WorldWideScience

Sample records for fields including radiation

  1. Electron-beam dynamics in a strong laser field including quantum radiation reaction

    CERN Document Server

    Neitz, Norman

    2014-01-01

    The evolution of an electron beam colliding head-on with a strong plane-wave field is investigated in the framework of strong-field QED including radiation-reaction effects due to photon emission. Employing a kinetic approach to describe the electron and the photon distribution it is shown that at a given total laser fluence the final electron distribution depends on the shape of the laser envelope and on the pulse duration, in contrast to the classical predictions of radiation reaction based on the Landau-Lifshitz equation. Finally, it is investigated how the pair-creation process leads to a nonlinear coupled evolution of the electrons in the beam, of the produced charged particles, and of the emitted photons.

  2. Electron-beam dynamics in a strong laser field including quantum radiation reaction

    Science.gov (United States)

    Neitz, N.; Di Piazza, A.

    2014-08-01

    The evolution of an electron beam colliding head on with a strong plane-wave field is investigated in the framework of strong-field QED including radiation-reaction effects due to photon emission. Employing a kinetic approach to describe the electron and the photon distribution it is shown that at a given total laser fluence the final electron distribution depends on the shape of the laser envelope and on the pulse duration, in contrast to the classical predictions of radiation reaction based on the Landau-Lifshitz equation. Finally, it is investigated how the pair-creation process leads to a nonlinear coupled evolution of the electrons in the beam, of the produced charged particles, and of the emitted photons.

  3. The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines

    DEFF Research Database (Denmark)

    Girinsky, Theodore; Specht, Lena; Ghalibafian, Mithra;

    2008-01-01

    PURPOSE: To develop easily applicable guidelines for the determination of initially involved lymph nodes to be included in the radiation fields. PATIENTS AND METHODS: Patients with supra-diaphragmatic Hodgkin lymphoma. All the imaging procedures were carried out with patients in the treatment pos...

  4. Irradiation of Spinal Metastases: Should We Continue to Include One Uninvolved Vertebral Body Above and Below in the Radiation Field?

    Energy Technology Data Exchange (ETDEWEB)

    Klish, Darren S. [Lawrence Cancer Center, Lawrence, KS (United States); Grossman, Patricia; Allen, Pamela K. [Department of Radiation Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States); Rhines, Laurence D. [Department of Neurosurgery and (PG, PKA, ELC), M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States); Chang, Eric L., E-mail: echang@mdanderson.org [Department of Radiation Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, TX (United States)

    2011-12-01

    Purpose: Historically, the appropriate target volume to be irradiated for spinal metastases is 1-2 vertebral bodies above and below the level of involvement for three reasons: (1) to avoid missing the correct level in the absence of simulation or (2) to account for the possibility of spread of disease to the adjacent level, and (3) to account for beam penumbra. In this study, we hypothesized that isolated failures occurring in the level adjacent to level treated with stereotactic body radiosurgery (SBRS) were infrequent and that with improved localization techniques with image-guided radiation therapy, treatment of only the involved level of spinal metastases may be more appropriate. Methods and Materials: Patients who had received SBRS treatments to only the involved level of the spine as part of a prospective trial for spinal metastases comprised the study population. Follow-up imaging with spine MRI was performed at 3-month intervals following initial treatment. Failures in the adjacent (V{+-}1, V{+-}2) and distant spine were identified and classified accordingly. Results: Fifty-eight patients met inclusion criteria for this study and harbored 65 distinct spinal metastases. At 18-month median follow-up, seven (10.7%) patients failed simultaneously at adjacent levels V{+-}1 and at multiple sites throughout the spine. Only two (3%) patients experienced isolated, solitary adjacent failures at 9 and 11 months, respectively. Conclusion: Isolated local failures of the unirradiated adjacent vertebral bodies may occur in <5% of patients with isolated spinal metastasis. On the basis of the data, the current practice of irradiating one vertebral body above and below seems unnecessary and could be revised to irradiate only the involved level(s) of the spine metastasis.

  5. SKIRT: Stellar Kinematics Including Radiative Transfer

    Science.gov (United States)

    Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan

    2011-09-01

    SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

  6. Gravitational radiation resistance, radiation damping and field fluctuations

    Science.gov (United States)

    Schaefer, G.

    1981-03-01

    Application is made of two different generalized fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalizations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance.

  7. Quantum optical dipole radiation fields

    CERN Document Server

    Stokes, Adam

    2016-01-01

    We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.

  8. Gravitational solutions, including radiation, for a perturbed light beam

    Energy Technology Data Exchange (ETDEWEB)

    Nackoney, R.W.

    1986-09-01

    Linearized field equations and solutions are derived for a perturbed sheet beam of light. The work is based on an exact solution of a collimated beam in the geometrical limit. The linearized field changes of the initially curved background metric can be put, with the help of the harmonic conditions, into a normal coordinate form. These six normal coordinates satisfy six linearized, inhomogeneous, field equations in three variables. Stationary solutions include divergent beams. Gravitational waves propagating opposite to the beam's flux are found to be confined to a region about the propagation axis of the beam, much as is experienced in wave guides. Radiative cases can be produced by large angle scattering of light and are discussed in terms of their effect on an ideal optical antenna. The effect is one that grows linearly with time. The growth time is prohibitively long for the most energetic systems that can be realistically considered in the foreseeable future.

  9. On Divergence in Radiation Fields

    CERN Document Server

    Fricke, Joerg

    2016-01-01

    Three thought experiments demonstrate that under certain circumstances radiation fields have to be attenuated or amplified multiplicatively in order not to violate the conservation of energy. Modulation of radiation by means other than superposition is theoretically made possible by plugging additional terms into the source slots of the Maxwell equations. Modulated radiation would enable the well focused stimulation of neurons for diagnostic and therapeutic purposes.

  10. Studies about space radiation promote new fields in radiation biology.

    Science.gov (United States)

    Ohnishi, Takeo; Takahashi, Akihisa; Ohnishi, Ken

    2002-12-01

    Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation.

  11. Extended 1D Method for Coherent Synchrotron Radiation including Shielding

    CERN Document Server

    Sagan, David; Mayes, Christopher; Sae-Ueng, Udom

    2008-01-01

    Coherent Synchrotron Radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on ERLs or FELs, and bunch compressors for linear colliders. In order to better simulate Coherent Synchrotron Radiation, the established 1-dimensional formalism is extended to work at lower energies, at shorter bunch lengths, and for an arbitrary configuration of multiple bends. Wide vacuum chambers are simulated by means of vertical image charges. This formalism has been implemented in the general beam dynamics code "Bmad" and its results are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code "elegant".

  12. CHARM Facility Test Area Radiation Field Description

    CERN Document Server

    Thornton, Adam

    2016-01-01

    Specification document summarising the radiation field of the CHARM facility test area. This will act as a guide to any potential users of the facility as to what they can expect in terms of radiation, given in the form of radiation spectra information and fluence for each test position, along with general radiation maps for the test area and Montrac test location.

  13. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  14. Vacuum radiation induced by time dependent electric field

    Science.gov (United States)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  15. Quasi light fields: extending the light field to coherent radiation

    CERN Document Server

    Accardi, Anthony

    2009-01-01

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field and the comprehensive predictive power of Maxwell's equations. We synthesize research in optics and signal processing to formulate, capture, and form images from quasi light fields, which extend the light field from incoherent to coherent radiation. Our coherent cameras generalize the classic beamforming algorithm in sensor array processing, and invite further research on alternative notions of image formation.

  16. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    OpenAIRE

    A. D. Usman; W. F.W. Ahmad; M. Z. A. A. Kadir; M. Mokhtar

    2009-01-01

    Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when th...

  17. Cosmological $N$-body simulations including radiation perturbations

    CERN Document Server

    Brandbyge, Jacob; Tram, Thomas; Leclercq, Florent; Fidler, Christian; Hannestad, Steen

    2016-01-01

    Cosmological $N$-body simulations are the standard tool to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the coupling between matter and radiation ($\\equiv$ photons and neutrinos). In this paper we investigate novel hybrid simulations which incorporate interactions between radiation and matter to the leading order in General Relativity, whilst evolving the matter dynamics in full non-linearity according to Newtonian theory. Our hybrid simulations come with a relativistic space-time and make it possible to investigate structure formation in a unified framework. In the present work we focus on simulations initialized at $z=99$, and show that the extracted matter power spectrum receives up to $3\\%$ corrections on very large scales through radiation. Our numerical findings compare favourably with linear analytical results from...

  18. Semi-holographic model including the radiation component

    CERN Document Server

    del Campo, Sergio; Magaña, Juan; Villanueva, J R

    2014-01-01

    In this letter we study the semi holographic model which corresponds to the radiative version of the model proposed by Zhang et al. (Phys. Lett. B 694 (2010), 177) and revisited by C\\'ardenas et al. (Mon. Not. Roy. Astron. Soc. 438 (2014), 3603). This inclusion makes the model more realistic, so allows us to test it with current observational data and then answer if the inconsistency reported by C\\'ardenas et al. is relaxed.

  19. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    CERN Document Server

    Haworth, Thomas J

    2011-01-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photo-evaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is includ...

  20. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  1. Field Testing of a Portable Radiation Detector and Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  2. Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)

    CERN Document Server

    Kamenetskii, E O; Shavit, R

    2015-01-01

    In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.

  3. Bound and Radiation Fields in Rindler Frame

    CERN Document Server

    Hirayama, T

    2001-01-01

    Energy-momentum tensor of Li\\'enard-Wiechert field is split into bound and emitted parts in Rindler frame, by generalizing the reasoning of Teitelboim used in inertial frame. Our discussion proceeds with the the notion of ``energy'' defined with respect to the Killing vector field attached to the frame. We obtain the ``radiation formula in Rindler frame''(Rindler version of Larmor formula) and it is found that the radiation power is proportional to the square of ``acceleration $\\alpha^\\mu$ of the charge relative to the Rindler frame''. This result makes us split the Li\\'enard-Wiechert field into the part $\\tII$ which is linear in $\\alpha^\\mu$ and the part $\\tI$ which is independent of $\\alpha^\\mu$, and by using them, we split the energy-momentum tensor into two parts. We find that these are properly interpreted as the emitted and bound parts of the tensor in Rindler frame. In our identification of radiation, a charge does not radiate not only in the case where the charge is fixed to the Rindler frame, but als...

  4. Formation of secondary radiation fields at NICA

    Science.gov (United States)

    Timoshenko, G.; Paraipan, M.

    2009-09-01

    The crucial points of a radiation shielding design for a relativistic heavy ion accelerator are the source term problem, neutron fluence and dose attenuation characteristics of the shielding. Simulations of the radiation shielding for JINR's Nuclotron-Based Ion Facility (NICA) project were carried out using the GEANT4 code. Some regularities in the secondary neutron field generation at the 4.5 GeV/n uranium beam interaction with thick targets are discussed. Neutron attenuation by the ordinary concrete shielding of NICA was considered as well.

  5. The dielectric response to the magnetic field of electromagnetic radiation

    Science.gov (United States)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light–matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  6. IAEA programme in the field of radiation technology

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  7. Plasma wake field XUV radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Prono, Daniel S. (Los Alamos, NM); Jones, Michael E. (Los Alamos, NM)

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  8. The Stellar Extreme-Ultraviolet Radiation Field

    Science.gov (United States)

    Vallerga, John

    1998-04-01

    The local extreme ultraviolet (EUV) radiation field from stellar sources has been determined by combining the EUV spectra of 54 stars, taken with the spectrometers aboard the Extreme Ultraviolet Explorer satellite. The resultant spectrum over the range 70-730 Å is estimated to be 95% complete above 400 Å and 90% complete above 200 Å. The flux contributed by two B stars and three hot white dwarfs dominate the spectrum except at the shortest wavelengths, where an assortment of EUV source types contribute. The high electron densities measured toward nearby stars can be accounted for by photoionization from this radiation field, but the spectrum is too soft to explain the overionization of helium with respect to hydrogen recently measure in the Local Cloud.

  9. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  10. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    Science.gov (United States)

    Haworth, Thomas J.; Harries, Tim J.

    2012-02-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.

  11. Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects

    Directory of Open Access Journals (Sweden)

    Walter Winter

    2012-01-01

    Full Text Available We review the particle physics ingredients affecting the normalization, shape, and flavor composition of astrophysical neutrinos fluxes, such as different production modes, magnetic field effects on the secondaries (muons, pions, and kaons, and flavor mixing, where we focus on pγ interactions. We also discuss the interplay with neutrino propagation and detection, including the possibility to detect flavor and its application in particle physics, and the use of the Glashow resonance to discriminate pγ from pp interactions in the source. We illustrate the implications on fluxes and flavor composition with two different models: (1 the target photon spectrum is dominated by synchrotron emission of coaccelerated electrons and (2 the target photon spectrum follows the observed photon spectrum of gamma-ray bursts. In the latter case, the multimessenger extrapolation from the gamma-ray fluence to the expected neutrino flux is highlighted.

  12. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  13. Virtual radiation fields for ALARA determination

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  14. Observations of the diffuse UV radiation field

    Science.gov (United States)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  15. Cyclotron Line Features from Near-Critical Fields II on the Effect of Anisotropic Radiation Fields

    CERN Document Server

    Araya-Gochez, R A; Araya-Gochez, Rafael A.; Harding, Alice K.

    2000-01-01

    We assess the impact of radiation anisotropy on the line shapes that result from relativistic magnetic Compton scattering in the low-density/high-field regime. A Monte Carlo implementation of radiation transport allows for spatial diffusion of photons in arbitrary geometries and accounts for relativistic angular redistribution. The cross section includes natural line widths and photon "spawning" from up to fourth harmonic photons. In our first paper we noted that even if the photon injection is isotropic a strongly anisotropic radiation field rapidly ensues. We now investigate the angular distribution of cyclotron spectra emerging from an internally irradiated magnetized plasma with a prescribed global geometry (either cylindrical or plane parallel) and the effects of anisotropic photon injection on the line shapes. Varying the input angular distribution permits a better understanding of the line formation process in more realistic scenarios where the radiative mechanisms are influenced by the intrinsic aniso...

