International Nuclear Information System (INIS)
Mirnov, V.V.
2002-01-01
Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)
Analytic, two fluid, field reversed configuration equilibrium with sheared rotation
International Nuclear Information System (INIS)
Sobehart, J.R.
1989-01-01
A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters
Two-fluid and parallel compressibility effects in tokamak plasmas
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1998-01-01
The MHD, or single fluid, model for a plasma has long been known to provide a surprisingly good description of much of the observed nonlinear dynamics of confined plasmas, considering its simple nature compared to the complexity of the real system. On the other hand, some of the supposed agreement arises from the lack of the detailed measurements that are needed to distinguish MHD from more sophisticated models that incorporate slower time scale processes. At present, a number of factors combine to make models beyond MHD of practical interest. Computational considerations still favor fluid rather than particle models for description of the full plasma, and suggest an approach that starts from a set of fluid-like equations that extends MHD to slower time scales and more accurate parallel dynamics. This paper summarizes a set of two-fluid equations for toroidal (tokamak) geometry that has been developed and tested as the MH3D-T code [1] and some results from the model. The electrons and ions are described as separate fluids. The code and its original MHD version, MH3D [2], are the first numerical, initial value models in toroidal geometry that include the full 3D (fluid) compressibility and electromagnetic effects. Previous nonlinear MHD codes for toroidal geometry have, in practice, neglected the plasma density evolution, on the grounds that MHD plasmas are only weakly compressible and that the background density variation is weaker than the temperature variation. Analytically, the common use of toroidal plasma models based on aspect ratio expansion, such as reduced MHD, has reinforced this impression, since this ordering reduces plasma compressibility effects. For two-fluid plasmas, the density evolution cannot be neglected in principle, since it provides the basic driving energy for the diamagnetic drifts of the electrons and ions perpendicular to the magnetic field. It also strongly influences the parallel dynamics, in combination with the parallel thermal
Spiral field inhibition of thermal conduction in two-fluid solar wind models
International Nuclear Information System (INIS)
Nerney, S.; Barnes, A.
1978-01-01
The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven
Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration
International Nuclear Information System (INIS)
Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.
2002-01-01
Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process
The spiral field inhibition of thermal conduction in two-fluid solar wind models
Nerney, S.; Barnes, A.
1978-01-01
The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.
A three field two fluid CFD model for the bubbly-cap bubble regime
International Nuclear Information System (INIS)
Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke
2005-01-01
Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two-fluid
Two-fluid effects on pressure-driven modes in a heliotron device
International Nuclear Information System (INIS)
Miura, H.; Ito, A.; Sato, M.; Goto, R.; Hatori, T.
2014-10-01
Two-fluid effects on the ballooning or pressure-driven unstable modes are studied numerically to understand physics in linear and nonlinear evolution of them in a heliotron device. Full 3D simulations for β 0 = 5% unstable magnetic configuration of the large helical device show that the introduction of the two-fluid term brings about broader radial profile and higher growth rate in the linear stage of the evolution, weakened parallel heat conduction, and lead to a saturation profile worse than that in the single-fluid MHD simulation. The numerical results show that suppression of high wave-number modes enhance the growth of low wave-number modes. The two-fluid effects and a plausible mild saturation of ballooning modes is discussed. (author)
Basic Pilot Code Development for Two-Fluid, Three-Field Model
International Nuclear Information System (INIS)
Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H.
2006-03-01
A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report
Basic Pilot Code Development for Two-Fluid, Three-Field Model
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H
2006-03-15
A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report.
Analysis of different responses of ion and electron in six-field two-fluid ELM simulations
Ma, Chenhao; Xu, Xueqiao
2013-10-01
We report simulation results of a Landau-Fluid (GLF) extension of the BOUT++ six-field two-fluid Braginskii model which contributes to increasing the physics understanding of ELMs. Landau-Fluid closure can fill the gap for parallel dynamics between hot, collisionless pedestal region and cold, collisional SOL region in H-mode plasmas. Our goal is extending the classical parallel heat flux with Landau-Fluid closures and making comparisons with other closure models. Our simulations show that for weakly collisional pedestal plasmas, the calculated growth rate with Landau-Fluid closure introduces more effective damping on the peeling-ballooning modes than that with the classical thermal diffusivity. Further nonlinear simulation shows that ELM size with Landau-Fluid Closure is smaller than that with classical thermal diffusivity. We find an ELM crash has two phases: fast initial crash of ion temperature perturbation on the Alfven time scale and slow turbulence spreading. Turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region which is due to a positive phase shift around π / 2 between electron temperature and potential on pedestal region while ion temperature is in-phase with potential. This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344 and also supported by the China Scholarship Committee under contract N0.2011601099.
Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere
Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit
2015-08-01
Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.
Experimental study of two-fluid effect during magnetic reconnection in the UTST merging experiment
International Nuclear Information System (INIS)
Yamasaki, Kotaro; Takemura, Koichiro; Cao, Qinghong; Watanabe, Takenori G.; Itagaki, Hirotomo; Inomoto, Michiaki; Ono, Yasushi; Kamio, Shuji; Yamada, Takuma
2013-01-01
Radial profile of floating potential inside the current sheet was measured for the purpose of investigating the two-fluid (Hall) effect during magnetic reconnection in the UTST merging experiment. During magnetic reconnection, the floating potential drop was formed spontaneously inside the current sheet, forming a steep electric potential gradient on its both downstream areas. Magnetic probe array measurement indicates that this potential drop appears spontaneously when the reconnection rate rapidly increase due to change in current sheet structure. The IDS probe measurement observed outflow almost equal to poloidal Alfvén speed in radial direction from the X-point, where steep gradient of floating potential is formed. This fact suggests that ion acceleration/heating is caused by the steep potential gradient formed in the downstream by magnetized electrons. (author)
Effect of flow conditions on spray cone angle of a two-fluid atomizer
Energy Technology Data Exchange (ETDEWEB)
Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Ashjaee, Mehdi; Esfahanian, Vahid [Tehran University, Tehran (Iran, Islamic Republic of)
2011-02-15
A visual study is conducted to determine the effects of operating conditions on the spray cone angle of a two-fluid atomizer. The liquid (water) jets exit from peripheral inclined orifices and are introduced into a high-speed gas (air) stream in the gravitational direction. Using a high-speed imaging system, the spray cone angle is determined for Reynolds numbers ranging from 4x10{sup 4} to 9x10{sup 4} and different Weber numbers up to 140. The droplet sizes (Sauter mean diameter) and their distributions are determined using a Malvern Mastersizer X. The results show that the spray cone angle depends on the operating conditions, especially in lower values of Reynolds and Weber numbers. An empirical correlation is also obtained to predict the spray cone angle in terms of these two parameters.
Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma
International Nuclear Information System (INIS)
Nejoh, Yasunori
1994-07-01
Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)
International Nuclear Information System (INIS)
Chirde, V.R.; Shekh, S.H.
2016-01-01
The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities
Development and Verification of a Pilot Code based on Two-fluid Three-field Model
Energy Technology Data Exchange (ETDEWEB)
Hwang, Moon Kyu; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Jeong, J. J.; Ha, K. S.; Kang, D. H
2006-09-15
In this study, a semi-implicit pilot code is developed for a one-dimensional channel flow as three-fields. The three fields are comprised of a gas, continuous liquid and entrained liquid fields. All the three fields are allowed to have their own velocities. The temperatures of the continuous liquid and the entrained liquid are, however, assumed to be equilibrium. The interphase phenomena include heat and mass transfer, as well as momentum transfer. The fluid/structure interaction, generally, include both heat and momentum transfer. Assuming adiabatic system, only momentum transfer is considered in this study, leaving the wall heat transfer for the future study. Using 10 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. It was confirmed that the inlet pressure and velocity boundary conditions work properly. It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. Complete phase depletion which might occur during a phase change was found to adversely affect the code stability. A further study would be required to enhance code capability in this regard.
Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W
2007-11-15
A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.
International Nuclear Information System (INIS)
Lahey, Richard T.; Drew, Donald A.
2001-01-01
This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)
Conceptual OOP design of Pilot Code for Two-Fluid, Three-field Model with C++ 6.0
International Nuclear Information System (INIS)
Chung, B. D.; Lee, Y. J.
2006-09-01
To establish the concept of the objective oriented program (OOP) design for reactor safety analysis code, the preliminary OOP design for PILOT code, which based on one dimensional two fluid three filed model, has been attempted with C++ language feature. Microsoft C++ language has been used since it is available as groupware utilization in KAERI. The language has can be merged with Compac Visual Fortran 6.6 in Visual Studio platform. In the development platform, C++ has been used as main language and Fortran has been used as mixed language in connection with C++ main drive program. The mixed language environment is a specific feature provided in visual studio. Existing Fortran source was utilized for input routine of reading steam table from generated file and routine of steam property calculation. The calling convention and passing argument from C++ driver was corrected. The mathematical routine, such as inverse matrix conversion and tridiagonal matrix solver, has been used as PILOT Fortran routines. Simple volume and junction utilized in PILOT code can be treated as objects, since they are the basic construction elements of code system. Other routines for overall solution scheme have been realized as procedure C functions. The conceptual design which consists of hydraulic loop, component, volume, and junction class has been described in the appendix in order to give the essential OOP structure of system safety analysis code. The attempt shows that many part of system analysis code can be expressed as objects, although the overall structure should be maintained as procedure functions. The encapsulation of data and functions within an object can provide many beneficial aspects in programming of system code
Conceptual OOP design of Pilot Code for Two-Fluid, Three-field Model with C++ 6.0
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Lee, Y. J
2006-09-15
To establish the concept of the objective oriented program (OOP) design for reactor safety analysis code, the preliminary OOP design for PILOT code, which based on one dimensional two fluid three filed model, has been attempted with C++ language feature. Microsoft C++ language has been used since it is available as groupware utilization in KAERI. The language has can be merged with Compac Visual Fortran 6.6 in Visual Studio platform. In the development platform, C++ has been used as main language and Fortran has been used as mixed language in connection with C++ main drive program. The mixed language environment is a specific feature provided in visual studio. Existing Fortran source was utilized for input routine of reading steam table from generated file and routine of steam property calculation. The calling convention and passing argument from C++ driver was corrected. The mathematical routine, such as inverse matrix conversion and tridiagonal matrix solver, has been used as PILOT Fortran routines. Simple volume and junction utilized in PILOT code can be treated as objects, since they are the basic construction elements of code system. Other routines for overall solution scheme have been realized as procedure C functions. The conceptual design which consists of hydraulic loop, component, volume, and junction class has been described in the appendix in order to give the essential OOP structure of system safety analysis code. The attempt shows that many part of system analysis code can be expressed as objects, although the overall structure should be maintained as procedure functions. The encapsulation of data and functions within an object can provide many beneficial aspects in programming of system code.
The effect of the virtual mass term on the stability of the two-fluid model against perturbations
International Nuclear Information System (INIS)
Watanabe, Tadashi; Kutika, Yutaka
1992-01-01
The effect of the virtual mass term on the stability of the two-fluid model against perturbations is studied. Three types of virtual mass term in the momentum equation are discussed: two types of objective form and a simplified form. The differential equation system with no virtual mass term is ill-posed and the solution is unstable against perturbations. By introducing an objective form of the virtual mass term derived by Drew et al., it is shown that the equation system is rendered to be well-posed. The equation system is shown to be ill-posed, however, when a more recent definition of virtual mass acceleration of Drew and Lahey is applied. With a simplified form of the virtual mass term, which is composed only of temporal acceleration terms, the equation system is well-posed or ill-posed depending on velocities. A linear stability analysis is also performed for the implicit upwind finite difference scheme. A hypothetical accelerated flow problem is then numerically simulated by solving the discretized equation systems. It is shown that the solution can be numerically unstable even for the cases when the differential equation system is well-posed. The numerical stability of the solution must therefore be judged based on the spectral radius of the discretized equation system. (orig.)
International Nuclear Information System (INIS)
Ivanov, Y.B.; Russkikh, V.N.; Pokrovsky, Y.E. Kurchatov; Ivanov, Y.B.; Russkikh, V.N.; Polrovsky, Y.E.; Henning, P.A.; Henning, P.A.
1995-01-01
A three-dimensional realization of the relativistic mean-field 2-fluid model is described. The first results of analyzing the inclusive data on the yield of nuclear fragments and pions, as well as the Plastic-Ball rapidity distributions of nuclear fragments are presented. For comparison, the calculations within the conventional relativistic hydrodynamical model with the same mean fields are also performed. It is found that all the analysed observables, except the pion spectra, appeared to be fairly insensitive to the nuclear EOS. The sensitivity to the nuclear stopping power is slightly higher. The original sensitivity of the rapidity distributions to the stopping power is smeared out by the Plastic-Ball filter and selection criterion. Nevertheless, one can conclude that the stopping power induced by the Cugnon cross-sections is not quite sufficient for a more adequate reproduction of the experimental data. (authors)
International Nuclear Information System (INIS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
Energy Technology Data Exchange (ETDEWEB)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
Energy Technology Data Exchange (ETDEWEB)
Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Esfahanian, Vahid; Ashjaee, Mehdi [Tehran University, Tehran (Iran, Islamic Republic of)
2011-12-15
A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries.
Gyergyek, T.; Kovačič, J.
2017-06-01
A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ɛ between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for ɛ = 0 are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux qi into the model in its simplest form q i = - K ' /d T i d x , where K ' is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.
Two-fluid turbulence including electron inertia
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)
2014-12-15
We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.
International Nuclear Information System (INIS)
Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.
2015-01-01
Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability
Nonlinear evolution of magnetic islands in a two fluid torus
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1996-01-01
A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress
Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas
International Nuclear Information System (INIS)
Kanki, T.; Nagata, M.; Uyama, T.
2004-01-01
Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)
Miller, C. T.; McClure, J. E.; Bruning, K.
2017-12-01
Variations in the wettability of a solid material are well known to affect the flow of two fluids in a porous media. However, thesemechanisms have not been modeled with high fidelity at the microscale and such mechanisms are typically not included in macroscalemodels. Recent experimental work by Zhao, MacMinn, and Juanes published in the Proceedings of the National Academy of Sciences(2016) has investigated two-fluid displacement in microfluidic cells. Displacement patterns were investigated as a function of thecontact angle and the capillary number for both drainage and imbibition. These results yielded new mechanistic understanding ofprocesses such as pore filling and post bridging, which were imaged at high resolution. In a challenge to the pore-scale modeling community,the authors of this work released their experimental data and encouraged an international set of modeling research groups tosimulate the conditions that were experimentally observed. The intent is to compare the results that materialize to shed new light on thestate-of-science in pore-scale simulation of these challenging and interesting flow systems. In this work, we summarize the experimentalfindings and report on initial efforts to simulate these community challenge experiments using a high-resolution lattice-Boltzmann method(LBM). A three-dimensional, multiple-relaxation-time color model based on a 19-site lattice is advanced in this work to matchexperimental conditions in a novel manner. A computational approach is implemented for the LBM method on hybrid CPU-GPU nodes and shown toscale near optimally. A new algorithm is described to match experimental boundary conditions. A grid-resolution study is performedto determine the resolution needed to determine grid-independent numerical approximations. Finally, the LBM simulation results arecompared to the highly resolved microfluidic experiments, displacement mechanisms are investigated, and observations and analysis of thetopological state
Approximate Riemann solver for the two-fluid plasma model
International Nuclear Information System (INIS)
Shumlak, U.; Loverich, J.
2003-01-01
An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves
Laszlo Tisza and the two-fluid model of superfluidity
Balibar, Sébastien
2017-11-01
The "two-fluid model" of superfluidity was first introduced by Laszlo Tisza in 1938. On that year, Tisza published the principles of his model as a brief note in Nature and two articles in French in the Comptes rendus de l'Académie des sciences, followed in 1940 by two other articles in French in the Journal de physique et le Radium. In 1941, the two-fluid model was reformulated by Lev Landau on a more rigorous basis. Successive experiments confirmed the revolutionary idea introduced by Tisza: superfluid helium is indeed a surprising mixture of two fluids with independent velocity fields. His prediction of the existence of heat waves, a consequence of his model, was also confirmed. Then, it took several decades for the superfluidity of liquid helium to be fully understood.
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma
Bond, D.
2017-11-03
We computationally investigate the Richtmyer–Meshkov instability of a density interface with a single-mode perturbation in a two-fluid, ion–electron plasma with no initial magnetic field. Self-generated magnetic fields arise subsequently. We study the case where the density jump across the initial interface is due to a thermal discontinuity, and select plasma parameters for which two-fluid plasma effects are expected to be significant in order to elucidate how they alter the instability. The instability is driven via a Riemann problem generated precursor electron shock that impacts the density interface ahead of the ion shock. The resultant charge separation and motion generates electromagnetic fields that cause the electron shock to degenerate and periodically accelerate the electron and ion interfaces, driving Rayleigh–Taylor instability. This generates small-scale structures and substantially increases interfacial growth over the hydrodynamic case.
Two-fluid hydrodynamic model for semiconductors
DEFF Research Database (Denmark)
Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn
2018-01-01
The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...
Two-fluid model for locomotion under self-confinement
Reigh, Shang Yik; Lauga, Eric
2017-09-01
The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.
Two-fluid equilibria with flow
International Nuclear Information System (INIS)
Steinhauer, L.
1999-01-01
The formalism is developed for flowing two-fluid equilibria. The equilibrium system is governed by a pair of second order partial differential equations for the magnetic stream function and the ion stream function plus a Bernoulli-like equation for the density. There are six arbitrary surface function. There are separate characteristic surfaces for each species, which are the guiding-center surfaces. This system is a generalization of the familiar Grad-Shafranov system for a single-fluid equilibrium without flow, which has only one equation and two arbitrary surface functions. In the case of minimum energy equilibria, the six surface functions take on particular forms. (author)
Two-fluid mixing in a microchannel
International Nuclear Information System (INIS)
Liu Yingzheng; Kim, Byoung Jae; Sung, Hyung Jin
2004-01-01
A numerical study of the mixing of two fluids (pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference in the properties of the two fluids (e.g., viscosity, density and diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a squarewave mixer, a three-dimensional serpentine mixer and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing uniformity was proposed. In the systems considered, the Reynolds number based on averaged properties was Re=1 and 10. For low Reynolds number (Re=1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance deteriorated due to a significant reduction in the residence time of the fluid inside the mixers
Vortex dynamics in the two-fluid model
International Nuclear Information System (INIS)
Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.
2001-01-01
We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large
Li, Zhaorui; Livescu, Daniel
2017-11-01
The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.
Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma
Bond, D.; Wheatley, V.; Samtaney, Ravi; Pullin, D. I.
2017-01-01
We computationally investigate the Richtmyer–Meshkov instability of a density interface with a single-mode perturbation in a two-fluid, ion–electron plasma with no initial magnetic field. Self-generated magnetic fields arise subsequently. We study
On Equilibria of the Two-fluid Model in Magnetohydrodynamics
International Nuclear Information System (INIS)
Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.
2004-01-01
We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria
Study of blood flow in several benchmark micro-channels using a two-fluid approach.
