level simulations. Accordingly, a case is built for the latent need to revisit random access procedures. A call for action is motivated by listing a few potential remedies and recommendations.

  16. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  17. Large Scale Magnetohydrodynamic Dynamos from Cylindrical Differentially Rotating Flows

    CERN Document Server

    Ebrahimi, F

    2015-01-01

    For cylindrical differentially rotating plasmas threaded with a uniform vertical magnetic field, we study large-scale magnetic field generation from finite amplitude perturbations using analytic theory and direct numerical simulations. Analytically, we impose helical fluctuations, a seed field, and a background flow and use quasi-linear theory for a single mode. The predicted large-scale field growth agrees with numerical simulations in which the magnetorotational instability (MRI) arises naturally. The vertically and azimuthally averaged toroidal field is generated by a fluctuation-induced EMF that depends on differential rotation. Given fluctuations, the method also predicts large-scale field growth for MRI-stable rotation profiles and flows with no rotation but shear.

  18. Large Scale Anomalies of the Cosmic Microwave Background with Planck

    DEFF Research Database (Denmark)

    Frejsel, Anne Mette

    This thesis focuses on the large scale anomalies of the Cosmic Microwave Background (CMB) and their possible origins. The investigations consist of two main parts. The first part is on statistical tests of the CMB, and the consistency of both maps and power spectrum. We find that the Planck data...... is very consistent, while the WMAP 9 year release appears more contaminated by non-CMB residuals than the 7 year release. The second part is concerned with the anomalies of the CMB from two approaches. One is based on an extended inflationary model as the origin of one specific large scale anomaly, namely....... Here we find evidence that the Planck CMB maps contain residual radiation in the loop areas, which can be linked to some of the large scale CMB anomalies: the point-parity asymmetry, the alignment of quadrupole and octupole and the dipolemodulation....

  19. Large-scale microwave anisotropy from gravitating seeds

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, S.; Stebbins, A. (Massachusetts, University, Amherst (United States) NASA/Fermilab Astrophysics Center, Batavia, Il (United States))

    1992-08-01

    Topological defects could have seeded primordial inhomogeneities in cosmological matter. The authors examine the horizon-scale matter and geometry perturbations generated by such seeds in an expanding homogeneous and isotropic universe. Evolving particle horizons generally lead to perturbations around motionless seeds, even when there are compensating initial underdensities in the matter. The authors describe the pattern of the resulting large angular scale microwave anisotropy. 17 refs.

  20. Information Tailoring Enhancements for Large-Scale Social Data

    Science.gov (United States)

    2016-09-26

    Social Data Final Report Reporting Period: September 22, 2015 – September 16, 2016 Contract No. N00014-15-P-5138 Sponsored by ONR...Report September 22, 20 15 - September 16, 20 16 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Information Tailoring Enhancements for Large-Scale Social ...goals of(i) further enhancing capability to analyze unstructured social media data at scale and rapidly, and (ii) improving IAI social media software

  1. Systematic Literature Review of Agile Scalability for Large Scale Projects

    Directory of Open Access Journals (Sweden)

    Hina saeeda

    2015-09-01

    Full Text Available In new methods, “agile” has come out as the top approach in software industry for the development of the soft wares. With different shapes agile is applied for handling the issues such as low cost, tight time to market schedule continuously changing requirements, Communication & Coordination, team size and distributed environment. Agile has proved to be successful in the small and medium size project, however, it have several limitations when applied on large size projects. The purpose of this study is to know agile techniques in detail, finding and highlighting its restrictions for large size projects with the help of systematic literature review. The systematic literature review is going to find answers for the Research questions: 1 How to make agile approaches scalable and adoptable for large projects?2 What are the existing methods, approaches, frameworks and practices support agile process in large scale projects? 3 What are limitations of existing agile approaches, methods, frameworks and practices with reference to large scale projects? This study will identify the current research problems of the agile scalability for large size projects by giving a detail literature review of the identified problems, existed work for providing solution to these problems and will find out limitations of the existing work for covering the identified problems in the agile scalability. All the results gathered will be summarized statistically based on these finding remedial work will be planned in future for handling the identified limitations of agile approaches for large scale projects.

  2. Large-scale synthesis of YSZ nanopowder by Pechini method

    Indian Academy of Sciences (India)

    Morteza Hajizadeh-Oghaz; Reza Shoja Razavi; Mohammadreza Loghman Estarki

    2014-08-01

    Yttria–stabilized zirconia nanopowders were synthesized on a relatively large scale using Pechini method. In the present paper, nearly spherical yttria-stabilized zirconia nanopowders with tetragonal structure were synthesized by Pechini process from zirconium oxynitrate hexahydrate, yttrium nitrate, citric acid and ethylene glycol. The phase and structural analyses were accomplished by X-ray diffraction; morphological analysis was carried out by field emission scanning electron microscopy and transmission electron microscopy. The results revealed nearly spherical yttria–stabilized zirconia powder with tetragonal crystal structure and chemical purity of 99.1% by inductively coupled plasma optical emission spectroscopy on a large scale.

  3. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin; Li

    2001-01-01

    This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.……

  4. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  5. [Issues of large scale tissue culture of medicinal plant].

    Science.gov (United States)

    Lv, Dong-Mei; Yuan, Yuan; Zhan, Zhi-Lai

    2014-09-01

    In order to increase the yield and quality of the medicinal plant and enhance the competitive power of industry of medicinal plant in our country, this paper analyzed the status, problem and countermeasure of the tissue culture of medicinal plant on large scale. Although the biotechnology is one of the most efficient and promising means in production of medicinal plant, it still has problems such as stability of the material, safety of the transgenic medicinal plant and optimization of cultured condition. Establishing perfect evaluation system according to the characteristic of the medicinal plant is the key measures to assure the sustainable development of the tissue culture of medicinal plant on large scale.

  6. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    Generation expansion planning (GEP) is the problem of finding the optimal strategy to plan the Construction of new generation while satisfying technical and economical constraints. In the deregulated and competitive environment, large-scale integration of wind generation (WG) in power system has...... necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...

  7. Distributed chaos tuned to large scale coherent motions in turbulence

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using direct numerical simulations and laboratory experiments data, that distributed chaos is often tuned to large scale coherent motions in anisotropic inhomogeneous turbulence. The examples considered are: fully developed turbulent boundary layer (range of coherence: $14 < y^{+} < 80$), turbulent thermal convection (in a horizontal cylinder), and Cuette-Taylor flow. Two ways of the tuning have been described: one via fundamental frequency (wavenumber) and another via subharmonic (period doubling). For the second way the large scale coherent motions are a natural component of distributed chaos. In all considered cases spontaneous breaking of space translational symmetry is accompanied by reflexional symmetry breaking.

  8. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  9. Large-scale liquid scintillation detectors for solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, Jay B.; Calaprice, Frank P. [Princeton University Princeton, Princeton, NJ (United States)

    2016-04-15

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed. (orig.)

  10. Optimal Dispatching of Large-scale Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.

  11. Practical Large Scale Syntheses of New Drug Candidates

    Institute of Scientific and Technical Information of China (English)

    Hui-Yin Li

    2001-01-01

    @@ This presentation will be focus on Practical large scale syntheses of lead compounds and drug candidates from three major therapeutic areas from DuPont Pharmaceuticals Research Laboratory: 1). DMP777-a selective, non-toxic, orally active human elastase inhibitor; 2). DMP754-a potent glycoprotein IIb/IIIa antagonist; 3). R-Wafarin-the pure enantiomeric form of wafarin. The key technology used for preparation these drug candidates is asymmetric hydrogenation under very mild reaction conditions, which produced very high quality final products at large scale (>99% de, >99 A% and >99 wt%). Some practical and GMP aspects of process development will be also discussed.

  12. Fast paths in large-scale dynamic road networks

    CERN Document Server

    Nannicini, Giacomo; Barbier, Gilles; Krob, Daniel; Liberti, Leo

    2007-01-01

    Efficiently computing fast paths in large scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by several traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network.

  13. Cinlar Subgrid Scale Model for Large Eddy Simulation

    CERN Document Server

    Kara, Rukiye

    2016-01-01

    We construct a new subgrid scale (SGS) stress model for representing the small scale effects in large eddy simulation (LES) of incompressible flows. We use the covariance tensor for representing the Reynolds stress and include Clark's model for the cross stress. The Reynolds stress is obtained analytically from Cinlar random velocity field, which is based on vortex structures observed in the ocean at the subgrid scale. The validity of the model is tested with turbulent channel flow computed in OpenFOAM. It is compared with the most frequently used Smagorinsky and one-equation eddy SGS models through DNS data.

  14. Visualizing large-scale uncertainty in astrophysical data.

    Science.gov (United States)

    Li, Hongwei; Fu, Chi-Wing; Li, Yinggang; Hanson, Andrew

    2007-01-01

    Visualization of uncertainty or error in astrophysical data is seldom available in simulations of astronomical phenomena, and yet almost all rendered attributes possess some degree of uncertainty due to observational error. Uncertainties associated with spatial location typically vary signicantly with scale and thus introduce further complexity in the interpretation of a given visualization. This paper introduces effective techniques for visualizing uncertainty in large-scale virtual astrophysical environments. Building upon our previous transparently scalable visualization architecture, we develop tools that enhance the perception and comprehension of uncertainty across wide scale ranges. Our methods include a unified color-coding scheme for representing log-scale distances and percentage errors, an ellipsoid model to represent positional uncertainty, an ellipsoid envelope model to expose trajectory uncertainty, and a magic-glass design supporting the selection of ranges of log-scale distance and uncertainty parameters, as well as an overview mode and a scalable WIM tool for exposing the magnitudes of spatial context and uncertainty.

  15. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    As a result of the growing demand for food, feed and industrial raw materials in the first decade of this century, and the usually welcoming policies regarding investors amongst the governments of developing countries, there has been a renewed interest in agriculture and an increase in large...... to ‘land grabbing’ for large-scale farming (i.e. outgrower schemes and contract farming could modernise agricultural production while allowing smallholders to maintain their land ownership), to integrate them into global agro-food value chains and to increase their productivity and welfare. However......, the impact of large-scale agriculture and outgrower schemes on productivity, household welfare and wages in developing countries is highly contentious. Chapter 1 of this thesis provides an introduction to the study, while also reviewing the key debate in the contemporary land ‘grabbing’ and historical large...

  16. A Review of Scaling Agile Methods in Large Software Development

    Directory of Open Access Journals (Sweden)

    Mashal Alqudah

    2016-12-01

    Full Text Available Agile methods such as Dynamic Systems Development Method (DSDM, Extreme Programming (XP, SCRUM, Agile Modeling (AM and Crystal Clear enable small teams to execute assigned task at their best. However, larger organizations aim at incorporating more Agile methods owing to the fact that its application is prevalently tailored for small teams. The scope in which large firms are interested will extend the original Agile methods to include larger teams, coordination, communication among teams and customers as well as oversight. Determining particular software method is always challenging for software companies especially when considering start-up, small to medium or large enterprises. Most of large organizations develop large-scale projects by teams of teams or teams of teams of teams. Therefore, most recognized Agile methods or first-generation methods such as XP and SCRUM need to be modified before they are employed in large organizations; which is not an easy task. Accomplishing said task would necessitate large organizations to pick and select from the scaling Agile methods in accommodating a single vision for large and multiple teams. Deciding the right choice requires wholesome understanding of the method including its strengths and weaknesses as well as when and how it makes sense. Therefore, the main aim of this paper is to review the existing literature of the utilized scaling Agile methods by defining, discussing and comparing them. In-depth reviews on the literature were performed to juxtapose the methods in impartial manner. In addition, the content analysis was used to analyse the resultant data. The result indicated that the DAD, LeSS, LeSS huge, SAFe, Spotify, Nexus and RAGE are the adopted scaling Agile methods at large organizations. They seem to be similar but there are discrepancies among them that take the form of team size, training and certification, methods and practices adopted, technical practices required and organizational

  17. Local and Regional Impacts of Large Scale Wind Energy Deployment

    Science.gov (United States)

    Michalakes, J.; Hammond, S.; Lundquist, J. K.; Moriarty, P.; Robinson, M.

    2010-12-01

    The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, almost a 10-fold increase over present levels of electricity generated from wind. Such high-penetration wind energy deployment will entail extracting elevated energy levels from the planetary boundary layer and preliminary studies indicate that this will have significant but uncertain impacts on the local and regional environment. State and federal regulators have raised serious concerns regarding potential agricultural impacts from large farms deployed throughout the Midwest where agriculture is the basis of the local economy. The effects of large wind farms have been proposed to be both beneficial (drying crops to reduce occurrences of fungal diseases, avoiding late spring freezes, enhancing pollen viability, reducing dew duration) and detrimental (accelerating moisture loss during drought) with no conclusive investigations thus far. As both wind and solar technologies are deployed at scales required to replace conventional technologies, there must be reasonable certainty that the potential environmental impacts at the micro, macro, regional and global scale do not exceed those anticipated from carbon emissions. Largely because of computational limits, the role of large wind farms in affecting regional-scale weather patterns has only been investigated in coarse simulations and modeling tools do not yet exist which are capable of assessing the downwind affects of large wind farms may have on microclimatology. In this presentation, we will outline the vision for and discuss technical and scientific challenges in developing a multi-model high-performance simulation capability covering the range of mesoscale to sub-millimeter scales appropriate for assessing local, regional, and ultimately global environmental impacts and quantifying uncertainties of large scale wind energy deployment scenarios. Such a system will allow continuous downscaling of atmospheric processes on wind

  18. Structure and radial equilibrium of filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Garay, Guido

    2013-01-01

    Recent dust continuum surveys have shown that filamentary structures are ubiquitous along the Galactic plane. While the study of their global properties has gained momentum recently, we are still far from fully understanding their origin and stability. Theories invoking magnetic field have been formulated to help explain the stability of filaments; however, observations are needed to test their predictions. In this paper, we investigate the structure and radial equilibrium of five filamentary molecular clouds with the aim of determining the role that magnetic field may play. To do this, we use continuum and molecular line observations to obtain their physical properties (e.g. mass, temperature and pressure). We find that the filaments have lower lineal masses compared to their lineal virial masses. Their virial parameters and shape of their dust continuum emission suggests that these filaments may be confined by a toroidal dominated magnetic field.

  19. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  20. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  1. Large eddy simulation of the atmosphere on various scales.

    Science.gov (United States)

    Cullen, M J P; Brown, A R

    2009-07-28

    Numerical simulations of the atmosphere are routinely carried out on various scales for purposes ranging from weather forecasts for local areas a few hours ahead to forecasts of climate change over periods of hundreds of years. Almost without exception, these forecasts are made with space/time-averaged versions of the governing Navier-Stokes equations and laws of thermodynamics, together with additional terms representing internal and boundary forcing. The calculations are a form of large eddy modelling, because the subgrid-scale processes have to be modelled. In the global atmospheric models used for long-term predictions, the primary method is implicit large eddy modelling, using discretization to perform the averaging, supplemented by specialized subgrid models, where there is organized small-scale activity, such as in the lower boundary layer and near active convection. Smaller scale models used for local or short-range forecasts can use a much smaller averaging scale. This allows some of the specialized subgrid models to be dropped in favour of direct simulations. In research mode, the same models can be run as a conventional large eddy simulation only a few orders of magnitude away from a direct simulation. These simulations can then be used in the development of the subgrid models for coarser resolution models.