  16. Electromagnetic Radiation : Variational Methods, Waveguides and Accelerators Including seminal papers of Julian Schwinger

    CERN Document Server

    Milton, Kimball A

    2006-01-01

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications.

  17. Excitation of magnetization using a modulated radiation damping field.

    Science.gov (United States)

    Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya

    2006-10-12

    In this work, pulsed-field gradients are used to modulate the radiation damping field generated by the detection coil in an NMR experiment in order that spins with significantly different chemical shifts can affect one another via the radiation damping field. Experiments performed on solutions of acetone/water and acetone/DMSO/water demonstrate that spins with chemical shift differences much greater than the effective radiation damping field strength can still be coupled by modulating the radiation damping field. Implications for applications in high-field NMR and for developing sensitive magnetization detectors are discussed.

  18. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    Science.gov (United States)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  19. Temperature field for radiative tomato peeling

    Science.gov (United States)

    Cuccurullo, G.; Giordano, L.

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling.

  20. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    Energy Technology Data Exchange (ETDEWEB)

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States)

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  1. Study on CYCIAE-100 radiation field and residual radioactivity

    Institute of Scientific and Technical Information of China (English)

    BI Yuan-Jie; ZHANG Tian-Jue; JIA Xian-Lu; ZHOU Zheng-He; WANG Feng; WEI Su-Min; ZHONG Jun-Qing; TANG Chuan-Xiang

    2009-01-01

    The accelerators should be properly designed to make the radiation field produced by beam loss ual radiation field.The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded.The source of radiation is the beam loss when cyclotron is operating.In this paper,the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied.A method to reduce the dose equivalent rate of maintenance staff is also given.

  2. Extended chiral transformations including diquark fields as parameters

    CERN Document Server

    Novozhilov, V Yu; Vasilevich, D V; Novozhilov, Yuri; Pronko, Andrei; Vassilevich, Dmitri

    1994-01-01

    We introduce extended chiral transformation, which depends both on pseudoscalar and diquark fields as parameters and determine its group structure. Assuming soft symmetry breaking in diquark sector, bosonisation of a quasi-Goldstone ud-diquark is performed. In the chiral limit the ud-diquark mass is defined by the gluon condensate, m_{ud}\\approx 300 MeV. The diquark charge radius is \\langle r^2_{ud}\\rangle^{1/2}\\approx 0.5 fm.

  3. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine] (and others)

    2002-02-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  4. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    AUTHOR|(CDS)2067623

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  5. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  6. Qualitative analysis and characterization of two cosmologies including scalar fields

    CERN Document Server

    Leon, Genly

    2014-01-01

    The problem of dark energy can be roughly stated as the proposition and validation of a cosmological model that can explain the phenomenon of the accelerated expansion of the Universe. This problem is an open discussion topic in modern physics. One of the most common approaches is that of the "Dark Energy" (DE), a matter component still unknown, with repulsive character (to explain the accelerated expansion), which fills about 2/3 of the total content of the Universe. In this thesis are investigated two cosmological models, a non-minimally coupled quintessence field, based on a Scalar-Tensor Theory of gravity, formulated in the Einstein's frame, and a quintom dark energy model, based on General Relativity. A normalization and parametrization procedure is introduced for each model, in order to investigate the flow properties of an associated autonomous system of ordinary differential equations. In our study are combined topological, analytical and numerical techniques. We are mainly interested in the past dyna...

  7. Polarization of radiation of electrons in highly turbulent magnetic fields

    Science.gov (United States)

    Prosekin, A. Yu.; Kelner, S. R.; Aharonian, F. A.

    2016-09-01

    We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation depends on the spectral index of the distribution.

  8. Polarization of radiation of electrons in highly turbulent magnetic fields

    CERN Document Server

    Prosekin, A Yu; Aharonian, F A

    2016-01-01

    We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation dep...

  9. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    CERN Document Server

    Ahn, Kyungjin

    2015-01-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  10. [Brodmann Areas 8 and 9 Including the Frontal Eye Field].

    Science.gov (United States)

    Watanabe, Masataka

    2017-04-01

    Based on cytoarchitectonic analyses, Brodmann assigned numbers 8 and 9 to certain areas of the dorsal and medial prefrontal cortex (PFC) in humans and monkeys. Petrides and Pandya re-analyzed the cytoarchitectures of the human and monkey PFCs, and proposed slightly different brain maps for both species. They assigned numbers 8, 9 and 9/46 to the areas that were originally named areas 8 and 9. Areas 8 and 9 have both lateral and medial regions respectively. The lateral area 8 is important for conditional discrimination learning. The frontal eye field which occupies the most caudal region of area 8, is responsible for visual attention and control of eye movements. The lateral area 9 and area 9/46 are functionally similar to area 46 and play important roles in executive control. The dorsomedial prefrontal cortex (DMPFC) comprises the medial regions of areas 8 and 9 and is related to "Theory of Mind" and social cognition. The DMPFC is also known to show "default mode of brain activity" (i.e., more activity during rest than during cognitive task).

  11. Unbiased (reference-free) phase field imaging for general optical fields including phase discontinuities

    CERN Document Server

    Berz, Martin

    2016-01-01

    A new numerically and experimentally tested measurement method for the local electrical light field including its phase is presented. The method is based on Self Referencing Interferograms (SRI) such as shearing interferograms. The complex electric field is the solution vector of a linear equation with the pixel resolved interference term E_2* E_1 as a parameter. Linearization of the non linear equations is achieved by using preknowledge in the intensity as obtained by a conventional image detetctor. The resulting linear equations are not based on any approximation, iterative perturbation expansion etc. but are exact. The method is non iterative and stable against noise for arbitrarily chosen test fields. Allowed fields can exhibit highly fluctuating amplitudes/phases on the pixel scale, areas of vanishing amplitude and Pi phase jumps. The spatial resolution is of pixel size. No reference beam and no diaphragms are used. The new method can be implemented as a fast, one shot per frame video system. An outlook ...

  12. Conservation of ζ with radiative corrections from heavy field

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto, 606-8502 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502 (Japan); Urakawa, Yuko [Department of Physics and Astrophysics, Nagoya University,Nagoya 464-8602 (Japan); School of Natural Sciences, Institute for Advanced Study,Olden Lane, Princeton, NJ 08540 (United States)

    2016-06-08

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.

  13. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    Energy Technology Data Exchange (ETDEWEB)

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  14. Numerical Analysis of Induced Current in Human Head Exposed to Nonuniform Magnetic Field Including Harmonics

    Science.gov (United States)

    Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo

    In this paper, induced currents in an anatomical head model exposed to a non-uniform ELF magnetic field (B-field) including harmonics are numerically calculated, and are discussed based on the basic restriction established by International Commission on Non-Ionizing Radiation Protection (ICNIRP). A casual hair dryer of 100V and 1.2kW is chosen as a typical source of the non-uniform B-field including both the fundamental and second harmonic components. The B-field distribution around the hair dryer is estimated by using the 3-orthogonal magnetic dipole moments, which are derived from a couple of measured values around it. The high-resolution human head model used is constructed based on the MRI images of a real human, and consists of six kinds of tissues (bone, brain, eyeballs, muscle, skin and blood). So-called impedance method is used for the numerical calculation of the induced current. The numerical results show that the maximum values of the induced current of 17µA/m2, for the 60Hz component, which is about 1/120 of the ICNIRP basic restriction appear in the muscle near the eyeball when the hair dryer is used from the side of the head model, and the averaged current in the eyeballs that have the highest conductivity is the highest among the six tissues. It is also demonstrated that the induced current due to the 120Hz B-field becomes comparable to the 60Hz current although the magnitude of the 120Hz B-field is much smaller than that of the 60Hz B-field.

  15. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    Science.gov (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  16. Short-term antioxidative responses of 15 microalgae exposed to excessive irradiance including ultraviolet radiation

    NARCIS (Netherlands)

    Janknegt, Paul J.; De Graaff, C. Marco; Van De Poll, Willem H.; Visser, Ronald J. W.; Rijstenbil, Jan W.; Buma, Anita G. J.

    2009-01-01

    Short-term photosensitivity and oxidative stress responses were compared for three groups of marine microalgae: Antarctic microalgae, temperate diatoms and temperate flagellates. In total, 15 low-light-acclimated species were exposed to simulated surface irradiance including ultraviolet radiation (S

  17. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ... Employment and Training Administration Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source Right Solutions, Concord, California, Now Located... 5, 2012, applicable to workers of Siemens Medical Solutions, USA, Inc., Oncology Care...

  18. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  19. Extended one-dimensional method for coherent synchrotron radiation including shielding

    Directory of Open Access Journals (Sweden)

    David Sagan

    2009-04-01

    Full Text Available Coherent synchrotron radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on energy recovery LINAC or free-electron lasers, and bunch compressors for linear colliders. In order to better simulate coherent synchrotron radiation, a one-dimensional formalism due to Saldin, Schneidmiller, and Yurkov has been implemented in the general beam dynamics code Bmad. Wide vacuum chambers are simulated by means of vertical image charges. Results from Bmad are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code elegant and the code of Agoh and Yokoya.

  20. Extended one-dimensional method for coherent synchrotron radiation including shielding

    Science.gov (United States)

    Sagan, David; Hoffstaetter, Georg; Mayes, Christopher; Sae-Ueng, Udom

    2009-04-01

    Coherent synchrotron radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on energy recovery LINAC or free-electron lasers, and bunch compressors for linear colliders. In order to better simulate coherent synchrotron radiation, a one-dimensional formalism due to Saldin, Schneidmiller, and Yurkov has been implemented in the general beam dynamics code Bmad. Wide vacuum chambers are simulated by means of vertical image charges. Results from Bmad are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code elegant and the code of Agoh and Yokoya.

  1. Deficiencies of active electronic radiation protection dosimeters in pulsed fields.

    Science.gov (United States)

    Ankerhold, U; Hupe, O; Ambrosi, P

    2009-07-01

    Nowadays nearly all radiation fields used for X-ray diagnostics are pulsed. These fields are characterised by a high dose rate during the pulse and a short pulse duration in the range of a few milliseconds. The use of active electronic dosimeters has increased in the past few years, but these types of dosimeters might possibly not measure reliably in pulsed radiation fields. Not only personal dosimeters but also area dosimeters that are used mainly for dose rate measurements are concerned. These cannot be substituted by using passive dosimeter types. The characteristics of active electronic dosimeters determined in a continuous radiation field cannot be transferred to those in pulsed fields. Some provisional measurements with typical electronic dosimeters in pulsed radiation fields are presented to reveal this basic problem.

  2. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    OpenAIRE

    Meier Matthias M.; Trompier François; Ambrozova Iva; Kubancak Jan; Matthiä Daniel; Ploc Ondrej; Santen Nicole; Wirtz Michael

    2016-01-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign ...

  3. Radiation reaction in quantum field theory

    Science.gov (United States)

    Higuchi, Atsushi

    2002-11-01

    We investigate radiation-reaction effects for a charged scalar particle accelerated by an external potential realized as a space-dependent mass term in quantum electrodynamics. In particular, we calculate the position shift of the final-state wave packet of the charged particle due to radiation at lowest order in the fine structure constant α and in the small ħ approximation. We show that it disagrees with the result obtained using the Lorentz-Dirac formula for the radiation-reaction force, and that it agrees with the classical theory if one assumes that the particle loses its energy to radiation at each moment of time according to the Larmor formula in the static frame of the potential. However, the discrepancy is much smaller than the Compton wavelength of the particle. We also point out that the electromagnetic correction to the potential has no classical limit.

  4. Separation of radiation from two sources from their known radiated sum field

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey

    2011-01-01

    This paper presents a technique for complete and exact separation of the radiated fields of two sources (at the same frequency) from the knowledge of their radiated sum field. The two sources can be arbitrary but it must be possible to enclose the sources inside their own non-intersecting minimum...

  5. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  6. Radiation and reflection acoustical fields of an annular phased array

    Institute of Scientific and Technical Information of China (English)

    LAI Puxiang; ZHANG Bixing; WANG Chenghao

    2007-01-01

    The characteristics of the radiation and reflection acoustical fields of an annular phased array are investigated. The effects of the element number, element radius, interelement spacing, centre frequency, focus position, and other parameters on the radiation acoustical field of the annular phased array is theoretically studied. In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experimental measurements are conducted. The radiation acoustical field and its reflection on a liquid-solid interface are theoretically and experimentally studied. The experimental result is in good agreement with the theoretical one.

  7. Field-deployable gamma-radiation detectors for DHS use

    Science.gov (United States)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  8. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  9. Improving the radiation hardness of graphene field effect transistors

    Science.gov (United States)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; Wishart, James F.; Hao, Yufeng; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2016-10-01

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. We believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

  10. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    Science.gov (United States)

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  11. Tomography of binomial states of the radiation field

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2004-01-01

    The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.

  12. Tomography of binomial states of the radiation field

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2004-01-01

    The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.