Wu, Wei-Tao; Yang, Fang; Antaki, James F; Aubry, Nadine; Massoudi, Mehrdad
2015-10-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs.
Two-fluid Numerical Simulations of Solar Spicules
Energy Technology Data Exchange (ETDEWEB)
Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)
2017-11-10
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
Gyro-fluid and two-fluid theory and simulations of edge-localized-modes
Energy Technology Data Exchange (ETDEWEB)
Xu, X. Q.; Dimits, A.; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); School of Physics, Peking University, Beijing (China); Xia, T. Y.; Gui, B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California, San Diego, La Jolla, California 92093-0424 (United States); Dudson, B. [University of York, Heslington, York YO10 5DD (United Kingdom); Snyder, P. B. [General Atomics, San Diego, California 92186 (United States)
2013-05-15
This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete “gyroviscous cancellation” in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (T{sub i}≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T{sub i} because the FLR effect is proportional to T{sub i}. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of
A two-fluid study of oblique tearing modes in a force-free current sheet
Energy Technology Data Exchange (ETDEWEB)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.
Magnetohydrodynamic motion of a two-fluid plasma
Burby, J. W.
2017-08-01
The two-fluid Maxwell system couples frictionless electrons and ion fluids via Maxwell's equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, as well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from the two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-order closure may be obtained in the closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-order bracket gives explicit expressions for a number of the full closure's conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.
Two-Fluid and Resistive Nonlinear Simulations of Tokamak Equilibrium, Stability, and Reconnection
International Nuclear Information System (INIS)
Jardin, S.; Sovinec, C.; Breslau, J.; Ferraro, N.; Hudson, S.; King, J.; Kruger, S.; Ramos, J.; Schnack, D.
2008-01-01
The NIMROD and M3D/M3D-C1 codes now each have both a resistive MHD and a two-fluid (2F) capability including gyroviscosity and Hall terms. We describe: (1) a nonlinear 3D verification test in the resistive MHD regime in which the two codes are in detailed agreement, (2) new studies that illuminate the effect of two-fluid physics on spontaneous rotation in tokamaks, (3) studies of nonlinear reconnection in regimes of relevance to fusion plasmas with peak nonlinear reconnection rates that are essentially independent of the resistivity, and (4) linear two-fluid tearing mode calculations including electron mass that agree with analytic studies over a wide range of parameter regimes
Generalized Roe's numerical scheme for a two-fluid model
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1993-01-01
This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,
Development of bubble-induced turbulence model for advanced two-fluid model
International Nuclear Information System (INIS)
Hosoi, Hideaki; Yoshida, Hiroyuki
2011-01-01
A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small
Two-fluid model LES of a bubble column
International Nuclear Information System (INIS)
Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser
2005-01-01
The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)
Two-fluid hydrodynamic modes in a trapped superfluid gas
International Nuclear Information System (INIS)
Taylor, E.; Griffin, A.
2005-01-01
In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0
Mathematical well-posedness of a two-fluid equations for bubbly two-phase flows
International Nuclear Information System (INIS)
Okawa, Tomio; Kataoka, Isao
2000-01-01
It is widely known that two-fluid equations used in most engineering applications do not satisfy the necessary condition for being mathematical well-posed as initial-value problems. In the case of stratified two-phase flows, several researchers have revealed that differential models satisfying the necessary condition are to be derived if the pressure difference between the phases is related to the spatial gradient of the void fraction through the effects of gravity or surface tension. While, in the case of dispersed two-phase flows, no physically reasonable method to derive mathematically well-posed two-fluid model has been proposed. In the present study, particularly focusing on the effect of interfacial pressure terms, we derived the mathematically closed form of the volume-averaged two-fluid model for bubbly two-phase flows. As a result of characteristic analyses, it was shown that the proposed two-fluid equations satisfy the necessary condition of mathematical well-posedness if the void fraction is sufficiently small. (author)
Validation of Numerical Two-Fluid and Kinetic Plasma Models
Energy Technology Data Exchange (ETDEWEB)
Daniel Barnes
2011-03-25
This was a four year grant commencing October 1, 2003 and finishing September 30, 2007. The funding was primarily used to support the work of the Principal Investigator, who collaborated with Profs. Scott Parker and John Cary at U. Colorado, and with two students, N. Xiang and J. Cheng also of U. Colorado. The technical accomplishments of this grant can be found in the publications listed in the final Section here. The main accomplishments of the grant work were: (1) Development and implementation of time-implicit two-fluid simulation methods in collaboration with the NIMROD team; and (2) Development and testing of a new time-implicit delta-f, energy-conserving method The basic two-fluid method, with many improvements is used in present NIMROD calculations. The energy-conserving delta-f method is under continuing development under contract between Coronado Consulting, a New Mexico sole proprietorship and the Oak Ridge National Laboratory.
International Nuclear Information System (INIS)
Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.
1992-05-01
Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)
Collisionless two-fluid theory of toroidal ηi stability
International Nuclear Information System (INIS)
Mondt, J.; Weiland, J.
1989-01-01
A collisionless two-fluid theory based on a fourteen-moment generalization of the 'double-adiabatic' equations is developed to lowest order in the Larmor radius parameter, and applied to derive the toroidal η i stability boundary for all values of the ratio of the density gradient scale length divided by the field curvature length. The present model is an improvement over existing collisional two-fluid models in view of the collisionless nature of the η i instability, while retaining the advantage over kinetic theory of the practability of mode-coupling simulations. The linear stability boundary, linear growth rate and real frequency agree fairly accurately with draft-kinetic theory
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Implicit approximate Riemann solver for two fluid two phase flow models
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.; Kumbaro, A.
1993-01-01
This paper is devoted to the description of new numerical methods developed for the numerical treatment of two phase flow models with two velocity fields which are now widely used in nuclear engineering for design or safety calculations. These methods are finite volumes numerical methods and are based on the use of Approximate Riemann Solver's concepts in order to define convective flux versus mean cell quantities. The first part of the communication will describe the numerical method for a three dimensional drift flux model and the extensions which were performed to make the numerical scheme implicit and to have fast running calculations of steady states. Such a scheme is now implemented in the FLICA-4 computer code devoted to 3-D steady state and transient core computations. We will present results obtained for a steady state flow with rod bow effect evaluation and for a Steam Line Break calculation were the 3-D core thermal computation was coupled with a 3-D kinetic calculation and a thermal-hydraulic transient calculation for the four loops of a Pressurized Water Reactor. The second part of the paper will detail the development of an equivalent numerical method based on an approximate Riemann Solver for a two fluid model with two momentum balance equations for the liquid and the gas phases. The main difficulty for these models is due to the existence of differential modelling terms such as added mass effects or interfacial pressure terms which make hyperbolic the model. These terms does not permit to write the balance equations system in a conservative form, and the classical theory for discontinuity propagation for non-linear systems cannot be applied. Meanwhile, the use of non-conservative products theory allows the study of discontinuity propagation for a non conservative model and this will permit the construction of a numerical scheme for two fluid two phase flow model. These different points will be detailed in that section which will be illustrated by
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
International Nuclear Information System (INIS)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N.; MacFarlane, J. J.; Golovkin, I. E.
2011-01-01
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n i ∼ 10 17 cm -3 ) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Energy Technology Data Exchange (ETDEWEB)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Study of blood flow in several benchmark micro-channels using a two-fluid approach
Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad
2015-01-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs. PMID:26240438
Linear waves in two-fluid relativistic gasdynamics
International Nuclear Information System (INIS)
Gavrikov, M.B.; Solov'ev, L.S.
1988-01-01
This paper is devoted to the development of a theory of waves propagating in a two-component gaseous medium. In all cases considered the authors use only the method of two-fluid relativistic electromagnetic gasdynamics in the framework of the special relativity theory. They pay special attention to the problem of the interaction in a mixture of both neutral and charged gases when they move relative to one another. This interaction is for charged gases responsible for the appearance of ohmic resistance to an electrical current
A numerical method for a transient two-fluid model
International Nuclear Information System (INIS)
Le Coq, G.; Libmann, M.
1978-01-01
The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR
Modified two-fluid model for the two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.
2003-01-01
This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.
1992-01-01
The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Neutronic analysis of two-fluid thorium molten salt reactor
International Nuclear Information System (INIS)
Frybort, Jan; Vocka, Radim
2009-01-01
The aim of this paper is to evaluate features of the two-fluid MSBR through a parametric study and compare its properties to one-fluid MSBR concepts. The starting point of the analysis is the original ORNL 1000 MWe reactor design, although simplified to some extent. We studied the influence of dimensions of distinct reactor parts - fuel and fertile channels radius, plenum height, design etc. - on fundamental reactor properties: breeding ratio and doubling time, reactor inventory, graphite lifetime, and temperature feedback coefficients. The calculations were carried out using MCNP5 code. Based on obtained results we proposed an improved reactor design. Our results show clear advantages of the concept with two separate fluoride salts if compared to the one fluid concept in breading, doubling time, and temperature feedback coefficients. Limitations of the two-fluid concept - particularly the graphite lifetime - are also pointed out. The reactor design can be a subject of further optimizations, namely from the viewpoint of reactor safety. (author)
Large interface simulation in an averaged two-fluid code
International Nuclear Information System (INIS)
Henriques, A.
2006-01-01
Different ranges of size of interfaces and eddies are involved in multiphase flow phenomena. Classical formalisms focus on a specific range of size. This study presents a Large Interface Simulation (LIS) two-fluid compressible formalism taking into account different sizes of interfaces. As in the single-phase Large Eddy Simulation, a filtering process is used to point out Large Interface (LI) simulation and Small interface (SI) modelization. The LI surface tension force is modelled adapting the well-known CSF method. The modelling of SI transfer terms is done calling for classical closure laws of the averaged approach. To simulate accurately LI transfer terms, we develop a LI recognition algorithm based on a dimensionless criterion. The LIS model is applied in a classical averaged two-fluid code. The LI transfer terms modelling and the LI recognition are validated on analytical and experimental tests. A square base basin excited by a horizontal periodic movement is studied with the LIS model. The capability of the model is also shown on the case of the break-up of a bubble in a turbulent liquid flow. The break-up of a large bubble at a grid impact performed regime transition between two different scales of interface from LI to SI and from PI to LI. (author) [fr
The assessment of two-fluid models using critical flow data
International Nuclear Information System (INIS)
Shome, B.; Lahey, R.T. Jr.
1992-01-01
The behavior of two-phase flow is governed by the thermal-hydraulic transfers occurring across phasic interfaces. If correctly formulated, two-fluid models should yield all conceivable evolutions. Moreover, some experiments may be uniquely qualified for model assessment if they can isolate important closure models. This paper is primarily concerned with the possible assessment of the virtual mass force using air-water critical flow data, in which phase-change effects do not take place. The following conclusions can be drawn from this study: (1) The closure parameters, other than those for cirtual mass, were found to have an insignificant effect on critical flow. In contrast, the void fraction profile and the slip ratio were observed to be sensitive to the virtual mass model. (2) It appears that air-water critical flow experiments may be effectively used for the assessment of the virtual mass force used in two-fluid models. In fact, such experiments are unique in their ability to isolate the spatial gradients in a vm models. It is hoped that this study will help stimulate the conduct of further critical flow experiments for the assessment of two fluid models
Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies
International Nuclear Information System (INIS)
Granziera, M.R.; Kazimi, M.S.
1980-05-01
A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions
Two-fluid equations for a nuclear system with arbitrary motions
Energy Technology Data Exchange (ETDEWEB)
Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.
Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs
Lehmann, Andrew; Wardle, Mark
2018-05-01
The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.
A two-fluid interpretation of low frequency modes in Tokamaks
International Nuclear Information System (INIS)
Thyagaraja, A.; Haas, F.A.
1983-01-01
The linear stability of low frequency modes (ω/ωsub(ci) << 1) of a dissipationless two-fluid cylindrical analogue of Tokamak is investigated. The eigenvalue problem comprises a coupled first-order and second-order differential equation. Given certain plausible assumptions, the case of an internal resonant point is solved analytically. The resulting modes and frequencies are qualitatively similar to those observed. The analogue of the MHD uniform current model is solved exactly and the usual MHD marginal stability boundary is shown to be modified. More general considerations show, that even in the absence of dissipation, the magnetic field is not ''frozen'' to the ions or the electrons. Furthermore, in general the MHD equations can only be recovered by a limiting process which is inappropriate to Tokamaks. For very low frequencies (ω << ω*), however, single and two-fluid theories predict the same magnetic field structure but different electric fields. The present analysis which covers frequencies from zero to ωsub(Alfven), including drift and acoustic frequencies predicts that both discrete and continuum modes can be unstable which is in contrast to ideal MHD. (author)
Two-fluid model stability, simulation and chaos
Bertodano, Martín López de; Clausse, Alejandro; Ransom, Victor H
2017-01-01
This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter. The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are ...
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-11-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
International Nuclear Information System (INIS)
Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Kobayashi, Y.; Kitamura, N.; Ieda, A.; Yoshizumi, M.; Imada, S.; Tsugawa, Y.; Burch, J. L.; Russell, C. T.; Moore, T. E.; Giles, B. L.; Paterson, W.; Torbert, R. B.; Ergun, R.; Saito, Y.; Yokota, S.; Machida, S.
2017-12-01
Magnetic reconnection is a basic physical process by which energy of magnetic field is converted into the kinetic energy of plasmas. In recent years, MMS missionconsisting of four spacecraft has been conducted aiming at elucidating the physical mechanism of merging themagnetic fields in the vicinity of the magnetic neutral linethat exists in the central part of the structure. In this paper, we examine the magnetic field frozen-in relation near the magnetic neutral line as well as the causal relationship between electron and ion dynamics in the frame of two fluid equations.Theoretically, it is shown that electrons are frozen-in to the magnetic fields while ion's frozen-in relation is broken in the ion dissipation region. However, when we examined the observational data around 1307 UT on October 16, 2015 when MMS spacecraft passed through the vicinity of the magnetic neutral line [Burch et al., Science 2016] , it was confirmed that the frozen-ion relation was not established for electrons in the ion dissipation region. In addition, we found that intense wave electric fields in this region. From the spectral analysis of the waves, it turned out that their characteristic frequencies are the lower-hybrid and electron cyclotron frequencies.In the framework of the two-fluid equation, we can evaluate the values of each term of the equations of motion for both ions and electrons except for the collision term from MMS spacecraft data. Therefore, it is possible to obtain collision terms for both species. Since magnetospheric plasma is basically collisionless, it is considered that the collision term is due to anomalous resistivity associated with the excited waves . On the other hand, in the two-fluid equation system, the two vectors corresponding to the collision terms of ions and electrons have the same absolute value. Because the force exerted between the two is the internal force, they should face in the opposite direction. However, the vectors corresponding to the
Study of blood flow in several benchmark micro-channels using a two-fluid approach
Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad
2015-01-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated ...
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Energy Technology Data Exchange (ETDEWEB)
ChiBin, Zhang; XiaoHui, Lin, E-mail: lxh60@seu.edu.cn; ZhaoMin, Wang; ChangBao, Wang
2017-03-15
In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.
Numerical simulation of countercurrent flow based on two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Chen, H.D. [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China); School of Electric Power, South China University of Technology, Guangzhou 510640 (China); Zhang, X.Y., E-mail: zxiaoying@mail.sysu.edu.cn [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China)
2017-03-15
Highlights: • Using one-dimensional two-fluid model to help understanding counter-current flow two-phase flows. • Using surface tension model to make the one-dimensional two-fluid flow model well-posed. • Solving the governing equations with a modified SIMPLE algorithm. • Validating code with experimental data and applying it to vertical air/steam countercurrent flow condition - Abstract: In order to improve the understanding of counter-current two-phase flows, a transient analysis code is developed based on one-dimensional two-fluid model. A six equation model has been established and a two phase pressure model with surface tension term, wall drag force and interface shear terms have been used. Taking account of transport phenomenon, heat and mass transfer models of interface were incorporated. The staggered grids have been used in discretization of equations. For validation of the model and code, a countercurrent air-water problem in one experimental horizontal stratified flow has been considered firstly. Comparison of the computed results and the experimental one shows satisfactory agreement. As the full problem for investigation, one vertical pipe with countercurrent flow of steam-water and air-water at same boundary condition has been taken for study. The transient distribution of liquid fraction, liquid velocity and gas velocity for selected positions of steam-water and air-water problem were presented and discussed. The results show that these two simulations have similar transient behavior except that the distribution of gas velocity for steam-water problem have larger oscillation than the one for air-water. The effect of mesh size on wavy characteristics of interface surface was also investigated. The mesh size has significant influence on the simulated results. With the increased refinement, the oscillation gets stronger.
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
International Nuclear Information System (INIS)
Sugiyama, L.E.; Strauss, H.R.; Park, W.; Fu, G.Y.; Breslau, J.A.; Chen, J.
2005-01-01
The basic two-fluid processes, those related to the nonlinearly self-consistent diamagnetic drifts of the electrons and ions, are shown to have fundamentally different effects on the steady state and beta limits of stellarator configurations, compared to MHD predictions. Nonlinear numerical simulation shows that the ideal MHD ballooning modes and the resistive MHD ballooning and interchange modes at relatively high mode numbers, that set the most severe theoretical limits on beta in stellarators with fixed boundary, are easily stabilized by two-fluid effects at realistic parameters, including finite Larmor radius effects related to the ion diamagnetic drift. Magnetic reconnection at low-order rational magnetic surfaces, on the other hand, is enhanced through the parallel component of the two-fluid electron pressure gradient in Ohm's law. The accelerated reconnection rates may impose the true intrinsic limit on beta in stellarators, as a 'soft' or confinement mediated limit in β e , due to steady confinement degradation in the presence of large magnetic islands. Study of the corresponding axisymmetric configurations shows that the helical component of the stellarator configuration provides an important amplifying factor for these effects. The two-fluid results may explain several previously puzzling experimental observations on stellarator behavior. (author)
Energy Technology Data Exchange (ETDEWEB)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, 113-0033 (Japan)
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow
International Nuclear Information System (INIS)
Baier, G.; Graham, M.D.
1998-01-01
The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations
Analysis of subcooled boiling with the two-fluid particle interaction method
International Nuclear Information System (INIS)
Shirakawa, Noriyuki; Horie, Hideki; Yamamoto, Yuichi; Tsunoyama, Shigeaki
2003-01-01
A particle interaction method called MPS (the Moving Particle Semi-implicit method), which formulates the differential operators in Navier-Stokes' equation as interactions between particles characterized by a kernel function, has been developed in recent years. We have extended this method to a two-fluid system with a potential-type surface tension in order to analyze the two-phase flow without experimental correlation. This extended method (Two-Fluid MPS: TF-MPS) was successfully applied to a subcooled boiling experiment. The most important element in any effective subcooled boiling model is to be able to accurately calculate where significant void fraction appears, that is, the location of the void departure point. The location of the initial void ejection into the subcooled liquid core can be determined fairly well experimentally and conventionally is given in terms of a critical subcooling. We investigated the relation between Stanton and Peclet numbers at the void departure point in the calculated results with TF-MPS method, varying the inlet water velocity to change Peclet number. (author)
A Study of Two Fluids Mixing in a Helical-Type Micromixer
International Nuclear Information System (INIS)
Hu, Y H; Chang, M; Lin, K H
2006-01-01
The mixing behavior of two fluids in a passive micromixer with Y-type inlet and helical fluid channel, along with herringbone grooves etched on the base of the fluid channel, was studied with computer simulation technique and experiments. The mixing of pure water and acetone solution under different Reynolds numbers and acetone concentrations were investigated. An image inspection method using the variance in contrast of the image gray level as the measurement parameter was adopted to calculate the mixing efficiency distribution. Inspection results show that the mixing efficiency is decreased with the increase of the concentration of the acetone solution, but the mean mixing efficiency around the outlet can reach to a value of 90% even the Reynolds numbers of the fluids were as low as Re = 1, and the best efficiency for the case of Re = 10 is over 98%. The results show that the proposed micromixer is possible applied to the field of biomedical diagnosis
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study
Directory of Open Access Journals (Sweden)
Sankar DS
2009-01-01
Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.