  2. Evidence for Shock Acceleration and Intergalactic Magnetic Fields in a Large-Scale Filament of Galaxies ZwCl 2341.1+0000

    CERN Document Server

    Bagchi, J; Miniati, F; Stalin, C S; Singh, M; Raychaudhuri, S; Humeshkar, N B; Bagchi, Joydeep; Ensslin, Torsten A.; Miniati, Francesco; Raychaudhury, Somak

    2002-01-01

    We report the discovery of large-scale diffuse radio emission from what appears to be a large-scale filamentary network of galaxies in the region of cluster ZwCl 2341.1+0000, and stretching over an area of at least $6 h^{-1}_{50}$ Mpc in diameter. Multicolour CCD observations yield photometric redshifts indicating that a significant fraction of the optical galaxies in this region is at a redshift of z=0.3. This is supported by spectroscopic measurements of 4 galaxies in the SDSS survey at a mean z=0.27. We present VLA images at 20 cm (NVSS) and 90 cm wavelengths, showing the detailed radio structure of the filaments. Comparison with the VLA high resolution FIRST radio survey shows that the diffuse emission is not due to known individual point sources. The diffuse radio-emission has a spectral index $\\alpha \\lesssim -0.5$, and is most likely synchrotron emission from relativistic charged particles in an inter-galactic magnetic field. Furthermore, this optical/radio structure is detected in X-rays by the ROSAT ...

  3. Turbulent large-scale structure effects on wake meandering

    Science.gov (United States)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  4. Flexibility in design of large-scale methanol plants

    Institute of Scientific and Technical Information of China (English)

    Esben Lauge Sφrensen; Helge Holm-Larsen; Haldor Topsφe A/S

    2006-01-01

    This paper presents a cost effective design for large-scale methanol production. It is demonstrated how recent technological progress can be utilised to design a methanol plant,which is inexpensive and easy to operate, while at the same time very robust towards variations in feed-stock composition and product specifications.

  5. Large-scale search for dark-matter axions

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McBride, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peng, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Rosenberg, L.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Xin, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Laveigne, J. [Florida Univ., Gainesville, FL (United States); Sikivie, P. [Florida Univ., Gainesville, FL (United States); Sullivan, N.S. [Florida Univ., Gainesville, FL (United States); Tanner, D.B. [Florida Univ., Gainesville, FL (United States); Moltz, D.M. [Lawrence Berkeley Lab., CA (United States); Powell, J. [Lawrence Berkeley Lab., CA (United States); Clarke, J. [Lawrence Berkeley Lab., CA (United States); Nezrick, F.A. [Fermi National Accelerator Lab., Batavia, IL (United States); Turner, M.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Golubev, N.A. [Russian Academy of Sciences, Moscow (Russia); Kravchuk, L.V. [Russian Academy of Sciences, Moscow (Russia)

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  6. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the homogeniza

  7. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space

    Indian Academy of Sciences (India)

    Rajesh Gopal; Shiv K. Sethi

    2003-09-01

    We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.

  8. Quantized pressure control in large-scale nonlinear hydraulic networks

    NARCIS (Netherlands)

    Persis, Claudio De; Kallesøe, Carsten Skovmose; Jensen, Tom Nørgaard

    2010-01-01

    It was shown previously that semi-global practical pressure regulation at designated points of a large-scale nonlinear hydraulic network is guaranteed by distributed proportional controllers. For a correct implementation of the control laws, each controller, which is located at these designated poin

  9. Efficient Selection of Multiple Objects on a Large Scale

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    2012-01-01

    The task of multiple object selection (MOS) in immersive virtual environments is important and still largely unexplored. The diffi- culty of efficient MOS increases with the number of objects to be selected. E.g. in small-scale MOS, only a few objects need to be simultaneously selected. This may ...

  10. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    LI Fu-guang; LIU Chuan-liang; WU Zhi-xia; ZHANG Chao-jun; ZHANG Xue-yan

    2008-01-01

    @@ Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacteriurn turnefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than 1000 transgenie lines are selected from the transgenic plants with molecular assistant breeding and conventional breeding methods.

  11. Segmentation by Large Scale Hypothesis Testing - Segmentation as Outlier Detection

    DEFF Research Database (Denmark)

    Darkner, Sune; Dahl, Anders Lindbjerg; Larsen, Rasmus

    2010-01-01

    locally. We propose a method based on large scale hypothesis testing with a consistent method for selecting an appropriate threshold for the given data. By estimating the background distribution we characterize the segment of interest as a set of outliers with a certain probability based on the estimated...

  12. Regeneration and propagation of reed grass for large-scale ...

    African Journals Online (AJOL)

    전서범

    2012-01-26

    Jan 26, 2012 ... containing different sucrose concentrations; this experiment found that 60 g L-1 ... All these uses of reeds require the large-scale rege- ... numbers of plant in a small space within a short time ... callus stock and grown in vitro were used in this study. .... presence of 4-FA were converted to friable and light-.

  13. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  14. Large-Scale Assessment and English Language Learners with Disabilities

    Science.gov (United States)

    Liu, Kristin K.; Ward, Jenna M.; Thurlow, Martha L.; Christensen, Laurene L.

    2017-01-01

    This article highlights a set of principles and guidelines, developed by a diverse group of specialists in the field, for appropriately including English language learners (ELLs) with disabilities in large-scale assessments. ELLs with disabilities make up roughly 9% of the rapidly increasing ELL population nationwide. In spite of the small overall…

  15. Large scale radial stability density of Hill's equation

    NARCIS (Netherlands)

    Broer, Henk; Levi, Mark; Simo, Carles

    2013-01-01

    This paper deals with large scale aspects of Hill's equation (sic) + (a + bp(t)) x = 0, where p is periodic with a fixed period. In particular, the interest is the asymptotic radial density of the stability domain in the (a, b)-plane. It turns out that this density changes discontinuously in a certa

  16. Water Implications of Large-Scale Land Acquisitions in Ghana

    Directory of Open Access Journals (Sweden)

    Timothy Olalekan Williams

    2012-06-01

    The paper offers recommendations which can help the government to achieve its stated objective of developing a "policy framework and guidelines for large-scale land acquisitions by both local and foreign investors for biofuels that will protect the interests of investors and the welfare of Ghanaian farmers and landowners".

  17. Evaluating Large-scale National Public Management Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Morten Balle

    This article explores differences and similarities between two evaluations of large-scale administrative reforms which were carried out in the 2000s: The evaluation of the Norwegian NAV reform (EVANAV) and the evaluation of the Danish Local Government Reform (LGR). We provide a comparative analys...

  18. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena i

  19. Main Achievements of Cotton Large-scale Transformation System

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton large-scale transformation methods system was established based on innovation of cotton transformation methods.It obtains 8000 transgenic cotton plants per year by combining Agrobacterium tumefaciens-mediated,pollen-tube pathway and biolistic methods together efficiently.More than

  20. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  1. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  2. The Role of Plausible Values in Large-Scale Surveys

    Science.gov (United States)

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1) address…

  3. Large-scale data analysis using the Wigner function

    Science.gov (United States)

    Earnshaw, R. A.; Lei, C.; Li, J.; Mugassabi, S.; Vourdas, A.

    2012-04-01

    Large-scale data are analysed using the Wigner function. It is shown that the 'frequency variable' provides important information, which is lost with other techniques. The method is applied to 'sentiment analysis' in data from social networks and also to financial data.

  4. High-Throughput, Large-Scale SNP Genotyping: Bioinformatics Considerations

    OpenAIRE

    Margetic, Nino

    2004-01-01

    In order to provide a high-throughput, large-scale genotyping facility at the national level we have developed a set of inter-dependent information systems. A combination of commercial, publicly-available and in-house developed tools links a series of data repositories based both on flat files and relational databases providing an almost complete semi-automated pipeline.

  5. Chain Analysis for large-scale Communication systems

    NARCIS (Netherlands)

    Grijpink, Jan

    2010-01-01

    The chain concept is introduced to explain how large-scale information infrastructures so often fail and sometimes even backfire. Next, the assessment framework of the doctrine of Chain-computerisation and its chain analysis procedure are outlined. In this procedure chain description precedes assess

  6. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  7. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  8. Participatory Design of Large-Scale Information Systems

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten

    2008-01-01

    In this article we discuss how to engage in large-scale information systems development by applying a participatory design (PD) approach that acknowledges the unique situated work practices conducted by the domain experts of modern organizations. We reconstruct the iterative prototyping approach...

  9. Large-Scale Innovation and Change in UK Higher Education

    Science.gov (United States)

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  10. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    Science.gov (United States)

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  11. A Chain Perspective on Large-scale Number Systems

    NARCIS (Netherlands)

    Grijpink, J.H.A.M.

    2012-01-01

    As large-scale number systems gain significance in social and economic life (electronic communication, remote electronic authentication), the correct functioning and the integrity of public number systems take on crucial importance. They are needed to uniquely indicate people, objects or phenomena i

  12. Large-Scale Innovation and Change in UK Higher Education

    Science.gov (United States)

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  13. Primordial non-Gaussianity from the large scale structure

    CERN Document Server

    Desjacques, Vincent

    2010-01-01

    Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. Any detection of non-Gaussianity would have profound implications for our understanding of cosmic structure formation. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large scale structure of the Universe.

  14. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...

  15. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  16. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    Science.gov (United States)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; Crowe, Erik; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Stevenson, Thomas; Miller, Nathan J.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  17. New Visions for Large Scale Networks: Research and Applications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This paper documents the findings of the March 12-14, 2001 Workshop on New Visions for Large-Scale Networks: Research and Applications. The workshops objectives were...

  18. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  19. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind.

  20. Tracing the Filamentary Structure of the Galaxy Distribution at z~0.8

    CERN Document Server

    Choi, Ena; Strauss, Michael A; Coil, Alison L; Davis, Marc; Willmer, Christopher N A

    2010-01-01

    We study filamentary structure in the galaxy distribution at z ~ 0.8 using data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey and its evolution to z ~ 0.1 using data from the Sloan Digital Sky Survey (SDSS). We trace individual filaments for both surveys using the Smoothed Hessian Major Axis Filament Finder, an algorithm which employs the Hessian matrix of the galaxy density field to trace the filamentary structures in the distribution of galaxies. We extract 33 subsamples from the SDSS data with a geometry similar to that of DEEP2. We find that the filament length distribution has not significantly changed since z ~ 0.8, as predicted in a previous study using a $\\Lamda$CDM cosmological N-body simulation. However, the filament width distribution, which is sensitive to the non-linear growth of structure, broadens and shifts to smaller widths for smoothing length scales of 5-10 Mpc/h from z ~ 0.8 to z ~ 0.1, in accord with N-body simulations.

  1. Supermassive black holes, large scale structure and holography

    CERN Document Server

    Mongan, T R

    2013-01-01

    A holographic analysis of large scale structure in the universe estimates the mass of supermassive black holes at the center of large scale structures with matter density varying inversely as the square of the distance from their center. The estimate is consistent with two important test cases involving observations of the supermassive black hole with mass 3.6\\times10^{-6} times the galactic mass in Sagittarius A^{*} near the center of our Milky Way and the 2\\times10^{9} solar mass black hole in the quasar ULAS J112001.48+064124.3 at redshift z=7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

  2. Distant galaxy clusters in the XMM Large Scale Structure survey

    CERN Document Server

    Willis, J P; Bremer, M N; Pierre, M; Adami, C; Ilbert, O; Maughan, B; Maurogordato, S; Pacaud, F; Valtchanov, I; Chiappetti, L; Thanjavur, K; Gwyn, S; Stanway, E R; Winkworth, C

    2012-01-01

    (Abridged) Distant galaxy clusters provide important tests of the growth of large scale structure in addition to highlighting the process of galaxy evolution in a consistently defined environment at large look back time. We present a sample of 22 distant (z>0.8) galaxy clusters and cluster candidates selected from the 9 deg2 footprint of the overlapping X-ray Multi Mirror (XMM) Large Scale Structure (LSS), CFHTLS Wide and Spitzer SWIRE surveys. Clusters are selected as extended X-ray sources with an accompanying overdensity of galaxies displaying optical to mid-infrared photometry consistent with z>0.8. Nine clusters have confirmed spectroscopic redshifts in the interval 0.80.8 clusters.

  3. Cluster Galaxy Dynamics and the Effects of Large Scale Environment

    CERN Document Server

    White, Martin; Smit, Renske

    2010-01-01

    We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters. We pay particular attention to velocity dispersions, matching galaxies to subhalos which are explicitly tracked in the simulation. We find that not only do halos persist as subhalos when they fall into a larger host, groups of subhalos retain their identity for long periods within larger host halos. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and ...

  4. Quantum noise in large-scale coherent nonlinear photonic circuits

    CERN Document Server

    Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-01-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...

  5. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  6. Large N phase transitions under scaling and their uses

    CERN Document Server

    Neuberger, H

    2009-01-01

    The eigenvalues of Wilson loop matrices in SU(N) gauge theories in dimensions 2,3,4 at infinite N are supported on a small arc on the unit circle centered at $z=1$ for small loops, but expand to the entire unit circle for large loops. These two regimes are separated by a large N phase transition whose universal properties are the same in d=2,3 and 4. Hopefully, this large N universality could be exploited to bridge traditional perturbation theory calculations, valid for small loops, with effective string calculations for large loops. A concrete case of such a calculation would obtain analytically an estimate of the large N string tension in terms of the perturbative scale Lambda(QCD,N).

  7. Large-scale BAO signatures of the smallest galaxies

    CERN Document Server

    Dalal, Neal; Seljak, Uros

    2010-01-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z=20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending...