  13. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  14. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  15. Polarized radiation diagnostics of stellar magnetic fields

    Science.gov (United States)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  16. Estimation of Radiated Fields of Small Horizontal Submodules Based on a Lumped-Element Model

    Directory of Open Access Journals (Sweden)

    M. Leone

    2006-12-01

    Full Text Available A novel approach to the estimation of radiated electric field of small horizontal submodules is presented. The principle idea is to describe the radiating submodule-on-motherboard structure with a lumped-element equivalent circuit which includes both the geometrical and the electrical parameters. The electromagnetic emission from the structure is approximated by the radiation characteristics of a Hertzian dipole driven by the antenna voltage resulting from the connector equivalent circuit. Therefore, no time consuming numerical field simulations are needed to evaluate the radiated electric field. Instead, a fast frequency circuit analysis with e.g. PSPICE is sufficient. Moreover, this modeling approach provides a clear insight concerning the influence of geometrical and electrical parameters with respect to radiated emissions. Finally, the computational solutions are compared with experimental results, demonstrating a good correspondence regarding engineering purposes.

  17. Radiation (absorbing) boundary conditions for electromagnetic fields

    Science.gov (United States)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  18. Anomalous Photoluminescence of Weakly Confined Excitons including Radiative Correction in Nano-to-Bulk Crossover Regime

    Science.gov (United States)

    Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime

    2015-06-01

    We develop a theoretical formalism to calculate photoluminescence (PL) spectrum of weakly confined excitons incorporating the microscopic nonlocal optical response. The nonlocality is caused by the center-of-mass (c. m.) motion of exciton and becomes remarkable in nano-to-bulk crossover regime. The theory successfully explains the characteristics of recently observed peculiar PL spectra in high quality CuCl films [5], wherein the signals appear at the exciton states with the very large radiative corrections not only for the lowest level but also for the higher ones including non-dipole types of excitons.

  19. A BCCD-based dosimeter for mixed radiation fields

    Science.gov (United States)

    Pierschel, M.; Ehwald, K.-E.; Heinemann, B.; Januschewski, F.; Schmitz, T.; Schröder, O.

    1993-03-01

    The development of a personal dosimeter based on a BCCD-detector for mixed neutron and gamma radiation in the energy range from thermal energy to 20 MeV for neutrons respectively 30 keV to a few MeV for gammas will be presented. The detector has to give information on the total radiation dose, D, and on the radiation quality. Both peaces of information are required to determine the directional dose equivalent. The basic radiation physics requirements for the detector as well as a concept of a buried channel CCD-matrix for radiation applications including the technology process will be described. A two dimensional device simulation package was used for both optimization of the charge storage nodes including free charge transfer and the basic electronic processes depending on radiation interaction with silicon.

  20. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  1. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...... reverberation times. They reveal fluctuations that depend on source position and extend far above Schroeder frequency....

  2. Field calibration studies for ionisation chambers in mixed high-energy radiation fields.

    Science.gov (United States)

    Theis, C; Forkel-Wirth, D; Fuerstner, M; Mayer, S; Otto, Th; Roesler, S; Vincke, H

    2007-01-01

    The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.

  3. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  4. Spontaneous radiation emission from short, high field strength magnetic devices

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2006-01-01

    Full Text Available Since the earliest papers on undulators were published, it has been known how to calculate the spontaneous emission spectrum from short undulators when the magnetic field strength parameter is small compared to unity, or in “single” frequency sinusoidal undulators where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulator. Fewer general results have been obtained in the case where the magnetic device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field magnetic devices. It is used to calculate the emission from some designs of recent interest.

  5. Conservation of $\\zeta$ with radiative corrections from heavy field

    CERN Document Server

    Tanaka, Takahiro

    2015-01-01

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field $\\chi$ on the curvature perturbation $\\zeta$. Integrating out $\\chi$, we derive the effective action for $\\zeta$, which includes the loop corrections of the heavy field $\\chi$. When the mass of $\\chi$ is much larger than the Hubble scale $H$, the loop corrections of $\\chi$ only yield a local contribution in the effective action and hence the effective action simply gives an action for $\\zeta$ in a single field model, where, as is widely known, $\\zeta$ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of $\\chi$ is comparable to $H$, the loop corrections of $\\chi$ can give a non-local contribution to the effective action. Because of the non-local contribution from $\\chi$, in general, $\\zeta$ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that $\\zeta$ is conserved in time in the pre...

  6. Synchrotron radiation in strongly coupled conformal field theories

    CERN Document Server

    Athanasiou, Christiana; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle $\\alpha \\sim 1/\\gamma$. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  7. Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields

    Science.gov (United States)

    Gouttebroze, P.

    2008-09-01

    Context: Time-resolved observations of loops embedded in the solar corona show the existence of motions of matter inside these structures, as well as the global motions of these objects themselves. Aims: We have developed a modeling tool for cylindrical objects inside the solar corona, including 2-dimensional (azimuth-dependent) radiative transfer effects and 3-dimensional velocity fields. Methods: We used numerical methods to simultaneously solve the equations of NLTE radiative transfer, statistical equilibrium of hydrogen level populations, and electric neutrality. The radiative transfer equations were solved using cylindrical coordinates and prescribed solar incident radiation. In addition to the effects of anisotropic incident radiation, treated in previous papers, we took into account the Doppler shifts produced by a 3-dimension velocity field. Results: The effects of different types of velocity fields on hydrogen line profiles and intensities are described. Motions include loop oscillations, rotation, and longitudinal flows, which produce different deformations of profiles. Doppler brightening and dimming effects are also observed. Conclusions: This is a new step in the diagnostic of physical conditions in coronal loops, allowing the study of dynamical phenomena.

  8. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    OpenAIRE

    2011-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well ...

  9. The radiative transfer of synchrotron radiation through a compressed random magnetic field

    CERN Document Server

    Cawthorne, T V

    2014-01-01

    This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio gal...

  10. Radiolysis of Serine in High Radiation Field

    Directory of Open Access Journals (Sweden)

    Ellen Y. Aguilar-Ovando

    2016-08-01

    Full Text Available The formation of amino acids under simulated condition suggests that this type of compounds were readily formed on the primitive Earth. Nevertheless, there is no conclusive explanation to the origin of their specific chirality in biological systems. Differences in their stability in the primitive conditions may give some clues about this unsolved problem. Protection mechanisms have been considered, such as the adsorption of the organic compounds onto mineral surfaces. By using HPLC/ELSD to analyze aqueous suspensions of serine adsorbed on clay (sodium montmorillonite and a meteorite (Allende irradiated in different doses with a cobalt-60 gamma source, the aim of this work was to study the possible protector role of these mineral surfaces when an amino acid, serine, is adsorbed onto them and the system is exposed to a high radiation source. The results showed that adsorption is better at acidic pH and desorption from the mineral at basic pH. The irradiation of the free amino acid destroyed it almost completely at a dose of 91 kGy, but the presence of the mineral abruptly decreases the decomposition, acting as a protective agent. At the same time, the results in aqueous solution show no statistically significant differences in adsorption or radiolysis of D and L serine.

  11. Cosmological fluctuations of a random field and radiation fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, Mar [Departamento de Física Teórica y del Cosmos, Campus de Fuentenueva, Universidad de Granada, Granada, 18071 (Spain); Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Moss, Ian G. [School of Mathematics and Statistics, Newcastlle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Ramos, Rudnei O., E-mail: mbg@ugr.es, E-mail: ab@ph.ed.ac.uk, E-mail: ian.moss@ncl.ac.uk, E-mail: rudnei@uerj.br [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20550-013 Brazil (Brazil)

    2014-05-01

    A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.

  12. Conformation change of enzyme molecules in laser radiation field

    Science.gov (United States)

    Leshenyuk, N. S.; Prigun, M. V.; Apanasevitsh, E. E.; Kruglik, G. S.

    2007-06-01

    As a result of an analysis of macromolecules properties in the coherent optical radiation field and with allowance for the experimentally obtained unique data on the interaction of lazer radiation with biomolecules (dependence of the interaction efficiency on the coherence length, presence of the effect in the spectra region far from the absorption band), a mechanism of wave interaction is developed. Using this mathematical model, the calculations of a change in the macromolecules oscillatory energy in the coherent radiation field are performed. It is shown that the increase of macromolecules oscillatory energy depends strongly on the coherence length of radiation. On exposure to noncoherent radiation, the biomolecules oscillatory energy practically does not change, whereas on exposure to laser radiation (coherence length ~3 cm), energy of oscillations of atoms increases by an order of 2÷4, which results in a change in the conformation of biomolecules and activity of enzymes. Recently a lot of data are received concerning the change of lysosomal enzymes activity in blood plasma under action of laser radiation.

  13. Polarization in cyclotron radiation in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Luidmila Semionova; Denis Leahy; Jorge Paez

    2010-01-01

    We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field.We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field,for any orientation of electron spin and for any polarization of the emitted radiation.Also,we obtain the transition rates for any value of the initial electron's parallel momentum.For very strong magnetic fields,transitions to the ground state predominate.Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained,which confirm previous results by Latal.Transition widths are calculated for different electron spin orientations and different polarizations of radiation.We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation.Additionally we get,for the non-relativistic approximation,the transition rates for any polarization of radiation.As an application,the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53,which has multiple observable cyclotron lines,taking into account gravitational redshift.The most probable polarization is ∈(2).

  14. Radiation of Electron in the Field of Plane Light Wave

    Energy Technology Data Exchange (ETDEWEB)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC

    2006-02-24

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

  15. Modeling of cloud liquid water structure and the associated radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W. [Goddard Space Flight Center, NASA, Greenbelt, MD (United States)

    1995-09-01

    A 0.5{degrees}C global warming should result from every 1% decrease in global albedo. It is therefore necessary to accurately quantify the cloud radiation interaction. Most radiation calculations are one-dimensional and attempt to deal with horizontal variability using a horizontally-averaged optical depth. This study presents detailed scale-by-scale statistical analysis of the cloud liquid water content (LWC) field. The aim is to use this information to provide radiation calculations with more adequate information about inhomogeneity in cloud fields. The radiation community needs to carefully specify the minimum requirements which GCMs must include in order to treat cloud-radiation interaction correctly. This may involve GCMs predicting not only mean cloud quantities but also cloud variability. 3 figs.

  16. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  17. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  18. Quantization of the radiation field in an anisotropic dielectric medium

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Liu Shi-Bing; Yang Wei

    2009-01-01

    There are both loss and dispersion characteristics for most dielectric media. In quantum theory the loss in medium is generally described by Langevin force in the Langevin noise (LN) scheme by which the quantization of the radiation field in various homogeneous absorbing dielectrics can be successfully actualized. However, it is invalid for the anisotropic dispersion medium. This paper extends the LN theory to an anisotropic dispersion medium and presented the quantization of the radiation field as well as the transformation relation between the homogeneous and anisotropic dispersion media.

  19. Characterization of a CT ionization chamber for radiation field mapping.

    Science.gov (United States)

    Perini, Ana P; Neves, Lucio P; Vivolo, Vitor; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. RESEARCH ON INDOOR ELECTROMAGNETIC RADIATION FIELD OF MULTIPLE ANTENNA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Lu Yanhui; Zou Peng; Zhou Xiaoping

    2012-01-01

    The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems.Based on the Finite Difference Time Domain (FDTD) algorithm,using the mobile phone shielding device as the multiple antenna systems example,the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method.The effectivity of prediction method is verified by comparing the prediciton results with the measurment results.About 80% of the error can be controlled less than ±4 dB.The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.

  1. Occurrence of BOOP outside radiation field after tangential radiation therapy for breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Gohma, Iwao; Oida, Kazukiyo [Tenri Hospital, Nara (Japan)] (and others)

    2000-07-01

    We report three cases of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy using tangential fields for breast carcinoma. All patients complained of a cough between 14 and 20 weeks after completion of radiation therapy. Fever also developed in two of the three. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the same side as the radiation therapy. Laboratory data showed an increased level of C-reactive protein and an increased erythrocyte sedimentation rate. Bronchoalveolar lavage showed an elevated total cell count with a very high percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid clinical improvement and complete resolution of the radiographic abnormalities. This pulmonary disorder appears to be induced by radiation, especially when a tangential field is employed for breast carcinoma, though the etiology has not been fully investigated. It is important to be aware of this type of pulmonary complication in patients given radiotherapy for breast carcinoma. (author)

  2. Measuring the radiation field and radiation hard detectors at JET: Recent developments

    Science.gov (United States)

    Murari, A.; Edlington, T.; Angelone, M.; Bertalot, L.; Bolshakova, I.; Bonheure, G.; Brzozowski, J.; Coccorese, V.; Holyaka, R.; Kiptily, V.; Lengar, I.; Morgan, P.; Pillon, M.; Popovichev, S.; Prior, P.; Prokopowicz, R.; Quercia, A.; Rubel, M.; Santala, M.; Shevelev, A.; Syme, B.; Vagliasindi, G.; Villari, R.; Zoita, V. L.; JET-EFDA Contributors

    2008-08-01

    Since in ITER the radiation field will be much more demanding than that of present day devices, research programmes at JET are aimed at developing radiation hard diagnostics and related components. Initially, significant efforts are devoted to determining the radiation field of both the plasma and in the immediate environment with better accuracy. New developments in MCNP calculations and dedicated measurements provide useful information about the radiation field in the Torus Hall, even during non-operational periods. The effect of using Beryllium in the near future for JET first wall, is being assessed. New materials for activation samples are under consideration and will be tested to improve the calibration accuracy of JET neutron diagnostics. The long-term goal of this work is to obtain spectrometric information from an appropriate combination of different materials. Several studies are under way to modify the radiation field at the detectors by using LiH or pure water as neutron filters, to alleviate the problem of the background in γ-ray measurements. A suite of radiation hard detectors for neutrons, magnetic field and charged particles are being developed. Super-heated fluid neutron detectors, used for yield and imaging, are being upgraded, in order to provide a broad-band spectrometric capability. Chemical vapour deposited diamond diodes are being qualified as counters and as spectrometers. Prototypes of Hall probes made of InSb have been installed on the machine and have provided some preliminary results. Si-on-insulator detectors are under development for use in neutral particle analysers and are currently being bench-tested. Some attention is being devoted to optical components, fibres and mirrors, and to investigating radiation hard electronics using reconfigurable Field Programmable Gate Arrays.