Yoon, Young Dae
2017-10-01
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q =me ∇ ×ue +qe B is perfectly frozen into the electron fluid. Q is the curl of P =meue +qe A , which is the electron canonical momenrum. Since ∇ . Q = 0 , the Q flux tubes are incompressible and so have a fixed volume. Because they are perfectly frozen into the electron fluid, the Q flux tubes cannot reconnect. Following the behavior of these Q flux tubes provides an intuitive insight into 2D collisionless reconnection of B . In the reconnection geometry, a small perturbation to the central electron current sheet effectively brings a localized segment of a Q flux tube towards the X-point. This flux tube segment is convected downwards with the central electron current, effectively stretching the flux tube, decreasing its cross-section to maintain a fixed volume and so increasing the magnitude of Q . Also, because Q is the sum of the electron vorticity and the magnetic field, the two terms may change in such a way that one term becomes smaller while the other becomes larger while preserving constant Q flux. This allows magnetic reconnection, which is a conversion of magnetic field into particle velocity, to occur without any dissipation mechanism. The entire process has positive feedback with no restoring mechanism and therefore is an instability. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, while helicity analysis shows that the canonical helicity ∫ P . QdV as a whole must be considered when
Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas
Directory of Open Access Journals (Sweden)
G. M. Webb
2008-02-01
Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, P_{y}^{(d} and P_{z}^{(d}, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case P_{y}^{(d}=P_{z}^{(d}=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component u_{x} of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components u_{jy} and u_{jz} (j=e, p of the waves exhibit complex, rosette type patterns over several periods for u_{x}. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.
A modified two-fluid model for the application of two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun, X.; Ishii, M.; Kelly, J.
2003-01-01
This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
Revisiting low-fidelity two-fluid models for gas–solids transport
Energy Technology Data Exchange (ETDEWEB)
Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus
2016-08-15
Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
Revisiting low-fidelity two-fluid models for gas–solids transport
International Nuclear Information System (INIS)
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-01-01
Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
Revisiting low-fidelity two-fluid models for gas-solids transport
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
Statistical properties of three-dimensional two-fluid plasma model
Energy Technology Data Exchange (ETDEWEB)
Qaisrani, M. Hasnain [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Xia, ZhenWei [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zou, Dandan, E-mail: ddzou@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China)
2015-09-15
The nonlinear dynamics of incompressible non-dissipative two-fluid plasma model is investigated through classical Gibbs ensemble methods. Liouville's theorem of phase space for each wave number is proved, and the absolute equilibrium spectra for Galerkin truncated two-fluid model are calculated. In two-fluid theory, the equilibrium is built on the conservation of three quadratic invariants: the total energy and the self-helicities for ions and electrons fluid, respectively. The implications of statistic equilibrium spectra with arbitrary ratios of conserved invariants are discussed.
Two-fluid model of the pulsar magnetosphere represented as an axisymmetric force-free dipole
Energy Technology Data Exchange (ETDEWEB)
Petrova, S.A., E-mail: petrova@rian.kharkov.ua [Institute of Radio Astronomy of the NAS of Ukraine, Mystetstv Str., 4, Kharkiv 61002 (Ukraine)
2017-05-01
Based on the exact dipolar solution of the pulsar equation the self-consistent two-fluid model of the pulsar magnetosphere is developed. We concentrate on the low-mass limit of the model, taking into account the radiation damping. As a result, we obtain the particle distributions sustaining the dipolar force-free configuration of the pulsar magnetosphere in case of a slight velocity shear of the electron and positron components. Over most part of the force-free region, the particles follow the poloidal magnetic field lines, with the azimuthal velocities being small. Close to the Y-point, however, the particle motion is chiefly azimuthal and the Lorentz-factor grows unrestrictedly. This may result in the very-high-energy emission from the vicinity of the Y-point and may also imply the magnetocentrifugal formation of a jet. As for the first-order quantities, the longitudinal accelerating electric field is found to change the sign, hinting at coexistence of the polar and outer gaps. Besides that, the components of the plasma conductivity tensor are derived and the low-mass analogue of the pulsar equation is formulated as well.
Extended two-fluid model for simulating magneto-rheological fluid flows
International Nuclear Information System (INIS)
Shivaram, A C
2011-01-01
The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
International Nuclear Information System (INIS)
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-01-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Energy Technology Data Exchange (ETDEWEB)
Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Formation of intermediate shocks in both two-fluid and hybrid models
International Nuclear Information System (INIS)
Wu, C.C.; Hada, T.
1991-01-01
Intermediate shocks are shocks with shock frame fluid velocities greater than the Alfven speed ahead and less than the Alfven speed behind, or equivalently, across intermediate shocks the sign of the transverse component of the magnetic field changes. These shocks had been considered extraneous, or nonevolutionary, or unstable, and they had been thought not to correspond to physical reality [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowitz and Petschek, 1966]. However, it has been shown that intermediate shocks can be formed from continuous waves according to dissipative magnetohydrodynamics (MHD) [Wu, 1987, 1988a, b, 1990]. Thus according to the formation argument which requires that physical shocks be formed by the wave steepening process, the intermediate shocks should be considered physical. Here, intermediate shocks are studied in a two-fluid model that includes finite ion inertia dispersion and in a hybrid model in which the full ion dynamics is retained while the electrons are treated as a massless fluid. The authors show that in both models intermediate shocks can be formed through wave steepening, meaning that they are stable and possess shock structures
Organic tunnel field effect transistors
Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi
2017-01-01
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer
Magnetic field effects in proteins
Jones, Alex R.
2016-06-01
Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Grid studies for the simulation of resolved structures in an Eulerian two-fluid framework
Energy Technology Data Exchange (ETDEWEB)
Gauss, Friederike, E-mail: f.gauss@hzdr.de; Lucas, Dirk; Krepper, Eckhard
2016-08-15
Highlights: • Elaborated Eulerian two-fluid methods may predict multiphase flow with large differences in interfacial length scales. • A study on the grid requirements of resolved structures in such two-fluid methods is presented. • The two-fluid results are only little dependent on the grid size. • The results justify the resolved treatment of flow structures covering only few grid cells. • A grid-dependent limit between resolved an modeled structures may be established. - Abstract: The influence of the grid size on the rise velocity of a single bubble simulated with an Eulerian two-fluid method is investigated. This study is part of the development of an elaborated Eulerian two-fluid framework, which is able to predict complex flow phenomena as arising in nuclear reactor safety research issues. Such flow phenomena cover a wide range of interfacial length scales. An important aspect of the simulation method is the distinction into small flow structures, which are modeled, and large structures, which are resolved. To investigate the requirements on the numerical grid for the simulation of such resolved structures the velocity of rising gas bubbles is a good example since theoretical values are available. It is well known that the rise velocity of resolved bubbles is clearly underestimated in a one-fluid approach if they span over only few numerical cells. In the present paper it is shown that in the case of the two-fluid model the bubble rise velocity depends only slightly on the grid size. This is explained with the use of models for the gas–liquid interfacial forces. Good approximations of the rise velocity and the bubble shape are obtained with only few grid points per bubble diameter. This result justifies the resolved treatment of flow structures, which cover only few grid cells. Thus, a limit for the distinction into resolved and modeled structures in the two-fluid context may be established.
Quantum effects in strong fields
International Nuclear Information System (INIS)
Roessler, Lars
2014-01-01
This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.
2007-09-01
In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).
A Parallel Two-fluid Code for Global Magnetic Reconnection Studies
International Nuclear Information System (INIS)
Breslau, J.A.; Jardin, S.C.
2001-01-01
This paper describes a new algorithm for the computation of two-dimensional resistive magnetohydrodynamic (MHD) and two-fluid studies of magnetic reconnection in plasmas. It has been implemented on several parallel platforms and shows good scalability up to 32 CPUs for reasonable problem sizes. A fixed, nonuniform rectangular mesh is used to resolve the different spatial scales in the reconnection problem. The resistive MHD version of the code uses an implicit/explicit hybrid method, while the two-fluid version uses an alternating-direction implicit (ADI) method. The technique has proven useful for comparing several different theories of collisional and collisionless reconnection
Two-fluid modeling of thermal-hydraulic phenomena for best-estimate LWR safety analysis
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.
1989-01-01
Two-fluid formulation of the conservation equations has allowed modelling of the two-phase flow and heat transfer phenomena and situations involving strong departures in thermal and velocity equilibrium between the phases. The paper reviews the state of the art in modelling critical flows, and certain phase separation phenomena, as well as post-dryout heat transfer situations. Although the two-fluid models and the codes have the potential for correctly modelling such situations, this potential has not always been fully used in practice. (orig.)
An implicit second order numerical method for two-fluid models
International Nuclear Information System (INIS)
Toumi, I.
1995-01-01
We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe's scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating step is used. In practice this new numerical method has proved to be stable and capable of generating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author)
On the continuum theory of the two-fluid solar wind for small mass ratio
International Nuclear Information System (INIS)
Johnson, R.S.
1976-01-01
The continuum theory for the two-fluid solar wind is considered. The fluid is assumed to be a fully ionized neutral plasma of electrons and protons which is compressible, viscous and heat conducting with a constant Prandtl number and a viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. It is assumed that the bulk velocity (at any point) is the same for both electrons and protons, but that an energy transfer can occur between the two species due to binary (Coulomb) collisions. The equations are non-dimensionalized and it is shown that the natural parameter to use in the construction of an asymptotic solution is the mass ratio. The limit mass ratio → zero corresponds to the small Prandtl number limit for the one-fluid theory developed by Johnson (Proc. R. Soc. (Lond) A; 347:537 (1976)). By using the method of matched asymptotic expansions, a solution is constructed that starts from the base of the corona and extends out to a diffuse shock layer. The results obtained exactly parallel the one-fluid theory and many details are identified and absorbed into this analysis. It is shown how the temperatures in the corona eventually become the well-known behaviours: rsup(-2/7) (electrons), rsup(-6/7) (protons) when ω = 5/2 and r is the radial coordinate. However, the continuum theory will probably have failed in the shock layer region - the more so since this occurs at about 100 light years distance - and further mathematical details are omitted. The numerical estimates given here compare tolerably well with the observed data and very favourably with other work on the same equations. (author)
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
David, E.
1993-01-01
In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de
Synaptic Effects of Electric Fields
Rahman, Asif
Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits
International Nuclear Information System (INIS)
Jog, C.J.; Solomon, P.M.
1984-01-01
We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the entire disk and for the stability and form of the gas in the disk. We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the gas) makes it much harder to stabilize the entire two-fluid disk. (C/sub s/,min)/sub 2-f/, the critical stellar velocity dispersion for a two-fluid disk in an increasing function of μ/sub g//μ/sub s/, the gas fraction, and μ/sub t//kappa, where μ/sub g/, μ/sub s/, and μ/sub t/ are the gaseous, stellar, and total disk surface densities and kappa is the epicyclic frequency. In the Galaxy, we find that (C/sub s/,min)/sub 2-f/ as a function of R peaks when μ/sub t//kappa peaks-at galactocentric radii of Rapprox.5-7 kpc; two-fluid instabilities are most likely to occur in this region. This region is coincident with the peak in the molecular cloud distribution in the Galaxy. At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become unstble, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability in the inner galaxy is approx.400 pc, and it contains approx.10 7 M/sub sun/ of interstellar matter; these instabilities may be identified with clusters of giant molecular clouds. We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm segments resulting from sheared two-fluid gravitational instabilities. The analysis presented here is applicable to any general disk galaxy consisting of stars and gas
Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations
B. Sanderse (Benjamin); I. Eskerud Smith (Ivar); M.H.W. Hendrix (Maurice)
2017-01-01
textabstractIn this paper we analyse different time integration methods for the two-fluid model and propose the BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly
Evaluation of two-fluid and drift flux thermohydraulics in APROS code environment
International Nuclear Information System (INIS)
Miettinen, J.; Karppinen, I.; Haenninen, M.; Ylijoki, J.
1999-01-01
The characteristics of the thermohydraulic solutions in APROS are considered for the nuclear power plant modelling. The thermohydraulic model of the APROS plant analyzer includes three levels of solutions, homogeneous 3-equation model, 5-equation drift flux model and 6-equation two-fluid model. In practical modelling of versatile process systems different approaches are selected for different types of the power plant sections. The 3-equation model is used for turbines and auxiliary systems. The 5-equation model and 6-equation model are alternative models for main process sections of the primary and secondary sides. The 5-equation model has been typically selected for the real time applications and the 6-equation model for the safety analysis applications. The validation needs for both approaches are the same. Because the change of the solution mode is an easy task in APROS, the validation tasks are typically performed in parallel for 5-equation and 6-equation models. By calculating in parallel with both models systematic errors in solutions may be pointed out. The testing against both separate effects tests and integral tests is an essential part in the thermohydraulics. In different plant applications different physical features are important. The analysis requirements vary from one application to another. When nodalizations together with increased computer speed are growing up, the earlier validation cases may be insufficient. That is why the content of the code has to be known in detail. Such an expertise in the code development has to be gained that properties of the code against other thermohydraulics codes are known. (author)
Effective potentials for twisted fields
International Nuclear Information System (INIS)
Banach, R.
1981-01-01
Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
Gabriel, C.
1996-01-01
The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)
Casimir effect for interacting fields
International Nuclear Information System (INIS)
Kay, B.S.
1982-01-01
The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)
International Nuclear Information System (INIS)
Neves Conti, T. das.
1983-01-01
A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt
Analysis of the two-fluid model in fully-developed two-phase flow
International Nuclear Information System (INIS)
Azpitarte, Osvaldo Enrique
2003-01-01
The two fluid model is analysed and applied to solve vertical fully-developed bubbly two-phase flows, both in laminar and turbulent conditions.The laminar model is reduced to two differential equations to solve the gas fraction (ε G ) and the velocity (υ L ).For the turbulent condition, a k - ε model for low Reynolds number is implemented, resulting in a set of differential equations to solve the four variables (ε G , υ L , k and ε) along the whole radial domain (including the laminar sub layer).For laminar condition, the system is initially reduced to a single non-dimensional ordinary equation (O D E) to solve ε G in the central region of the duct, without considering the effect of the wall.The equation is solved using Mathematic a.Analysing the solutions it can be concluded that an exact compensation of the applied pressure gradient with the hydrostatic force ρ e ff g occurs (ρ e ff : effective density of the mixture).This compensation implies that the value of ε G at the center of the duct only depends on the applied pressure gradient (dependency is linear), and that the ε G and υ L profiles are necessarily fl ato The complete problem is dealt numerically through the implementation of a finite element co deo The effect of the walls is included via a model of wall force.When the code is applied to a laminar condition, the conclusions previously obtained solving the O D E are confirmed.It is also possible to analyse the regime in which the pressure gradient is greater than the weight of the pure liquid, in which case a region of strictly zero void fraction develops surrounding the axis of the duct (in upward flow).When the code is applied to a turbulent condition, it is shown that the conclusions obtained for laminar condition can also be applied, but within a range of pressure gradient limited by two transition values (θ 1 and θ 2 ).An analysis of transitions θ 1 and θ 2 allows u s to conclude that their origin is a sudden increase of lateral
Fringing-field effects in acceleration columns
International Nuclear Information System (INIS)
Yavor, M.I.; Weick, H.; Wollnik, H.
1999-01-01
Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated
Ambipolar phosphorene field effect transistor.
Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas
2014-11-25
In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.
Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review
Directory of Open Access Journals (Sweden)
L.X. Zhou
2009-01-01
Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.
Validation of Numerical Two-Fluid and Kinetic Plasma Models. Final Report
International Nuclear Information System (INIS)
Barnes, Daniel
2011-01-01
This was a four year grant commencing October 1, 2003 and finishing September 30, 2007. The funding was primarily used to support the work of the Principal Investigator, who collaborated with Profs. Scott Parker and John Cary at U. Colorado, and with two students, N. Xiang and J. Cheng also of U. Colorado. The technical accomplishments of this grant can be found in the publications listed in the final Section here. The main accomplishments of the grant work were: (1) Development and implementation of time-implicit two-fluid simulation methods in collaboration with the NIMROD team; and (2) Development and testing of a new time-implicit delta-f, energy-conserving method The basic two-fluid method, with many improvements is used in present NIMROD calculations. The energy-conserving delta-f method is under continuing development under contract between Coronado Consulting, a New Mexico sole proprietorship and the Oak Ridge National Laboratory.
Study on application of two-fluid model in narrow annular channel
International Nuclear Information System (INIS)
Chen Jun; Yang Yanhua; Zhao Hua
2007-01-01
The Chexal-Harrison two-phase wall and inter-phase friction models developed by EPRI newly and the simple two-phase wall and inter-phase heat transfer models put forward by the paper are used to set up the two-fluid model which is fitted for boiling heat transfer and flow in narrow annular channel. On the base of the two-fluid model, a thermal hydraulic code-THYME is accomplished. Then the thermal hydraulic characteristic of narrow annular channel is analyzed by RELAP5/MOD3.2 code and THYME code. Compared with experimental data, RELAP5/MOD3.2 underestimates the outlet steam, and the results of THYME is agreed with the experimental data. (authors)
Two-fluid model with droplet size distribution for condensing steam flows
International Nuclear Information System (INIS)
Wróblewski, Włodzimierz; Dykas, Sławomir
2016-01-01
The process of energy conversion in the low pressure part of steam turbines may be improved using new and more accurate numerical models. The paper presents a description of a model intended for the condensing steam flow modelling. The model uses a standard condensation model. A physical and a numerical model of the mono- and polydispersed wet-steam flow are presented. The proposed two-fluid model solves separate flow governing equations for the compressible, inviscid vapour and liquid phase. The method of moments with a prescribed function is used for the reconstruction of the water droplet size distribution. The described model is presented for the liquid phase evolution in the flow through the de Laval nozzle. - Highlights: • Computational Fluid Dynamics. • Steam condensation in transonic flows through the Laval nozzles. • In-house CFD code – two-phase flow, two-fluid monodispersed and polydispersed model.
A development of two-fluid multifield model for low-quality boiling transition simulations
International Nuclear Information System (INIS)
Park, J.W.; Choi, H.B.