  8. Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2013-11-01

    Full Text Available The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions project in Kiruna (Sweden from January to March 2010. This paper concentrates on the measurements taken during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of derived volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range (≈ 6–19 km and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures, for example a part of the polar vortex and a vortex filament, which can be identified by means of O3–CFC-11 tracer–tracer correlations. The observations made during this flight are interpreted using the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere. Comparisons of the observations with the model results are used to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere, which partly have a vertical extent of only 1 km. Based on the good agreement between simulation and observation, we use artificial (passive tracers, which represent different air mass origins (e.g. vortex, tropics, to further analyse the CRISTA-NF observations in terms of the composition of air mass origins. These passive tracers clearly illustrate the observation of

  9. A visualization framework for large-scale virtual astronomy

    Science.gov (United States)

    Fu, Chi-Wing

    Motivated by advances in modern positional astronomy, this research attempts to digitally model the entire Universe through computer graphics technology. Our first challenge is space itself. The gigantic size of the Universe makes it impossible to put everything into a typical graphics system at its own scale. The graphics rendering process can easily fail because of limited computational precision, The second challenge is that the enormous amount of data could slow down the graphics; we need clever techniques to speed up the rendering. Third, since the Universe is dominated by empty space, objects are widely separated; this makes navigation difficult. We attempt to tackle these problems through various techniques designed to extend and optimize the conventional graphics framework, including the following: power homogeneous coordinates for large-scale spatial representations, generalized large-scale spatial transformations, and rendering acceleration via environment caching and object disappearance criteria. Moreover, we implemented an assortment of techniques for modeling and rendering a variety of astronomical bodies, ranging from the Earth up to faraway galaxies, and attempted to visualize cosmological time; a method we call the Lightcone representation was introduced to visualize the whole space-time of the Universe at a single glance. In addition, several navigation models were developed to handle the large-scale navigation problem. Our final results include a collection of visualization tools, two educational animations appropriate for planetarium audiences, and state-of-the-art-advancing rendering techniques that can be transferred to practice in digital planetarium systems.

  10. Impact of Large-scale Geological Architectures On Recharge

    Science.gov (United States)

    Troldborg, L.; Refsgaard, J. C.; Engesgaard, P.; Jensen, K. H.

    Geological and hydrogeological data constitutes the basis for assessment of ground- water flow pattern and recharge zones. The accessibility and applicability of hard ge- ological data is often a major obstacle in deriving plausible conceptual models. Nev- ertheless focus is often on parameter uncertainty caused by the effect of geological heterogeneity due to lack of hard geological data, thus neglecting the possibility of alternative conceptualizations of the large-scale geological architecture. For a catchment in the eastern part of Denmark we have constructed different geologi- cal models based on different conceptualization of the major geological trends and fa- cies architecture. The geological models are equally plausible in a conceptually sense and they are all calibrated to well head and river flow measurements. Comparison of differences in recharge zones and subsequently well protection zones emphasize the importance of assessing large-scale geological architecture in hydrological modeling on regional scale in a non-deterministic way. Geostatistical modeling carried out in a transitional probability framework shows the possibility of assessing multiple re- alizations of large-scale geological architecture from a combination of soft and hard geological information.

  11. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  12. Searching for Large Scale Structure in Deep Radio Surveys

    CERN Document Server

    Baleisis, A; Loan, A J; Wall, J V; Baleisis, Audra; Lahav, Ofer; Loan, Andrew J.; Wall, Jasper V.

    1997-01-01

    (Abridged Abstract) We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z=1, which allows us to study large scale structure on scales between those accessible to present optical and infrared surveys, and that of the Cosmic Microwave Background (CMB). The dipole is due to 2 effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large scale structure, parameterised here by a family of Cold Dark Matter power-spectra. We make specific predictions for the Green Bank (87GB) and Parkes-MIT-NRAO (PMN) catalogues. For these relatively sparse catalogues both the motion and large scale structure dipole effects are expected to be smaller than the Poisson shot-noise. However, we detect dipole and higher harmonics in the combined 87GB-PMN catalogue which are far larger than expected. We attribute this to a 2 % flux mismatch between the two...

  13. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  14. Modelling large-scale halo bias using the bispectrum

    CERN Document Server

    Pollack, Jennifer E; Porciani, Cristiano

    2011-01-01

    We study the relation between the halo and matter density fields -- commonly termed bias -- in the LCDM framework. In particular, we examine the local model of biasing at quadratic order in matter density. This model is characterized by parameters b_1 and b_2. Using an ensemble of N-body simulations, we apply several statistical methods to estimate the parameters. We measure halo and matter fluctuations smoothed on various scales and find that the parameters vary with smoothing scale. We argue that, for real-space measurements, owing to the mixing of wavemodes, no scale can be found for which the parameters are independent of smoothing. However, this is not the case in Fourier space. We measure halo power spectra and construct estimates for an effective large-scale bias. We measure the configuration dependence of the halo bispectra B_hhh and reduced bispectra Q_hhh for very large-scale k-space triangles. From this we constrain b_1 and b_2. Using the lowest-order perturbation theory, we find that for B_hhh the...

  15. UAV Data Processing for Large Scale Topographical Mapping

    Science.gov (United States)

    Tampubolon, W.; Reinhardt, W.

    2014-06-01

    Large scale topographical mapping in the third world countries is really a prominent challenge in geospatial industries nowadays. On one side the demand is significantly increasing while on the other hand it is constrained by limited budgets available for mapping projects. Since the advent of Act Nr.4/yr.2011 about Geospatial Information in Indonesia, large scale topographical mapping has been on high priority for supporting the nationwide development e.g. detail spatial planning. Usually large scale topographical mapping relies on conventional aerial survey campaigns in order to provide high resolution 3D geospatial data sources. Widely growing on a leisure hobby, aero models in form of the so-called Unmanned Aerial Vehicle (UAV) bring up alternative semi photogrammetric aerial data acquisition possibilities suitable for relatively small Area of Interest (AOI) i.e. Indonesia this area size can be used as a mapping unit since it usually concentrates on the basis of sub district area (kecamatan) level. In this paper different camera and processing software systems will be further analyzed for identifying the best optimum UAV data acquisition campaign components in combination with the data processing scheme. The selected AOI is covering the cultural heritage of Borobudur Temple as one of the Seven Wonders of the World. A detailed accuracy assessment will be concentrated within the object feature of the temple at the first place. Feature compilation involving planimetric objects (2D) and digital terrain models (3D) will be integrated in order to provide Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. By doing this research, incorporating the optimum amount of GCPs in the UAV photo data processing will increase the accuracy along with its high resolution in 5 cm Ground Sampling Distance (GSD). Finally this result will be used as the benchmark for alternative geospatial data acquisition in the future in which it can support

  16. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  17. Multivariate Clustering of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Critchlow, T

    2003-06-13

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatio-temporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial dimensions is important since ''similar'' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building clusters, it is desirable to associate each cluster with its correct spatial region. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  18. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  19. Robust regression for large-scale neuroimaging studies.

    Science.gov (United States)

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies.

  20. Intensive agriculture erodes β-diversity at large scales.

    Science.gov (United States)

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity.

  1. Large-scale magnetic fields from inflation in teleparallel gravity

    CERN Document Server

    Bamba, Kazuharu; Luo, Ling-Wei

    2013-01-01

    Generation of large-scale magnetic fields in inflationary cosmology is studied in teleparallelism, where instead of the scalar curvature in general relativity, the torsion scalar describes the gravity theory. In particular, we investigate a coupling of the electromagnetic field to the torsion scalar during inflation, which leads to the breaking of conformal invariance of the electromagnetic field. We demonstrate that for a power-law type coupling, the current magnetic field strength of $\\sim 10^{-9}$ G on 1 Mpc scale can be generated, if the backreaction effects and strong coupling problem are not taken into consideration.

  2. Clusters as cornerstones of large-scale structure.

    Science.gov (United States)

    Gottlöber, S.; Retzlaff, J.; Turchaninov, V.

    1997-04-01

    Galaxy clusters are one of the best tracers of large-scale structure in the Universe on scales well above 100 Mpc. The authors investigate here the clustering properties of a redshift sample of Abell/ACO clusters and compare the observational sample with mock samples constructed from N-body simulations on the basis of four different cosmological models. The authors discuss the power spectrum, the Minkowski functionals and the void statistics of these samples and conclude, that the SCDM and TCDM models are ruled out whereas the ACDM and BSI models are in agreement with the observational data.

  3. Large-Scale Patterns of Filament Channels and Filaments

    Science.gov (United States)

    Mackay, Duncan

    2016-07-01

    In this review the properties and large-scale patterns of filament channels and filaments will be considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

  4. Less is more: regularization perspectives on large scale machine learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Deep learning based techniques provide a possible solution at the expanse of theoretical guidance and, especially, of computational requirements. It is then a key challenge for large scale machine learning to devise approaches guaranteed to be accurate and yet computationally efficient. In this talk, we will consider a regularization perspectives on machine learning appealing to classical ideas in linear algebra and inverse problems to scale-up dramatically nonparametric methods such as kernel methods, often dismissed because of prohibitive costs. Our analysis derives optimal theoretical guarantees while providing experimental results at par or out-performing state of the art approaches.

  5. Destruction of Be star disk by large scale magnetic fields

    Science.gov (United States)

    Ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel; Vanyo, Michael

    2017-01-01

    Classical Be stars are rapidly rotating stars with circumstellar disks that come and go on time scale of years. Recent observational data strongly suggests that these stars lack the ~10% incidence of global magnetic fields observed in other main-sequence B stars. Such an apparent lack of magnetic fields may indicate that Be disks are fundamentally incompatible with a significant large scale magnetic field. In this work, using numerical magnetohydrodynamics (MHD) simulations, we show that a dipole field of only 100G can lead to the quick disruption of a Be disk. Such a limit is in line with the observational upper limits for these objects.

  6. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  7. From Systematic Errors to Cosmology Using Large-Scale Structure

    Science.gov (United States)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  8. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  9. Resolving the paradox of oceanic large-scale balance and small-scale mixing.

    Science.gov (United States)

    Marino, R; Pouquet, A; Rosenberg, D

    2015-03-20

    A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case, energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations, and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is (realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate modeling of climate dynamics.

  10. Design techniques for large scale linear measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented.

  11. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  12. Generation of large-scale winds in horizontally anisotropic convection

    CERN Document Server

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  13. Cost Overruns in Large-scale Transportation Infrastructure Projects

    DEFF Research Database (Denmark)

    Cantarelli, Chantal C; Flyvbjerg, Bent; Molin, Eric J. E

    2010-01-01

    Managing large-scale transportation infrastructure projects is difficult due to frequent misinformation about the costs which results in large cost overruns that often threaten the overall project viability. This paper investigates the explanations for cost overruns that are given in the literature....... Overall, four categories of explanations can be distinguished: technical, economic, psychological, and political. Political explanations have been seen to be the most dominant explanations for cost overruns. Agency theory is considered the most interesting for political explanations and an eclectic theory...

  14. Large-scale flow generation by inhomogeneous helicity

    CERN Document Server

    Yokoi, Nobumitsu

    2015-01-01

    The effect of kinetic helicity (velocity--vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters into the Reynolds stress (mirrorsymmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with non-uniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of hom...

  15. Series Design of Large-Scale NC Machine Tool

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi

    2007-01-01

    Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However, up until now, functional combination is still the main method for product system design in China. Therefore, in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today, the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated, it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product design. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.

  16. Unstable `black branes' from scaled membranes at large D

    Science.gov (United States)

    Dandekar, Yogesh; Mazumdar, Subhajit; Minwalla, Shiraz; Saha, Arunabha

    2016-12-01

    It has recently been demonstrated that the dynamics of black holes at large D can be recast as a set of non gravitational membrane equations. These membrane equations admit a simple static solution with shape S D- p-2× R p,1. In this note we study the equations for small fluctuations about this solution in a limit in which amplitude and length scale of the fluctuations are simultaneously scaled to zero as D is taken to infinity. We demonstrate that the resultant nonlinear equations, which capture the Gregory-Laflamme instability and its end point, exactly agree with the effective dynamical `black brane' equations of Emparan Suzuki and Tanabe. Our results thus identify the `black brane' equations as a special limit of the membrane equations and so unify these approaches to large D black hole dynamics.

  17. Unstable `black branes' from scaled membranes at large $D$

    CERN Document Server

    Dandekar, Yogesh; Minwalla, Shiraz; Saha, Arunabha

    2016-01-01

    It has recently been demonstrated that the dynamics of black holes at large $D$ can be recast as a set of non gravitational membrane equations. These membrane equations admit a simple static solution with shape $S^{D-p-2} \\times R^{p,1}$. In this note we study the equations for small fluctuations about this solution in a limit in which amplitude and length scale of the fluctuations are simultaneously scaled to zero as $D$ is taken to infinity. We demonstrate that the resultant nonlinear equations, which capture the Gregory- Laflamme instability and its end point, exactly agree with the effective dynamical `black brane' equations of Emparan Suzuki and Tanabe. Our results thus identify the `black brane' equations as a special limit of the membrane equations and so unify these approaches to large $D$ black hole dynamics.

  18. Evaluation of Large-scale Public Sector Reforms

    DEFF Research Database (Denmark)

    Breidahl, Karen Nielsen; Gjelstrup, Gunnar; Hansen, Hanne Foss

    2017-01-01

    Research on the evaluation of large-scale public sector reforms is rare. This article sets out to fill that gap in the evaluation literature and argues that it is of vital importance. The impact of such reforms is considerable. Furthermore they change the context in which evaluations of other...... and more delimited policy areas take place. In our analysis we apply four governance perspectives (rational-instrumental, rational-interest based, institutional-cultural and a chaos perspective) in a comparative analysis of the evaluations of two large-scale public sector reforms in Denmark and Norway. We...... compare the evaluation process (focus and purpose), the evaluators and the organization of the evaluation as well as the utilization of the evaluation results. The analysis uncovers several significant findings including how the initial organization of the evaluation show strong impact on the utilization...

  19. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  20. Bayesian large-scale structure inference and cosmic web analysis

    CERN Document Server

    Leclercq, Florent

    2015-01-01

    Surveys of the cosmic large-scale structure carry opportunities for building and testing cosmological theories about the origin and evolution of the Universe. This endeavor requires appropriate data assimilation tools, for establishing the contact between survey catalogs and models of structure formation. In this thesis, we present an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the cosmic web: the BORG algorithm infers the primordial density fluctuations and produces physical reconstructions of the dark matter distribution that underlies observed galaxies, by assimilating the survey data into a cosmological structure formation model. The method, based on Bayesian probability theory, provides accurate means of uncertainty quantification. We demonstrate the application of BORG to the Sloan Digital Sky Survey data and describe the primordial and late-time large-scale structure in the observed volume. We show how the approach has led to the fi...

  1. Optimization of Survivability Analysis for Large-Scale Engineering Networks

    CERN Document Server

    Poroseva, S V

    2012-01-01

    Engineering networks fall into the category of large-scale networks with heterogeneous nodes such as sources and sinks. The survivability analysis of such networks requires the analysis of the connectivity of the network components for every possible combination of faults to determine a network response to each combination of faults. From the computational complexity point of view, the problem belongs to the class of exponential time problems at least. Partially, the problem complexity can be reduced by mapping the initial topology of a complex large-scale network with multiple sources and multiple sinks onto a set of smaller sub-topologies with multiple sources and a single sink connected to the network of sources by a single link. In this paper, the mapping procedure is applied to the Florida power grid.

  2. Large-scale innovation and change in UK higher education

    Directory of Open Access Journals (Sweden)

    Stephen Brown

    2013-09-01

    Full Text Available This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ technology to deliver such changes. Key lessons that emerged from these experiences are reviewed covering themes of pervasiveness, unofficial systems, project creep, opposition, pressure to deliver, personnel changes and technology issues. The paper argues that collaborative approaches to project management offer greater prospects of effective large-scale change in universities than either management-driven top-down or more champion-led bottom-up methods. It also argues that while some diminution of control over project outcomes is inherent in this approach, this is outweighed by potential benefits of lasting and widespread adoption of agreed changes.