  3. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  4. Black Hole Evaporation and Nonequilibrium Thermodynamics for a Radiation Field

    CERN Document Server

    Saida, H

    2005-01-01

    When a black hole is put in an "empty" space (zero temperature space) on which there is no matter except the matter of the Hawking radiation (Hawking field), then an outgoing energy flow from the black hole into the empty space exists. By the way, an equilibrium between two arbitrary systems can not allow the existence of an energy (heat) flow from one system to another. Consequently, in the case of a black hole evaporation in the empty space, the Hawking field should be in a nonequilibrium state. Hence the total behaviour of the evaporation, for example the time evolution of the total entropy, should be analysed with a nonequilibrium thermodynamics for the Hawking field. This manuscript explains briefly the way of constructing a nonequilibrium thermodynamic theory for a radiation field, and apply it to a simplified model of a black hole evaporation to calculate the time evolution of the total entropy.

  5. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  6. Stability of the toroidal magnetic field in stellar radiation zones

    CERN Document Server

    Bonanno, Alfio

    2011-01-01

    Understanding the stability of the magnetic field in radiation zones is of crucial importance for various processes in stellar interior like mixing, circulation and angular momentum transport. The stability properties of a star containing a prominent toroidal field in a radiation zone is investigated by means of a linear stability analysis in the Boussinesq approximation taking into account the effect of thermal conductivity. The growth rate of the instability is explicitly calculated and the effects of stable stratification and heat transport are discussed in detail. It is argued that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones although the stable stratification can significantly decrease the growth rate of instability

  7. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    CERN Document Server

    Bogolubov, N N

    2012-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means o...

  8. Radiation-reaction trapping of electrons in extreme laser fields.

    Science.gov (United States)

    Ji, L L; Pukhov, A; Kostyukov, I Yu; Shen, B F; Akli, K

    2014-04-11

    A radiation-reaction trapping (RRT) of electrons is revealed in the near-QED regime of laser-plasma interaction. Electrons quivering in laser pulse experience radiation reaction (RR) recoil force by radiating photons. When the laser field reaches the threshold, the RR force becomes significant enough to compensate for the expelling laser ponderomotive force. Then electrons are trapped inside the laser pulse instead of being scattered off transversely and form a dense plasma bunch. The mechanism is demonstrated both by full three-dimensional particle-in-cell simulations using the QED photonic approach and numerical test-particle modeling based on the classical Landau-Lifshitz formula of RR force. Furthermore, the proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  9. Electromagnetic Fields Radiated by a Circular Loop with Arbitrary Current

    CERN Document Server

    Salem, Mohamed A

    2014-01-01

    We present a rigorous approach to compute the electromagnetic fields radiated by a thin circular loop with arbitrary current. We employ a polar transmission representation along with a Kontorovich-Lebedev transform to derive integral representations of the field in the interior and exterior regions of a sphere circumscribing the loop. The convergence of the obtained expressions is discussed and comparison with full-wave simulation and other methods are shown.

  10. Topological magnetoelectric effects in microwave far-field radiation

    CERN Document Server

    Berezin, M; Shavit, R

    2015-01-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently it was shown that the near fields in the proximity of a small ferrite particle with magnetic dipolar mode (MDM) oscillations have the space and time symmetry breakings and topological properties of these fields are different from topological properties of the free space electromagnetic (EM) fields. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. They are characterized by power flow vortices and non zero helicity. In this paper, we report on observation of the topological ME effects in far field microwave radiation based ...

  11. A Model for One-Dimensional Coherent Synchrotron Radiation including Short-Range Effects

    CERN Document Server

    Ryne, Robert D; Qiang, Ji; Yampolsky, Nikolai

    2012-01-01

    A new model is presented for simulating coherent synchrotron radiation (CSR) in one dimension. The method is based on convolving an integrated Green function (IGF) with the longitudinal charge density. Since it is based on an IGF, the accuracy of this approach is determined by how well one resolves the charge density and not by resolving the single particle wake function. Since short-range wakefield effects are included analytically, the approach can be much more efficient than ordinary (non-IGF) approaches in situations where the wake function and charge density have disparate spatial scales. Two cases are presented: one derived from the full wake including short-range effects, and one derived from the asymptotic wake. In the latter case the algorithm contains the same physics as others based on the asymptotic approximation, but requires only the line charge density and not its derivative. Examples are presented that illustrate the limitations of the asymptotic-wake approximation, and that illustrate how mic...

  12. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  13. Thermal radiation field of low-temperature sources

    Science.gov (United States)

    Łakomy, T.

    1989-05-01

    The asymmetric thermal radiation field of heat sources existing in industry and in the building of apartments has been determined in this work. A description was realised by vector radiant and mean radiant temperatures ( VRT, TMR) obtaining their statistic reciprocal relationships at summer and winter terms.

  14. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    Science.gov (United States)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  15. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    Science.gov (United States)

    Altman, M. B.; Kavanaugh, J. A.; Wooten, H. O.; Green, O. L.; DeWees, T. A.; Gay, H.; Thorstad, W. L.; Li, H.; Mutic, S.

    2015-07-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients.

  16. Electrical integrity of oxides in a radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Laboratory, TN (United States); Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  17. Ways of providing radiation resistance of magnetic field semiconductor sensors

    CERN Document Server

    Bolshakova, I A; Holyaka, R; Matkovskii, A; Moroz, A

    2001-01-01

    Hall magnetic field sensors resistant to hard ionizing irradiation are being developed for operation under the radiation conditions of space and in charged particle accelerators. Radiation resistance of the sensors is first determined by the properties of semiconductor materials of sensitive elements; we have used microcrystals and thin layers of III-V semiconductors. Applying complex doping by rare-earth elements and isovalent impurities in certain proportions, we have obtained magnetic field sensors resistant to irradiation by fast neutrons and gamma-quanta. Tests of their radiation resistance were carried out at IBR-2 at the Joint Institute for Nuclear Research (Dubna). When exposed to neutrons with E=0.1-13 MeV and intensity of 10 sup 1 sup 0 n cm sup - sup 2 s sup - sup 1 , the main parameter of the sensors - their sensitivity to magnetic fields - changes by no more than 0.1% up to fluences of 10 sup 1 sup 4 n cm sup - sup 2. Further improvement of radiation resistance of sensor materials is expected by ...

  18. Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Parmentier, R. D.; Christiansen, Peter Leth;

    1984-01-01

    Experimental measurements of current-voltage structure and emitted X-band radiation in applied magnetic field from overlap-geometry Josephson tunnel junctions of normalized length about 2 are compared with numerical simulations obtained with the use of a perturbed sine-Gordon model. The simulations...... furnish the current and field dependence of the oscillation configuration, from which can be calculated average voltages, frequencies, and power spectra. Simulation and experimental results are in good agreement with regard to the lobe structure of the height of the first zero-field step and/or second...... Fiske step in magnetic field and the field dependence of the radiation frequency within the various lobes, including details such as hysteresis between lobes. The simulations predict an alternation of the dominant frequency component with increasing field that accounts well for the experimental...

  19. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  20. Risk of Cancer in relation to Natural Radiation, including Radon: Evidence from Epidemiological Studies

    Science.gov (United States)

    Baysson, Hélène; Tirmarche, Margot; Laurier, Dominique

    2008-08-01

    A review of recently published epidemiological studies on populations exposed to natural background ionizing radiation is proposed. The advantages and disadvantages of different types of epidemiological studies as well as the uncertainty linked to multiple exposures are discussed. As radon is the greatest source of natural radiation, particular attention is given to quantification of risk obtained through cohort studies of uranium miners and after joint analysis of case-control studies on lung cancer and residential radon.

  1. Dosimetry in radiation fields around high-energy proton accelerators

    CERN Document Server

    Agosteo, S; Silari, M; Theis, C

    2008-01-01

    Radiation dosimetry at high-energy proton accelerators is a difficult task because of the complexity of the stray radiation field. A good knowledge of this mixed radiation field is very important to be able to select the type of detectors (active and/or passive) to be employed for routine area monitoring and to choose the personal dosimeter legally required for estimating the effective dose received by individuals. At the same time, the response function of the detectors to the mixed field must be thoroughly understood. A proper calibration of a device, which may involve a complex series of measurements in various reference fields, is needed. Monte Carlo simulations provide a complementary – and sometimes the principal – mean of determining the response function. The ambient dose equivalent rates during operation range from a few hundreds of μSv per year to a few mSv per year. To measure such rates one needs detectors of high sensitivity and/or capable of integrating over long periods. The main challenge...

  2. Characterization of a CT ionization chamber for radiation field mapping

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Vivolo, Vitor, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Xavier, Marcos, E-mail: mxavier@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: hjkhoury@gmail.com [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, 50740-540, Recife, PE (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo, SP (Brazil)

    2012-07-15

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement. - Highlights: Black-Right-Pointing-Pointer A new ionization chamber was made and tested for radiation field mapping. Black-Right-Pointing-Pointer This ionization chamber was made using only accessible low cost materials. Black-Right-Pointing-Pointer The operational tests were made and the results were within the recommended limits. Black-Right-Pointing-Pointer The field map was compared with a commercial chamber presenting a 1.25% difference. Black-Right-Pointing-Pointer Our chamber presents potential for assurance reliability in calibration procedures.

  3. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  4. Study on neutron radiation field of carbon ions therapy

    CERN Document Server

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  5. First Investigation on the Radiation Field of the Spherical Hohlraum

    Science.gov (United States)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xuefei; Lan, Ke; Liu, Jie; Ren, Guoli; Li, Yongsheng; Liu, Yonggang; Jiang, Xiaohua; Yang, Dong; Li, Sanwei; Guo, Liang; Zhang, Huan; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Huang, Lizhen; Du, Kai; Zhao, Runchang; Li, Ping; Wang, Wei; Su, Jingqin; Ding, Yongkun; He, Xian-Tu; Zhang, Weiyan

    2016-07-01

    The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M -band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

  6. Mesoscopic near-field radiative heat transfer at low temperatures

    Science.gov (United States)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  7. Phenomenological approach to introduce damping effects on radiation field states

    CERN Document Server

    D'Almeida, N G; Serra, R M; Moussa, M H Y

    2000-01-01

    In this work we propose an approach to deal with radiation field states which incorporates damping effects at zero temperature. By using some well known results on dissipation of a cavity field state, obtained by standard ab-initio methods, it was possible to infer through a phenomenological way the explicit form for the evolution of the state vector for the whole system: the cavity-field plus reservoir. This proposal turns out to be of extreme convenience to account for the influence of the reservoir over the cavity field. To illustrate the universal applicability of our approach we consider the attenuation effects on cavity-field states engineering. A proposal to maximize the fidelity of the process is presented.

  8. Map Service Showing Geology, Oil and Gas Fields, and Geologic Provinces of Europe including Turkey

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digitally compiled map includes geology, oil and gas fields, and geologic provinces of Europe. The oil and gas map is part of a worldwide series released on...

  9. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Directory of Open Access Journals (Sweden)

    Meier Matthias M.

    2016-01-01

    Full Text Available Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR. Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  10. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Science.gov (United States)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  11. Quantum Field Theoretic Treatment of Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields: Effects of Landau Levels

    CERN Document Server

    Maruyama, Tomoyuki; Kajino, Toshitaka; Kwon, Yongshin; Mathews, Grant J; Ryu, Chung-Yeol

    2015-01-01

    We study pion production from proton synchrotron radiation in the presence of strong magnetic fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field by explicitly including the anomalous magnetic moment. In this exact quantum-field approach the magnitude of pion synchrotron emission turns out to be much smaller than that obtained in the semi-classical approach. However, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two order magnitude.

  12. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    CERN Document Server

    Rupak, Gautam; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.

  13. Heat transfer including radiation and slag particles evolution in MHD channel-I

    Energy Technology Data Exchange (ETDEWEB)

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  14. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.

    Science.gov (United States)

    Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

  15. Radiation engineering of optical antennas for maximum field enhancement.

    Science.gov (United States)

    Seok, Tae Joon; Jamshidi, Arash; Kim, Myungki; Dhuey, Scott; Lakhani, Amit; Choo, Hyuck; Schuck, Peter James; Cabrini, Stefano; Schwartzberg, Adam M; Bokor, Jeffrey; Yablonovitch, Eli; Wu, Ming C

    2011-07-13

    Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ∼20% higher field enhancement relative to a quarter-wavelength thick dielectric layer.

  16. The photoevaporation of a neutral structure by an EUV+FUV radiation field

    CERN Document Server

    Lora, V; Raga, A C; Esquivel, A; Cerqueira, A H

    2013-01-01

    The EUV photoionizing radiation and FUV dissociating radiation from newly born stars photoevaporate their parental neutral cloud, leading to the formation of dense clumps that could eventually form additional stars. We study the effects of including a photodissociating FUV flux in models of the fragmentation of a photoevaporating, self-gravitating molecular cloud. We compute 3D simulations of the interaction of an inhomogeneous, neutral, self-gravitating cloud with external EUV and FUV radiation fields, and calculate the number of collapsing clumps and their mass. We find that the presence of an outer photodissociation region has an important effect on the formation of dense structures due to the expansion of an HII region. In particular, including a FUV field leads to the earlier formation of a larger number of dense clumps, which might lead to the formation of more stars.