1998-09-01
A three-dimensional two-fluid model has been developed using ensemble-averaging techniques. The two-fluid model was closed for two-phase bubbly flows using cell averaging which accounted for the dispersed phase distribution in the region of the averaging volume. The phasic interfacial momentum exchange includes the surface stress developed on the interface which is induced by the relative motion of the phases. Since no direct mean for validating the interfacial pressure model is available, the void wae data has been used. Since the presented model has been rigorously constitute for the bubbly two-phase flow of spherical bubbles, dilute two-phase flow situations, such as the subcooled boiling, can be realistically simulated by the presented local instantaneous form of the average equations. Finally, this model should be able to predict local thermal-hydraulic conditions under which the critical heat flux occurs. (author). 25 refs., 6 figs
Steam generator transient studies using a simplified two-fluid computer code
International Nuclear Information System (INIS)
Munshi, P.; Bhatnagar, R.; Ram, K.S.
1985-01-01
A simplified two-fluid computer code has been used to simulate reactor-side (or primary-side) transients in a PWR steam generator. The disturbances are modelled as ramp inputs for pressure, internal energy and mass flow-rate for the primary fluid. The CPU time for a transient duration of 4 s is approx. 10 min on a DEC-1090 computer system. The results are thermodynamically consistent and encouraging for further studies. (author)
Two-fluid static spherical configurations with linear mass function in the Einstein-Cartan theory
International Nuclear Information System (INIS)
Gallakhmetov, A.M.
2002-01-01
In the framework of the Einstein-Cartan theory, two-fluid static spherical configurations with linear mass function are considered. One of these modelling anisotropic matter distributions within star and the other fluid is a perfect fluid representing a source of torsion. It is shown that the solutions of the Einstein equations for anisotropic relativistic spheres in General Relativity may generate the solutions in the Einstein-Cartan theory. Some exact solutions are obtained
Dirac mechanics and Landau two-fluid model in /sup 4/HeII
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Gomez, J [Instituto Universitario Pedagogico de Caracas (Venezuela). Dept. de Matematica y Fisica
1980-07-01
This paper is devoted to the development of the Dirac formalism for singular systems when applied to the Landau two-fluid model in superfluid helium. Notably, the Hamiltonian density is weakly zero (in the sense of Dirac). We obtain the physical and gauge variables and show that all the constraints are of first class and hence that the Dirac bracket coincides with the Poisson bracket. The quantization of this system is left for a future paper.
Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric Z pinch
International Nuclear Information System (INIS)
Loverich, J.; Shumlak, U.
2006-01-01
A nonlinear full five-moment two-fluid model is used to study axisymmetric instabilities in a Z pinch. When the electron velocity due to the current J is greater than the ion acoustic speed, high wave-number sausage instabilities develop that initiate shock waves in the ion fluid. This condition corresponds to a pinch radius on the order of a few ion Larmor radii
Study of fusion product effects in field-reversed mirrors
International Nuclear Information System (INIS)
Driemeyer, D.E.
1980-01-01
The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included
Free surface modelling with two-fluid model and reduced numerical diffusion of the interface
International Nuclear Information System (INIS)
Strubelj, Luka; Tiselj, Izrok
2008-01-01
Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Renormalons in effective field theories
International Nuclear Information System (INIS)
Luke, M.; Manohar, A.V.; Savage, M.J.
1995-01-01
We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar
Directory of Open Access Journals (Sweden)
Haixu Liu
2016-01-01
Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.
Quantum mechanical description of the two fluid model of liquid /sup 4/He solving the Bloch equation
International Nuclear Information System (INIS)
Fung, P.C.W.; Lam, C.C.
1986-01-01
The authors apply the U-matrix theory recently developed (Lam and Fung, Phys. Rev. A, vol.27, p.1760, 1983) to study certain physical properties of liquid /sup 4/He across a range of temperatures including the lambda -point. They propose a model for the chemical potential mu which is constant above T/sub lambda / but is a function of T below T/sub lambda /. They have discovered that the super-particles 'emerge' mathematically due to the uncommutability of the Hamiltonians at different temperatures, leading to a quantum mechanical description of the two-fluid model. Using the two-particle potential function deduced from scattering data, they have calculated numerically the approximate values of the number density for a range of temperatures starting from T/sub lambda /, taking the hard-core diameter Delta , 'effective chemical potential' mu ' as parameters
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
Directory of Open Access Journals (Sweden)
I. V. Chashei
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
Directory of Open Access Journals (Sweden)
I. V. Chashei
2003-07-01
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model
Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob
2015-01-01
This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.
Relaxation and Numerical Approximation of a Two-Fluid Two-Pressure Diphasic Model
International Nuclear Information System (INIS)
Ambroso, A.; Chalons, Ch.; Galie, Th.; Chalons, Ch.; Coquel, F.; Coquel, F.
2009-01-01
This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach. (authors)
Two-fluid model of the superconductivity in the BCS's theory
International Nuclear Information System (INIS)
Rangelov, J.
1977-01-01
The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively
Application of a two fluid theoretical plasma transport model on current tokamak reactor designs
International Nuclear Information System (INIS)
Ibrahim, E.; Fowler, T.K.
1987-06-01
In this work, the new theoretical transport models to TIBER II design calculations are described and the results are compared with recent experimental data in large tokamaks (TFTR, JET). Tang's method is extended to a two-fluid model treating ions and electrons separately. This allows for different ion and electron temperatures, as in recent low-density experiments in TFTR, and in the TIBER II design itself. The discussion is divided into two parts: (1) Development of the theoretical transport model and (2) calibration against experiments and application to TIBER II
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Organic tunnel field effect transistors
Tietze, Max Lutz
2017-06-29
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.
Second order numerical method of two-fluid model of air-water flow
International Nuclear Information System (INIS)
Tiselj, I.; Petelin, S.
1995-01-01
Model considered in this paper is six-equation two-fluid model used in computer code RELAP5. Air-water equations were taken in a code named PDE to avoid additional problems caused by condensation or vaporization. Terms with space derivatives were added in virtual mass term in momentum equations to ensure the hyperbolicity of the equations. Numerical method in PDE code is based on approximate Riemann solvers. Equations are solved on non-staggered grid with explicit time advancement and with upwind discretization of the convective terms in characteristic form of the equations. Flux limiters are used to find suitable combinations of the first (upwind) and the second order (Lax-Wendroff) discretization s which ensure second order accuracy on smooth solutions and damp oscillations around the discontinuities. Because of the small time steps required and because of its non-dissipative nature the scheme is suitable for the prediction of the fast transients: pressure waves, shock and rarefaction waves, water hammer or critical flow. Some preliminary results are presented for a shock tube problem and for Water Faucet problem - problems usually used as benchmarks for two-fluid computer codes. (author)
ALFVÉN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
International Nuclear Information System (INIS)
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M.
2013-01-01
Alfvén waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfvén waves is affected by the interaction between ionized and neutral species. Here we study Alfvén waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfvén waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Issues of effective field theories with resonances
International Nuclear Information System (INIS)
Gegelia, J.; Japaridze, G.
2014-01-01
We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)
Advanced Semi-Implicit Method (ASIM) for hyperbolic two-fluid model
International Nuclear Information System (INIS)
Lee, Sung Jae; Chung, Moon Sun
2003-01-01
Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This Advanced Semi-Implicit Method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity
Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model
Cheviakov, Alexei F.
2018-05-01
A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.
Three-dimensional two-fluid numerical treatment of a reactor vessel in TRAC
International Nuclear Information System (INIS)
Liles, D.R.
1979-01-01
A three-dimensional two-fluid finite difference model has been used in TRAC (Transient Reactor Analysis Code) to represent a pressurized water reactor vessel. Mesh cells may be blocked off completely to represent large flow obstructions such as downcomer walls. The hydrodynamic volumes and flow areas may also be reduced in order to provide a porous matrix simulation of smaller scale strucuture. The finite difference equations are semi-implicit so that stability time scales are associated with material movement and not wave propagation. The block matrix structure is reduced during the implicit pass to a single element seven stripe system which is easily solved iteratively. This procedure has successfully performed numerous simulations of both full sized reactor accidents and smaller scale experments. It has proven to be a useful feature of the TRAC effort
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Modeling and analysis of hydrodynamic instabilities in two-phase flow using two-fluid model
International Nuclear Information System (INIS)
Zhou, J.; Podowski, M.Z.
2001-01-01
Because of the practical importance of two-phase flow instabilities, especially in boiling water nuclear reactor technology, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics of marginally-stable/unstable boiling systems. The purpose of this paper is to present an integrated methodology for the analysis of flow-induced instabilities in boiling channels and systems. The major novel aspects of the proposed approach are: (a) it is based on the combined frequency-domain and time-domain methods, the former used to quantify stability margins and to determine the onset of instability conditions, the latter to study the nonlinear system response outside the stability boundaries identified using the nearly-exact results of the frequency-domain analysis; (b) the two-fluid model of two-phase flow has been used for the first time to analytically derive the boiling channel transfer functions for the parallel-channel and channel-to-channel instability modes. In this way, the major characteristics of a boiling system, including the onset-of-instability conditions, can be readily evaluated by using the qualitative frequency-domain approach, whereas the explicit time-domain integration is performed, if necessary, only for the operating conditions that have already been identified as unstable. Both methods use the same physical two-fluid model that, in one case, is linearized and used to derive a rigorous analytical solution in the complex domain, and, in the other case, is solved numerically using an algorithm developed especially for this purpose. The results using both methods have been compared against each other and extensively tested. The testing and validation of the new model included comparisons of the predicted steady-state distributions of major parameters and of the transient channel response against experimental data
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
International Nuclear Information System (INIS)
Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
Genetic effects of nonionizing electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry
2001-01-01
Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)
Towards accurate simulation of fringe field effects
International Nuclear Information System (INIS)
Berz, M.; Erdelyi, B.; Makino, K.
2001-01-01
In this paper, we study various fringe field effects. Previously, we showed the large impact that fringe fields can have on certain lattice scenarios of the proposed Neutrino Factory. Besides the linear design of the lattice, the effects depend strongly on the details of the field fall off. Various scenarios are compared. Furthermore, in the absence of detailed information, we study the effects for the LHC, a case where the fringe fields are known, and try to draw some conclusions for Neutrino Factory lattices
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
An introduction to effective field theory
International Nuclear Information System (INIS)
Donoghue, John F.
1999-01-01
In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...
Field emission current from a junction field-effect transistor
International Nuclear Information System (INIS)
Monshipouri, Mahta; Abdi, Yaser
2015-01-01
Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled
Biological Effects of Electromagnetic Fields
2006-11-27
Warning stimuli, as well as learning material, i.e. the numbers to recall, were presented binaurally via earphones at an intensity of 65dB sound...ensued in a remarkable increase in the yield of ES-derived spontaneously beating cardiomyocytes. Figure 3 Effect of MF on...move the mucus along a surface layer of saline. This is very likely that the cilia, beating with the frequency about few tenth of Hertz, generate some
Modeling of an atomizer for two fluids; Modelacion de un atomizador de dos fluidos
Energy Technology Data Exchange (ETDEWEB)
Tapia Ramirez, Zoili [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1998-09-01
The work reported in this article presents the results of the effort to improve the basic understanding of the flow structure that is formed in a two fluid sprayer before and after the interaction between the sprayed fluid and the spraying fluid. The images in the interior of the mixing chamber of the atomizer are shown, which were taken with a high velocity video camera. Also the results of the numerical simulation of the internal flow obtained by means of a package of commercial modeling are shown. [Espanol] El trabajo reportado en este articulo presenta los resultados del esfuerzo por mejorar el entendimiento basico de la estructura del flujo que se forma en un atomizador de dos fluidos antes y despues de la interaccion entre el fluido atomizado y el fluido atomizante. Se muestran imagenes del flujo en el interior de la camara de mezclado del atomizador, las cuales fueron tomadas con una camara de video de alta velocidad. Tambien se incluyen los resultados de la simulacion numerica del flujo interno obtenidas por medio de un paquete de modelacion comercial.
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD
Directory of Open Access Journals (Sweden)
Yixiang Liao
2018-06-01
Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.
2016-11-15
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.
2016-01-01
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
A two-fluid approximation for calculating the cosmic microwave background anisotropies
Seljak, Uros
1994-01-01
We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.
Mathematical modeling of impact of two metal plates using two-fluid approach
Utkin, P. S.; Fortova, S. V.
2018-01-01
The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.
Geometric analysis of the solutions of two-phase flows: two-fluid model
International Nuclear Information System (INIS)
Kestin, J.; Zeng, D.L.
1984-01-01
This report contains a lightly edited draft of a study of the two-fluid model in two-phase flow. The motivation for the study stems from the authors' conviction that the construction of a computer code for any model should be preceded by a geometrical analysis of the pattern of trajectories in the phase space appropriate for the model. Such a study greatly facilitates the understanding of the phenomenon of choking and anticipates the computational difficulties which arise from the existence of singularities. The report contains a derivation of the six conservation equations of the model which includes a consideration of the simplifications imposed on a one-dimensional treatment by the presence of boundary layers at the wall and between the phases. The model is restricted to one-dimensional adiabatic flows of a single substance present in two phases, but thermodynamic equilibrium between the phases is not assumed. The role of closure conditions is defined but no specific closure conditions, or explicit equations of state, are introduced
A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns
Energy Technology Data Exchange (ETDEWEB)
West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA USA (United States)
2017-02-01
Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.
Effect of magnetic field on food freezing
村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功
2010-01-01
[Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...
Boundary effects on quantum field theories
International Nuclear Information System (INIS)
Lee, Tae Hoon
1991-01-01
Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Energy Technology Data Exchange (ETDEWEB)
Che, H. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2014-06-15
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
Che, H.
2014-06-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
International Nuclear Information System (INIS)
Che, H.
2014-01-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability
International Nuclear Information System (INIS)
Yoshida, Hiroyuki; Takase, Kazuyuki; Suzuki, Takayuki
2009-01-01
Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by the ACE-3D. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in the ACE-3D, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. In the results, the lift force model has direct effects on void fraction concentration in gap region, and pressure distribution in horizontal plane induced by void fraction distribution cause of bubble movement from the gap region to the subchannel region. The predicted pressure loss in the section that includes no spacer accorded with experimental results with around 10% of differences. The predicted friction pressure loss was underestimated around 20% of measured values, and the effect of the turbulence model is considered as one of the causes of this underestimation. (author)
Electric field confinement effect on charge transport in organic field-effect transistors
Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.
2012-01-01
While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low
Two-fluid model for transient analysis of slug flow in oil wells
International Nuclear Information System (INIS)
Cazarez-Candia, O.; Benitez-Centeno, O.C.; Espinosa-Paredes, G.
2011-01-01
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.
Two-fluid model for transient analysis of slug flow in oil wells
Energy Technology Data Exchange (ETDEWEB)
Cazarez-Candia, O., E-mail: ocazarez@imp.mx [Instituto Mexicano del Petroleo, Eje central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico); Instituto Tecnologico de Zacatepec, Depto. de Metal-Mecanica, Calzada Tecnologico, No. 27, Zacatepec, Morelos 62780 (Mexico); Benitez-Centeno, O.C. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Depto. de Mecanica, Interior Internado Palmira s/n, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico); Espinosa-Paredes, G. [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No 186, Col. Vicentina 55-534, Mexico D.F. 09340 (Mexico)
2011-06-15
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.
Energy Technology Data Exchange (ETDEWEB)
Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)
2017-02-15
Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two
QCD Effective Field Theories for Heavy Quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora
2006-01-01
QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT
Effective field theory approach to nuclear matter
International Nuclear Information System (INIS)
Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.
2006-01-01
Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions
Polarization effects in molecular mechanical force fields
Energy Technology Data Exchange (ETDEWEB)
Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)
Imaging using long range dipolar field effects
International Nuclear Information System (INIS)
Gutteridge, Sarah
2002-01-01
The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)
Graphene Field Effect Transistor for Radiation Detection
Li, Mary J. (Inventor); Chen, Zhihong (Inventor)
2016-01-01
The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.
Wormhole solutions sourced by fluids, I: Two-fluid charged sources
Energy Technology Data Exchange (ETDEWEB)
Azreg-Ainou, Mustapha [Baskent University, Faculty of Engineering, Ankara (Turkey)
2016-01-15
We briefly discuss some of the known and new properties of rotating geometries that are relevant to this work. We generalize the analytical method of superposition of fields, known for generating nonrotating solutions, and apply it to construct massless and massive rotating physical wormholes sourced by a source-free electromagnetic field and an exotic fluid both anisotropic. Their stress-energy tensors are presented in compact and general forms. For the massive rotating wormholes there exists a mass-charge constraint yielding almost no more dragging effects than ordinary stars. There are conical spirals through the throat along which no local negative energy densities are noticed for these rotating wormholes. This conclusion extends to nonrotating massive type I wormholes derived previously by the author, which seem to be the first kind of nonrotating wormholes with this property. Based on the classification made in Azreg-Ainou (J Cosmol Astropart Phys 07:037, arXiv:1412.828 [gr-qc], 2015): ''Type I wormholes have their radial pressure dying out faster, as one moves away from the throat, than any other component of the stress-energy and thus violate the least the local energy conditions. In type II (resp. III) the radial and transverse pressures are asymptotically proportional and die out faster (resp. slower) than the energy density''. (orig.)
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn
2008-01-01
understood. This paper provides a systematic and up-to-date review of two-fluid nozzle designs and principles together with a presentation of nozzle fundamentals introducing basic nozzle theory and thermodynamics. Correlations for the prediction of mean droplet diameters are reviewed, compared...
DEFF Research Database (Denmark)
Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen
2012-01-01
A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake in the i...
B. Koren (Barry); M.R. Lewis; E.H. van Brummelen (Harald); B. van Leer
2001-01-01
textabstractA finite-volume method is presented for the computation of compressible flows of two immiscible fluids at very different densities. The novel ingredient in the method is a two-fluid linearized Godunov scheme, allowing for flux computations in case of different fluids (e.g., water and
Field emission current from a junction field-effect transistor
Energy Technology Data Exchange (ETDEWEB)
Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)
2015-04-15
Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.
Magnetic field effects on electrochemical metal depositions
Directory of Open Access Journals (Sweden)
Andreas Bund, Adriana Ispas and Gerd Mutschke
2008-01-01
Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.
Effective lagrangian from bosonic string field theory
International Nuclear Information System (INIS)
Nakazawa, Naohito
1987-01-01
We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)
Effective field equations for expectation values
International Nuclear Information System (INIS)
Jordan, R.D.
1986-01-01
We discuss functional methods which allow calculation of expectation values, rather than the usual in-out amplitudes, from a path integral. The technique, based on Schwinger's idea of summing over paths which go from the past to the future and then back to the past, provides effective field equations satisfied by the expectation value of the field. These equations are shown to be real and causal for a general theory up to two-loop order, and unitarity is checked to this order. These methods are applied to a simple quantum-mechanical example to illustrate the differences between the new formalism and the standard theory. When applied to the gravitational field, the new effective field equations should be useful for studies of quantum cosmology
On the field determination of effective porosity
International Nuclear Information System (INIS)
Javandel, I.