  3. Building a Large-Scale Knowledge Base for Machine Translation

    CERN Document Server

    Knight, K; Knight, Kevin; Luk, Steve K.

    1994-01-01

    Knowledge-based machine translation (KBMT) systems have achieved excellent results in constrained domains, but have not yet scaled up to newspaper text. The reason is that knowledge resources (lexicons, grammar rules, world models) must be painstakingly handcrafted from scratch. One of the hypotheses being tested in the PANGLOSS machine translation project is whether or not these resources can be semi-automatically acquired on a very large scale. This paper focuses on the construction of a large ontology (or knowledge base, or world model) for supporting KBMT. It contains representations for some 70,000 commonly encountered objects, processes, qualities, and relations. The ontology was constructed by merging various online dictionaries, semantic networks, and bilingual resources, through semi-automatic methods. Some of these methods (e.g., conceptual matching of semantic taxonomies) are broadly applicable to problems of importing/exporting knowledge from one KB to another. Other methods (e.g., bilingual match...

  4. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    Science.gov (United States)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  5. The complexity nature of large-scale software systems

    Institute of Scientific and Technical Information of China (English)

    Yan Dong; Qi Guo-Ning; Gu Xin-Jian

    2006-01-01

    In software engineering, class diagrams are often used to describe the system's class structures in Unified Modelling Language (UML). A class diagram, as a graph, is a collection of static declarative model elements, such as classes, interfaces, and the relationships of their connections with each other. In this paper, class graphs are examined within several Java software systems provided by Sun and IBM, and some new features are found. For a large-scale Java software system, its in-degree distribution tends to an exponential distribution, while its out-degree and degree distributions reveal the power-law behaviour. And then a directed preferential-random model is established to describe the corresponding degree distribution features and evolve large-scale Java software systems.

  6. Electron drift in a large scale solid xenon

    CERN Document Server

    Yoo, J

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7\\,cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163\\,K), the drift speed is 0.193 $\\pm$ 0.003 cm/$\\mu$s while the drift speed in the solid phase (157\\,K) is 0.397 $\\pm$ 0.006 cm/$\\mu$s at 900 V/cm over 8.0\\,cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  7. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  8. Clusters and Large-Scale Structure: the Synchrotron Keys

    CERN Document Server

    Rudnick, L; Andernach, H; Battaglia, N; Brown, S; Brunetti, Gf; Burns, J; Clarke, T; Dolag, K; Farnsworth, D; Giovannini, G; Hallman, E; Johnston-Hollit, M; Jones, T W; Kang, H; Kassim, N; Kravtsov, A; Lazio, J; Lonsdale, C; McNamara, B; Myers, S; Owen, F; Pfrommer, C; Ryu, D; Sarazin, C; Subrahmanyan, R; Taylor, G; Taylor, R

    2009-01-01

    For over four decades, synchrotron-radiating sources have played a series of pathfinding roles in the study of galaxy clusters and large scale structure. Such sources are uniquely sensitive to the turbulence and shock structures of large-scale environments, and their cosmic rays and magnetic fields often play important dynamic and thermodynamic roles. They provide essential complements to studies at other wavebands. Over the next decade, they will fill essential gaps in both cluster astrophysics and the cosmological growth of structure in the universe, especially where the signatures of shocks and turbulence, or even the underlying thermal plasma itself, are otherwise undetectable. Simultaneously, synchrotron studies offer a unique tool for exploring the fundamental question of the origins of cosmic magnetic fields. This work will be based on the new generation of m/cm-wave radio telescopes now in construction, as well as major advances in the sophistication of 3-D MHD simulations.

  9. Large scale instabilities in two-dimensional magnetohydrodynamics

    Science.gov (United States)

    Boffetta; Celani; Prandi

    2000-04-01

    The stability of a sheared magnetic field is analyzed in two-dimensional magnetohydrodynamics with resistive and viscous dissipation. Using a multiple-scale analysis, it is shown that at large enough Reynolds numbers the basic state describing a motionless fluid and a layered magnetic field, becomes unstable with respect to large scale perturbations. The exact expressions for eddy-viscosity and eddy-resistivity are derived in the nearby of the critical point where the instability sets in. In this marginally unstable case the nonlinear phase of perturbation growth obeys to a Cahn-Hilliard-like dynamics characterized by coalescence of magnetic islands leading to a final new equilibrium state. High resolution numerical simulations confirm quantitatively the predictions of multiscale analysis.

  10. Communities, modules and large-scale structure in networks

    Science.gov (United States)

    Newman, M. E. J.

    2012-01-01

    Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the past decade there have been significant advances in experiments to determine the topological structure of networked systems, but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks, such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium and large scales, to understand the `big picture'. Important progress has been made, however, within the past few years, a selection of which is reviewed here.

  11. Imaging HF-induced large-scale irregularities above HAARP

    Science.gov (United States)

    Djuth, Frank T.; Reinisch, Bodo W.; Kitrosser, David F.; Elder, John H.; Snyder, A. Lee; Sales, Gary S.

    2006-02-01

    The University of Massachusetts-Lowell digisonde is used with the HAARP high-frequency (HF), ionospheric modification facility to obtain radio images of artificially-produced, large-scale, geomagnetic field-aligned irregularities. F region irregularities generated with the HAARP beam pointed in the vertical and geomagnetic field-aligned directions are examined in a smooth background plasma. It is found that limited large-scale irregularity production takes place with vertical transmissions, whereas there is a dramatic increase in the number of source irregularities with the beam pointed parallel to the geomagnetic field. Strong irregularity production appears to be confined to within ~5° of the geomagnetic zenith and does not fill the volume occupied by the HF beam. A similar effect is observed in optical images of artificial airglow.

  12. Large-scale quantum networks based on graphs

    Science.gov (United States)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  13. In the fast lane: large-scale bacterial genome engineering.

    Science.gov (United States)

    Fehér, Tamás; Burland, Valerie; Pósfai, György

    2012-07-31

    The last few years have witnessed rapid progress in bacterial genome engineering. The long-established, standard ways of DNA synthesis, modification, transfer into living cells, and incorporation into genomes have given way to more effective, large-scale, robust genome modification protocols. Expansion of these engineering capabilities is due to several factors. Key advances include: (i) progress in oligonucleotide synthesis and in vitro and in vivo assembly methods, (ii) optimization of recombineering techniques, (iii) introduction of parallel, large-scale, combinatorial, and automated genome modification procedures, and (iv) rapid identification of the modifications by barcode-based analysis and sequencing. Combination of the brute force of these techniques with sophisticated bioinformatic design and modeling opens up new avenues for the analysis of gene functions and cellular network interactions, but also in engineering more effective producer strains. This review presents a summary of recent technological advances in bacterial genome engineering.

  14. A first large-scale flood inundation forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  15. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.

    Science.gov (United States)

    Sen, Amrik; Mininni, Pablo D; Rosenberg, Duane; Pouquet, Annick

    2012-09-01

    Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two-dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale Lf, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the inverse cascade range at a small but fixed Rossby number, Rof≈0.05. Several numerical simulations with helical and nonhelical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with reasonably large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a ∼k⊥-5/3 scaling, and the other that corresponds to a steeper ∼k⊥-3 spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to the 2D modes. The spectrum that emerges depends on the anisotropy of the forcing function, the former solution prevailing for forcings in which more energy is injected into the 2D modes while the latter prevails for isotropic forcing. In the case of anisotropic forcing, whence the energy goes from the 2D to the 3D modes at low wave numbers, large-scale shear is created, resulting in a time scale τsh, associated with shear, thereby producing a ∼k-1 spectrum for the total energy with the horizontal energy of the 2D modes still following a ∼k⊥-5/3 scaling.

  16. Supersymmetry and Large Scale Left-Right Symmetry

    CERN Document Server

    Aulakh, Charanjit S; Rasin, A; Senjanovic, G; Aulakh, Charanjit S.; Melfo, Alejandra; Rasin, Andrija; Senjanovic, Goran

    1998-01-01

    We present a systematic study of the construction of large scale supersymmetric left-right theories, by utilizing holomorphic invariants to characterize flat directions, both at the renormalizable and the non-renormalizable level. We show that the low energy limit of the minimal supersymmetric Left-Right models is the supersymmetric standard model with an exact R-parity. Whereas in the renormalizable version the scale of parity breaking is undetermined, in the non-renormalizable one it must be bigger than about $10^{10} - 10^{12}$ GeV. The precise nature of the see-saw mechanism differs in the two versions, and we discuss it at length. In both versions of the theory a number of Higgs scalars and fermions with masses much below the $B-L$ and $SU(2)_R$ breaking scales is predicted. For a reasonable choice of parameters, either charged or doubly-charged such particles may be accesible to experiment.

  17. The Dense Filamentary Giant Molecular Cloud G23.0-0.4: Birthplace of Ongoing Massive Star Formation

    CERN Document Server

    Su, Yang; Shao, Xiangjun; Yang, Ji

    2015-01-01

    We present observations of 1.5 square degree maps of the 12CO, 13CO, and C18O (J=1-0) emission toward the complex region of the supernova remnant (SNR) W41 and SNR G22.7-0.2. A massive (~5E5Msun), large (~84x15 pc), and dense (~10E3 cm^-3) giant molecular cloud (GMC), G23.0-0.4 with VLSR~77 km/s, is found to be adjacent to the two SNRs. The GMC displays a filamentary structure approximately along the Galactic plane. The filamentary structure of the dense molecular gas, traced by C18O (J=1-0) emission, is also coincident well with the distribution of the dust-continuum emission in the direction. Two dense massive MC clumps, two 6.7 GHz methanol masers, and one HII/SNR complex, associated with the 77 km/s GMC G23.0-0.4, are aligned along the filamentary structure, indicating the star forming activity within the GMC. These sources have periodic projected spacing of 0.18-0.26degree along the giant filament, which is consistent well with the theoretical predictions of 0.22degree. It indicates that the turbulence s...

  18. Robust regression for large-scale neuroimaging studies.

    OpenAIRE

    2015-01-01

    PUBLISHED Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypot...

  19. Soil carbon management in large-scale Earth system modelling

    DEFF Research Database (Denmark)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.;

    2015-01-01

    Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to...... modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles....

  20. Measuring large scale space perception in literary texts

    Science.gov (United States)

    Rossi, Paolo

    2007-07-01

    A center and radius of “perception” (in the sense of environmental cognition) can be formally associated with a written text and operationally defined. Simple algorithms for their computation are presented, and indicators for anisotropy in large scale space perception are introduced. The relevance of these notions for the analysis of literary and historical records is briefly discussed and illustrated with an example taken from medieval historiography.

  1. Large-scale Alfvén vortices

    Energy Technology Data Exchange (ETDEWEB)

    Onishchenko, O. G., E-mail: onish@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow, Russian Federation and Space Research Institute, 84/32 Profsouznaya str., 117997 Moscow (Russian Federation); Pokhotelov, O. A., E-mail: pokh@ifz.ru [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123242 Moscow (Russian Federation); Horton, W., E-mail: wendell.horton@gmail.com [Institute for Fusion Studies and Applied Research Laboratory, University of Texas at Austin, Austin, Texas 78713 (United States); Scullion, E., E-mail: scullie@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Fedun, V., E-mail: v.fedun@sheffield.ac.uk [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S13JD (United Kingdom)

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  2. Hierarchical Engine for Large-scale Infrastructure Co-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-24

    HELICS is designed to support very-large-scale (100,000+ federates) cosimulations with off-the-shelf power-system, communication, market, and end-use tools. Other key features include cross platform operating system support, the integration of both event driven (e.g., packetized communication) and time-series (e.g., power flow) simulations, and the ability to co-iterate among federates to ensure physical model convergence at each time step.

  3. Large-scale prediction of drug-target relationships

    DEFF Research Database (Denmark)

    Kuhn, Michael; Campillos, Mónica; González, Paula

    2008-01-01

    , but also provides a more global view on drug-target relations. Here we review recent attempts to apply large-scale computational analyses to predict novel interactions of drugs and targets from molecular and cellular features. In this context, we quantify the family-dependent probability of two proteins...... to bind the same ligand as function of their sequence similarity. We finally discuss how phenotypic data could help to expand our understanding of the complex mechanisms of drug action....

  4. Large-Scale Mode Identification and Data-Driven Sciences

    OpenAIRE

    Mukhopadhyay, Subhadeep

    2015-01-01

    Bump-hunting or mode identification is a fundamental problem that arises in almost every scientific field of data-driven discovery. Surprisingly, very few data modeling tools are available for automatic (not requiring manual case-by-base investigation), objective (not subjective), and nonparametric (not based on restrictive parametric model assumptions) mode discovery, which can scale to large data sets. This article introduces LPMode--an algorithm based on a new theory for detecting multimod...

  5. Large-scale mode identification and data-driven sciences

    OpenAIRE

    Mukhopadhyay, Subhadeep

    2017-01-01

    Bump-hunting or mode identification is a fundamental problem that arises in almost every scientific field of data-driven discovery. Surprisingly, very few data modeling tools are available for automatic (not requiring manual case-by-case investigation), objective (not subjective), and nonparametric (not based on restrictive parametric model assumptions) mode discovery, which can scale to large data sets. This article introduces LPMode–an algorithm based on a new theory for detecting multimoda...

  6. One-dimensional adhesion model for large scale structures

    Directory of Open Access Journals (Sweden)

    Kayyunnapara Thomas Joseph

    2010-05-01

    Full Text Available We discuss initial value problems and initial boundary value problems for some systems of partial differential equations appearing in the modelling for the large scale structure formation in the universe. We restrict the initial data to be bounded measurable and locally bounded variation function and use Volpert product to justify the product which appear in the equation. For more general initial data in the class of generalized functions of Colombeau, we construct the solution in the sense of association.

  7. Robust regression for large-scale neuroimaging studies.

    OpenAIRE

    BOKDE, ARUN

    2015-01-01

    PUBLISHED Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypot...

  8. Multimodel Design of Large Scale Systems with Multiple Decision Makers.

    Science.gov (United States)

    1982-08-01

    virtue. 5- , Lead me from darkneu to light. - Lead me from death to eternal Life. ( Vedic Payer) p. I, MULTIMODEL DESIGN OF LARGE SCALE SYSTEMS WITH...BFI-S2L) is stable for all e in H. To avoid mathematical complications, the feedback matrices of (2.31) are restricted to be of the form, S(e)= Fli + 0...control values used during all past sampling intervals. This information pattern, though not of ouch practical importance, is mathematically con

  9. A Large-Scale Study of Online Shopping Behavior

    OpenAIRE

    Nalchigar, Soroosh; Weber, Ingmar

    2012-01-01

    The continuous growth of electronic commerce has stimulated great interest in studying online consumer behavior. Given the significant growth in online shopping, better understanding of customers allows better marketing strategies to be designed. While studies of online shopping attitude are widespread in the literature, studies of browsing habits differences in relation to online shopping are scarce. This research performs a large scale study of the relationship between Internet browsing hab...