  17. THE PHOTOEVAPORATION OF A NEUTRAL STRUCTURE BY AN EUV+FUV RADIATION FIELD

    Directory of Open Access Journals (Sweden)

    V. Lora

    2013-01-01

    Full Text Available The EUV photoionizing radiation and FUV dissociating radiation from newly born stars photoevaporate their parental neutral cloud, leading to the formation of dense clumps that could eventually form additional stars. We study the effects of including a photodissociating FUV flux in models of the fragmentation of a photoevaporating, self-gravitating molecular cloud. We compute 3D simulations of the interaction of an inhomogeneous, neutral, self-gravitating cloud with external EUV and FUV radiation fields, and calculate the number of collapsing clumps and their mass. We find that the presence of an outer photodissociation region has an important effect on the formation of dense structures due to the expansion of an H II region. In particular, including a FUV field leads to the earlier formation of a larger number of dense clumps, which might lead to the formation of more stars.

  18. TSUBASA (MDS-1) observations of energetic electrons and magnetic field variations in outer radiation belt

    Science.gov (United States)

    Nakamura, M.; Matsuoka, H.; Liu, H.; Koshiishi, H.; Koga, K.; Matsumoto, H.; Goka, T.

    2002-12-01

    We have investigated variations of energetic electrons (> 0.4 MeV) and magnetic field in the radiation belt obtained from the Standard DOse Monitor (SDOM) and the MAgnetoMeter (MAM) of the Space Environment Data Acquisition equipment (SEDA) onboard TSUBASA (the Mission Demonstration Test Satellite (MDS)-1) launched on February 4, 2002. Since TSUBASA is operated in the geostationary transfer orbit, it has provided rare opportunities of directly observing near-equatorial radiation belt plasma particles and magnetic field, having already included several large magnetic storms. The energetic electrons in the outer radiation belt are contributors to the total radiation dose deposited in lightly shielded spacecraft electronics for high altitude orbits and are known to have a drastic variability associated with geomagnetic storm and high speed solar wind streams. The abrupt energetic electron flux decreases in the outside of outer radiation belt show characteristic variations of in situ magnetic field. These observations have implications for the possible mechanisms of the depletion and the following recovery and/or buildup of energetic electrons in the outer radiation belt.

  19. The motion of charged particles in strong plane waves including radiation reaction

    Science.gov (United States)

    Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.

    The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.

  20. Fine Forecasts: Encouraging the Media to Include Ultraviolet Radiation Information in Summertime Weather Forecasts

    Science.gov (United States)

    Richards, R.; Reeder, A. I.; Bulliard, J.-L.

    2004-01-01

    Melanoma and skin cancer are largely attributable to over-exposure to solar ultraviolet radiation (UVR). Reports of UVR levels within media weather forecasts appear to be well received by the public and have good potential to communicate the need for appropriate sun protection to a broad audience. This study describes provision of UVR messages by…

  1. Twelve years of cooperation in the field of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grapengiesser, Sten; Bennerstedt, Torkel

    2005-06-01

    SSI has pursued an international cooperation program since 1992 within the field of radiation protection and emergency preparedness for radiation accidents with the three Baltic countries as main beneficiaries. As the Baltic countries are members of the EU since May 2004, this bilateral support will now be phased out and replaced with other forms of cooperation. During the years passed, a large number of activities have been launched with a total budget of some 14 million ECU. The Baltic radiation protection authorities have played a big role in the cooperation and Baltic ministries, universities, nuclear technology installations and other industries using radiation have also been engaged in the projects. SKI, SKB, Studsvik and the Swedish nuclear power plants should be mentioned as major cooperation partners on the Swedish side. During autumn 2004 when such a large coordinated work program was coming to an end, SSI decided to hold a seminar with the purpose to follow up experiences from the work and discuss coming forms of cooperation. The seminar took place on the 18 of November 2004 and gathered some 80 participants, 29 of which from the Baltic countries. It was opened by Lars-Erik Holm, the SSI Director General, and the three Baltic countries then presented their views and impressions from the passed years of cooperation. The seminar was concluded with a panel discussion on 'How to proceed from today's situation'. The result was that SSI invited to a new coordination meeting during autumn 2005 to follow up and discuss coordination of radiation protection around the Baltic Sea together with the other Nordic radiation protection authorities.

  2. Incidence of primary hypothyroidism in patients exposed to therapeutic external beam radiation, where radiation portals include a part or whole of the thyroid gland

    Directory of Open Access Journals (Sweden)

    B A Laway

    2012-01-01

    Full Text Available Introduction: Hypothyroidism is a known consequence of external-beam radiotherapy to the neck encompassing a part or whole of the thyroid gland. In this non-randomized prospective study, we have tried to evaluate the response of the thyroid gland to radiation by assessing thyroid function before irradiation and at regular intervals after irradiation. Aims and Objectives: The aim of this study were to assess in the cancer patients, who were exposed to the therapeutic external beam radiation, where radiation portals include a part or whole of the thyroid gland: the incidence of primary hypothyroidism, the time required to become hypothyroid, any relation between the total dose for the development of hypothyroidism, and whether there are any patient or treatment-related factors that are predictive for the development of hypothyroidism, including the use of concurrent chemotherapy. Materials and Methods: This non-randomized, prospective study was conducted for a period of 2 years in which thyroid function was assessed in 59 patients (cases of head and neck cancer, breast cancer, lymphoma patients and other malignancies, who had received radiotherapy to the neck region. 59 euthyroid healthy patients (controls were also taken, who had not received the neck irradiation. These patients/controls were assessed periodically for 2 years. Results: The incidence of hypothyroidism after external beam radiation therapy (EBRT to neck where radiation portals include part or whole of the thyroid gland was 16.94%, seven cases had subclinical hypothyroidism (11.86% and three cases had clinical hypothyroidism (5.08%. Mean time for development of hypothyroidism was 4.5 months. There was no effect of age, gender, primary tumor site, radiation dose and chemotherapy, whether neoadjuvant or concurrent with the development of hypothyroidism. Conclusion: In summary, we found that thyroid dysfunction is a prevalent, yet easily treatable source of morbidity in patients

  3. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Yahalom, Joachim [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Christie Hospital NHS Trust, Manchester (United Kingdom); Berthelsen, Anne Kiil [Department of Radiation Oncology and PET Centre, Rigshospitalet, University of Copenhagen (Denmark); Constine, Louis S. [Department of Radiation Oncology and Pediatrics, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York (United States); Eich, Hans Theodor [Department of Radiation Oncology, University of Münster (Germany); Girinsky, Theodore [Department of Radiation Oncology, Institut Gustave-Roussy, Villejuif (France); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mauch, Peter [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States); Mikhaeel, N. George [Department of Clinical Oncology and Radiotherapy, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Ng, Andrea [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States)

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  4. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    CERN Document Server

    Silari, M; Beck, P; Bedogni, R; Cale, E; Caresana, M; Domingo, C; Donadille, L; Dubourg, N; Esposito, A; Fehrenbacher, G; Fernández, F; Ferrarini, M; Fiechtner, A; Fuchs, A; García, M J; Golnik, N; Gutermuth, F; Khurana, S; Klages, Th; Latocha, M; Mares, V; Mayer, S; Radon, T; Reithmeier, H; Rollet, S; Roos, H; Rühm, W; Sandri, S; Schardt, D; Simmer, G; Spurný, F; Trompier, F; Villa-Grasa, C; Weitzenegger, E; Wiegel, B; Wielunski, M; Wissmann, F; Zechner, A; Zielczyński, M

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with “complex mixed radiation fields at workplaces” and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. Th...

  5. Radiative cooling of a solidifying droplet layer including absorption and scattering

    Science.gov (United States)

    Siegel, Robert

    1987-01-01

    A simple solution for the transient cooling of a solidifying layer filled with drops that can emit and scatter radiation is discussed, with application to a liquid drop radiator proposed for the Space Station (Mattick and Hertzberg, 1981). The layer remains at uniform temperature during solidification, and the outer portions rapidly lose heat, producing a variation along the length of the layer in the distribution of liquid concentration across the layer. The analysis is used to obtain both the amount of energy dissipated by the two-phase system at uniform temperature and the velocity distribution necessary to maintain a uniform liquid fraction across the entire layer at all locations along the layer length.

  6. Using virtual reality technology to include field operators in simulation and training

    Energy Technology Data Exchange (ETDEWEB)

    Nystad, E.; Strand, S. [OECD Halden Reactor Project (Norway)]. E-mail: espen.nystad@hrp.no

    2006-07-01

    By using virtual reality technology, field operators can be included in simulator training. A study has been performed where field operators could perform their activities in a virtual plant and communicate with a control room operator who was placed in a physical control room simulator. This paper describes the use of VR technology in the study and how the operators experienced interacting with the virtual plant. (author)

  7. Microwave background radiation anisotropy from scalar field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, A. (NASA/Fermilab Astrophysics Center, Fermilab MS209, Box 500, Batavia, Illinois 60510-0500 (United States)); Veeraraghavan, S. (Physics Astronomy Department, University of Massachusetts, Amherst, Massachusetts 01003 (United States) Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States))

    1993-09-15

    Analytic calculations of the cosmological density fluctuations and microwave background radiation anisotropies induced by gradients in a topologically trivial scalar field are presented. This anlaytic solution should provide a good test for numerical simulations of microwave anisotropy from scalar fields. To the extent that these results generalize to other scalar field models and configurations, they imply that (1) MBR measurements limit large-scale primordial variations greater than about 5[times]10[sup 16] GeV within our horizon, (2) the total scalar field variation is a fair predictor of the magnitude of the MBR anisotropy, but is only accurate to within a factor of about three, (3) scalar fields as well as other models of seeded perturbations produce a few times more anisotropy [Delta][ital T]/[ital T] for a given density fluctuation [delta][rho]/[rho] (on the same scale) than do primordial adiabatic perturbations, (4) models of scalar field seeds which produce a scale-invariant spectrum of perturbations seem to require galaxies to be more clustered than the mass on small scales, and (5) scalar fields do not tilt'' the Universe.

  8. Radiation from relativistic shocks with turbulent magnetic fields

    CERN Document Server

    Nishikawa, K -I; Medvedev, M; Zhang, B; Hardee, P; Nordlund, A; Frederiksen, J; Mizuno, Y; Sol, H; Pohl, M; Hartmann, D H; Oka, M; Fishman, G J

    2009-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on...

  9. A field test of a simple stochastic radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, N. [Science Applications International Corp., San Diego, CA (United States)

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  10. Electric Field Change and VHF Radiation during Lightning Initiation

    Science.gov (United States)

    Marshall, T. C.; Karunarathne, S.; Bandara, S. A.; Karunarathne, N. D.; Siedlecki, R.; Stolzenburg, M.

    2016-12-01

    Recent studies of lightning initiation [e.g., Marshall et al., JGR 2014; Marshall et al., AGU 2015] have shown that an initial electric field change (IEC) occurs for about 1 ms before the first initial breakdown (IB) pulse in most (and perhaps all) lightning flashes. The same studies indicate that the IEC itself begins after an event that radiates strongly in the VHF radio band; this event seems to be the real lightning initiation event [e.g., Rison et al., Nature Communications 2016]. During the summer of 2016 we used an array of E-change sensors and VHF sensors located in north Mississippi to obtain correlated data on the VHF lightning initiation event, the IEC, and the IB pulses of nearby lightning flashes. In this presentation we show examples of lightning initiation events and their subsequent IECs at multiple sensors. In addition, we show examples of the VHF radiation associated with IB pulses.

  11. Radiation quantities: significance of the angular and energy distribution of the radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.; Perks, C.A. (AEA Corporate Safety Directorate, Harwell (United Kingdom)); Thomas, D.J.; Naismith, O.F. (National Physical Lab., Teddington (United Kingdom))

    1994-01-01

    This paper discusses the effects of changing from the old to new (ICRP 60 and ICRU 47) dosimetric quantities, and the relationship between quantities, as a function of the energy and angular distribution, for practical radiation fields. It considers: X rays, gamma rays, neutrons and beta rays; reviews the limited data on practical energy and angular distributions for photons and neutrons in the workplace; and calculates relevant dosimetric quantities based on realistic assumptions. The results are used to illustrate how the relationship between quantities might vary in practical fields and to draw conclusions about the implications of recent ICRP and ICRU publications. (Author).

  12. Acoustic radiation field of the truncated parametric source generated by a piston radiator model and experiment

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaoliang; ZHU Zhemin; DU Gonghuan; TANG Haiqing; LI Shui; MIAO Rongxing

    2001-01-01

    A theoretical model is presented to describe the parametric acoustic field generated by a piston radiator. In the model, the high-frequency primary wave interaction region that is truncated by a low-pass acoustic filter can be viewed as a cylindrical source within the Rayleigh distance of the piston. When the radius of the piston is much smaller than the length of the parametric region, this model is reduced to the Berketey's End-Fire Line Array model. Comparison between numerical calculations and experimental measurement show that the generated parametric sound field (especially near the axis) agrees well with the experiment results.

  13. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    Science.gov (United States)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  14. Radiative corrections from heavy fast-roll fields during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S. [CP" 3-Origins, Center for Cosmology and Particle Physics Phenomenology,University of Southern Denmark,Campusvej 55, 5230 Odense M (Denmark)

    2015-06-09

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.

  15. Factorization of Radiative Leptonic Decays of $B^-$ and $D^-$ Mesons Including the Soft Photon Region

    CERN Document Server

    Yang, Ji-Chong

    2016-01-01

    In this work, we study the radiative leptonic decays of $B^-$ and $D^-$ mesons using factorization approach. Factorization is proved to be valid explicitly at 1-loop level at any order of $O(\\Lambda _{\\rm QCD}\\left/m_Q\\right.)$. We consider the contribution in the soft photon region that $E_{\\gamma} \\sim \\left. \\Lambda^2 _{\\rm QCD} /\\right. m_Q$. The numerical results shows that, the soft photon region is very important for both the $B$ and $D$ mesons. The branching ratios of $B\\to \\gamma e\

  16. Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor

    CERN Document Server

    Hanson, Jordan C

    2016-01-01

    The Askaryan effect describes coherent electromagnetic radiation from the collective charge within high-energy cascades in dense media. We present the first fully analytic model of Askaryan radiation that accounts simultaneously for the three-dimensional form factor of the electromagnetic cascade and the Landau-Pomeranchuk-Migdal (LPM) effect. Analytic calculations avoid computationally intensive Monte Carlo simulations of the cascades. Searches for cosmogenic neutrinos in Askaryan- based detectors benefit from computational speed, because neutrino event parameters affect the shape of the electromagnetic field, requiring scans of parameter space. The Askaryan field is derived and verified against Geant4 simulations, and compared with prior numerical and semi-analytic calculations. Finally, two special cases of the model are transformed from the Fourier domain to the time-domain, analytically. Next-generation in situ detectors like ARA and ARIANNA can use analytic time-domain signal models to search for phase ...