1989-03-01
Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs
Effective field theory for triaxially deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)
2017-10-15
Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
Playing with QCD I: effective field theories
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
Three-dimensional two-fluid Braginskii simulations of the large plasma device
Energy Technology Data Exchange (ETDEWEB)
Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Rossi, Giovanni D.; Guice, Daniel S.; Carter, Troy A. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.
Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability
Energy Technology Data Exchange (ETDEWEB)
Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada
2003-01-28
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.
Electric Field Effects in RUS Measurements
Energy Technology Data Exchange (ETDEWEB)
Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK
2009-09-21
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.
International Nuclear Information System (INIS)
Lyu, L.H.; Kan, J.R.
1989-01-01
Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
On the derivation of effective field theories
International Nuclear Information System (INIS)
Uzunov, Dimo I.
2004-12-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
On some nonlinear effects in ultrasonic fields
Tjotta
2000-03-01
Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical
ALPs effective field theory and collider signatures
DEFF Research Database (Denmark)
Brivio, I.; Gavela, M. B.; Merlo, L.
2017-01-01
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is d...... final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations....
International Nuclear Information System (INIS)
Papin, M.
2005-06-01
This work dedicated to the study of the hypersonic re-entry of vehicles in the atmosphere crossing clouds of particles implies the study of two-fluid flow and it is shown that some developments can be applied to the two-fluid models used to describe the phase transformation occurring in a target irradiated by laser beams. The calculation of wall fluxes on hypersonic re-entry vehicles requires the modeling of the interactions with clouds. Two-fluid flows posing many physical and mathematical problems, one studies an alternative model due to Abgrall and Saurel: the discrete equation method (DEM). Three axis are chosen. The first proposes a finite volume discretization of the Navier-Stokes equations on hybrid grids adapted to the context. The second extends the DEM within a multi-fluid not-structured N-D framework. A limit study associates an original continuous model to him: it allows to modify usual two-fluid seven equations models to obtain a phasic entropy principle. In spite of good properties, the continuous description of the particles is unsuited to the problem. The last axis is a study of the follow-up of pointwise particles which does not allow realistic calculation of parietal fluxes. An original model, extending the usual hydro-erosion models, however makes it possible to evaluate rebounds, erosion of the body and wall fluxes. The appendices expose approximate and exact Riemann solvers between pure fluids, discretization of the Baer and Nunziato model, and relations describing the atmosphere, water and heat fluxes
Toroidal field ripple effects in large tokamaks
International Nuclear Information System (INIS)
Uckan, N.A.; Tsang, K.T.; Callen, J.D.
1975-01-01
In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2017-01-15
Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.
MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model
International Nuclear Information System (INIS)
Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio
1991-05-01
MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)
Band mixing effects in mean field theories
International Nuclear Information System (INIS)
Kuyucak, S.; Morrison, I.
1989-01-01
The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs
Field Effect Microparticle Generation for Cell Microencapsulation.
Hsu, Brend Ray-Sea; Fu, Shin-Huei
2017-01-01
The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.
Field theory approach to quantum hall effect
International Nuclear Information System (INIS)
Cabo, A.; Chaichian, M.
1990-07-01
The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig
Vortex-induced morphology on a two-fluid interface and the transitions.
Tsai, J-C; Tao, C-Y; Sun, Y-C; Lai, C-Y; Huang, K-H; Juan, W-T; Huang, J-R
2015-09-01
We investigate experimentally the steady flows in a cylinder containing two immiscible liquids, with the primary fluid being driven by the upper boundary rotating at constant speeds. The system exhibits interesting interplays between the flow fields and the morphology of the interface, with evidence showing that the remarkable flattop structure is a consequence of the vortex breakdown discovered decades ago, and that the deformability of the interface also feedbacks positively to the development of the vortices. Monitoring the topological structure of the flow fields defines the base states and transitions behind the morphology, whereas our survey over different aspect ratios also reveals rich phenomena of surface instabilities accompanying these steady states.
Magnetic field effects in hybrid perovskite devices
Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.
2015-05-01
Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M
Nanowire field effect transistors principles and applications
Jeong, Yoon-Ha
2014-01-01
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
Effective-field theories for heavy quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio
2005-01-01
This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production
Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.
Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M
2004-10-15
The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.
K-FIX: a computer program for transient, two-dimensional, two-fluid flow
International Nuclear Information System (INIS)
Rivard, W.C.; Torrey, M.D.
1976-11-01
The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds using the K-FIX program. Each phase is described in terms of its own density, velocity, and temperature. The six field equations for the two phases couple through mass, momentum, and energy exchange. The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively without linearizing the equations, thus eliminating the need for numerous derivative terms. K-FIX is written in a highly modular form to be easily adaptable to a variety of problems. It is applied to growth of an isolated steam bubble in a superheated water pool
Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira
2018-04-01
We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
Effective field theories for correlated electrons
International Nuclear Information System (INIS)
Wallington, J.P.
1999-10-01
In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)
Regan, William; Zettl, Alexander
2015-05-05
This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.
International Nuclear Information System (INIS)
Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.
2010-01-01
Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.
Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.
2012-10-01
Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Effective Field Theory with Two Higgs Doublets
Crivellin, Andreas; Procura, Massimiliano
2016-01-01
In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.
Effective masses and the nuclear mean field
International Nuclear Information System (INIS)
Mahaux, C.; Sartor, R.
1985-01-01
The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
The Effective Field Theory of nonsingular cosmology
Energy Technology Data Exchange (ETDEWEB)
Cai, Yong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Wan, Youping [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui 230026 (China); Li, Hai-Guang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Qiu, Taotao [Institute of Astrophysics, Central China Normal University,Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University,Wuhan 430079 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)
2017-01-20
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
The Effective Field Theory of nonsingular cosmology
International Nuclear Information System (INIS)
Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2017-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Global effects in quaternionic quantum field theory
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1997-01-01
A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,
Oxidation and crystal field effects in uranium
Energy Technology Data Exchange (ETDEWEB)
Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)
2015-07-06
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO_{2}), uranium trioxide (UO_{3}), and uranium tetrafluoride (UF_{4}). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.
The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Energy Technology Data Exchange (ETDEWEB)
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Nucleon Polarisabilities and Effective Field Theories
Griesshammer, Harald W.
2017-09-01
Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.
ALPs effective field theory and collider signatures
Energy Technology Data Exchange (ETDEWEB)
Brivio, I. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Copenhagen, Niels Bohr International Academy, Copenhagen (Denmark); Gavela, M.B.; Merlo, L.; Rey, R. del [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Mimasu, K. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); No, J.M. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); King' s College London, Department of Physics, London (United Kingdom); Sanz, V. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-08-15
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-Z, mono-W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations. (orig.)
Consistency relations in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
Deformable Organic Nanowire Field-Effect Transistors.
Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan
2018-02-01
Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale
2017-11-01
The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
Miranda, Jose; Brandao, Rodolfo
2017-11-01
We study a family of generalized elastica-like equilibrium shapes that arise at the interface separating two fluids in a curved rotating Hele-Shaw cell. This family of stationary interface solutions consists of shapes that balance the competing capillary and centrifugal forces in such a curved flow environment. We investigate how the emerging interfacial patterns are impacted by changes in the geometric properties of the curved Hele-Shaw cell. A vortex-sheet formalism is used to calculate the two-fluid interface curvature, and a gallery of possible shapes is provided to highlight a number of peculiar morphological features. A linear perturbation theory is employed to show that the most prominent aspects of these complex stationary patterns can be fairly well reproduced by the interplay of just two interfacial modes. The connection of these dominant modes to the geometry of the curved cell, as well as to the fluid dynamic properties of the flow, is discussed. We thank CNPq (Brazilian Research Council) for financial support under Grant No. 304821/2015-2.
Energy Technology Data Exchange (ETDEWEB)
Cachard, F. de [Laboratory for Thermal Hydraulics, Villigen (Switzerland)
1995-09-01
Inverted-Annular Film-Boiling (IAFB) is one of the post-burnout heat transfer modes taking place during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous, liquid core is separated from the wall by a superheated vapour film. the heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfers between the wall, the vapour film, the vapour-liquid interface, and the liquid core. Such closure laws have been developed and adjusted using IAFB-relevant experimental results, including heat flux, wall temperature and void fraction data. The model is extensively assessed against data from three independent sources. A total of 46 experiments have been analyzed. The overall predictions are good. The IAFB-specific closure laws proposed have also intrinsic value, and may be used in other two-fluid models. They should allow to improve the description of post-dryout, low quality heat transfer by the safety codes.
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Two fluid plasmas in the vicinity of a Schwarzschild black hole
International Nuclear Information System (INIS)
Buzzi, V.; Hines, K.C.
1992-01-01
The 3+1 split of general relativity has been used to investigate the dispersion relation for certain plasma waves, together with the two stream instability, in the vicinity of a Schwarzschild black hole horizon. In contrast to the special relativistic results, the dispersion relations discussed here contain additional terms involving the gravitational acceleration, a, and the lapse function α. Some of these terms are imaginary and should correspond to gravitational damping effects. 5 refs
Two-Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence
Che, H.
2014-01-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum tra...
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
International Nuclear Information System (INIS)
Inoue, Tsuyoshi; Inutsuka, Shu-ichiro
2009-01-01
Formation of interstellar clouds as a consequence of thermal instability is studied using two-dimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We find, as speculated in Paper I, that in the shocked slab magnetic pressure dominates thermal pressure and the thermal instability grows in the isochorically cooling, thermally unstable slab that leads to the formation of H I clouds whose number density is typically n ∼ -3 , even if the angle between magnetic field and converging flows is small. We also find that even if there is a large dispersion of magnetic field, evolution of the shocked slab is essentially determined by the angle between the mean magnetic field and converging flows. Thus, the direct formation of molecular clouds by piling up warm neutral medium does not seem to be a typical molecular cloud formation process, unless the direction of supersonic converging flows is biased to the orientation of mean magnetic field by some mechanism. However, when the angle is small, the H I shell generated as a result of converging flows is massive and possibly evolves into molecular clouds, provided gas in the massive H I shell is piled up again along the magnetic field line. We expect that another subsequent shock wave can again pile up the gas of the massive shell and produce a larger cloud. We thus emphasize the importance of multiple episodes of converging flows, as a typical formation process of molecular clouds.
International Nuclear Information System (INIS)
Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.
2013-01-01
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d i to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I tor /I inj ) and formation time τ f demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I tor /I inj ) and exhibits much a longer τ f . Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD
Magnetic Field Effects on Plasma Plumes
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
Simple interphase drag model for numerical two-fluid modeling of two-phase flow systems
International Nuclear Information System (INIS)
Chow, H.; Ransom, V.H.
1984-01-01
The interphase drag model that has been developed for RELAP5/MOD2 is based on a simple formulation having flow regime maps for both horizontal and vertical flows. The model is based on a conventional semi-empirical formulation that includes the product of drag coefficient, interfacial area, and relative dynamic pressure. The interphase drag model is implemented in the RELAP5/MOD2 light water reactor transient analysis code and has been used to simulate a variety of separate effects experiments to assess the model accuracy. The results from three of these simulations, the General Electric Company small vessel blowdown experiment, Dukler and Smith's counter-current flow experiment, and a Westinghouse Electric Company FLECHT-SEASET forced reflood experiment, are presented and discussed
Effective field theory of cosmological perturbations
International Nuclear Information System (INIS)
Piazza, Federico; Vernizzi, Filippo
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)
Effective field theory of cosmological perturbations
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
Simplified two-fluid current–voltage relation for superconductor transition-edge sensors
International Nuclear Information System (INIS)
Wang, Tian-Shun; Chen, Jun-Kang; Zhang, Qing-Ya; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang
2013-01-01
We propose a simplified current–voltage (IV) relation for the analysis and simulation of superconductor transition-edge sensor (TES) circuits. Compared to the conventional approach based on the effective TES resistance, our expression describes the device behavior more thoroughly covering the superconducting, transitional, and normal-state for TES currents in both directions. We show how to use our IV relation to perform small-signal analysis and derive the device's temperature and current sensitivities based on its physical parameters. We further demonstrate that we can use our IV relation to greatly simplify TES device modeling and make SPICE simulation of TES circuits easily accessible. We present some interesting results as examples of valuable simulations enabled by our IV relation. -- Highlights: •We propose an IV relation for superconductor transition-edge sensors (TES). •We derive the dependence of the sensitivity of TES on its physical parameters. •We use our IV relation for SPICE modeling of TES device. •We present simulation results using device model based on our IV relation
Simplified two-fluid current–voltage relation for superconductor transition-edge sensors
Energy Technology Data Exchange (ETDEWEB)
Wang, Tian-Shun; Chen, Jun-Kang [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei City, Anhui Province 230026 (China); Zhang, Qing-Ya; Li, Tie-Fu; Liu, Jian-She [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Chen, Wei, E-mail: weichen@tsinghua.edu.cn [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Zhou, Xingxiang, E-mail: xizhou@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei City, Anhui Province 230026 (China)
2013-11-21
We propose a simplified current–voltage (IV) relation for the analysis and simulation of superconductor transition-edge sensor (TES) circuits. Compared to the conventional approach based on the effective TES resistance, our expression describes the device behavior more thoroughly covering the superconducting, transitional, and normal-state for TES currents in both directions. We show how to use our IV relation to perform small-signal analysis and derive the device's temperature and current sensitivities based on its physical parameters. We further demonstrate that we can use our IV relation to greatly simplify TES device modeling and make SPICE simulation of TES circuits easily accessible. We present some interesting results as examples of valuable simulations enabled by our IV relation. -- Highlights: •We propose an IV relation for superconductor transition-edge sensors (TES). •We derive the dependence of the sensitivity of TES on its physical parameters. •We use our IV relation for SPICE modeling of TES device. •We present simulation results using device model based on our IV relation.
Effective field theory for cold atoms
International Nuclear Information System (INIS)
Hammer, H.-W.
2005-01-01
Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed
Nuclear parity violation in effective field theory
International Nuclear Information System (INIS)
Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van
2005-01-01
We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV
Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics
International Nuclear Information System (INIS)
Cang Yu; Lu Xin; Wu Huichun; Zhang Jie
2005-01-01
Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)
Orientational dynamics of superfluid 3He: A ''Two-fluid'' model . II. orbital dynamics
International Nuclear Information System (INIS)
Leggett, A.J.; Takagi, S.
1978-01-01
We present a phenomenological theory of the homogeneous orbital dynamics of the class of ''separable'' anisotropic superfluid phases which includes the ABM state generally identified with 3 He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the ''pseudo-angular momentum'' of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the ''superfluid spin'' S/sub p/. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (''normal locking''), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies ωvery-much-less-thanΔ (T)/h irrespective of the value of ωtau. (Δ=gap parameter, tau=quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the ''gapless'' region very close to T/sub c/.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an ''orbital susceptibility of the Cooper pairs'' chi/sub orb/
International Nuclear Information System (INIS)
EI-Shorbagy, Kh.H.
2002-11-01
The stabilization effect of a strong HP electric field on beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique 'separation method' which has been applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)
Energy Technology Data Exchange (ETDEWEB)
Ninokata, H. [Tokyo Institute of Technology (Japan); Deguchi, A. [ENO Mathematical Analysis, Tokyo (Japan); Kawahara, A. [Kumamoto Univ., Kumamoto (Japan)
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at the phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.
DEFF Research Database (Denmark)
Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen
2012-01-01
A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...
International Nuclear Information System (INIS)
Kataoka, Isao; Tomiyama, Akio
2004-01-01
The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill
Effective field theory description of halo nuclei
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Munkejord, Svend Tollak
2006-05-11
This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
International Nuclear Information System (INIS)
El-Shorbagy, K.H.
2000-07-01
The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)
Chemical effects in the near-field
International Nuclear Information System (INIS)
Ewart, F.T.; Tasker, P.W.
1987-01-01
A research program is described which is designed to investigate the chemical conditions in the near-field of a concrete based repository and the behavior of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a new coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. Results are reported for plutonium, americium, neptunium and lead; these results have been under to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behavior of plutonium and americium, under the same conditions, have been studied, the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio
A periodic table of effective field theories
Energy Technology Data Exchange (ETDEWEB)
Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
Room Temperature Silicene Field-Effect Transistors
Akinwande, Deji
Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.
Positrons trapped in polyethylene: Electric field effect
International Nuclear Information System (INIS)
Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.
1978-01-01
The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de
Orbital effect of the magnetic field in dynamical mean-field theory
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Plasma Flows in Crossed Magnetic and Electric Fields
International Nuclear Information System (INIS)
Belikov, A.G.
2005-01-01
The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field
Nuclear Forces from Effective Field Theory
International Nuclear Information System (INIS)
Krebs, H.
2011-01-01
Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories
Adjoint sensitivity analysis of the RELAPS/MOD3.2 two-fluid thermal-hydraulic code system
International Nuclear Information System (INIS)
Ionescu-Bujor, M.
2000-10-01
This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the non-equilibrium, non-homogeneous two-fluid model, including boron concentration and non-condensable gases, of the RELAP5/MOD3.2 code. The end-product of this implementation is the Adjoint Sensitivity Model (ASM-REL/TF), which is derived for both the differential and discretized equations underlying the two-fluid model with non-condensable(s). The consistency requirements between these two representations are also highlighted. The validation of the ASM-REL/TF has been carried out by using sample problems involving: (i) liquid-phase only, (ii) gas-phase only, and (iii) two-phase mixture (of water and steam). Thus the 'Two-Loops with Pumps' sample problem supplied with RELAP5/MOD3.2 has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when only the liquid-phase is present. Furthermore, the 'Edwards Pipe' sample problem, also supplied with RELAP5/MOD3.2, has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when both (i.e., liquid and gas) phases are present. In addition, the accuracy and stability of the numerical solution of the ASM-REL/TF have been verified when only the gas-phase is present by using modified 'Two-Loops with Pumps' and the 'Edwards Pipe' sample problems in which the liquid and two-phase fluids, respectively, were replaced by pure steam. The results obtained for these sample problems depict typical sensitivities of junction velocities and volume-averaged pressures to perturbations in initial conditions, and indicate that the numerical solution of the ASM-REL/TF is as robust, stable, and accurate as the original RELAP5/MOD3.2 calculations. In addition, the solution of the ASM-REL/TF has been used to calculate sample sensitivities of volume-averaged pressures to variations in the pump head. (orig.) [de
Simulations of Wind Field Effect on Two-Stream Waves in the Equatorial Electrojet
Directory of Open Access Journals (Sweden)
Chi-Lon Fern
2009-01-01
Full Text Available The wind field effect on the phase veloc i ties of 3- to 10-me ter Farley-Buneman two-stream waves in the equato rial E region ion o sphere at al titudes in the range of 95 - 110 km is stud ied by nu mer i cal simu la tion. The behav ior of this two-stream wave in the uni form wind field Un in a plane per pen dic u lar to the Earth’s mag netic field is simu lated with a two-di men sional two-fluid code in which elec tron in er tia is ne glected while ion in er tia is re tained. It is con firmed that, the thresh old con di tion for the ap pear ance of two-stream waves is VD C U th » + s + n (1 / cos Y0 q ; and the phase ve loc ity of the two-stream wave at the thresh old con di tion is Vp » Cs + Un cos q, where q is the ele va tion an gle of the wave prop a ga tion in a limited range and Y0 = ninnen / WiWe. The first formula in di cates that the wind field paral lel (anti-par al lel to the elec tron drift ve loc ity will raise (lower the thresh old drift ve loc ity by the amount of the wind speed. This means that par al lel wind is a sta ble fac tor, while anti-paral lel wind is an un sta ble fac tor of two-stream waves. This may ex plain why high speed (larger than acous tic speed two-stream waves were rarely ob served, since larger thresh old drift veloc ity de mands larger po larization elec tric field. The result of the simu la tions at the sat u ra tion stage show that when VD was only slightly larger than VD th , the hor i zon tal phase ve loc ity of the two-stream wave would grad u ally down-shift to the thresh old phase ve loc ity Cs + Un. The physical implications of which are discussed
International Nuclear Information System (INIS)
Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.