  10. Foundations of Large-Scale Multimedia Information Management and Retrieval

    CERN Document Server

    Chang, Edward Y

    2011-01-01

    "Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and

  11. Clouder: a flexible large scale decentralized object store - architecture overview

    OpenAIRE

    Vilaça, Ricardo Manuel Pereira; Oliveira, Rui Carlos Mendes de

    2009-01-01

    The current exponential growth of data calls for massive scale capabilities of storage and processing. Such large volumes of data tend to disallow their centralized storage and processing making extensive and flexible data partitioning unavoidable. This is being acknowledged by several major Internet players embracing the Cloud computing model and offering first generation remote storage services with simple processing capabilities. In this position paper we present preliminary ideas for the ...

  12. Large Scale Density Estimation of Blue and Fin Whales (LSD)

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse

  13. Concurrent Programming Using Actors: Exploiting Large-Scale Parallelism,

    Science.gov (United States)

    1985-10-07

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK* Artificial Inteligence Laboratory AREA Is WORK UNIT NUMBERS 545 Technology Square...D-R162 422 CONCURRENT PROGRMMIZNG USING f"OS XL?ITP TEH l’ LARGE-SCALE PARALLELISH(U) NASI AC E Al CAMBRIDGE ARTIFICIAL INTELLIGENCE L. G AGHA ET AL...RESOLUTION TEST CHART N~ATIONAL BUREAU OF STANDA.RDS - -96 A -E. __ _ __ __’ .,*- - -- •. - MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL

  14. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  15. High Speed Networking and Large-scale Simulation in Geodynamics

    Science.gov (United States)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  16. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  17. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  18. Critical thinking, politics on a large scale and media democracy

    Directory of Open Access Journals (Sweden)

    José Antonio IBÁÑEZ-MARTÍN

    2015-06-01

    Full Text Available The first approximation to the social current reality offers us numerous motives for the worry. The spectacle of violence and of immorality can scare us easily. But more worrying still it is to verify that the horizon of conviviality, peace and wellbeing that Europe had been developing from the Treaty of Rome of 1957 has compromised itself seriously for the economic crisis. Today we are before an assault to the democratic politics, which is qualified, on the part of the media democracy, as an exhausted system, which is required to be changed into a new and great politics, a politics on a large scale. The article analyses the concept of a politics on a large scale, primarily attending to Nietzsche, and noting its union with the great philosophy and the great education. The study of the texts of Nietzsche leads us to the conclusion of how in them we often find an interesting analysis of the problems and a misguided proposal for solutions. We cannot think to suggest solutions to all the problems, but we outline various proposals about changes of political activity, that reasonably are defended from the media democracy. In conclusion, we point out that a politics on a large scale requires statesmen, able to suggest modes of life in common that can structure a long-term coexistence.

  19. Large-scale magnetic topologies of early M dwarfs

    CERN Document Server

    Donati, JF; Petit, P; Delfosse, X; Forveille, T; Aurière, M; Cabanac, R; Dintrans, B; Fares, R; Gastine, T; Jardine, MM; Lignières, F; Paletou, F; Velez, J Ramirez; Théado, S

    2008-01-01

    We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0--M3), i.e. above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarised profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of 6 early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field ressembling those found in mid-M dwarfs. This abrupt chan...

  20. Solving Large Scale Structure in Ten Easy Steps with COLA

    CERN Document Server

    Tassev, Svetlin; Eisenstein, Daniel

    2013-01-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100Mpc/h with particles of mass ~5*10^9Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10^11Msolar/h. This is only at a modest speed penalty when compared to mocks obt...

  1. Reliability assessment for components of large scale photovoltaic systems

    Science.gov (United States)

    Ahadi, Amir; Ghadimi, Noradin; Mirabbasi, Davar

    2014-10-01

    Photovoltaic (PV) systems have significantly shifted from independent power generation systems to a large-scale grid-connected generation systems in recent years. The power output of PV systems is affected by the reliability of various components in the system. This study proposes an analytical approach to evaluate the reliability of large-scale, grid-connected PV systems. The fault tree method with an exponential probability distribution function is used to analyze the components of large-scale PV systems. The system is considered in the various sequential and parallel fault combinations in order to find all realistic ways in which the top or undesired events can occur. Additionally, it can identify areas that the planned maintenance should focus on. By monitoring the critical components of a PV system, it is possible not only to improve the reliability of the system, but also to optimize the maintenance costs. The latter is achieved by informing the operators about the system component's status. This approach can be used to ensure secure operation of the system by its flexibility in monitoring system applications. The implementation demonstrates that the proposed method is effective and efficient and can conveniently incorporate more system maintenance plans and diagnostic strategies.

  2. Large-scale columnar vortices in rotating turbulence

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2016-11-01

    In the rotating turbulence, flow structures are affected by the angular velocity of the system's rotation. When the angular velocity is small, three-dimensional statistically-isotropic flow, which has the Kolmogorov spectrum all over the inertial subrange, is formed. When the angular velocity increases, the flow becomes two-dimensional anisotropic, and the energy spectrum has a power law k-2 in the small wavenumbers in addition to the Kolmogorov spectrum in the large wavenumbers. When the angular velocity decreases, the flow returns to the isotropic one. It is numerically found that the transition between the isotropic and anisotropic flows is hysteretic; the critical angular velocity at which the flow transitions from the anisotropic one to the isotropic one, and that of the reverse transition are different. It is also observed that the large-scale columnar structures in the anisotropic flow depends on the external force which maintains a statistically-steady state. In some cases, small-scale anticyclonic structures are aligned in a columnar structure apart from the cyclonic Taylor column. The formation mechanism of the large-scale columnar structures will be discussed. This work was partially supported by JSPS KAKENHI.

  3. Star formation associated with a large-scale infrared bubble

    CERN Document Server

    Xu, Jin-Long

    2014-01-01

    Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study for a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. The large-scale infrared bubble shows a half-shell morphology at 8 um. H II regions G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J=1-0 components of the three H II regions, we found that the 8 um emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), ...

  4. Equivalent common path method in large-scale laser comparator

    Science.gov (United States)

    He, Mingzhao; Li, Jianshuang; Miao, Dongjing

    2015-02-01

    Large-scale laser comparator is main standard device that providing accurate, reliable and traceable measurements for high precision large-scale line and 3D measurement instruments. It mainly composed of guide rail, motion control system, environmental parameters monitoring system and displacement measurement system. In the laser comparator, the main error sources are temperature distribution, straightness of guide rail and pitch and yaw of measuring carriage. To minimize the measurement uncertainty, an equivalent common optical path scheme is proposed and implemented. Three laser interferometers are adjusted to parallel with the guide rail. The displacement in an arbitrary virtual optical path is calculated using three displacements without the knowledge of carriage orientations at start and end positions. The orientation of air floating carriage is calculated with displacements of three optical path and position of three retroreflectors which are precisely measured by Laser Tracker. A 4th laser interferometer is used in the virtual optical path as reference to verify this compensation method. This paper analyzes the effect of rail straightness on the displacement measurement. The proposed method, through experimental verification, can improve the measurement uncertainty of large-scale laser comparator.

  5. Large scale structure around a z=2.1 cluster

    CERN Document Server

    Hung, Chao-Ling; Chiang, Yi-Kuan; Capak, Peter; Cowley, Michael J; Darvish, Behnam; Kacprzak, Glenn G; Kovac, K; Lilly, Simon J; Nanayakkara, Themiya; Spitler, Lee R; Tran, Kim-Vy H; Yuan, Tiantian

    2016-01-01

    The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large scale environments is less clear at $z\\gtrsim2$. We present a search of large scale structure around a galaxy cluster core at $z=2.095$ using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the $z=2.095$ cluster. A total of 8 DSFGs (including 3 X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are found within a 10 arcmin radius (corresponds to $\\sim$15 cMpc at $z\\sim2.1$) from the cluster center and within a redshift range of $\\Delta z=0.02$, which leads to galaxy overdensities of $\\delta_{\\rm DSFG}\\sim12.3$ and $\\delta_{\\rm SFG}\\sim2.8$. The cluster core and the extended DSFG- and SFG-rich structure together demonstrate an active cluster formation phase, in which the cluster is accreting a significant amount of material from large scale structure whi...

  6. BILGO: Bilateral greedy optimization for large scale semidefinite programming

    KAUST Repository

    Hao, Zhifeng

    2013-10-03

    Many machine learning tasks (e.g. metric and manifold learning problems) can be formulated as convex semidefinite programs. To enable the application of these tasks on a large-scale, scalability and computational efficiency are considered as desirable properties for a practical semidefinite programming algorithm. In this paper, we theoretically analyze a new bilateral greedy optimization (denoted BILGO) strategy in solving general semidefinite programs on large-scale datasets. As compared to existing methods, BILGO employs a bilateral search strategy during each optimization iteration. In such an iteration, the current semidefinite matrix solution is updated as a bilateral linear combination of the previous solution and a suitable rank-1 matrix, which can be efficiently computed from the leading eigenvector of the descent direction at this iteration. By optimizing for the coefficients of the bilateral combination, BILGO reduces the cost function in every iteration until the KKT conditions are fully satisfied, thus, it tends to converge to a global optimum. In fact, we prove that BILGO converges to the global optimal solution at a rate of O(1/k), where k is the iteration counter. The algorithm thus successfully combines the efficiency of conventional rank-1 update algorithms and the effectiveness of gradient descent. Moreover, BILGO can be easily extended to handle low rank constraints. To validate the effectiveness and efficiency of BILGO, we apply it to two important machine learning tasks, namely Mahalanobis metric learning and maximum variance unfolding. Extensive experimental results clearly demonstrate that BILGO can solve large-scale semidefinite programs efficiently.

  7. Lyman-alpha Forest Tomography from Background Galaxies: The First Megaparsec-Resolution Large-Scale Structure Map at z>2

    CERN Document Server

    Lee, Khee-Gan; Stark, Casey; Prochaska, J Xavier; White, Martin; Schlegel, David J; Eilers, Anna-Christina; Arinyo-i-Prats, Andreu; Suzuki, Nao; Croft, Rupert A C; Caputi, Karina I; Cassata, Paolo; Ilbert, Olivier; Garilli, Bianca; Koekemoer, Anton M; Brun, Vincent Le; Fèvre, Olivier Le; Maccagni, Dario; Nugent, Peter; Taniguchi, Yoshiaki; Tasca, Lidia A M; Tresse, Laurence; Zamorani, Gianni; Zucca, Elena

    2014-01-01

    We present the first observations of foreground Lyman-$\\alpha$ forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with $z\\sim 2.3-2.8$ within a $5' \\times 15'$ region of the COSMOS field. The transverse sightline separation is $\\sim 2\\,h^{-1}\\mathrm{Mpc}$ comoving, allowing us to create a tomographic reconstruction of the 3D Ly$\\alpha$ forest absorption field over the redshift range $2.20\\leq z\\leq 2.45$. The resulting map covers $6\\,h^{-1}\\mathrm{Mpc} \\times 14\\,h^{-1}\\mathrm{Mpc}$ in the transverse plane and $230\\,h^{-1}\\mathrm{Mpc}$ along the line-of-sight with a spatial resolution of $\\approx 3.5\\,h^{-1}\\mathrm{Mpc}$, and is the first high-fidelity map of large-scale structure on $\\sim\\mathrm{Mpc}$ scales at $z>2$. Our map reveals significant structures with $\\gtrsim 10\\,h^{-1}\\mathrm{Mpc}$ extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. ...

  8. Filamentary Star Formation in NGC 1275

    CERN Document Server

    Canning, R E A; Gallagher, J S; Kotulla, R; O'Connell, R W; Fabian, A C; Johnstone, R M; Conselice, C J; Hicks, A; Rosario, D; Wyse, R F G

    2014-01-01

    We examine the star formation in the outer halo of NGC~1275, the central galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organised on multiple-kiloparsec scales. Many of these star clusters are associated with "streaks" of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10% of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC~1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. ...

  9. Filamentary star formation in NGC 1275

    Science.gov (United States)

    Canning, R. E. A.; Ryon, J. E.; Gallagher, J. S.; Kotulla, R.; O'Connell, R. W.; Fabian, A. C.; Johnstone, R. M.; Conselice, C. J.; Hicks, A.; Rosario, D.; Wyse, R. F. G.

    2014-10-01

    We examine the star formation in the outer halo of NGC 1275, the central galaxy in the Perseus cluster (Abell 426), using far-ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organized on multiple kiloparsec scales. Many of these star clusters are associated with `streaks' of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10 per cent of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC 1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. The stellar streaks then could represent stars moving on ballistic orbits in the potential well of the galaxy cluster. We propose a model where star-forming filaments, switched on ˜50 Myr ago and are currently feeding the growth of the NGC 1275 stellar halo at a rate of ≈-2 to 3 M⊙ yr-1. This type of process may also build stellar haloes and form isolated star clusters in the outskirts of youthful galaxies.

  10. Large scale stochastic spatio-temporal modelling with PCRaster

    Science.gov (United States)

    Karssenberg, Derek; Drost, Niels; Schmitz, Oliver; de Jong, Kor; Bierkens, Marc F. P.

    2013-04-01

    software from the eScience Technology Platform (eSTeP), developed at the Netherlands eScience Center. This will allow us to scale up to hundreds of machines, with thousands of compute cores. A key requirement is not to change the user experience of the software. PCRaster operations and the use of the Python framework classes should work in a similar manner on machines ranging from a laptop to a supercomputer. This enables a seamless transfer of models from small machines, where model development is done, to large machines used for large-scale model runs. Domain specialists from a large range of disciplines, including hydrology, ecology, sedimentology, and land use change studies, currently use the PCRaster Python software within research projects. Applications include global scale hydrological modelling and error propagation in large-scale land use change models. The software runs on MS Windows, Linux operating systems, and OS X.

  11. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  12. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  13. Foundational perspectives on causality in large-scale brain networks.

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  14. Large-scale stabilization control of input-constrained quadrotor

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-10-01

    Full Text Available The quadrotor has been the most popular aircraft in the last decade due to its excellent dynamics and continues to attract ever-increasing research interest. Delivering a quadrotor from a large fixed-wing aircraft is a promising application of quadrotors. In such an application, the quadrotor needs to switch from a highly unstable status, featured as large initial states, to a safe and stable flight status. This is the so-called large-scale stability control problem. In such an extreme scenario, the quadrotor is at risk of actuator saturation. This can cause the controller to update incorrectly and lead the quadrotor to spiral and crash. In this article, to safely control the quadrotor in such scenarios, the control input constraint is analyzed. The key states of a quadrotor dynamic model are selected, and a two-dimensional dynamic model is extracted based on a symmetrical body configuration. A generalized point-wise min-norm nonlinear control method is proposed based on the Lyapunov function, and large-scale stability control is hence achieved. An enhanced point-wise, min-norm control is further provided to improve the attitude control performance, with altitude performance degenerating slightly. Simulation results showed that the proposed control methods can stabilize the input-constrained quadrotor and the enhanced method can improve the performance of the quadrotor in critical states.