  17. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    Archana Samantaray; Pushpa Khare

    2000-06-01

    We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.

  18. Effects of Source Correlations on the Spectrum of Radiated Fields

    Science.gov (United States)

    1990-09-01

    directivltv Chapter 2 68 12 K. Kim and E. Wolf, "Non-radiating monochromatic sources and their fields", Opt. Commun. 59, 1-6 (1986). 13 The Jacobian of...Amer. 68 , 1597-1605 (1978). 15 R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 6. 16 The method of...Ghatak and C.L. Metha, "Propagation of a partially coherent beam through selfoc fibers", Opt. Commun. 12, 333-337(1974). D. Marcuse , Light Transmission

  19. Cosmic Radiation Fields: Sources in the early Universe

    Science.gov (United States)

    Raue, Martin; Kneiske, Tanja; Horns, Dieter; Elsaesser, Dominik; Hauschildt, Peter

    The workshop "Cosmic Radiation Fields - Sources in the Early Universe" (CRF 2010) focuses on the connection between the extragalactic infrared background and sources in the early universe, in particular stars powered by dark matter burning (Dark Stars; DS). The workshop covers the following topics: the cosmic infrared background, formation of early stars, dark stars, effect of dark matter in the early universe, dark matter halos, primordial star formation rate, and reionization. Further information can be found on the conference webpage: http://www.desy.de/crf2010/. Organizing committee: Tanja Kneiske, Martin Raue, Dominik Elsaesser, Alexander Gewering-Peine, Peter Hausschildt, Dieter Horns, and Andreas Maurer.

  20. Radiation of Relativistic Particles in a Quasi-Homogeneous Magnetic Field

    CERN Document Server

    Epp, V

    2016-01-01

    Spectrum of radiation of a relativistic particle moving in a nonhomogeneous magnetic field is considered. The spectrum depends on the pitch-angle $\\alpha$ between the velocity direction and a line tangent to the field line. In case of very small $\\alpha$ the particle generates so-called curvature radiation, in an intermediate case undulator-kind radiation is produced. In this paper we present the calculations of radiation properties in a case when both curvature and undulator radiation is observed.

  1. The numerical simulation of green water loading including vessel motions and the incoming wave field

    NARCIS (Netherlands)

    Kleefsman, K.M.Theresa; Loots, G. Erwin; Veldman, Arthur E.P.; Buchner, Bas; Bunnik, Tim; Falkenberg, Erik

    2005-01-01

    This paper presents results from simulation of green water loading including vessel motions. The simulation is performed through a domain decomposition: the far field and ship motions are calculated by potential theory and are used to simulate the local flow around the deck of an offshore floater us

  2. 30 CFR 203.63 - Does my application have to include all leases in the field?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does my application have to include all leases in the field? 203.63 Section 203.63 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Pre-Act Deep...

  3. Field test of a post-closure radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.E. [Babcock & Wilcox, Alliance, OH (United States); Christy, C.E. [Department of Energy, Morgantown, WV (United States); Heath, R.E. [FERMCO, Cincinnati, OH (United States)

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  4. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    CERN Document Server

    Jain, Rajeev Kumar; Sloth, Martin S

    2015-01-01

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, sur...

  5. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geon; Shin, Kyo Chul [Dankook Univ., College of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., College of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Koo [The Catholic Univ., College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within {+-}1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within {+-}1.0% in most situations and within {+-}3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry.

  6. Graphene-based field effect transistors for radiation-induced field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Di Gaspare, Alessandra, E-mail: alessandra.digaspare@lnf.infn.it [INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Valletta, Antonio [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); Fortunato, Guglielmo [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Larciprete, Rosanna [CNR-Istituto di Sistemi Complessi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Mariucci, Luigi [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Notargiacomo, Andrea [CNR-Istituto di Fotonica e Nanotecnologie, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Cimino, Roberto [INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); CERN, Geneva (Switzerland)

    2016-07-11

    We propose the implementation of graphene-based field effect transistor (FET) as radiation sensor. In the proposed detector, graphene obtained via chemical vapor deposition is integrated into a Si-based field effect device as the gate readout electrode, able to sense any change in the field distribution induced by ionization in the underneath absorber, because of the strong variation in the graphene conductivity close to the charge neutrality point. Different 2-dimensional layered materials can be envisaged in this kind of device.

  7. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C., E-mail: cwang@mail.sim.ac.cn; Wang, F.; Cao, J. C., E-mail: jccao@mail.sim.ac.cn [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  8. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity

    Science.gov (United States)

    Iorga, G.; Hitzenberger, R.; Kasper-Giebl, A.; Puxbaum, Hans

    2007-01-01

    In view of both the climatic relevance of aerosols and the fact that aerosol burdens in central Europe are heavily impacted by anthropogenic sources, this study is focused on estimating the regional-scale direct radiative effect of aerosols in Austria. The aerosol data (over 80 samples in total) were collected during measurement campaigns at five sampling sites: the urban areas of Vienna, Linz, and Graz and on Mt. Rax (1644 m, regional background aerosol) and Mt. Sonnblick (3106 m, background aerosol). Aerosol mass size distributions were obtained with eight-stage (size range: 0.06-16 μm diameter) and six-stage (size range 0.1-10 μm) low-pressure cascade impactors. The size-segregated samples were analyzed for total carbon (TC), black carbon (BC), and inorganic ions. The aerosol at these five locations is compared in terms of size distributions, optical properties, and direct forcing. Mie calculations are performed for the dry aerosol at 60 wavelengths in the range 0.3-40 μm. Using mass growth factors determined earlier, the optical properties are also estimated for higher relative humidities (60%, 70%, 80%, and 90%). A box model was used to estimate direct radiative forcing (DRF). The presence of absorbing species (BC) was found to reduce the cooling effect of the aerosols. The water-soluble substances dominate radiative forcing at the urban sites, while on Rax and Sonnblick BC plays the most important role. This result can be explained by the effect of the surface albedo, which is much lower in the urban regions (0.16) than at the ice and snow-covered mountain sites. Shortwave (below 4 μm) and longwave surface albedo values for ice were 0.35 and 0.5, while for snow surface albedo, values of 0.8 (shortwave) and 0.5 (longwave) were used. In the case of dry aerosol, especially for urban sites, the unidentified material may contribute a large part to the forcing. Depending on the sampling site the estimated forcing gets more negative with increasing humidity

  9. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  10. Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation

    Science.gov (United States)

    Frønsdal, Christian

    Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.

  11. Radiation Like Scalar Field and Gauge Fields in Cosmology for a theory with Dynamical Time

    CERN Document Server

    Benisty, David

    2016-01-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spacial curvature of the universe. This is because only such $ k=0 $ radiation solutions poses a homothetic Killimg vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved space time, and there are no deviations from standard gauge filed equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang Mills equations, for more general space times.

  12. Complex analysis of Askaryan radiation: A fully analytic treatment including the LPM effect and Cascade Form Factor

    Science.gov (United States)

    Hanson, Jordan C.; Connolly, Amy L.

    2017-05-01

    The Askaryan effect describes coherent electromagnetic radiation from high-energy cascades in dense media with a collective charge. We present an analytic model of Askaryan radiation that accounts simultaneously for the three-dimensional form factor of the cascade, and quantum mechanical cascade elongation via the Landau-Pomeranchuk-Migdal effect. These calculations, and the associated open-source code, allow the user to avoid computationally intensive Monte Carlo cascade simulations. Searches for cosmogenic neutrinos in Askaryan-based detectors benefit from computational speed, because scans of Askaryan parameter-space are required to match neutrino signals. The Askaryan field is derived from cascade equations verified with Geant4 simulations, and compared with prior numerical and semi-analytic calculations. Finally, instructive cases of the model are transformed from the Fourier domain to the time-domain. Next-generation in situ detectors like ARA and ARIANNA can use analytic time-domain signal models to search for correlations with event candidates.

  13. Simplified method for including spatial correlations in mean-field approximations

    Science.gov (United States)

    Markham, Deborah C.; Simpson, Matthew J.; Baker, Ruth E.

    2013-06-01

    Biological systems involving proliferation, migration, and death are observed across all scales. For example, they govern cellular processes such as wound healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration, and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behavior. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pairwise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplification in the form of a partial differential equation description for the evolution of pairwise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behavior in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before and find our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

  14. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    Science.gov (United States)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  15. ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Daniel [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Bromwich, David H [Ohio State University; Vogelmann, Andrew M [Brookhaven National Lab. (BNL), Upton, NY (United States); Verlinde, Johannes [Pennsylvania State Univ., University Park, PA (United States); Russell, Lynn M [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-15

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) is the most technologically advanced atmospheric and climate science campaign yet fielded in Antarctica. AWARE was motivated be recent concern about the impact of cryospheric mass loss on global sea level rise. Specifically, the West Antarctic Ice Sheet (WAIS) is now the second largest contributor to rising sea level, after the Greenland Ice Sheet. As steadily warming ocean water erodes the grounding lines of WAIS components where they meet the Amundsen and Bellingshausen Seas, the retreating grounding lines moving inland and downslope on the underlying terrain imply mechanical instability of the entire WAIS. There is evidence that this point of instability may have already been reached, perhaps signifying more rapid loss of WAIS ice mass. At the same time, the mechanical support provided by adjacent ice shelves, and also the fundamental stability of exposed ice cliffs at the ice sheet grounding lines, will be adversely impacted by a warming atmosphere that causes more frequent episodes of surface melting. The surface meltwater damages the ice shelves and ice cliffs through hydrofracturing. With the increasing concern regarding these rapid cryospheric changes, AWARE was motivated by the need to (a) diagnose the surface energy balance in West Antarctica as related to both summer season climatology and potential surface melting, and (b) improve global climate model (GCM) performance over Antarctica, such that future cryospheric projections can be more reliable.

  16. Trapped-Ion Quantum Logic with Global Radiation Fields

    Science.gov (United States)

    Weidt, S.; Randall, J.; Webster, S. C.; Lake, K.; Webb, A. E.; Cohen, I.; Navickas, T.; Lekitsch, B.; Retzker, A.; Hensinger, W. K.

    2016-11-01

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  17. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  18. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.

    Science.gov (United States)

    Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian

    2014-11-20

    Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site.

  19. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    CERN Document Server

    Bogdanov, O V; Lazarenko, G Yu

    2016-01-01

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau-Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energies and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing th...

  20. Cosmic radiation and magnetic fields: Exposure assessment and health outcomes among airline flight crews

    Science.gov (United States)

    Nicholas, Joyce Shealy

    Airline flight crews are chronically exposed to cosmic radiation and to magnetic fields generated by the aircraft's electrical system. Potential disease risks have been identified in health studies among commercial flight crews outside of the United States and among military pilots within the United States. The objectives of this study were (1) to quantify exposure to both cosmic radiation and magnetic fields onboard aircraft, (2) to develop a methodology for estimating career cosmic radiation doses to individual crew members, and (3) to compare mortality among United States commercial pilots and navigators with that of all occupational groups. Cosmic radiation equivalent doses to bone marrow and skeletal tissue were calculated on a flight-by-flight basis. Flight-by-flight calculations were used to develop an estimation methodology for cumulative (career) cosmic radiation doses. Magnetic fields were measured directly onboard aircraft during flight. Health outcomes among United States commercial pilots and navigators were investigated using proportional mortality ratios, proportional cancer mortality ratios, and mortality odds ratios. Based on the sample used in this study, the cosmic radiation equivalent dose to bone marrow and skeletal tissue associated with air travel ranges from 30 to 570 microsieverts per 100 flight hours (not including ground time) depending on altitude, latitude, phase of solar cycle, and flight duration. Magnetic field exposure appears to be characterized by frequencies between 100 and 800 hertz and varies in strength depending on stages of flight, location within the aircraft, and aircraft type. Based on limited measurements, maximum field strengths may increase from 0.6 microtesla in economy class to 1.2 microtesla in first class, suggesting that cockpit exposures may be higher. Potential synergistic effects of cosmic radiation and magnetic fields may be associated with certain cancers found in excess among flight crews, in particular

  1. Near field radiative heat transfer between two nonlocal dielectrics

    CERN Document Server

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  2. A complete model of CH+ rotational excitation including radiative and chemical pumping processes

    CERN Document Server

    Godard, Benjamin

    2012-01-01

    Aims. Excitation of far-infrared and submillimetric molecular lines may originate from nonreactive collisions, chemical formation, or far infrared, near-infrared, and optical fluorescences. As a template, we investigate the impact of each of these processes on the excitation of the methylidyne cation CH+ and on the intensities of its rotational transitions recently detected in emission in dense photodissociation regions (PDRs) and in planetary nebulae. Methods. We have developed a nonlocal thermodynamic equilibrium (non-LTE) excitation model that includes the entire energy structure of CH+, i.e. taking into account the pumping of its vibrational and bound and unbound electronic states by near-infrared and optical photons. The model includes the theoretical cross-sections of nonreactive collisions with H, H2, He, and e-, and a Boltzmann distribution is used to describe the probability of populating the excited levels of CH+ during its chemical formation by hydrogenation of C+. To confirm our results we also pe...