1988-01-01
Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)
Utilizing Urban Environments for Effective Field Experiences
MacAvoy, S. E.; Knee, K.
2014-12-01
Research surveys suggest that students are demanding more applied field experiences from their undergraduate environmental science programs. For geoscience educators at liberal arts colleges without field camps, university vehicles, or even geology departments, getting students into the field is especially rewarding - and especially challenging. Here, we present strategies that we have used in courses ranging from introductory environmental science for non-majors, to upper level environmental methods and geology classes. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Here we share detailed lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency, and provide student feedback about the classes and activities.
Transverse Field Effect in Fluxgate Sensors
DEFF Research Database (Denmark)
Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V
1997-01-01
A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non-linearity......A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non......-linearity are made with a spectrum analyser, measuring the higher harmonics of an applied sinusoidal field. For a sensor with a permalloy ringcore of 1" in diameter the deviation from linearity is measured to about 15 nTp-p in the earth's field and the measurements are shown to fit well the calculations. Further......, the measurements and the calculations are also compared with a calibration model of the fluxgate sensor onboard the "MAGSAT" satellite. The later has a deviation from linearity of about 50 nTp-p but shows basically the same form of non-linearity as the measurements....
Magnetic field and screening effects in condensed and ultradense matter
International Nuclear Information System (INIS)
Roussel, K.M.
1974-01-01
The investigations of three topics are presented: the origin of magnetic fields in white dwarfs and neutron stars, the detection of magnetic fields in white dwarfs, and screening effects due to free charged particles, particularly in semiconductors. (U.S.)
International Nuclear Information System (INIS)
Uvarov, V.M.; Barashkov, P.D.
1985-01-01
The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields
Effect of electromagnetic fields on the bacteria bioluminescent activity
International Nuclear Information System (INIS)
Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.
1995-01-01
The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs
Direct coupled amplifiers using field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-03-15
The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with
International Nuclear Information System (INIS)
Yao, W.; Coste, P.; Bestion, D.; Boucker, M.
2003-01-01
In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow
International Nuclear Information System (INIS)
Nafari, F.; Yazdani, E.; Malekynia, B.; Ghoranneviss, M.
2010-01-01
Complete text of publication follows. Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic self-focusing if prepulses are cut-off by a contrast ratio higher than 10 8 . Resulting non-linear ponderomotive forces induced at the skin-layer interaction of a short laser-pulse with a proper preplasma layer produced by the laser prepulse in front of a solid target accelerate two thin (a few μm) quasi-neutral plasma blocks, propagating in forward and backward directions, backward moving against the laser light (ablation) and forward moving into the target. This compressed block produces an ion current density of above 10 11 A/cm 2 . This may support the requirement to produce a fast ignition deuterium tritium fusion at densities not much higher than the solid state by a single shot pw-ps laser pulse. With studying skin-layer subrelativistic interaction of a short (≤ 1 ps) laser pulse with an initial Rayleigh density profile in genuine two-fluid hydrodynamic model, time and spatial distributions of ion block temperature are presented.
International Nuclear Information System (INIS)
Lee, J.H.; Park, G.C.; Cho, H.K.
2015-01-01
In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)
Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin
2011-11-01
The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).
The stark effect in intense field. 2
International Nuclear Information System (INIS)
Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.
1987-01-01
The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
International Nuclear Information System (INIS)
Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori
2016-01-01
Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.
Energy Technology Data Exchange (ETDEWEB)
Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun
2007-12-15
A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.
Self-field effects on electron dynamics in free-electron lasers with axial magnetic field
International Nuclear Information System (INIS)
Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.
2004-01-01
A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region
Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak
Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.
2018-02-01
The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.
Field-effect detection using phospholipid membranes -Topical Review
Directory of Open Access Journals (Sweden)
Chiho Kataoka-Hamai and Yuji Miyahara
2010-01-01
Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.
Effect of tidal fields on star clusters
Chernoff, David; Weinberg, Martin
1991-01-01
We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).
Effects of the magnetic field on the structure of materials
International Nuclear Information System (INIS)
Nakajima, Tetsuo
1984-02-01
This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)
Boundary effects in quantum field theory
International Nuclear Information System (INIS)
Deutsch, D.; Candelas, P.
1979-01-01
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary
Modulation of continuous electron beams in plasma wake-fields
International Nuclear Information System (INIS)
Rosenzweig, J.B.
1988-01-01
In this paper we discuss the interaction of a continuous electron beam with wake-field generated plasma waves. Using a one-dimensional two fluid model, a fully nonlinear analytical description of the interaction is obtained. The phenomena of continuous beam modulation and wave period shortening are discussed. The relationship between these effects and the two-stream instability is also examined. 12 refs., 1 fig
Planar Hall effect bridge magnetic field sensors
DEFF Research Database (Denmark)
Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.
2010-01-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....
Generalization of the cogeneration concept as field theory effects
International Nuclear Information System (INIS)
Forje, A.; Tiberiu, C.; Calugaru, A.; Carstea, O.; Dorobantu, G.; Barota, R.; Balan, N.; Mariam, G.; Udrea, E.
1990-01-01
This paper reports on the reformulated notions regarding energy, action geodesic and non-linearity that were defined. Information geodesic is defined as pathway of perceptible and quantifiable signals emitted and received during the evolution of the conversion of a mass field in interaction with the energy field. The objective reality at the level of the distances ranging in between the limits of human ability of perception and quantification can be regarded as an interpenetrative complex of two fields namely: a diffuse, extensive and continuous energy field with multiple manifestation possibilities which is indirectly perceived and quantified through its interaction effects with the field of masses during their conversion; a discrete, intensive and discontinuous field of masses also showing multiple manifestation possibilities which render possible both the perception of this field and quantification of its conversions as an effect of the interactions with the energy field
International Nuclear Information System (INIS)
No, H.C.; Kazimi, M.S.
1983-03-01
This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
Impurity effects in the electrothermal instability
International Nuclear Information System (INIS)
Tomimura, A.; Azevedo, M.T. de
1982-01-01
A 'impure' plasma model is proposed based on the homogeneous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the electrothermal instable mode growth with the wave vector perpendicular to the applied magnetic field. The impurities are introduced implicitly in the transport coefficients of the two-fluid model through a effective charge number Z sub(eff). (Author) [pt
Effects of magnetic fields in white dwarfs
International Nuclear Information System (INIS)
Franzon, Bruno; Schramm, Stefan
2017-01-01
We perform calculations of white dwarfs endowed with strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ∼ 1.4 M⊙. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ∼ 2.0 M⊙. (paper)
Nuclear matter from chiral effective field theory
International Nuclear Information System (INIS)
Drischler, Christian
2017-01-01
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal
Nuclear matter from chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Drischler, Christian
2017-11-15
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the
Analysis of a high brightness photo electron beam with self field and wake field effects
International Nuclear Information System (INIS)
Parsa, Z.
1991-01-01
High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surface and the self field of the bunch)
Effective field theory: A modern approach to anomalous couplings
International Nuclear Information System (INIS)
Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen
2013-01-01
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics
Dissipative Effects in the Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study
2012-09-14
We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.
Radiation, waves, fields. Causes and effects on environment and health
International Nuclear Information System (INIS)
Leitgeb, N.
1990-01-01
The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de
Impact of electric field on Hofmeister effects in aggregation of ...
Indian Academy of Sciences (India)
Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...
The effects of magnetic fields on carnauba wax electret formation
Clator, Irvin G.
1987-08-01
The results of thermally stimulated depolarization current and effective surface charge-density measurements indicate that magnetic fields do not produce carnauba wax electrets and that previously reported data can be attributed to nonmagnetic effects.
Nanometer size field effect transistors for terahertz detectors
International Nuclear Information System (INIS)
Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T
2013-01-01
Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)
High mobility polymer gated organic field effect transistor using zinc ...
Indian Academy of Sciences (India)
Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...
Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...
Effective potentials in gauge field theories
International Nuclear Information System (INIS)
Caldas, P.S.S.; Fleming, H.; Garcia, R.L.
An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt
Wang, J.; Hoef, van der M.A.; Kuipers, J.A.M.
2009-01-01
It is well known that two-fluid models (TFMs) can successfully predict the hydrodynamics of Geldart B and D particles. However, up to now, TFM have failed to accurately describe the hydrodynamics of Geldart A particles inside bubbling gas-fluidized beds: Researchers have reported that bed expansions
Wang, J.; van der Hoef, Martin Anton; Kuipers, J.A.M.
2009-01-01
It is well known that two-fluid models (TFMs) can successfully predict the hydrodynamics of Geldart B and D particles. However, up to now, TFM have failed to accurately describe the hydrodynamics of Geldart A particles inside bubbling gas-fluidized beds: Researchers have reported that bed expansions
Is the effective field theory of dark energy effective?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)
2016-05-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.
Microbes safely, effectively bioremediate oil field pits
International Nuclear Information System (INIS)
Shaw, B.; Block, C.S.; Mills, C.H.
1995-01-01
Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
International Nuclear Information System (INIS)
Melrose, D. B.
2010-01-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
Energy Technology Data Exchange (ETDEWEB)
Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)
2010-12-20
The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
Effective and fundamental quantum fields at criticality
International Nuclear Information System (INIS)
Scherer, Michael
2010-01-01
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
END FIELD EFFECTS IN BEND ONLY COOLING LATTICES
International Nuclear Information System (INIS)
BEERG, J.S.; KIRK, H.; GARREN, A.
2003-01-01
Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them
Magnetic field and magnetic isotope effects on photochemical reactions
International Nuclear Information System (INIS)
Wakasa, Masanobu
1999-01-01
By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)
Electric field effects in hyperexcitable neural tissue: A review
International Nuclear Information System (INIS)
Durand, D.M.
2003-01-01
Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)
Information loss in effective field theory: Entanglement and thermal entropies
Boyanovsky, Daniel
2018-03-01
Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.
Directory of Open Access Journals (Sweden)
Hao Pan
2016-01-01
Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.
Effects of hypersonic field and anharmonic interactions on channelling radiation
International Nuclear Information System (INIS)
George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G
2007-01-01
The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably
Developmental effects of extremely low frequency electric and magnetic fields
International Nuclear Information System (INIS)
Juutilainen, J.
2003-01-01
Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)
Magnetic field shielding effect for CFETR TF coil-case
Energy Technology Data Exchange (ETDEWEB)
Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing
2017-05-15
Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.
International Nuclear Information System (INIS)
Yamagishi, Tomejiro; Sanuki, Heiji.
1996-01-01
Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)
Experimental realization of a silicon spin field-effect transistor
Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian
2007-01-01
A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto
2015-01-01
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Channel-closing effects in strong-field ionization by a bicircular field
Milošević, D. B.; Becker, W.
2018-03-01
Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.
Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster
Matlock, Taylor
2010-07-25
The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.
3-dimensional simulation of dynamo effect of reversed field pinch
International Nuclear Information System (INIS)
Koide, Shinji.
1990-09-01
A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)
Anbarashan, Padmavathy; Gopalswamy, Poyyamoli
2013-07-15
The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.
Multiphysics control of a two-fluid coaxial atomizer supported by electric-charge on the liquid jet
Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto
2017-11-01
We present an experimental setup to investigate multiphysics control strategies on atomization of a laminar fluid stream by a coaxial turbulent jet. Spray control (i.e. driving the droplet size distribution and the spatio-temporal location of the droplets towards a desired objective) has many potential engineering applications, but requires a mechanistic understanding of the processes that control droplet formation and transport (primary and secondary instabilities, turbulent transport, hydrodynamic and electric forces on the droplets, ...). We characterize experimentally the break-up dynamics in a canonical coaxial atomizer, and the spray structure (droplet size, location, and velocity as a function of time) in a series of open loop conditions with harmonic forcing of the gas swirl ratio, liquid injection rate, the electric field strength at the nozzle and along the spray development region. The effect of these actuators are characterized for different gas Reynolds numbers ranging from 104-106. This open-loop characterization of the injector will be used to develop reduced order models for feedback control, as well as to validate assumptions underlying an adjoint-based computational control strategy. This work is part of a large-scale project funded by an ONR MURI to provide fundamental understanding of the mechanisms for feedback control of sprays.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Effects of Radial Electric Fields on ICRF Waves
International Nuclear Information System (INIS)
Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.
2001-01-01
Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model
Effective interactions from q-deformed quark fields
International Nuclear Information System (INIS)
Timoteo, V. S.; Lima, C. L.
2007-01-01
From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed
The effectiveness of Farmer Field School (FFS) training on farmers ...
African Journals Online (AJOL)
The effectiveness of Farmer Field School (FFS) training on farmers competence in Integrated Pest Management (IPM) of Cocoa in Ondo state, Nigeria. ... of years of cocoa farming (b=1.785) and participation in Farmer Field School training (b ...
Quark pair creation in color electric fields and effects of magnetic fields
International Nuclear Information System (INIS)
Tanji, Noato
2010-01-01
The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Differentiated-effect shims for medium field levels and saturation
International Nuclear Information System (INIS)
Richie, A.
1976-01-01
The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)
Toroidal field effects on the stability of Heliotron E
International Nuclear Information System (INIS)
Carreras, B.A.; Garcia, L.; Lynch, V.E.
1986-02-01
The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs
Nucleon effective masses in field theories of dense matter
Energy Technology Data Exchange (ETDEWEB)
Lee, C H; Reddy, S; Prakash, M [Dept. of Physics and Astronomy, Stony Brook, NY (United States)
1998-06-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
effect of brinkman number and magnetic field on laminar convection ...
African Journals Online (AJOL)
Joseph et al.
Science World Journal Vol 12(No 4) 2017 ... Joule heating on the fully developed MHD flow with heat transfer .... fluid in a vertical parallel – plate with effect of magnetic field and ..... Plates Channel, Proceedings of the 2013 International.
Nucleon effective masses in field theories of dense matter
International Nuclear Information System (INIS)
Lee, C.H.; Reddy, S.; Prakash, M.
1998-01-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
Cylindrical Field Effect Transistor: A Full Volume Inversion Device
Fahad, Hossain M.
2010-01-01
inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors
Hyperon-nucleon interactions - a chiral effective field theory approach
Polinder, H.; Haidenbauer, J.; Meissner, U.G.
2006-01-01
We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme
Vertically aligned carbon nanotube field-effect transistors
Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.
2012-01-01
Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed
Gravitomagnetic effects in conductor in applied magnetic field
International Nuclear Information System (INIS)
Ahmedov, B.J.; Karim, M.
1999-11-01
The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)
Effect of external fields in Axelrod's model of social dynamics
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Progresses in organic field-effect transistors and molecular electronics
Institute of Scientific and Technical Information of China (English)
Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben
2006-01-01
In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.
Versatility of field theory motivated nuclear effective Lagrangian approach
International Nuclear Information System (INIS)
Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.
2004-01-01
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei
Baryon non-invariant couplings in Higgs effective field theory
International Nuclear Information System (INIS)
Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario
2017-01-01
The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)
Effect of External Electric Field Stress on Gliadin Protein Conformation
Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya
2013-01-01
A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...
Topological magnetoelectric effects in microwave far-field radiation
Energy Technology Data Exchange (ETDEWEB)
Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)
2016-07-21
Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.
Effects of a static electric field on nonsequential double ionization
International Nuclear Information System (INIS)
Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao
2007-01-01
Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI
Effect of Weak Magnetic Field on Bacterial Growth
Masood, Samina
Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.
Induced magnetic-field effects in inductively coupled plasmas
International Nuclear Information System (INIS)
Cohen, R.H.; Rognlien, T.D.
1995-01-01
In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest
Fringe field effects in small rings of large acceptance
Directory of Open Access Journals (Sweden)
Martin Berz
2000-12-01
Full Text Available Recently there has been renewed interest in the influence of fringe fields on particle dynamics, due to studies that revealed their importance in some cases, as, for example, the proposed Neutrino Factory and muon colliders. In this paper, we present a systematic study of generic fringe field effects. Using as an example a lattice of the proposed Neutrino Factory, we show that fringe fields influence the dynamics of particles at all orders, starting with the linear motion. It is found that the widely used sharp cutoff approximation leads to divergences regardless of the specific fall-off shape of the fields. The results suggest that a careful consideration of fringe field effects in the design stage of small machines for large emittances is always recommended.
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Physical effects in gravitational field of black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1986-01-01
A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed
Magnetic field effects on brain monoamine oxidase activity
Energy Technology Data Exchange (ETDEWEB)
Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.
1985-03-01
In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.
International Nuclear Information System (INIS)
Hou, Xiaofei; Rigola, Joaquim; Lehmkuhl, Oriol; Oliva, Assensi
2015-01-01
Highlights: • Two phase flow with free surface is solved by means of two-fluid model (TFM). • Fractional Step method and finite volume technique is used to solve TFM. • Conservative Level Set method reduces interface sharpening diffusion problem. • Cases including high density ratios and high viscosities validate the models. - Abstract: In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows
Review: Bioenergetic Fields and Their Biologic Effects Mechanism
Directory of Open Access Journals (Sweden)
Zahra Movaffaghi
2007-04-01
Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
Single event burnout sensitivity of embedded field effect transistors
International Nuclear Information System (INIS)
Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.
1999-01-01
Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described
Effective potential for bilocal composite fields and its ambiguity
International Nuclear Information System (INIS)
Muta, T.
1988-01-01
It is discussed that an ambiguity exists in the definition of the effective potential for bilocal composite fields which is an indispensable tool to discuss dynamical symmetry breaking. The ambiguity gives warning to arguments on the stability of ground states based on the curvature of the effective potential
The effects of lithographic residues and humidity on graphene field ...
Indian Academy of Sciences (India)
humidity at graphene field effect transistors (GFETs). While the exact means of humidity interacting with hydropho- bic graphene remains unknown, this work examines pristine and lithographic-process-applied graphene surfaces with surface ... temperature quantum Hall effect, linear electron dispersion at the vicinity of the ...
Effective magnetic moment of neutrinos in strong magnetic fields
International Nuclear Information System (INIS)
Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Single event burnout sensitivity of embedded field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.
1999-12-01
Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.
Biological interactions and human health effects of static magnetic fields
International Nuclear Information System (INIS)
Tenforde, T.S.
1994-09-01
Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided
Diffusion affected magnetic field effect in exciplex fluorescence
International Nuclear Information System (INIS)
Burshtein, Anatoly I.; Ivanov, Anatoly I.