  15. Scaling statistical multiple sequence alignment to large datasets

    Directory of Open Access Journals (Sweden)

    Michael Nute

    2016-11-01

    Full Text Available Abstract Background Multiple sequence alignment is an important task in bioinformatics, and alignments of large datasets containing hundreds or thousands of sequences are increasingly of interest. While many alignment methods exist, the most accurate alignments are likely to be based on stochastic models where sequences evolve down a tree with substitutions, insertions, and deletions. While some methods have been developed to estimate alignments under these stochastic models, only the Bayesian method BAli-Phy has been able to run on even moderately large datasets, containing 100 or so sequences. A technique to extend BAli-Phy to enable alignments of thousands of sequences could potentially improve alignment and phylogenetic tree accuracy on large-scale data beyond the best-known methods today. Results We use simulated data with up to 10,000 sequences representing a variety of model conditions, including some that are significantly divergent from the statistical models used in BAli-Phy and elsewhere. We give a method for incorporating BAli-Phy into PASTA and UPP, two strategies for enabling alignment methods to scale to large datasets, and give alignment and tree accuracy results measured against the ground truth from simulations. Comparable results are also given for other methods capable of aligning this many sequences. Conclusions Extensions of BAli-Phy using PASTA and UPP produce significantly more accurate alignments and phylogenetic trees than the current leading methods.

  16. The Impact of Large Scale Environments on Cluster Entropy Profiles

    Science.gov (United States)

    Trierweiler, Isabella; Su, Yuanyuan

    2017-01-01

    We perform a systematic analysis of 21 clusters imaged by the Suzaku satellite to determine the relation between the richness of cluster environments and entropy at large radii. Entropy profiles for clusters are expected to follow a power-law, but Suzaku observations show that the entropy profiles of many clusters are significantly flattened beyond 0.3 Rvir. While the entropy at the outskirts of clusters is thought to be highly dependent on the large scale cluster environment, the exact nature of the environment/entropy relation is unclear. Using the Sloan Digital Sky Survey and 6dF Galaxy Survey, we study the 20 Mpc large scale environment for all clusters in our sample. We find no strong relation between the entropy deviations at the virial radius and the total luminosity of the cluster surroundings, indicating that accretion and mergers have a more complex and indirect influence on the properties of the gas at large radii. We see a possible anti-correlation between virial temperature and richness of the cluster environment and find that density excess appears to play a larger role in the entropy flattening than temperature, suggesting that clumps of gas can lower entropy.

  17. Scaling in large Prandtl number turbulent thermal convection

    CERN Document Server

    Dubrulle, B

    2011-01-01

    We study the scaling properties of heat transfer $Nu$ in turbulent thermal convection at large Prandtl number $Pr$ using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds number $Re$. At low Reynolds number, $Nu Pr^{-1/2}$ and $Re$ are a function of $Ra Pr^{-3/2}$. At large Reynolds number $Nu Pr^{1/3}$ and $Re Pr$ are function only of $Ra Pr^{2/3}$ (within logarithmic corrections). In practice, since $Nu$ is always close to $Ra^{1/3}$, this corresponds to a much weaker dependence of the heat transfer in the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve an existing controversy between measurements in SF6 (large $Re$) and in alcohol/water (lower $Re$). We link these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling theory could be used to describe these two regimes through a single universal function. This function presents a bimodal character for intermediate range of Reynolds num...

  18. Turbulence and entrainment length scales in large wind farms

    Science.gov (United States)

    Andersen, Søren J.; Sørensen, Jens N.; Mikkelsen, Robert F.

    2017-03-01

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue 'Wind energy in complex terrains'.

  19. Turbulence and entrainment length scales in large wind farms.

    Science.gov (United States)

    Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F

    2017-04-13

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'.

  20. Harvesting Collective Trend Observations from Large Scale Study Trips

    DEFF Research Database (Denmark)

    Eriksen, Kaare; Ovesen, Nis

    2014-01-01

    To enhance industrial design students’ decoding and understanding of the technological possibilities and the diversity of needs and preferences in different cultures it is not unusual to arrange study trips where such students acquire a broader view to strengthen their professional skills...... and approach, hence linking the design education and the design culture of the surrounding world. To improve the professional learning it is useful, though, to facilitate and organize the trips in a way that involves systematic data collection and reporting. This paper presents a method for facilitating study...... trips for engineering students in architecture & design and the results from crowd-collecting a large amount of trend observations as well as the derived experience from using the method on a large scale study trip. The method has been developed and formalized in relation to study trips with large...

  1. LARGE-SCALE CO2 TRANSPORTATION AND DEEP OCEAN SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Sarv

    1999-03-01

    Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.

  2. The Large-scale Component of Mantle Convection

    Science.gov (United States)

    Cserepes, L.

    Circulation in the Earth's mantle occurs on multiple spatial scales: this review dis- cusses the character of its large-scale or global components. Direct and strong evi- dence concerning the global flow comes, first of all, from the pattern of plate motion. Further indirect observational data which can be transformed into flow velocities by the equation of motion are the internal density heterogeneities revealed by seismic to- mography, and the geoid can also be used as an observational constraint. Due to their limited spatial resolution, global tomographic data automatically filter out the small- scale features and are therefore relevant to the global flow pattern. Flow solutions obtained from tomographic models, using the plate motion as boundary condition, re- veal that subduction is the downwelling of the global mantle circulation and that the deep-rooted upwellings are concentrated in 2-3 superplumes. Spectral analysis of the tomographic heterogeneities shows that the power of global flow appears dominantly in the lowest spherical harmonic orders 2-5. Theoretical convection calculations con- tribute substantially to the understanding of global flow. If basal heating of the mantle is significant, numerical models can reproduce the basic 2 to 5 cell pattern of con- vection even without the inclusion of surface plates. If plates are superimposed on the solution with their present arrangement and motion, the dominance of these low spherical harmonic orders is more pronounced. The cells are not necessarily closed, rather they show chaotic time-dependence, but they are normally bordered by long downwelling features, and they have usually a single superplume in the cell interior. Swarms of small plumes can develop in the large cells, especially when convection is partially layered due to an internal boundary such as the 670 km discontinuity (source of small plumes). These small plumes are usually tilted by the background large-scale flow which shows that they are

  3. Small-Scale Variability of Large Cloud Drops

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  4. Large-Scale Filaments: Newtonian versus Modified Dynamics

    Science.gov (United States)

    Milgrom, Mordehai

    1997-03-01

    Eisenstein, Loeb, & Turner (ELT) have recently proposed a method for estimating the dynamical masses of large-scale filaments, whereby the filament is modeled by an infinite, axisymmetric, isothermal, self-gravitating, radially virialized cylinder, for which ELT derive a global relation between the (constant) velocity dispersion and the total line density. We show that the model assumptions of ELT can be relaxed materially: an exact relation between the rms velocity and the line density can be derived for any infinite cylinder (not necessarily axisymmetric) with an arbitrary constituent distribution function (so isothermality need not be assumed). We also consider the same problem in the context of the modified Newtonian dynamics (MOND). After we compare the scaling properties in the two theories, we study two idealized MOND model filaments, one with assumptions similar to those of ELT, which we can only solve numerically, and another, which we solve in closed form. A preliminary application to the same segment of the Perseus-Pisces filament treated by ELT gives MOND M/L estimates of order 10(M/L)⊙, compared with the Newtonian value M/L ~ 450(H0/100 km s-1 Mpc-1)(M/L)⊙ that ELT find. In spite of the large uncertainties still besetting the analysis, this instance of MOND application is of particular interest because (1) objects of this geometry have not been dealt with before; (2) it pertains to large-scale structure; and (3) the typical accelerations involved are the lowest so far encountered in a semivirialized system--only a few percent of the critical MOND acceleration--leading to a large predicted mass discrepancy.

  5. The predictability of large-scale wind-driven flows

    Directory of Open Access Journals (Sweden)

    A. Mahadevan

    2001-01-01

    Full Text Available The singular values associated with optimally growing perturbations to stationary and time-dependent solutions for the general circulation in an ocean basin provide a measure of the rate at which solutions with nearby initial conditions begin to diverge, and hence, a measure of the predictability of the flow. In this paper, the singular vectors and singular values of stationary and evolving examples of wind-driven, double-gyre circulations in different flow regimes are explored. By changing the Reynolds number in simple quasi-geostrophic models of the wind-driven circulation, steady, weakly aperiodic and chaotic states may be examined. The singular vectors of the steady state reveal some of the physical mechanisms responsible for optimally growing perturbations. In time-dependent cases, the dominant singular values show significant variability in time, indicating strong variations in the predictability of the flow. When the underlying flow is weakly aperiodic, the dominant singular values co-vary with integral measures of the large-scale flow, such as the basin-integrated upper ocean kinetic energy and the transport in the western boundary current extension. Furthermore, in a reduced gravity quasi-geostrophic model of a weakly aperiodic, double-gyre flow, the behaviour of the dominant singular values may be used to predict a change in the large-scale flow, a feature not shared by an analogous two-layer model. When the circulation is in a strongly aperiodic state, the dominant singular values no longer vary coherently with integral measures of the flow. Instead, they fluctuate in a very aperiodic fashion on mesoscale time scales. The dominant singular vectors then depend strongly on the arrangement of mesoscale features in the flow and the evolved forms of the associated singular vectors have relatively short spatial scales. These results have several implications. In weakly aperiodic, periodic, and stationary regimes, the mesoscale energy

  6. Scale up of large ALON® and spinel windows

    Science.gov (United States)

    Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.

  7. Large Scale Land Acquisition as a driver of slope instability

    Science.gov (United States)

    Danilo Chiarelli, Davide; Rulli, Maria Cristina; Davis, Kyle F.; D'Odorico, Paolo

    2017-04-01

    Forests play a key role in preventing shallow landslides and deforestation has been analyzed as one of the main causes of increased mass wasting in hillsplopes undergoing land cover change. In the last few years vast tracts of lands have been acquired by foreign investors to satisfy an increasing demand for agricultural products. Large Scale Land Acquisitions (LSLA) often entail the conversion of forested landscapes into agricultural fields. Mozambique has been a major target of LSLAs and there is evidence that many of the acquired land have recently undergone forest clearing. The Zambezia Province in Mozambique has lost more than 500000ha of forest from 2000 to 2014; 25.4% of them were in areas acquired by large scale land investors. According to Land Matrix, an open-source database of reported land deals, there are currently 123 intended and confirmed deals in Mozambique; collectively, they account for 2.34million ha, the majority of which are located in forested areas. This study analyses the relationship between deforestation taking place inside LSLA areas(usually for agricultural purpose) and the likelihood of landslides occurrence in the Zambezia province in Mozambique. To this aim we use a spatially distributed and physically based model that couples slope stability analysis with a hillslope scale hydrological model and we compare the change in slope stability associated the forest loss documented by satellite imagery.

  8. Large-scale Direct Targeting for Drug Repositioning and Discovery

    Science.gov (United States)

    Zheng, Chunli; Guo, Zihu; Huang, Chao; Wu, Ziyin; Li, Yan; Chen, Xuetong; Fu, Yingxue; Ru, Jinlong; Ali Shar, Piar; Wang, Yuan; Wang, Yonghua

    2015-01-01

    A system-level identification of drug-target direct interactions is vital to drug repositioning and discovery. However, the biological means on a large scale remains challenging and expensive even nowadays. The available computational models mainly focus on predicting indirect interactions or direct interactions on a small scale. To address these problems, in this work, a novel algorithm termed weighted ensemble similarity (WES) has been developed to identify drug direct targets based on a large-scale of 98,327 drug-target relationships. WES includes: (1) identifying the key ligand structural features that are highly-related to the pharmacological properties in a framework of ensemble; (2) determining a drug’s affiliation of a target by evaluation of the overall similarity (ensemble) rather than a single ligand judgment; and (3) integrating the standardized ensemble similarities (Z score) by Bayesian network and multi-variate kernel approach to make predictions. All these lead WES to predict drug direct targets with external and experimental test accuracies of 70% and 71%, respectively. This shows that the WES method provides a potential in silico model for drug repositioning and discovery. PMID:26155766

  9. Using Large Scale Structure to test Multifield Inflation

    CERN Document Server

    Ferraro, Simone

    2014-01-01

    Primordial non-Gaussianity of local type is known to produce a scale-dependent contribution to the galaxy bias. Several classes of multi-field inflationary models predict non-Gaussian bias which is stochastic, in the sense that dark matter and halos don't trace each other perfectly on large scales. In this work, we forecast the ability of next-generation Large Scale Structure surveys to constrain common types of primordial non-Gaussianity like $f_{NL}$, $g_{NL}$ and $\\tau_{NL}$ using halo bias, including stochastic contributions. We provide fitting functions for statistical errors on these parameters which can be used for rapid forecasting or survey optimization. A next-generation survey with volume $V = 25 h^{-3}$Mpc$^3$, median redshift $z = 0.7$ and mean bias $b_g = 2.5$, can achieve $\\sigma(f_{NL}) = 6$, $\\sigma(g_{NL}) = 10^5$ and $\\sigma(\\tau_{NL}) = 10^3$ if no mass information is available. If halo masses are available, we show that optimally weighting the halo field in order to reduce sample variance...

  10. Large scale petroleum reservoir simulation and parallel preconditioning algorithms research

    Institute of Scientific and Technical Information of China (English)

    SUN Jiachang; CAO Jianwen

    2004-01-01

    Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear solving algorithm, domain decomposition and parallel computation. We first discuss some parallel preconditioning techniques, and then construct an integrated preconditioner, which is based on large scale distributed parallel processing, and reservoir simulation-oriented. The infrastructure of this preconditioner contains such famous preconditioning construction techniques as coarse grid correction, constraint residual correction and subspace projection correction. We essentially use multi-step means to integrate totally eight types of preconditioning components in order to give out the final preconditioner. Million-grid cell scale industrial reservoir data were tested on native high performance computers. Numerical statistics and analyses show that this preconditioner achieves satisfying parallel efficiency and acceleration effect.

  11. Optimal management of large scale aquifers under uncertainty

    Science.gov (United States)

    Ghorbanidehno, H.; Kokkinaki, A.; Kitanidis, P. K.; Darve, E. F.