  3. Hawking radiation of five-dimensional charged black holes with scalar fields

    Science.gov (United States)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  4. Breast cancer regional radiation fields for supraclavicular and axillary lymph node treatment: is a posterior axillary boost field technique optimal?

    Science.gov (United States)

    Wang, Xiaochun; Yu, Tse Kuan; Salehpour, Mohammad; Zhang, Sean X; Sun, Tzouh Liang; Buchholz, Thomas A

    2009-05-01

    To assess whether using an anterior oblique supraclavicular (SCV) field with a posterior axillary boost (PAB) field is an optimal technique for targeting axillary (AX) lymph nodes compared with two computed tomography (CT)-based techniques: (1) an SCV field with an anterior boost field and (2) intensity-modulated radiotherapy (IMRT). Ten patients with CT simulation data treated with postmastectomy radiation that included an SCV field were selected for the study. Supraclavicular nodes and AX Level I-III nodes within the SCV field were contoured and defined as the treatment target. Plans using the three techniques were generated and evaluated for each patient. The anterior axillary boost field and IMRT resulted in superior dose coverage compared with PAB. Namely, treatment volumes that received 105%, 80%, and 30% of prescribed dose for IMRT plans were significantly less than those for the anterior axillary boost plans, which were significantly less than PAB. For PAB and anterior axillary boost plans, there was a linear correlation between treatment volume receiving 105% of prescribed dose and maximum target depth. Furthermore, the IMRT technique resulted in better lung sparing and dose conformity to the target than anterior axillary boost, which again was significantly better than PAB. The maximum cord dose for IMRT was small, but higher than for the other two techniques. More monitor units were required to deliver the IMRT plan than the PAB plan, which was more than the anterior axillary boost plan. The PAB technique is not optimal for treatment of AX lymph nodes in an SCV field. We conclude that CT treatment planning with dose optimization around delineated target volumes should become standard for radiation treatments of supraclavicular and AX lymph nodes.

  5. Wide-field x-ray imaging for future missions, including XEUS

    Science.gov (United States)

    Conconi, Paolo; Pareschi, Giovanni; Campana, Sergio; Chincarini, Guido; Tagliaferri, Gianpiero

    2004-02-01

    It is well known that the Wolter I design for focusing X-ray telescopes provides perfect on-axis images, while, despite the absence of spherical aberration, the off-axis angular resolution rapidly degrades because of coma, field curvature and astigmatism. However, more general mirror designs than Wolter's exist in which primary and secondary mirror profiles can be described by polynomial equations. These power series solutions are particularly well indicated to be optimized, in order to achieve high imaging performances even at large off-axis incidence angles, despite a small degradation of the on-axis response. The concept, derived from the Ritchey-Chretien telescope widely used in optical astronomy, has already been experimentally proven for X-ray astronomical applications at the Brera Astronomical Observatory (Italy), in the context of the feasibility study of the Wide Field X-ray Telescope mission. Here we present a new design (including a model for slope errors and mechanical tolerances) for a X-ray telescope of medium-size class assuming monolithic mirror shells made of glass, optimized to have a Half Energy Width better than 5 arcsec over a 30 arcmin field of view (radius) and an effective area almost twice that one of Chandra. The use of polynomial mirrors seems extremely well suited also for the case of the XEUS optics. Indeed, the small aspect-ratio between the large focal length of the XEUS telescope (50 m) and the total mirror height (1 m) makes it very favorable to diminish the aberration effects due to the field curvature. With the assumption of mirror shells with polynomial profile it would be possible to achieve for XEUS an imaging response almost constant up to a field of view of 20 arcmin in radius.

  6. Microdosimetric characterisation of radiation fields for modelling tissue response in radiotherapy

    Directory of Open Access Journals (Sweden)

    He Wang

    2014-02-01

    Full Text Available Purpose: Our overall goal is the development of an approach to model tissue response to radiotherapy in which a tissue is viewed as a statistical ensemble of interacting cells. This involves characterisation of radiation fields on the spatial scale of subcellular structures. On this scale, the spatial distribution of radiation energy imparted to tissue is highly non-uniform and should be characterised in statistical terms. Microdosimetry provides a formalism developed for that purpose. This study addresses limitations of the standard microdosimetric approach to modelling tissue response by introducing two new characteristics that include additional information in a form convenient for this application.Methods: The standard microdosimetric approach is based on the concept of a sensitive volume (SV representing a target volume in the cell. It is considered in isolation from other SVs, implying that energy depositions in different SVs are statistically independent and that individual cells respond to radiation independent of each other. In this study, we examined the latter approximation through analysis of correlation functions. All calculations were performed with Geant4-DNA Monte Carlo code. Results: We found that for some realistic scenarios, spatial correlations of deposited energy can be significant. Two new characteristics of radiation fields are proposed. The first is the specific energy-volume histogram (zVH, which is a microscopic analogue of the dose-volume histogram. The second describes the probability distribution of deposited energies in two SVs without assuming statistical independence between the SVs. Numerical examples for protons and carbon ions of therapeutic energies are presented and discussed.Conclusion: We extended the microdosimetric approach to modelling tissue response by including additional important characteristics and presented them in a more conventional radiotherapy format

  7. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  8. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  9. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  10. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  11. Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)

    2012-10-20

    The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.

  12. Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction

    CERN Document Server

    Wen, Meng; Bauke, Heiko

    2016-01-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the electron dynamics in strong electromagnetic fields. We demonstrate that different models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced Stern-Gerlach force acting on the electron. The Frenkel model and the classical Foldy-Wouthuysen model are compared exemplarily in the nonrelativistic and the relativistic limits in order to identify parameter regimes where these classical models make different predictions. This allows for experimental tests of these models. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via ...

  13. Wireless Links in the Radiative Near Field via Bessel Beams

    Science.gov (United States)

    Heebl, Jason D.; Ettorre, Mauro; Grbic, Anthony

    2016-09-01

    The generation of propagating Bessel beams is typically limited to optical frequencies with bulky experimental setups. Recent works have demonstrated Bessel-beam generation at microwave and millimeter-wave frequencies utilizing low-profile, planar, leaky-wave antennas. These studies have assumed a single leaky mode in the antenna. In this work, the rigorous analysis of a planar Bessel-beam launcher supporting multiple modes is presented. By employing the mode-matching technique, a complete electromagnetic solution of the structure, its supported modes, and radiated fields is obtained. Additionally, a coupled system of two planar Bessel launchers is analyzed, and it is shown that the system can both transmit and receive Bessel beams. The energy-transfer characteristics of the coupled system are analyzed and discussed. An analysis of the coupled system's even and odd modes of operation show that efficient power transfer is possible, and that an odd mode is preferred since it yields higher field confinement and power-transfer efficiency.

  14. Extractable proteins from field radiation vulcanized natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Duclerc F. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil)]. E-mail: dfparra@ipen.br; Pinto Martins, Carlos Felipe [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil); Collantes, Hugo D.C. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil); Lugao, Ademar B. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil)

    2005-07-01

    The type I allergy associated with the use of natural rubber latex (NRL) products is caused by the NRL proteins leached by the sweat or other body fluids. Makuuchi's group proposed for the first time the proteins removal by the addition of water-soluble polymers (WSP) on radiation vulcanization of natural rubber latex (RVNRL) that is a promising process under development in many countries. In this study, Brazilian field natural rubber was irradiated with a {sup 60}Co gamma source to reduce the content of WSP in the final product. WSP was used as additive to improve the extraction of protein. After irradiation the RVNRL was centrifuged to extract the WSP and proteins. The analytical methodology for protein content was based on the modified Lowry method according to ASTM D5712. Protein determination was carried out in serum of latex and in the extracts of the gloves. The concentration of extractable water-soluble proteins in serum of irradiated field NRL (NRL1), not irradiated one (NRL2); of twice centrifuged sample with polymer additive NRL (NRL3) and of the glove manufactured (NRLG) are compared with commercial glove (CG). The irradiation process increases the extractable water-soluble proteins, EP, as reported in the literature. In this study the use of polymeric additive on the bi-centrifugation process to remove protein was successful and the EP of the glove obtained in NRL3 was at around 40% of the commercial glove.

  15. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  16. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    Science.gov (United States)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  17. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Scarboro, Sarah B; White, Allen; Yaldo, Derek; Kry, Stephen F; Howell, Rebecca M [University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX (United States); Stovall, Marilyn; Smith, Susan A, E-mail: Rhowell@mdanderson.or [The University of Texas M D Anderson Cancer Center, Houston, TX (United States)

    2010-12-07

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by {>=}2.5 cm.

  18. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Science.gov (United States)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  19. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sayenko, S.Yu.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2015-07-15

    Highlights: • It incorporates all suggestions by the reviewers. • Explanation to each new term is provided and suitable references are given. • Sample identities have been streamlined by revising the text and the tables. • Some figures have been redrawn. - Abstract: Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  20. Grain alignment induced by radiative torques: effects of internal relaxation of energy and complex radiation fields

    CERN Document Server

    Hoang, Thiem

    2008-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns grain axis of maximum moment of inertia with respect to grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of maximum moment of inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of maximum moment of inertia with angular momentum, and both axis of maximum moment of inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For the alignment without high-J attractors, beside the earlier studie...

  1. Radiation sensitivity of graphene field effect transistors and other thin film architectures

    Science.gov (United States)

    Cazalas, Edward

    An important contemporary motivation for advancing radiation detection science and technology is the need for interdiction of nuclear and radiological materials, which may be used to fabricate weapons of mass destruction. The detection of such materials by nuclear techniques relies on achieving high sensitivity and selectivity to X-rays, gamma-rays, and neutrons. To be attractive in field deployable instruments, it is desirable for detectors to be lightweight, inexpensive, operate at low voltage, and consume low power. To address the relatively low particle flux in most passive measurements for nuclear security applications, detectors scalable to large areas that can meet the high absolute detection efficiency requirements are needed. Graphene-based and thin-film-based radiation detectors represent attractive technologies that could meet the need for inexpensive, low-power, size-scalable detection architectures, which are sensitive to X-rays, gamma-rays, and neutrons. The utilization of graphene to detect ionizing radiation relies on the modulation of graphene charge carrier density by changes in local electric field, i.e. the field effect in graphene. Built on the principle of a conventional field effect transistor, the graphene-based field effect transistor (GFET) utilizes graphene as a channel and a semiconducting substrate as an absorber medium with which the ionizing radiation interacts. A radiation interaction event that deposits energy within the substrate creates electron-hole pairs, which modify the electric field and modulate graphene charge carrier density. A detection event in a GFET is therefore measured as a change in graphene resistance or current. Thin (micron-scale) films can also be utilized for radiation detection of thermal neutrons provided nuclides with high neutron absorption cross section are present with appreciable density. Detection in thin-film detectors could be realized through the collection of charge carriers generated within the

  2. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  3. Deformation field validation and inversion applied to adaptive radiation therapy.

    Science.gov (United States)

    Vercauteren, Tom; De Gersem, Werner; Olteanu, Luiza A M; Madani, Indira; Duprez, Fréderic; Berwouts, Dieter; Speleers, Bruno; De Neve, Wilfried

    2013-08-07

    Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (DFs). Four verification steps were performed to ensure a valid dose propagation: intra-cell folding detection finds zero or negative Jacobian determinants in the input DF; inter-cell folding detection is implemented on the resolution of the output DF; a region growing algorithm detects undefined values in the output DF; DF domains can be composed and displayed on the CT data. In 2011, one patient with nonmetastatic head and neck cancer selected from a three phase adaptive DPBN study was used to illustrate the algorithms implemented for adaptive chronological and anti-chronological dose accumulation. The patient received three (18)F-FDG-PET/CTs prior to each treatment phase and one CT after finalizing treatment. Contour propagation and DF generation between two consecutive CTs was performed in Atlas-based autosegmentation (ABAS). Deformable image registration based dose accumulations were performed on CT1 and CT4. Dose propagation was done using combinations of DFs or their inversions. We have implemented a chronological and anti-chronological dose accumulation algorithm based on DF inversion. Algorithms were designed and implemented to detect cell folding.

  4. Deformation field validation and inversion applied to adaptive radiation therapy

    Science.gov (United States)

    Vercauteren, Tom; De Gersem, Werner; Olteanu, Luiza A. M.; Madani, Indira; Duprez, Fréderic; Berwouts, Dieter; Speleers, Bruno; De Neve, Wilfried

    2013-08-01

    Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (DFs). Four verification steps were performed to ensure a valid dose propagation: intra-cell folding detection finds zero or negative Jacobian determinants in the input DF; inter-cell folding detection is implemented on the resolution of the output DF; a region growing algorithm detects undefined values in the output DF; DF domains can be composed and displayed on the CT data. In 2011, one patient with nonmetastatic head and neck cancer selected from a three phase adaptive DPBN study was used to illustrate the algorithms implemented for adaptive chronological and anti-chronological dose accumulation. The patient received three 18F-FDG-PET/CTs prior to each treatment phase and one CT after finalizing treatment. Contour propagation and DF generation between two consecutive CTs was performed in Atlas-based autosegmentation (ABAS). Deformable image registration based dose accumulations were performed on CT1 and CT4. Dose propagation was done using combinations of DFs or their inversions. We have implemented a chronological and anti-chronological dose accumulation algorithm based on DF inversion. Algorithms were designed and implemented to detect cell folding.

  5. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  6. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats.

    Science.gov (United States)

    Mohammed, Haitham S; Fahmy, Heba M; Radwan, Nasr M; Elsayed, Anwar A

    2013-03-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  7. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure

    OpenAIRE

    Do, Kyung Hyun

    2016-01-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, ...