2014-01-01
The fluorescence of the exciplex, 1 [D +δ A −δ ], formed at contact of photoexcited acceptor 1 A * with an electron donor 1 D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1,3 [D + …A − ]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates
Diffusion affected magnetic field effect in exciplex fluorescence
Energy Technology Data Exchange (ETDEWEB)
Burshtein, Anatoly I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Anatoly I., E-mail: Anatoly.Ivanov@volsu.ru [Volgograd State University, University Avenue, 100, Volgograd 400062 (Russian Federation)
2014-07-14
The fluorescence of the exciplex, {sup 1}[D{sup +δ}A{sup −δ}], formed at contact of photoexcited acceptor {sup 1}A{sup *} with an electron donor {sup 1}D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, {sup 1,3}[D{sup +}…A{sup −}]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Diffusion affected magnetic field effect in exciplex fluorescence
Burshtein, Anatoly I.; Ivanov, Anatoly I.
2014-07-01
The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Thermoelectric effects and spin injection into superconductors with exchange field
Energy Technology Data Exchange (ETDEWEB)
Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)
2015-07-01
When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.
Shaping the Educational Policy Field: "Cross-Field Effects" in the Chinese Context
Yu, Hui
2018-01-01
This paper theorises how politics, economy and migrant population policies influence educational policy, utilising Bourdieusian theoretical resources to analyse the Chinese context. It develops the work of Lingard and Rawolle on cross-field effects and produces an updated three-step analytical framework. Taking the policy issue of the schooling of…
Effects of pulsed electric field on ULQ and RFP plasmas
International Nuclear Information System (INIS)
Watanabe, M.; Saito, K.; Suzuki, T.
1997-01-01
Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)
Effects on the CMB from magnetic field dissipation before recombination
Kunze, Kerstin E.
2017-09-01
Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.
Effects of RF low levels electromagnetic fields on Paramecium primaurelia
International Nuclear Information System (INIS)
Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.
1988-01-01
In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters
Sound field reconstruction based on the acousto-optic effect
DEFF Research Database (Denmark)
Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn
2011-01-01
be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....
The neutron field perturbation effect in the Dalat Reactor
Energy Technology Data Exchange (ETDEWEB)
Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)
1994-10-01
The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.
An effective field theory for the neutron electric dipole moment
International Nuclear Information System (INIS)
Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.
1992-01-01
We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)
The relative biological effectiveness of out-of-field dose
International Nuclear Information System (INIS)
Balderson, Michael; Koger, Brandon; Kirkby, Charles
2016-01-01
Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)
Effects of extremely low frequency electromagnetic fields on human beings
International Nuclear Information System (INIS)
Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.
2010-01-01
Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)
Infrared and ultraviolet behaviour of effective scalar field theory
International Nuclear Information System (INIS)
Ball, R.D.; Thorne, R.S.
1995-01-01
We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z 2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also Weinberg's Theorem for the massive effective theory, n the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of theory. 12 refs
Infrared and ultraviolet behaviour of effective scalar field theory
Ball, R D
1995-01-01
We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z_2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also prove Weinberg's Theorem for the massive effective theory, in the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of the theory.
Effective field theory of interactions on the lattice
DEFF Research Database (Denmark)
Valiente, Manuel; Zinner, Nikolaj T.
2015-01-01
We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...
More effective field theory for non-relativistic scattering
International Nuclear Information System (INIS)
Kaplan, D.B.
1997-01-01
An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)
Globally and locally supersymmetric effective theories for light fields
Brizi, Leonardo; Scrucca, Claudio A
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen
2013-08-06
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Threshold resummation for Higgs production in effective field theory
International Nuclear Information System (INIS)
Idilbi, Ahmad; Ji Xiangdong; Ma Jianping; Yuan Feng
2006-01-01
We present an effective field theory approach to resum the large double logarithms originated from soft-gluon radiations at small final-state hadron invariant masses in Higgs and vector boson (γ*,W,Z) production at hadron colliders. The approach is conceptually simple, independent of details of an effective field theory formulation, and valid to all orders in subleading logarithms. As an example, we show the result of summing the next-to-next-to-next-to leading logarithms is identical to that of the standard pQCD factorization method
Scattering of decuplet baryons in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)
2017-11-15
A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)
Soft-collinear factorization in effective field theory
International Nuclear Information System (INIS)
Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.
2002-01-01
The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special cases. The leading-order Lagrangian is derived using power counting and gauge invariance in the effective theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with harder momenta. Two examples are given: the factorization of soft gluons in B→Dπ and the soft-collinear convolution for the B→X s γ spectrum
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien
2013-01-01
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...
Localization of effective actions in open superstring field theory
Maccaferri, Carlo; Merlano, Alberto
2018-03-01
We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.
Stern-Gerlach effect without magnetic-field gradient
International Nuclear Information System (INIS)
Zimmer, O.; Felber, J.; Schaerpf, O.
2001-01-01
The Stern-Gerlach effect is the well-known spin-dependent splitting of a neutral particle beam by a magnetic-field gradient. Guided by the pseudomagnetic analogy, we performed a similar experiment where no magnetic-field gradient is involved. The effect is due to the spin-dependence of neutron scattering from polarised nuclei, i.e. caused by the strong interaction between neutrons and nuclei. The beam splitting is proportional to the nuclear polarisation and to the spin-dependent part of the neutron scattering length. Thus it can be used to measure one of both quantities. (orig.)
Effect of the radial electric field on turbulence
International Nuclear Information System (INIS)
Carreras, B.A.; Lynch, V.E.
1990-01-01
For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs
Effects Of Field Distortions In Ih-apf Linac
Kapin, Valery; Yamada, S
2004-01-01
The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.
Electromechanical field effect transistors based on multilayer phosphorene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.
2017-06-21
Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.
Deep underground disposal of radioactive wastes: Near field effects
International Nuclear Information System (INIS)
1985-01-01
This report reviews the important near-field effects of the disposal of wastes in deep rock formations. The basic characteristics of waste form, container and package, buffer and backfill materials and potential host-rock types are discussed from the perspective of the performance requirements of the total repository system. Effects of waste emplacement on the separate system components and on the system as a whole are discussed. The effects include interactions between groundwater and brines and the other system components, thermal and thermo-mechanical effects, and chemical and geochemical reactions. Special consideration is given to the radiation field that exists in proximity to the waste containers and also to the coupled effects of different phenomena
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Interaction mechanisms and biological effects of static magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.
Retrieval of effective cloud field parameters from radiometric data
Paulescu, Marius; Badescu, Viorel; Brabec, Marek
2017-06-01
Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.
Field effects and ictal synchronization: insights from in homine observations.
Directory of Open Access Journals (Sweden)
Shennan Aibel Weiss
2013-12-01
Full Text Available It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and what they imply about the possible role of field effects in neuronal synchronization. We have identified two distinct seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large amplitude rhythmic ictal discharges produce large electric fields that correspond with relatively synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not observed. These in homine observations are in accord with decades of animal studies supporting a role of field effects in neuronal synchronization during seizures, yet also highlight how field effects may be negated in the presence of strong synaptic inhibition in the penumbra.
Reconstructing inflationary paradigm within Effective Field Theory framework
Choudhury, Sayantan
2016-03-01
In this paper my prime objective is to analyse the constraints on a sub-Planckian excursion of a single inflaton field within Effective Field Theory framework in a model independent fashion. For a generic single field inflationary potential, using the various parameterization of the primordial power spectrum I have derived the most general expression for the field excursion in terms of various inflationary observables, applying the observational constraints obtained from recent Planck 2015 and Planck 2015 + BICEP2/Keck Array data. By explicit computation I have reconstructed the structural form of the inflationary potential by constraining the Taylor expansion co-efficients appearing in the generic expansion of the potential within the Effective Field Theory. Next I have explicitly derived, a set of higher order inflationary consistency relationships, which would help us to break the degeneracy between various class of inflationary models by differentiating them. I also provided two simple examples of Effective Theory of inflation- inflection-point model and saddle-point model to check the compatibility of the prescribed methodology in the light of Planck 2015 and Planck 2015 + BICEP2/Keck Array data. Finally, I have also checked the validity of the prescription by estimating the cosmological parameters and fitting the theoretical CMB TT, TE and EE angular power spectra with the observed data within the multipole range 2 < l < 2500.
The question of health effects from exposure to electromagnetic fields
International Nuclear Information System (INIS)
Grandolfo, M.
1996-01-01
The question of health effects related to exposures from non-ionizing and non-optical electromagnetic fields is currently concentrated in two frequency ranges: extremely low frequency (ELF) electric and magnetic fields, mainly at the overhead high-voltage power line frequencies of 50/60 Hz, and radiofrequency (RF) radiation, encompassing the frequency range from a few kilohertz to 300 GHz. The part between 300 MHz and 300 GHz is also usually named microwaves (MW); from this point of view, microwaves are part of the whole RF spectrum. The following brief overview is aimed at evaluating the state of knowledge regarding the question of health effects associated to exposures to ELF and RF/MW fields
Electric-field effects in optically generated spin transport
International Nuclear Information System (INIS)
Miah, M. Idrish
2009-01-01
Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.
Electric-field effects in optically generated spin transport
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2009-05-25
Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.
Radial electrical field effects in TJ-II. (Preliminary study)
International Nuclear Information System (INIS)
Guasp, J.
1996-01-01
The influence of the radial electric field upon the neoclassical transport coefficients of TJ-II helical axis Stellarator has been calculated as well on the microwave heating stage (ECRH) as on the neutral injection one (NBI). The influence of the solutions for the self-consistent ambipolar field on confinement times and temperatures has been studied by means of a zero-dimensional energy balance. The simultaneous presence of two roots, the electronic and the ionic one, is observed for the ECRH phase, while for NBI only the ionic root appears, although with a strong field intensity that could produce a favourable effect on confinement. The interest and need of the extension of these calculations to include radial profile effects by using spatial dependent transport codes in stressed
Effect of increased ionization on the atmospheric electric field
International Nuclear Information System (INIS)
Boeck, W.L.
1980-01-01
This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation
Energy Technology Data Exchange (ETDEWEB)
Masella, J.M.
1997-05-29
This thesis is devoted to the numerical simulation of some two-fluid models describing gas-liquid two-phase flow in pipes. The numerical models developed here can be more generally used in the modelling of a wide class of physical models which can be put under an hyperbolic form. We introduce first two isothermal two-fluid models, composed of a mass balance equation and a momentum equation written in each phase, describing respectively a stratified two-phase flow and a dispersed two-phase flow. These models are hyperbolic under some physical assumptions and can be written under a nonconservative vectorial system. We define and analyse a new numerical finite volume scheme (v{integral}Roe) founded on a linearized Riemann solver. This scheme does not need any analytical calculation and gives good results in the tracking of shocks. We compare this new scheme with the classical Roe scheme. Then we propose and study some numerical models, with and without flux splitting method, which are adapted to the discretization of the two-fluid models. This numerical models are given by a finite volume integration of the equations, and lean on the v{integral} scheme. In order to reducing cpu time, due to the low Mach number of two-phase flows, acoustic waves are implicit. Afterwards we proposed a discretization of boundary conditions, which allows the generation of transient flows in pipe. Some numerical academic and more physical tests show the good behaviour of the numerical methods. (author) 77 refs.
International Nuclear Information System (INIS)
Chung, Bub Dong; Lee, Young Jin
2006-01-01
Engineering software for design purpose in nuclear industries have been developed since early 1970s, and well established in 1980s. The most popular and common language for the software development has been FORTRAN series, until the more sophisticated GUI and software coupling is needed. The advanced computer language, such as C++, C has been developed to help the programming for the easy GUI need and reuse of well developed routines, with adopting the objective oriented program. A recent trend of programming becomes objective-oriented since the results are often more intuitive and easier to maintain than procedure program. The main motivation of this work is to capture objective oriented concepts for conventional safety analysis programs which consist of many functions and procedure oriented structures. In this work, the new objective programming with C++ 6.0 language has been tried for the PILOT code written in FORTRAN language, and conceptual OOP design of the system safety analysis code has been done
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Effect of Electric Field on Outwardly Propagating Spherical Flame
Mannaa, Ossama
2012-06-01
The thesis comprises effects of electric fields on a fundamental study of spherical premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly propagating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been investigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The combustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.
Field enhancement due to anomalous skin effect inside a target
International Nuclear Information System (INIS)
Ma, G.; Tan, W.
1996-01-01
A new method based on Fourier transformation to study the skin effects is presented. Using this method, the field amplitude in plasma is represented in terms of electric conductivity, and the normal and anomalous skin effects are described through one formula by omitting the plasma dispersion or not. The results are in agreement with other publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 (1992)] for equivalent parameters. But for deeper positions inside a target, which have not been studied by others, it is found that the field amplitude is considerably enhanced due to an anomalous skin effect, even for constant collision frequency. In addition, the skin absorptions and some calculations on an anomalous skin effect for different collision frequencies are also presented. copyright 1996 American Institute of Physics
Bimolecular recombination in ambipolar organic field effect transistors
Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.
2009-01-01
In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy
Durable chemical sensors based on field-effect transistors
Reinhoudt, David
1995-01-01
The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a
Field evaluation of deficit irrigation effects on tomato growth ...
African Journals Online (AJOL)
Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...
Effect of integrated pest management farmer field school (IPMFFS ...
African Journals Online (AJOL)
This research aimed to explore the effect of the Integrated Pest Management Farmer Field School (IPMFFS), on farmer knowledge, farmer group's ability, process of adoption and diffusion of IPM in Jember district. The population of the research was 556 farmer groups consisting of 22.240 farmers engaged in the IPMFFS in ...
Correlation effects in the Ising model in an external field
International Nuclear Information System (INIS)
Borges, H.E.; Silva, P.R.
1983-01-01
The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt
On the exotic Higgs decays in effective field theory.
Bélusca-Maïto, Hermès; Falkowski, Adam
2016-01-01
We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context.
Bimolecular recombination in ambipolar organic field effect transistors
Charrier, D. S. H.; de Vries, T.; Mathijssen, S. G. J.; Geluk, E. -J.; Smits, E. C. P.; Kemerink, M.; Janssen, R. A. J.
In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron-hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy
Magnetic field sensor based on asymmetric inverse Wiedemann effect
Czech Academy of Sciences Publication Activity Database
Kraus, Luděk; Malátek, M.; Dvořák, M.
2008-01-01
Roč. 142, č. 2 (2008), s. 468-473 ISSN 0924-4247 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field sensor * inverse Wiedemann effect * off-diagonal magnetoimpedance * amorphous ribbon Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.724, year: 2008
Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field
DEFF Research Database (Denmark)
Selck, H.; Riemann, B.; Christoffersen, K.
2002-01-01
multispecies field tests using tributyltin (TBT) and linear alkylbenzene sulfonates (LAS) were compared with published laboratory single-species test results and measured in situ concentrations. Extrapolation methods were evaluated by comparing predicted no-effect concentrations (PNECs), calculated by AF...
Effect of Brinkman number and magnetic field on laminar convection ...
African Journals Online (AJOL)
The effect of Brinkman number and magnetic field on laminar convection in a vertical plate channel with uniform and asymmetric temperatures has been studied. The dimensionless form of momentum and energy balanced equations has been solved using one term perturbation series solution. The solution of the ...
Effects of moderate static magnetic field presowing treatment on ...
African Journals Online (AJOL)
Improvement of seed performance by static magnetic field (SMF) constitutes a safe ecological way to substitute chemicals use. In laboratory conditions, we studied the effects of presowing seeds of two varieties of Raphanus sativus (Red: R.R, Red and White: R+W) by moderate SMF on seedlings' growth and oxidative status ...
Effects of cannabis on eyewitness memory : A field study
Vredeveldt, Annelies; Charman, Steve D.; den Blanken, Aukje; Hooydonk, Maren
2018-01-01
Eyewitnesses to crimes are regularly under the influence of drugs, such as cannabis. Yet there is very little research on how the use of cannabis affects eyewitness memory. In the present study, we assessed the effects of cannabis on eyewitness recall and lineup identification performance in a field
Nuclear Lattice Simulations with Chiral Effective Field Theory
Lee, Dean
2008-01-01
We present recent results on lattice simulations using chiral effective field theory. In particular we discuss lattice simulations for dilute neutron matter at next-to-leading order and three-body forces in light nuclei at next-to-next-to-leading order.
On the exotic Higgs decays in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Belusca-Maito, Hermes; Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)
2016-09-15
We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context. (orig.)
Time-reversal symmetry breaking by ac field: Effect of ...
Indian Academy of Sciences (India)
deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.
Dynamic Incentive Effects of Relative Performance Pay: A Field Experiment
J. Delfgaauw (Josse); A.J. Dur (Robert); J.A. Non (Arjan); W.J.M.I. Verbeke (Willem)
2010-01-01
textabstractWe conduct a field experiment among 189 stores of a retail chain to study dynamic incentive effects of relative performance pay. Employees in the randomly selected treatment stores could win a bonus by outperforming three comparable stores from the control group over the course of four
Relating hysteresis and electrochemistry in graphene field effect transistors
Veligura, Alina; Zomer, Paul J.; Vera-Marun, Ivan J.; Jozsa, Csaba; Gordiichuk, Pavlo I.; van Wees, Bart J.
2011-01-01
Hysteresis and commonly observed p-doping of graphene based field effect transistors (FETs) have been discussed in reports over the last few years. However, the interpretation of experimental works differs; and the mechanism behind the appearance of the hysteresis and the role of charge transfer
Charge transport in disordered organic field-effect transistors
Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS
2002-01-01
The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is
Nanoscaled biological gated field effect transistors for cytogenetic analysis
DEFF Research Database (Denmark)
Kwasny, Dorota; Dimaki, Maria; Andersen, Karsten Brandt
2014-01-01
Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors...
Ambipolar charge transport in organic field-effect transistors
Smits, E.C.P.; Anthopoulos, T.D.; Setayesh, S.; Veenendaal, van E.; Coehoorn, R.; Blom, P.W.M.; Boer, de B.; Leeuw, de D.M.
2006-01-01
A model describing charge transport in disordered ambipolar organic field-effect transistors is presented. The basis of this model is the variable-range hopping in an exponential density of states developed for disordered unipolar organic transistors. We show that the model can be used to calculate
Effect of field-of-view on the Coriolis illusion
Groen, E.L.; Muis, H.; Kooi, F.L.
2008-01-01
Tilting the head during rotation about an Earth-vertical axis produces cross-coupled stimulation of the semicircular canals. Without visual feedback on the actual self-motion, this leads to the so-called Coriolis illusion. We investigated the effect of the field-of-view (FOV) on the magnitude and
Recent Advance in Organic Spintronics and Magnetic Field Effect
Valy Vardeny, Z.
2013-03-01
In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].