    2016-12-01

    Water resources systems, and especially groundwater reservoirs, are a valuable resource that is often being endangered by contamination and over-exploitation. Optimal control techniques can be applied for groundwater management to ensure the long-term sustainability of this vulnerable resource. Linear Quadratic Gaussian (LQG) control is an optimal control method that combines a Kalman filter for real time estimation with a linear quadratic regulator for dynamic optimization. The LQG controller can be used to determine the optimal controls (e.g. pumping schedule) upon receiving feedback about the system from incomplete noisy measurements. However, applying LQG control for systems of large dimension is computationally expensive. This work presents the Spectral Linear Quadratic Gaussian (SpecLQG) control, a new fast LQG controller that can be used for large scale problems. SpecLQG control combines the Spectral Kalman filter, which is a fast Kalman filter algorithm, with an efficient low rank LQR, and provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification and optimal control for linear and weakly non-linear systems. The computational cost of SpecLQG controller scales linearly with the number of unknowns, a great improvement compared to the quadratic cost of basic LQG. We demonstrate the accuracy and computational efficiency of SpecLQG control using two applications: first, a linear validation case for pumping schedule management in a small homogeneous confined aquifer; and second, a larger scale nonlinear case with unknown heterogeneities in aquifer properties and boundary conditions.

  12. Just enough inflation: power spectrum modifications at large scales

    CERN Document Server

    Cicoli, Michele; Dutta, Bhaskar; Pedro, Francisco G; Westphal, Alexander

    2014-01-01

    We show that models of `just enough' inflation, where the slow-roll evolution lasted only $50-60$ e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-$\\ell$, and so seem disfavoured by recent observational hints for a lack of CMB power at $\\ell\\lesssim 40$. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  13. A study of synthetic large scales in turbulent boundary layers

    Science.gov (United States)

    Duvvuri, Subrahmanyam; Luhar, Mitul; Barnard, Casey; Sheplak, Mark; McKeon, Beverley

    2013-11-01

    Synthetic spanwise-constant spatio-temporal disturbances are excited in a turbulent boundary layer through a spatially impulsive patch of dynamic wall-roughness. The downstream flow response is studied through hot wire anemometry, pressure measurements at the wall and direct measurements of wall-shear-stress made using a novel micro-machined capacitive floating element sensor. These measurements are phase-locked to the input perturbation to recover the synthetic large-scale motion and characterize its structure and wall signature. The phase relationship between the synthetic large scale and small scale activity provides further insights into the apparent amplitude modulation effect between them, and the dynamics of wall-bounded turbulent flows in general. Results from these experiments will be discussed in the context of the critical-layer behavior revealed by the resolvent analysis of McKeon & Sharma (J Fluid Mech, 2010), and compared with similar earlier work by Jacobi & McKeon (J Fluid Mech, 2011). Model predictions are shown to be in broad agreement with experiments. The support of AFOSR grant #FA 9550-12-1-0469, Resnick Institute Graduate Research Fellowship (S.D.) and Sandia Graduate Fellowship (C.B.) are gratefully acknowledged.

  14. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. (PA Energy, Malling (Denmark)); Vedde, J. (SiCon. Silicon and PV consulting, Birkeroed (Denmark))

    2011-04-15

    Large scale PV (LPV) plants, plants with a capacity of more than 200 kW, has since 2007 constituted an increasing share of the global PV installations. In 2009 large scale PV plants with cumulative power more that 1,3 GWp were connected to the grid. The necessary design data for LPV plants in Denmark are available or can be found, although irradiance data could be improved. There seems to be very few institutional barriers for LPV projects, but as so far no real LPV projects have been processed, these findings have to be regarded as preliminary. The fast growing number of very large scale solar thermal plants for district heating applications supports these findings. It has further been investigated, how to optimize the lay-out of LPV plants. Under the Danish irradiance conditions with several winter months with very low solar height PV installations on flat surfaces will have to balance the requirements of physical space - and cost, and the loss of electricity production due to shadowing effects. The potential for LPV plants in Denmark are found in three main categories: PV installations on flat roof of large commercial buildings, PV installations on other large scale infrastructure such as noise barriers and ground mounted PV installations. The technical potential for all three categories is found to be significant and in the range of 50 - 250 km2. In terms of energy harvest PV plants will under Danish conditions exhibit an overall efficiency of about 10 % in conversion of the energy content of the light compared to about 0,3 % for biomass. The theoretical ground area needed to produce the present annual electricity consumption of Denmark at 33-35 TWh is about 300 km2 The Danish grid codes and the electricity safety regulations mention very little about PV and nothing about LPV plants. It is expected that LPV plants will be treated similarly to big wind turbines. A number of LPV plant scenarios have been investigated in detail based on real commercial offers and

  15. Large-scale quantum photonic circuits in silicon

    Science.gov (United States)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards

  16. Maestro: an orchestration framework for large-scale WSN simulations.

    Science.gov (United States)

    Riliskis, Laurynas; Osipov, Evgeny

    2014-03-18

    Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation.

  17. Large-scale direct shear testing of geocell reinforced soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height).Three types of specimens,silty gravel soil,geoceli reinforced silty gravel soil and geoceli reinforood cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior,the shear strength and the strengthening mechanism of geocell reinforced soils.The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well.The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement.The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa.The tests with the reinforcement of geocell result in an increase of 244% in cohesion,and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil.The friction angle does not change markedly.The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.

  18. Periodic cells for large-scale problem initialization

    Science.gov (United States)

    Ciantia, Matteo O.; Arroyo, Marcos; Zhang, Ningning; Emam, Sacha

    2017-06-01

    In geotechnical applications the success of the discrete element method (DEM) in simulating fundamental aspects of soil behaviour has increased the interest in applications for direct simulation of engineering scale boundary value problems (BVP's). The main problem is that the method remains relatively expensive in terms of computational cost. A non-negligible part of that cost is related to specimen creation and initialization. As the response of soil is strongly dependant on its initial state (stress and porosity), attaining a specified initial state is a crucial part of a DEM model. Different procedures for controlled sample generation are available. However, applying the existing REV-oriented initialization procedures to such models is inefficient in terms of computational cost and challenging in terms of sample homogeneity. In this work a simple but efficient procedure to initialize large-scale DEM models is presented. Periodic cells are first generated with a sufficient number of particles matching a desired particle size distribution (PSD). The cells are then equilibrated at low-level isotropic stress at target porosity. Once the cell is in equilibrium, it is replicated in space in order to fill the model domain. After the domain is thus filled a few mechanical cycles are needed to re-equilibrate the large domain. The result is a large, homogeneous sample, equilibrated under prescribed stress at the desired porosity. The method is applicable to both isotropic and anisotropic initial stress states, with stress magnitude varying in space.

  19. Summarizing Large-Scale Database Schema Using Community Detection

    Institute of Scientific and Technical Information of China (English)

    Xue Wang; Xuan Zhou; Shan Wang

    2012-01-01

    Schema summarization on large-scale databases is a challenge.In a typical large database schema,a great proportion of the tables are closely connected through a few high degree tables.It is thus difficult to separate these tables into clusters that represent different topics.Moreover,as a schema can be very big,the schema summary needs to be structured into multiple levels,to further improve the usability.In this paper,we introduce a new schema summarization approach utilizing the techniques of community detection in social networks.Our approach contains three steps.First,we use a community detection algorithm to divide a database schema into subject groups,each representing a specific subject.Second,we cluster the subject groups into abstract domains to form a multi-level navigation structure.Third,we discover representative tables in each cluster to label the schema summary.We evaluate our approach on Freebase,a real world large-scale database.The results show that our approach can identify subject groups precisely.The generated abstract schema layers are very helpful for users to explore database.

  20. Large-Scale Mass Distribution in the Illustris-Simulation

    CERN Document Server

    Haider, Markus; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Hernquist, Lars

    2015-01-01

    Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris Simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 % of the dark matter and 23 % of the baryons are within haloes. The filaments of the cosmic web host a further 45 % of the dark matter and 46 % of the baryons. The...

  1. Large-scale BAO signatures of the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dalal, Neal; Pen, Ue-Li [Canadian Institute for Theoretical Astrophyics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 3H8 (Canada); Seljak, Uros, E-mail: neal@cita.utoronto.ca, E-mail: pen@cita.utoronto.ca, E-mail: useljak@berkeley.edu [Physics Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-11-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on ∼ 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z ∼ 20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending on parameters, this enhanced structure may be detectable by Arecibo at z ∼ 15−20, and with appropriate instrumentation FAST could measure the BAO power spectrum with high precision. In principle, this effect could also pose a serious challenge for efforts to constrain dark energy using observations of the BAO feature at low redshift.

  2. Large-scale climatic control on European precipitation

    Science.gov (United States)

    Lavers, David; Prudhomme, Christel; Hannah, David

    2010-05-01

    Precipitation variability has a significant impact on society. Sectors such as agriculture and water resources management are reliant on predictable and reliable precipitation supply with extreme variability having potentially adverse socio-economic impacts. Therefore, understanding the climate drivers of precipitation is of human relevance. This research examines the strength, location and seasonality of links between precipitation and large-scale Mean Sea Level Pressure (MSLP) fields across Europe. In particular, we aim to evaluate whether European precipitation is correlated with the same atmospheric circulation patterns or if there is a strong spatial and/or seasonal variation in the strength and location of centres of correlations. The work exploits time series of gridded ERA-40 MSLP on a 2.5˚×2.5˚ grid (0˚N-90˚N and 90˚W-90˚E) and gridded European precipitation from the Ensemble project on a 0.5°×0.5° grid (36.25˚N-74.25˚N and 10.25˚W-24.75˚E). Monthly Spearman rank correlation analysis was performed between MSLP and precipitation. During winter, a significant MSLP-precipitation correlation dipole pattern exists across Europe. Strong negative (positive) correlation located near the Icelandic Low and positive (negative) correlation near the Azores High pressure centres are found in northern (southern) Europe. These correlation dipoles resemble the structure of the North Atlantic Oscillation (NAO). The reversal in the correlation dipole patterns occurs at the latitude of central France, with regions to the north (British Isles, northern France, Scandinavia) having a positive relationship with the NAO, and regions to the south (Italy, Portugal, southern France, Spain) exhibiting a negative relationship with the NAO. In the lee of mountain ranges of eastern Britain and central Sweden, correlation with North Atlantic MSLP is reduced, reflecting a reduced influence of westerly flow on precipitation generation as the mountains act as a barrier to moist

  3. Large scale protein separations: engineering aspects of chromatography.

    Science.gov (United States)

    Chisti, Y; Moo-Young, M

    1990-01-01

    The engineering considerations common to large scale chromatographic purification of proteins are reviewed. A discussion of the industrial chromatography fundamentals is followed by aspects which affect the scale of separation. The separation column geometry, the effect of the main operational parameters on separation performance, and the physical characteristics of column packing are treated. Throughout, the emphasis is on ion exchange and size exclusion techniques which together constitute the major portion of commercial chromatographic protein purifications. In all cases, the state of current technology is examined and areas in need of further development are noted. The physico-chemical advances now underway in chromatographic separation of biopolymers would ensure a substantially enhanced role for these techniques in industrial production of products of new biotechnology.

  4. Large-scale Cosmic Flows from Cosmicflows-2 Catalog

    CERN Document Server

    Watkins, Richard

    2014-01-01

    We calculate the large-scale bulk flow from the Cosmicflows-2 peculiar velocity catalog (Tully et al. 2013) using the minimum variance method introduced in Watkins et al. (2009). We find a bulk flow of 262 +/- 60 km/sec on a scale of 100 Mpc/h, a result somewhat smaller than that found from the COMPOSITE catalog introduced in Watkins et al. (2009), a compendium of peculiar velocity data that has many objects in common with the Cosmicflows-2 sample. We find that distances are systematically larger in the Cosmicflows-2 catalog for objects in common due to a different approach to bias correction, and that this explains the difference in the bulk flows derived from the the two catalogs. The bulk flow result from the Cosmicflows-2 survey is consistent with expectations from LCDM, and thus this catalog potentially resolves an important challenge to the standard cosmological model.

  5. SOLVING TRUST REGION PROBLEM IN LARGE SCALE OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He

    2000-01-01

    This paper presents a new method for solving the basic problem in the “model trust region” approach to large scale minimization: Compute a vector x such that 1/2xTHx + cTx = min, subject to the constraint ‖x‖2≤a. The method is a combination of the CG method and a projection and contraction (PC) method. The first (CG) method with x0 = 0 as the start point either directly offers a solution of the problem, or--as soon as the norm of the iterate greater than a, --it gives a suitable starting point and a favourable choice of a crucial scaling parameter in the second (PC) method. Some numerical examples are given, which indicate that the method is applicable.

  6. Large scale land use cartography of special areas

    Energy Technology Data Exchange (ETDEWEB)

    Amico, F.D.; Maccarone, D.; Pandiscia, G.V. [NuovaTelespazio S.p.A., Rome (Italy)] [and others

    1996-11-01

    On 06 October 1993 an aerial remote sensing mission has been done on the {open_quote}Mounts of the Sila{close_quotes} area, using a DAEDALUS ATM multispectral scanner, in the framework of the TELAER project, supported by I.A.S.M. (Istituto per l`Assistenza e lo Sviluppo del Mezzogiorno). The study area is inside the National Park of Calabria, well known for its coniferous forests. The collected imagery were used to produce a large scale land use cartography, on the scale of 1 to 5000, extracting information on natural and anthropical vegetation from the multispectral images, with the aid of stereo photos acquired simultaneously. 5 refs., 1 fig., 1 tab.

  7. Deep Feature Learning and Cascaded Classifier for Large Scale Data

    DEFF Research Database (Denmark)

    Prasoon, Adhish

    from data rather than having a predefined feature set. We explore deep learning approach of convolutional neural network (CNN) for segmenting three dimensional medical images. We propose a novel system integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D......This thesis focuses on voxel/pixel classification based approaches for image segmentation. The main application is segmentation of articular cartilage in knee MRIs. The first major contribution of the thesis deals with large scale machine learning problems. Many medical imaging problems need huge...... amount of training data to cover sufficient biological variability. Learning methods scaling badly with number of training data points cannot be used in such scenarios. This may restrict the usage of many powerful classifiers having excellent generalization ability. We propose a cascaded classifier which...

  8. The large-scale properties of simulated cosmic magnetic fields

    CERN Document Server

    Marinacci, Federico; Mocz, Philip; Pakmor, Ruediger

    2015-01-01

    We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the $B \\propto \\rho^{2/3}$ scaling derived from `flux-freezing' arguments, with the seed field strength providing an overall normalisation factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. Gas collapses to much larger densities and the magnetic field is amplified strongly, reaching saturation and losing memory of the initial seed field. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmological magnetogenesis, is still present. Inside the most massive ha...

  9. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is being developed to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be longer in duration than previous...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...... Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated...

  10. Planck scale effects and the suppression of power on the large scales in the primordial spectrum

    CERN Document Server

    Shankaranarayanan, S

    2005-01-01

    The enormous red-shifting of the modes during the inflationary epoch suggests that physics at the very high energy scales may modify the primordial perturbation spectrum. Therefore, the measurements of the anisotropies in the Cosmic Microwave Background (CMB) could provide us with clues to understanding physics beyond the Planck scale. In this proceeding, we study the Planck scale effects on the primordial spectrum in the power-law inflation using a model which preserves local Lorentz invariance. While our model reproduces the standard spectrum on small scales, it naturally predicts a suppression of power on the large scales -- a feature that seems to be necessary to explain deficit of power in the lower multipoles of the CMB.