Field-effect pH Control in Nanochannels
Veenhuis, R.B.H.; van der Wouden, E.J.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kaph-Yang; Choo, Jaebum; Kim, Yong-Kweon
2009-01-01
We demonstrate a novel capacitive method to change the pH in nanochannels. The device employs metal electrodes outside an insulating channel wall to change the electrical double layer potential by the field effect (‘voltage gating’). We demonstrate that this potential change is accompanied by a
Longwave scattering effects on fluxes in broken cloud fields
Energy Technology Data Exchange (ETDEWEB)
Takara, E.E.; Ellingson, R.G. [Univ. of Maryland, College Park, MD (United States)
1996-04-01
The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.
Effect of toasting field beans and of grass-clover
DEFF Research Database (Denmark)
Mogensen, Lisbeth; Vestergaard, Jannie Steensig; Fretté, Xavier
2010-01-01
The effect of toasting field beans and of grass-clover: maize silage ratio on milk production, milk composition and the sensory quality of the milk was investigated in a 2 2 factorial experiment. Toasting of field beans resulted in lower milk contents of both fat (44.2 versus 46.1 g/kg, P = 0.......02) and protein (33.5 versus 34.2 g/kg, P = 0.008), whereas milk production, urea and somatic cell contents were unaffected compared with the untreated field beans. Increasing the proportion of maize silage (from 9 to 21% of DM) in the ration decreased the content of urea in milk (P = 0.002), whereas milk......-β-carotene (P = 0.04) and β-carotene (P = 0.05). Toasting of field beans compared with untreated field beans did not affect the milk content of carotenoids and had only small effects on fatty acid composition. Regarding the sensory quality, the four treatments resulted in milk being characterized...
Macroscopic local-field effects on photoabsorption processes
International Nuclear Information System (INIS)
Ma Xiaoguang; Gong Yubing; Wang Meishan; Wang Dehua
2008-01-01
The influence of the local-field effect on the photoabsorption cross sections of the atoms which are embedded in the macroscopic medium has been studied by a set of alternative expressions in detail. Some notes on the validity of some different local-field models used to study the photoabsorption cross sections of atoms in condensed matter have been given for the first time. Our results indicate that the local fields can have substantial and different influence on the photoabsorption cross section of atoms in condensed matter for different models. Clausius-Mossotti model and Onsager model have proved to be more reasonable to describe the local field in gas, liquid, or even some simple solid, while Glauber-Lewenstein model probably is wrong in these conditions except for the ideal gas. A procedure which can avoid the errors introduced by Kramers-Kronig transformation has been implemented in this work. This procedure can guarantee that the theoretical studies on the local field effects will not be influenced by the integral instability of the Kramers-Kronig transformation
Correlated effective field theory in transition metal compounds
International Nuclear Information System (INIS)
Mukhopadhyay, Subhasis; Chatterjee, Ibha
2004-01-01
Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias; Pascal Grosset, A.V.; Martin, Tobias; Pegoraro, Vincent; Smith, Sean T.; Hansen, Charles D.
2011-01-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Electric field effects in scanning tunneling microscope imaging
DEFF Research Database (Denmark)
Stokbro, Kurt; Quaade, Ulrich; Grey, Francois
1998-01-01
We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....
Effective-field renormalization-group method for Ising systems
Fittipaldi, I. P.; De Albuquerque, D. F.
1992-02-01
A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.
Effects of magnetic fields on the quark–gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)
2014-11-15
In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias
2011-06-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Electric field and temperature effects in irradiated MOSFETs
Energy Technology Data Exchange (ETDEWEB)
Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)
2016-07-07
Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.
On non-perturbative effects of background fields
International Nuclear Information System (INIS)
Hosoda, Masataka; Yamakoshi, Hitoshi; Shimizu, Tadayoshi.
1986-01-01
APS-index of the Abelian Higgs model is at first obtained in a bounded domain of a disk with radius R. It is shown that the APS-index depends strongly on the behavior of the background fields and becomes integer when boundary effects are taken into account. Next, the electric charge of the vacuum is reconsidered in the momopole field coupled to a massive Dirac particle. It is reconfirmed that the monopole ground state has an electric charge θ/π which changes discontinuously to zero when the fermion mass is zero. (author)
Magnetic field effects in Arabidopsis thaliana Cryptochrome-1
DEFF Research Database (Denmark)
Solov'yov, Ilia; Chandler, Danielle E.; Schulten, Klaus
2007-01-01
The ability of some animals, most notably migratory birds, to sense magnetic fields is still poorly understood. It has been suggested that this "magnetic sense" may be mediated by the blue light receptor protein cryptochrome, which is known to be localized in the retinas of migratory birds...... chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, can be modulated by the presence of a magnetic field in an effect known as the radical-pair mechanism. Here we present and analyze a model of the flavin-adenine-dinucleotide-tryptophan chain system...
Effects of magnetic fields on main sequence stars
International Nuclear Information System (INIS)
Hubbard, E.N.
1981-01-01
A number of effects of low to medium strength ( 2 /8π) magnetic field pressure term so that the only effect of such a field may come from its inhibiting convection in the core. Isochrones of both convective and radiative core models of 2-5 M are presented. In the deep envelope, mixing of partially nuclear processed material driven by rising and falling magnetic flux tubes may be seen. The effects of this mixing will be brought to the surface during the deep convection phase of the star's tenure as a red giant. This model is used to predict a signature for magnetic mixing based on the CNO isotope and abundance ratios. In the outer envelope the gas pressure is low enough that one might expect to see a perturbation of the stellar structure due to the magnetic field pressure itself. This perturbation is calculated under several physical models for intermediate and high mass stars and it is determined that sufficient magnetic field energy may be available in the outer envelope to expand a star by about 20% over its unperturbed radius. Finally the evidence for the existence of non-magnetic neutron stars is considered, concluding that while no non-magnetic neutron stars have ever been positively identified, there is no evidence that prevents the existence of at least as many non-magnetic as magnetic neutron stars
The electric field standing wave effect in infrared transflection spectroscopy
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
Wake-field generation by the ponderomotive memory effect
International Nuclear Information System (INIS)
Wolf, U.; Schamel, H.
1997-01-01
An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with kλ d ≥0.2, where k is the wave number and λ d the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. copyright 1997 The American Physical Society
Effect of magnetic field on the physical properties of water
Wang, Youkai; Wei, Huinan; Li, Zhuangwen
2018-03-01
In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.
Two-fluid model of two-phase flow in a pin bundle of a nuclear reactor
International Nuclear Information System (INIS)
Chawla, T.C.; Ishii, M.
1980-01-01
By considering two-phase flow as a field which is subdivided into two turbulent single-phase regions with moving boundaries separating the two constituent phases, such that the differential balances for three-dimensional turbulent flow hold for each subregion and for the interface, we perform the Eulerian area averaging over the cross-sectional area of each phase in a given channel and segment averaging of transverse momentum equation along the phase intercepts at the interchannel boundaries. To simplify the governing equations obtained as a result of these operations, we invoke the assumption that the motion of the fluid in each phase is dominantly in axial direction, that is the transverse components of velocity are small compared to axial components. We further assume that the variation of axial component of velocity within a channel is much stronger than the variation along the axial direction. We also assume that similar arguments can also be applied to the variation of enthalpy in a channel. As a result of these considerations, we obtain two sets of continuity, momentum, and energy equations describing motion of each phase in the axial direction. The phasic interaction terms which appear in these equations are governed by interfacial transfer conditions obtained from interface balances. The segment-averaged transverse-momentum equation for each phase provides the governing equation for cross flow. (author)
Geminate free radical processes and magnetic field effects
International Nuclear Information System (INIS)
Eveson, Robert W.
2000-01-01
This thesis is concerned with the study of the dynamics of radical pair recombination reactions in solution by flash photolysis Electron Spin Resonance (ESR) and the influence of low static external magnetic fields upon them (MFE). An outline of the concepts of ESR is presented, followed by the theories of Chemically Induced Dynamic Electron Polarisation (CIDEP) of transient radical pairs. This is then followed by a brief review of the flash photolysis ESR apparatus and application of the Bloch equations to solve the equations of time-resolved ESR. Completing the theory section is an overview of the mechanisms by which magnetic fields alter the course of a geminate radical pair reaction in solution. Experimental CIDEP observations of the radical pair produced on photolysis of 1,3-dihydroxypropanone are simulated using polarisation theory and applied to a random-walk diffusion model to find, for the first time, the geminate reaction probability in solutions of varying viscosity. CIDEP spectra of the radical pair formed on photolysis of hydroxypropanone in contrast are not accounted for by current polarisation theory. The discrepancy is due to moderately fast relaxation of the acyl radical, CH 3 CO·, which alters the relative intensities in the ST 0 RPM pattern of the counter radical. Calculations taking into account this now provide an adequate basis for simulation of the spectrum. This method also, in principle, represents a new method for the measurement of phase relaxation times. Concluding the ESR work is a CIDEP study of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. Unusual spin polarisation phenomena are found. The time-resolved optical absorption spectroscopy technique used for detecting low magnetic field effects on neutral radical pair reactions is described. Various improvements to the experiment are discussed which result in the observation of the low field effect for a neutral radical pair produced by Norrish type II chemistry. This is followed by an
Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.
2017-10-01
A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.
International Nuclear Information System (INIS)
Karbunar, L.; Borka, D.; Radović, I.; Mišković, Z.L.
2015-01-01
Highlights: • We study the interaction of protons with carbon nanotubes under channeling conditions. • We use the linearized, 2D, one-fluid and two-fluid hydrodynamic models. • The image potential for a proton moving parallel to the nanotube axis is calculated. • Results for the image potential are compared for different types of nanotubes. • We also compute the angular and spatial distributions of channeled protons. - Abstract: We study the interaction of charged particles with four different types of single-walled carbon nanotubes (SWNTs) under channeling conditions by means of the linearized, two dimensional, one-fluid and two-fluid hydrodynamic models. The models are used to calculate the image potential for protons moving parallel to the axis of the SWNTs at the speeds up to 10 a.u. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. We also compute the spatial and angular distributions of protons and compare them for the two models
International Nuclear Information System (INIS)
Misawa, Takeharu; Yoshida, Hiroyuki; Akimoto, Hajime
2008-01-01
In Japan Atomic Energy Agency (JAEA), the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been developed. For thermal design of FLWR, it is necessary to develop analytical method to predict boiling transition of FLWR. Japan Atomic Energy Agency (JAEA) has been developing three-dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system to simulate complex shape channel flow. In this paper, as a part of development of ACE-3D to apply to rod bundle analysis, introduction of parallelization to ACE-3D and assessments of ACE-3D are shown. In analysis of large-scale domain such as a rod bundle, even two-fluid model requires large number of computational cost, which exceeds upper limit of memory amount of 1 CPU. Therefore, parallelization was introduced to ACE-3D to divide data amount for analysis of large-scale domain among large number of CPUs, and it is confirmed that analysis of large-scale domain such as a rod bundle can be performed by parallel computation with keeping parallel computation performance even using large number of CPUs. ACE-3D adopts two-phase flow models, some of which are dependent upon channel geometry. Therefore, analyses in the domains, which simulate individual subchannel and 37 rod bundle, are performed, and compared with experiments. It is confirmed that the results obtained by both analyses using ACE-3D show agreement with past experimental result qualitatively. (author)
Thermoelectric conductivities at finite magnetic field and the Nernst effect
International Nuclear Information System (INIS)
Kim, Keun-Young; Kim, Kyung Kiu; Seo, Yunseok; Sin, Sang-Jin
2015-01-01
We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current (DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current (AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.
Off-shell renormalization in Higgs effective field theories
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
Dirac vacuum: Acceleration and external-field effects
International Nuclear Information System (INIS)
Jauregui, R.; Torres, M.; Hacyan, S.
1991-01-01
The quantization of the massive spin-1/2 field in Rindler coordinates is considered, including the effects of a background magnetic field. We calculate the expectation values of conserved quantities such as the stress-energy tensor, current density, and spin distribution, as detected by an accelerated observer. The ratio of the energy and particle densities is given by a Fermi-Dirac distribution, but the spectrum of these quantities takes in general a complicated form that cannot be simply interpreted as a thermal spectrum. For the free-particle case the spectrum of the energy-stress tensor has a Fermi-Dirac form only in the massless limit. In the presence of the magnetic field the Dirac vacuum is magnetized and exhibits plasmalike properties
Effective potential in Lorentz-breaking field theory models
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2017-12-15
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Effective potential in Lorentz-breaking field theory models
International Nuclear Information System (INIS)
Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.
2017-01-01
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer
International Nuclear Information System (INIS)
Pryor, R.J.; Cline, D.D.
1992-01-01
A method of solving the two-phase fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unknowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented
Use of a genetic agorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer
International Nuclear Information System (INIS)
Pryor, R.J.; Cline, D.D.
1993-01-01
A method of solving the two-phases fluid flow equations using a genetic algorithm on a NCUBE multiprocessor computer is presented. The topics discussed are the two-phase flow equations, the genetic representation of the unkowns, the fitness function, the genetic operators, and the implementation of the algorithm on the NCUBE computer. The efficiency of the implementation is investigated using a pipe blowdown problem. Effects of varying the genetic parameters and the number of processors are presented. (orig.)
Feasibility of compensating for EUV field edge effects through OPC
Maloney, Chris; Word, James; Fenger, Germain L.; Niroomand, Ardavan; Lorusso, Gian F.; Jonckheere, Rik; Hendrickx, Eric; Smith, Bruce W.
2014-04-01
As EUV Lithography (EUVL) continues to evolve, it offers a possible solution to the problems of additional masks and lithography steps that drive up the cost and complexity of 193i multiple patterning. EUVL requires a non-telecentric reflective optical system for operation. This requirement causes EUV specific effects such as shadowing. The absorber physically shadows the reflective multilayer (ML) on an EUV reticle resulting in pattern fidelity degradation. To reduce this degradation, a thinner absorber may help. Yet, as the absorber thickness decreases, reflectivity increases in the `dark' region around the image field, resulting in a loss of contrast. The region around the edge of the die on the mask of unpatterned absorber material deposited on top of ML, known as the image border, is also susceptible to undesirable reflections in an ideally dark region. For EUVL to be enabled for high-volume manufacturing (HVM), reticle masking (REMA) blades are used to shield light from the image border to allow for the printing of densely spaced die. When die are printed densely, the image border of each neighboring die will overlap with the edge of a given die resulting in an increase of dose that overexposes features at the edge of the field. This effect is convolved with a fingerprint from the edge of the REMA blades. This phenomenon will be referred to as a field edge effect. One such mitigation strategy that has been investigated to reduce the field edge effect is to fully remove the ML along the image border to ensure that no actinic-EUV radiation can be reflected onto neighboring die. This has proven to suppress the effect, but residual out-of-band radiation still provides additional dose to features near the image border, especially in the corners where three neighboring fields overlap. Measurements of dense contact holes (CHs) have been made along the image border with and without a ML-etched border at IMEC in collaboration with Micron using the ASML NXE:3100. The
Magnetic field effects on the crust structure of neutron stars
Franzon, B.; Negreiros, R.; Schramm, S.
2017-12-01
We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.
Organic field-effect transistors using single crystals
International Nuclear Information System (INIS)
Hasegawa, Tatsuo; Takeya, Jun
2009-01-01
Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)
Irradiation of graphene field effect transistors with highly charged ions
Energy Technology Data Exchange (ETDEWEB)
Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de
2016-09-01
In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.
Effects of ionizing radiation and steady magnetic field on erythrocytes
International Nuclear Information System (INIS)
Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.
1996-01-01
A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)
Organic field-effect transistors using single crystals
Directory of Open Access Journals (Sweden)
Tatsuo Hasegawa and Jun Takeya
2009-01-01
Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.
A two-fluid two-phase model for thermal-hydraulic analysis of a U-tube steam generator
International Nuclear Information System (INIS)
Hung, Huanjen; Chieng, Chingchang; Pei, Baushei; Wang, Songfeng
1993-01-01
The Advanced Thermal-Hydraulic Analysis Code for Nuclear Steam Generators (ATHANS) was developed on the basis of the THERMIT-UTSG computer code for U-tube steam generators. The main features of the ATHANS model are as follows: (a) the equations are solved in cylindrical coordinates, (b) the number and the arrangement of the control volumes inside the steam generator can be chosen by the user, (c) the virtual mass effect is incorporated, and (d) the conjugate gradient squared method is employed to accelerate and improve the numerical convergence. The performance of the model is successfully validated by comparison with the test data from a Westinghouse model F steam generator at the Maanshan nuclear power plant. Better agreement with the test data can be obtained by a finer grid system using a cylindrical coordinate system and the virtual mass effect. With these advanced features, ATHANS provides the basic framework for further studies on the problems of steam generators, such as analyses of secondary-side corrosion and tube ruptures
Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields
Energy Technology Data Exchange (ETDEWEB)
Schneider, Christian; Schützhold, Ralf [Fakultät für Physik, Universität Duisburg-Essen,Lotharstrasse 1, 47057 Duisburg (Germany)
2016-02-24
Via the world-line instanton method, we study electron-positron pair creation by a strong (but sub-critical) electric field of the profile E/cosh{sup 2} (kx) superimposed by a weaker pulse E{sup ′}/cosh{sup 2} (ωt). If the temporal Keldysh parameter γ{sub ω}=mω/(qE) exceeds a threshold value γ{sub ω}{sup crit} which depends on the spatial Keldysh parameter γ{sub k}=mk/(qE), we find a drastic enhancement of the pair creation probability — reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences E(t,x) in the Sauter-Schwinger effect. Finally, we speculate whether an analogous effect (drastic enhancement of tunneling probability) could occur in other scenarios such as stimulated nuclear decay, for example.
Novel topological effects in dense QCD in a magnetic field
Ferrer, E. J.; de la Incera, V.
2018-06-01
We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.
Retraction: Evaluation of Carcinogenic Effects of Electromagnetic Fields (Emf
Directory of Open Access Journals (Sweden)
Bakir Mehic
2010-08-01
Full Text Available This retracts the article "EVALUATION OF CARCINOGENIC EFFECTS OF ELECTROMAGNETIC FIELDS (EMF" on page 245. The Editor-in-chief of the Bosnian Journal ofBasic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: “Evaluation of carcinogenic effects of electromagnetic fields (EMF” published in Bosn J Basic Med Sci. 2010 Aug;10(3:245-50.After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.
Near-field effects of asteroid impacts in deep water
Energy Technology Data Exchange (ETDEWEB)
Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory
2009-06-11
Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.
Field-effect transistor memories based on ferroelectric polymers
Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun
2017-11-01
Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).
Biological effects from electromagnetic fields: Research progress and exposure measurements
International Nuclear Information System (INIS)
Mauro, F.; Lovisolo, G.A.; Raganella, L.
1992-01-01
Although it is commonly accepted that exposure to high levels of electromagnetic, micro- and radiofrequency waves produces harmful effects to the health of man, the formulation of exposure limits is still an open process and dependent upon the evolving level of knowledge in this field. This paper surveys the current level of knowledge gained through 'in vitro' and 'in vivo' radiological and epidemiological studies on different types of electromagnetic radiation derived effects - chromosomal, mutagenic, carcinogenic. It then reviews efforts by international organizations, e. g., the International Radiation Protection Association, to establish exposure limits for radiofrequency electromagnetic fields. Brief notes are given on the electromagnetic radiation monitoring campaign being performed by public health authorities in the Lazio Region of Italy