  11. Large-scale electrohydrodynamic organic nanowire printing, lithography, and electronics

    Science.gov (United States)

    Lee, Tae-Woo

    2014-03-01

    Although the many merits of organic nanowires (NWs), a reliable process for controllable and large-scale assembly of highly-aligned NW parallel arrays based on ``individual control (IC)'' of NWs must be developed since inorganic NWs are mainly grown vertically on substrates and thus have been transferred to the target substrates by any of several non-individually controlled (non-IC) methods such as contact-printing technologies with unidirectional massive alignment, and the random dispersion method with disordered alignment. Controlled alignment and patterning of individual semiconducting NWs at a desired position in a large area is a major requirement for practical electronic device applications. Large-area, high-speed printing of highly-aligned individual NWs that allows control of the exact numbers of wires, and dimensions and their orientations, and its use in high-speed large-area nanolithography is a significant challenge for practical applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in an accurately individually-controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve an unprecedented high maximum field-effect mobility up to 9.7 cm2 .V-1 .s-1 with extremely low contact resistance (<5.53 Ω . cm) even in nano-channel transistors based on single-stranded semiconducting NWs. We also demonstrate complementary inverter circuit arrays consist of well-aligned p-type and n-type organic semiconducting NWs. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a very simple, reliable method of fabricating large-area and flexible nano-electronics.

  12. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  13. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  14. Statistical Modeling of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Baldwin, C; Abdulla, G; Critchlow, T

    2003-11-15

    With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate large-scale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an essential step in helping scientists glean new insight from their computer simulations. We define queriable statistical models to be descriptive statistics that (1) summarize and describe the data within a user-defined modeling error, and (2) are able to answer complex range-based queries over the spatiotemporal dimensions. In this chapter, we describe systems that build queriable statistical models for large-scale scientific simulation data sets. In particular, we present our Ad-hoc Queries for Simulation (AQSim) infrastructure, which reduces the data storage requirements and query access times by (1) creating and storing queriable statistical models of the data at multiple resolutions, and (2) evaluating queries on these models of the data instead of the entire data set. Within AQSim, we focus on three simple but effective statistical modeling techniques. AQSim's first modeling technique (called univariate mean modeler) computes the ''true'' (unbiased) mean of systematic partitions of the data. AQSim's second statistical modeling technique (called univariate goodness-of-fit modeler) uses the Andersen-Darling goodness-of-fit method on systematic partitions of the data. Finally, AQSim's third statistical modeling technique (called multivariate clusterer) utilizes the cosine similarity measure to cluster the data into similar groups. Our experimental evaluations on several scientific simulation data sets illustrate the value of using these statistical models on large-scale simulation data sets.

  15. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  16. Using Large Scale Test Results for Pedagogical Purposes

    DEFF Research Database (Denmark)

    Dolin, Jens

    2012-01-01

    The use and influence of large scale tests (LST), both national and international, has increased dramatically within the last decade. This process has revealed a tension between the legitimate need for information about the performance of the educational system and teachers to inform policy...... wash back effects known from other research but gave additionally some insight in teachers’ attitudes towards LSTs. To account for these findings results from another research project - the Validation of PISA – will be included. This project analyzed how PISA has influenced the Danish educational...

  17. Scale invariant behavior in a large N matrix model

    CERN Document Server

    Narayanan, Rajamani

    2016-01-01

    Eigenvalue distributions of properly regularized Wilson loop operators are used to study the transition from ultra-violet (UV) behavior to infra-red (IR) behavior in gauge theories coupled to matter that potentially have an IR fixed point (FP). We numerically demonstrate emergence of scale invariance in a matrix model that describes $SU(N)$ gauge theory coupled to two flavors of massless adjoint fermions in the large $N$ limit. The eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta-function connecting the UV to the IR.

  18. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  19. Practical Optimal Control of Large-scale Water Distribution Network

    Institute of Scientific and Technical Information of China (English)

    Lv Mou(吕谋); Song Shuang

    2004-01-01

    According to the network characteristics and actual state of the water supply system in China, the implicit model, which can be solved by the hierarchical optimization method, was established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software has been developed successfully. The application of this model to the city of Hangzhou (China) was compared to experiential strategy. The results of this study showed that the developed model is a promising optimization method to control the large-scale water supply systems.

  20. Controlled growth of large-scale silver nanowires

    Institute of Scientific and Technical Information of China (English)

    Xiao Cong-Wen; Yang Hai-Tao; Shen Cheng-Min; Li Zi-An; Zhang Huai-Ruo; Liu Fei; Yang Tian-Zhong; Chen Shu-Tang; Gao Hong-Jun

    2005-01-01

    Large-scale silver nanowires with controlled aspect ratio were synthesized via reducing silver nitrate with 1, 2-propanediol in the presence of poly (vinyl pyrrolidone) (PVP). Scanning electron microscopy, transmission electron microscopy and x-ray powder diffraction were employed to characterize these silver nanowires. The diameter of the silver nanowires can be readily controlled in the range of 100 to 400 nm by varying the experimental conditions. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy results show that there exists no chemical bond between the silver and the nitrogen atoms. The interaction between PVP and silver nanowires is mainly through the oxygen atom in the carbonyl group.

  1. Accurate emulators for large-scale computer experiments

    CERN Document Server

    Haaland, Ben; 10.1214/11-AOS929

    2012-01-01

    Large-scale computer experiments are becoming increasingly important in science. A multi-step procedure is introduced to statisticians for modeling such experiments, which builds an accurate interpolator in multiple steps. In practice, the procedure shows substantial improvements in overall accuracy, but its theoretical properties are not well established. We introduce the terms nominal and numeric error and decompose the overall error of an interpolator into nominal and numeric portions. Bounds on the numeric and nominal error are developed to show theoretically that substantial gains in overall accuracy can be attained with the multi-step approach.

  2. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  3. Application of methanol synthesis reactor to large-scale plants

    Institute of Scientific and Technical Information of China (English)

    LOU Ren; XU Rong-liang; LOU Shou-lin

    2006-01-01

    The developing status of world large-scale methanol production technology is analyzed and Linda's JW low-pressure methanol synthesis reactor with uniform temperature is described. JW serial reactors have been successfully introduced in and applied in Harbin Gasification Plant and the productivity has been increased by 50% and now nine sets of equipments are successfully running in Harbin Gasification Plant,Jiangsu Xinya, Shandong Kenli,Henan Zhongyuan, Handan Xinyangguang,' Shanxi Weihua and Inner Mongolia Tianye. Now it has manufacturing the reactors of 300,000 t/a for Liaoning Dahua. Some solutions for the structure problems of 1000 ~5000 t/d methanol synthesis rectors are put forward.

  4. From Large to Small Scales: Global Models of the ISM

    CERN Document Server

    D'Avillez, M A

    2004-01-01

    We review large scale modelling of the ISM with emphasis on the importance to include the disk-halo-disk duty cycle and to use a dynamical refinement of the grid (in regions where steep variations of density and pressure occur) for a realistic modelling of the ISM. We also discuss the necessity of convergence of the simulation results by comparing 0.625, 1.25 and 2.5 pc resolution simulations and show that a minimum grid resolution of 1.25 pc is required for quantitatively reliable results, as there is a rapid convergence for $\\Delta x \\leq 1.1$ pc.

  5. Turbulence and entrainment length scales in large wind farms

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2017-01-01

    be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex...... orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could...

  6. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    structure is a matter of trade-offs between different desired properties, and given a specific case with specific known or expected demands and constraints, the parameters presented will be weighted differently. The decision of such a weighting is supported by a discussion of each parameter. The paper......An evaluation framework for large-scale network structures is presented, which facilitates evaluations and comparisons of different physical network structures. A number of quantitative and qualitative parameters are presented, and their importance to networks discussed. Choosing a network...

  7. Large scale solar cooling plants in America, Asia and Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holter, Christian; Olsacher, Nicole [S.O.L.I.D. GmbH, Graz (Austria)

    2010-07-01

    Large scale solar cooling plants with an area between 120 - 1600 m{sup 2} are representative examples to illustrate S.O.L.I.D.'s experiences. The selected three reference solar cooling plants are located on three different continents: America, Asia and Europe. Every region has different framework conditions and its unforeseen challenges but professional experience and innovative ideas form the basis that each plant is operating well and satisfying the customer's demand. This verifies that solar cooling already is a proven technology. (orig.)

  8. Simple Method for Large-Scale Fabrication of Plasmonic Structures

    CERN Document Server

    Makarov, Sergey V; Mukhin, Ivan S; Shishkin, Ivan I; Mozharov, Alexey M; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01

    A novel method for single-step, lithography-free, and large-scale laser writing of nanoparticle-based plasmonic structures has been developed. Changing energy of femtosecond laser pulses and thickness of irradiated gold film it is possible to vary diameter of the gold nanoparticles, while the distance between them can be varied by laser scanning parameters. This method has an advantage over the most previously demonstrated methods in its simplicity and versatility, while the quality of the structures is good enough for many applications. In particular, resonant light absorbtion/scattering and surface-enhanced Raman scattering have been demonstrated on the fabricated nanostructures.

  9. Petascale computations for Large-scale Atomic and Molecular collisions

    CERN Document Server

    McLaughlin, Brendan M

    2014-01-01

    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schroedinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. Various examples are shown of our theoretical results compared with those obtained from Synchrotron Radiation facilities and from Satellite observations. We also indicate future directions and implementation of the R-matrix codes on emerging GPU architectures.

  10. An iterative decoupling solution method for large scale Lyapunov equations

    Science.gov (United States)

    Athay, T. M.; Sandell, N. R., Jr.

    1976-01-01

    A great deal of attention has been given to the numerical solution of the Lyapunov equation. A useful classification of the variety of solution techniques are the groupings of direct, transformation, and iterative methods. The paper summarizes those methods that are at least partly favorable numerically, giving special attention to two criteria: exploitation of a general sparse system matrix structure and efficiency in resolving the governing linear matrix equation for different matrices. An iterative decoupling solution method is proposed as a promising approach for solving large-scale Lyapunov equation when the system matrix exhibits a general sparse structure. A Fortran computer program that realizes the iterative decoupling algorithm is also discussed.

  11. Large-Scale Self-Consistent Nuclear Mass Calculations

    CERN Document Server

    Stoitsov, M V; Dobaczewski, J; Nazarewicz, W

    2006-01-01

    The program of systematic large-scale self-consistent nuclear mass calculations that is based on the nuclear density functional theory represents a rich scientific agenda that is closely aligned with the main research directions in modern nuclear structure and astrophysics, especially the radioactive nuclear beam physics. The quest for the microscopic understanding of the phenomenon of nuclear binding represents, in fact, a number of fundamental and crucial questions of the quantum many-body problem, including the proper treatment of correlations and dynamics in the presence of symmetry breaking. Recent advances and open problems in the field of nuclear mass calculations are presented and discussed.

  12. Large-Scale Agriculture and Outgrower Schemes in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    , whereas Chapter 4 indicates that sugarcane outgrowers’ easy access to credit and technology and their high productivity compared to the plantation does not necessarily improve their income and asset stocks particularly when participation in outgrower schemes is mandatory, the buyer has monopsony market...... commands a higher wage than ‘formal’ large-scale agriculture, while rather different wage determination mechanisms exist in the two sectors. Human capital characteristics (education and experience) partly explain the differences in wages within the formal sector, but play no significant role...

  13. Structure and function of large-scale brain systems.

    Science.gov (United States)

    Koziol, Leonard F; Barker, Lauren A; Joyce, Arthur W; Hrin, Skip

    2014-01-01

    This article introduces the functional neuroanatomy of large-scale brain systems. Both the structure and functions of these brain networks are presented. All human behavior is the result of interactions within and between these brain systems. This system of brain function completely changes our understanding of how cognition and behavior are organized within the brain, replacing the traditional lesion model. Understanding behavior within the context of brain network interactions has profound implications for modifying abstract constructs such as attention, learning, and memory. These constructs also must be understood within the framework of a paradigm shift, which emphasizes ongoing interactions within a dynamically changing environment.

  14. Active power reserves evaluation in large scale PVPPs

    DEFF Research Database (Denmark)

    Crăciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    contribute to the total amount of Frequency Containment Reserves (FCR) required by TSOs, reserves which are released during transients. To realize this PVPPs have to operate below their maximum available power and operate in Frequency Sensitive Mode (FSM). The reserve can also be used to fulfill future grid...... of the ancillary services have to be shared by the renewable plants. The main focus of the proposed paper is to technically and economically analyze the possibility of having active power reserves in large scale PV power plants (PVPPs) without any auxiliary storage equipment. The provided reserves should...... codes (GCs) requirements such as Power Ramp Limitation (PRL) during high slopes of irradiance....

  15. Facilitating dynamo action via control of large-scale turbulence.

    Science.gov (United States)

    Limone, A; Hatch, D R; Forest, C B; Jenko, F

    2012-12-01

    The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.

  16. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    , among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which....... The simulation results show that the gray and non-gray calculations of the same oxy-fuel WSGGM make distinctly different predictions in the wall radiative heat transfer, incident radiative flux, radiative source, gas temperature and species profiles. In relative to the non-gray implementation, the gray...

  17. Adiabatic hyperspherical approach to large-scale nuclear dynamics

    CERN Document Server

    Suzuki, Yasuyuki

    2015-01-01

    We formulate a fully microscopic approach to large-scale nuclear dynamics using a hyperradius as a collective coordinate. An adiabatic potential is defined by taking account of all possible configurations at a fixed hyperradius, and its hyperradius dependence plays a key role in governing the global nuclear motion. In order to go to larger systems beyond few-body systems, we suggest basis functions of a microscopic multicluster model, propose a method for calculating matrix elements of an adiabatic Hamiltonian with use of Fourier transforms, and test its effectiveness.

  18. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  19. Search for Large Scale Anisotropies with the Pierre Auger Observatory

    Science.gov (United States)

    Bonino, R.; Pierre Auger Collaboration

    The Pierre Auger Observatory studies the nature and the origin of Ultra High Energy Cosmic Rays (>3\\cdot1018 eV). Completed at the end of 2008, it has been continuously operating for more than six years. Using data collected from 1 January 2004 until 31 March 2009, we search for large scale anisotropies with two complementary analyses in different energy windows. No significant anisotropies are observed, resulting in bounds on the first harmonic amplitude at the 1% level at EeV energies.

  20. Inflation in de Sitter spacetime and CMB large scales anomaly

    CERN Document Server

    Zhao, Dong; Wang, Ping; Chang, Zhe

    2014-01-01

    The influence of cosmological constant type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fitting to explore the cosmological parameters space by using the CosmoMC package with the recently released Planck TT and WMAP Polarization datasets. Using the results from global fitting, we compute a new CMB temperature-temperature spectrum. The obtained TT spectrum has lower power compared with the one based on $\\Lambda$CDM model at large scales.