  8. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    Science.gov (United States)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  9. Normal tissue toxicity after small field hypofractionated stereotactic body radiation

    OpenAIRE

    Constine Louis S; Milano Michael T; Okunieff Paul

    2008-01-01

    Abstract Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review ...

  10. Space life sciences: structure and dynamics of the global space radiation field at aircraft altitudes.

    Science.gov (United States)

    2003-01-01

    This issue is devoted to research papers on the radiation environment encountered by aircraft crew members and the flying public, both of which are exposed to a higher than average radiation dose. Two types of space radiation are considered: galactic cosmic radiation and solar activity. The papers include reviews on atmospheric ionization radiation, the factors controlling this radiation, the modeling of this radiation, and measurements made on board specific aircraft flights during solar minimum and solar maximum conditions, and during the major solar proton events that occurred in 1989 and 2001.

  11. Study of magnetic field expansion using a plasma generator for space radiation active protection

    Institute of Scientific and Technical Information of China (English)

    JIA Xiang-Hong; JIA Shao-Xia; XU Feng; BAI Yan-Qiang; WAN Jun; LIU Hong-Tao; JIANG Rui

    2013-01-01

    There are many active protecting methods including Electrostatic Fields,Confined Magnetic Field,Unconfined Magnetic Field and Plasma Shielding etc.for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration.The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far.The magnetic field expansion caused by plasma can improve its protective efficiency of space particles.One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric.A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz,which exits from both sides of the magnet and makes the magnetic field expand on one side.The discharging belts phenomenon is similar to the Earth's radiation belt,but the mechanism has yet to be understood.A magnetic probe is used to measure the magnetic field expansion distributions,and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  12. The Deep Physics Hidden within the Field Expressions of the Radiation Fields of Lightning Return Strokes

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-01-01

    Full Text Available Based on the electromagnetic fields generated by a current pulse propagating from one point in space to another, a scenario that is frequently used to simulate return strokes in lightning flashes, it is shown that there is a deep physical connection between the electromagnetic energy dissipated by the system, the time over which this energy is dissipated and the charge associated with the current. For a given current pulse, the product of the energy dissipated and the time over which this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the path, through which the current pulse is propagating. As the length of the channel varies, the action plotted against the length of the channel exhibits a maximum value. The location of the maximum value depends on the ratio of the length of the channel to the characteristic length of the current pulse. The latter is defined as the product of the duration of the current pulse and the speed of propagation of the current pulse. The magnitude of this maximum depends on the charge associated with the current pulse. The results show that when the charge associated with the current pulse approaches the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to the electronic charge. Since any system that generates electromagnetic radiation can be represented by a current pulse propagating from one point in space to another, the result is deemed valid for electromagnetic radiation fields in general.

  13. Including gauge symmetry in the localization mechanism of massive vector fields

    CERN Document Server

    Guerrero, Rommel

    2013-01-01

    On the four-dimensional sector of an AdS$_5$ warped geometry the standard electromagnetic interaction can be simulated by massive vector fields via the Ghoroku - Nakamura localization mechanism. We incorporate gauge symmetry to this theory by finding the required interaction terms between the vector bosons and the gravitational field of the scenario. The four-dimensional effective theory defined by a Maxwell term and a tower of Stueckelberg fields is obtained after expanding the vector fields on a massive eigenstates basis where the zero mode is uncoupled from the rest of the spectrum. The corrections generated by the massive gauge fields set to the electrostatic potential are also calculated.

  14. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    CERN Document Server

    Pellegrini, Yves-Patrick

    2016-01-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is app...

  15. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  16. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-05

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  17. Effects of Magnetic Field and FUV Radiation on the Structures of Bright-rimmed Clouds

    CERN Document Server

    Motoyama, Kazutaka; Shang, Hsien; Hasegawa, Tatsuhiko

    2013-01-01

    The bright-rimmed cloud SFO 22 was observed with the 45 m telescope of Nobeyama Radio Observatory in the ^{12}CO (J = 1-0), ^{13}CO (J = 1-0), and C^{18}O (J = 1-0) lines, where well-developed head-tail structure and small line widths were found. Such features were predicted by radiation-driven implosion models, suggesting that SFO 22 may be in a quasi-stationary equilibrium state. We compare the observed properties with those from numerical models of a photo-evaporating cloud, which include effects of magnetic pressure and heating due to strong far-ultraviolet (FUV) radiation from an exciting star. The magnetic pressure may play a more important role in the density structures of bright-rimmed clouds, than the thermal pressure that is enhanced by the FUV radiation. The FUV radiation can heat the cloud surface to near 30 K, however, its effect is not enough to reproduce the observed density structure of SFO 22. An initial magnetic field of 5 \\mu G in our numerical models produces the best agreement with the ob...

  18. Aspects of electromagnetic radiation reaction in strong fields

    CERN Document Server

    Burton, D A

    2014-01-01

    With the recent advances in laser technology, experimental investigation of radiation reaction phenomena is at last becoming a realistic prospect. A pedagogical introduction to electromagnetic radiation reaction is given with the emphasis on matter driven by ultra-intense lasers. Single-particle, multi-particle, classical and quantum aspects are all addressed.

  19. Estimating the Reliability of Electronic Parts in High Radiation Fields

    Science.gov (United States)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  20. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, O.V., E-mail: bov@tpu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kazinski, P.O., E-mail: kpo@phys.tsu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Lazarenko, G.Yu., E-mail: lazarenko.georgijj@icloud.com [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2017-05-15

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energies and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.

  1. Construction of action for heterotic string field theory including the Ramond sector

    Science.gov (United States)

    Goto, Keiyu; Kunitomo, Hiroshi

    2016-12-01

    Extending the formulation for open superstring field theory given in arXiv:1508.00366, we attempt to construct a complete action for heterotic string field theory. The action is non-polynomial in the Ramond string field Ψ, and we construct it order by order in Ψ. Using a dual formulation in which the role of η and Q is exchanged, the action is explicitly obtained at the quadratic and quartic order in Ψ with the gauge transformations.

  2. Construction of action for heterotic string field theory including the Ramond sector

    CERN Document Server

    Goto, Keiyu

    2016-01-01

    Extending the formulation for open superstring field theory given in arXiv:1508.00366, we attempt to construct a complete action for heterotic string field theory. The action is non-polynomial in the Ramond string field Psi, and we construct it order by order in Psi. Using a dual formulation in which the role of eta and Q is exchanged, the action is explicitly obtained at the quadratic and quartic order in Psi with the gauge transformations.

  3. A Study of Neutron Star Structure in Strong Magnetic Fields that includes Anomalous Magnetic Moments

    Institute of Scientific and Technical Information of China (English)

    Guang-Jun Mao; Akira Iwamoto; Zhu-Xia Li

    2003-01-01

    We study the effect of strong magnetic fields on the structure of neutronstar. We find that if the interior field is on the same order as the surface fieldcurrently observed, then the influences of the field on the star's mass and radius arenegligible; if the field is as large as that estimated from the scalar virial theorem,then considerable effects will be induced. The maximum mass of the star will beincreased substantially while the central density is greatly reduced. The radius ofa magnetic star can be larger by about 10% ~ 20% than a nonmagnetic star of thesame mass.

  4. Quantum radiation produced by the entanglement of quantum fields

    CERN Document Server

    Iso, Satoshi; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen

    2016-01-01

    We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.

  5. Studies of radiation fields of LCLS-II super conducting radio frequency cavities

    Science.gov (United States)

    Santana Leitner, M.; Ge, L.; Li, Z.; Xu, C.; Adolphsen, C.; Ross, M.; Carrasco, M.

    2016-09-01

    The Linac Coherent Light Source II (LCLS-II) will be a hard X-ray Free Electron Laser whose linac can deliver a 1.2 MW CW electron beam with bunch rates up to 1 MHz. To efficiently generate such a high power beam, Super-Conducting Radio-Frequency (SCRF) cavities will be installed in the upstream portion of the existing 3 km Linac at the SLAC National Accelerator Laboratory. The 9-cell niobium cavities will be cooled at 2K inside 35 cryomodules, each containing a string of eight of those cavities followed by a quadrupole. The strong electromagnetic fields in the SCRF cavities will extract electrons from the cavity walls that may be accelerated. Most such dark current will be deposited locally, although some electrons may reach several neighboring cryomodules, gaining substantial energy before they hit a collimator or other aperture. The power deposited by the field emitted electrons and the associated showers may pose radiation and machine protection issues at the cryomodules and also in other areas of the accelerator. Simulation of these effects is therefore crucial for the design of the machine. The in-house code Track3P was used to simulate field emitted electrons from the LCLS-II cavities, and a sophisticated 3D model of the cryomodules including all cavities was written to transport radiation with the Fluka Monte Carlo code, which was linked to Track3P through custom-made routines. This setup was used to compute power deposition in components, prompt and residual radiation fields, and radioisotope inventories.

  6. Non-conservative evolution of spherical and distorted low mass close binary systems including systemic mass loss and gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.A.

    1984-01-01

    The evolution of low mass, close binary systems driven primarily by gravitational radiation loss is studied within the framework of both a semi-analytic formulation and a sophisticated numerical (Henyey) method. One of the major advantages associated with the semi-analytic formulation is the facility with which it can be applied to a wide range of physical phenomena. In particular, the effects of several modes of systemic (advective) mass loss have been investigated including a mode which crudely models novae events. An allowance for the possible uncertainty in the Landau-Lifshitz formula for quadrupole radiation has also been incorporated. Although the investigation is restricted to the use of equilibrium (main sequence) models for the mass-losing secondary, it is possible to comment on the value of the minimum period for cataclysmic variables. The semi-analytic formulation has also been used to illustrate the importance of low mass, X-ray binaries as a means of determining the lower limit of the coupling constant of the Brans-Dicke theory of gravity. Detailed information concerning the structure of the secondary of close binary systems is calculated by means of a Henyey scheme. Tidal and rotational distortion has been included in the formulation and the evolution of a (1 + .75) M/sub sun/ binary system is studied both for the case of spherical symmetry and with the inclusion of distortional effects. A (.4 + 1) M/sub sun/ system is evolved past the point of minimum period. Good agreement is found between the theoretical value and the observed period cut-off.

  7. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...

  8. Normal tissue toxicity after small field hypofractionated stereotactic body radiation

    Directory of Open Access Journals (Sweden)

    Constine Louis S

    2008-10-01

    Full Text Available Abstract Stereotactic body radiation (SBRT is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics.

  9. Normal tissue toxicity after small field hypofractionated stereotactic body radiation

    Science.gov (United States)

    Milano, Michael T; Constine, Louis S; Okunieff, Paul

    2008-01-01

    Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics. PMID:18976463

  10. The assessment of electromagnetic field radiation exposure for mobile phone users

    OpenAIRE

    Buckus Raimondas; Strukcinskiene Birute; Raistenskis Juozas

    2014-01-01

    Background/Aim. During recent years, the widespread use of mobile phones has resulted in increased human exposure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the...

  11. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  12. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  13. MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Michael, A. T.; Opher, M. [Astronomy Department, Boston University, Boston, MA 02115 (United States); Provornikova, E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Richardson, J. D. [Kavli Center for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tóth, G., E-mail: atmich@bu.edu, E-mail: mopher@bu.edu, E-mail: elena.a.provornikova@nasa.gov, E-mail: jdr@space.mit.edu, E-mail: gtoth@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-04-10

    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ∼100 km s{sup −1} larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.

  14. Near-field radiative thermal control with graphene covered on different materials

    Science.gov (United States)

    Wang, Ao; Zheng, Zhiheng; Xuan, Yimin

    2016-09-01

    Based on the structure of double-layer parallel plates, this paper demonstrates that thermal radiation in near field is greatly enhanced due to near-field effects, exceeding Planck‧s blackbody radiation law. To study the effect of graphene on thermal radiation in near field, the authors add graphene layer into the structure and analyze the ability of graphene to control near-field thermal radiation with different materials. The result indicates that the graphene layer effectively suppresses the near-field thermal radiation between metal plates or polar-dielectric plates, having good ability of thermal insulation. But for doped-silicon plates, depending on the specific models, graphene has different control abilities, suppressing or enhancing, and the control abilities mainly depend on the material graphene is attached to. The authors also summarize some common rules about the different abilities of graphene to control the near-field thermal radiation. In consideration of the thickness of 0.34 nm of monolayer graphene, this paper points out that graphene plays a very important role in controlling the near-field thermal radiation.

  15. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    Science.gov (United States)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  16. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    Science.gov (United States)

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-01

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of field and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.

  17. [Formation of optimum dose fields in contact radiation therapy of malignant tumors].

    Science.gov (United States)

    Klepper, L Ia

    2003-01-01

    The definition of the homogeneity of a dose field in the contact radiation therapy for malignant tumors is introduced. The mathematical interpretation of problems in the formation of optimum dose fields, to which the maximum homogeneity of a dose field at the site of lesion corresponds, is presented. It is shown that the problems in the formation of optimum dose fields may be divided into two subsets in relation to whether the sources of radiation are located at the site of lesion or adjacent to the latter (application techniques of radiation). An analytical method for solving a problem in the formation of an optimal dose field in the ring circle by means of one ring source of radiation (the first type of problems). The investigation was conducted with the support of the Russian Fund of Fundamental Investigations (RFFI 01-01-00137).

  18. Considerations concerning the use of counting active personal dosimeters in pulsed fields of ionising radiation.

    Science.gov (United States)

    Ambrosi, Peter; Borowski, Markus; Iwatschenko, Michael

    2010-06-01

    Active personal electronic dosimeters (APDs) exhibit limitations in pulsed radiation fields, which cannot be overcome without the use of new detection technology. As an interim solution, this paper proposes a method by which some conventional dosimeters can be operated in a way such that, based on the basic knowledge about the pulsed radiation field, any dosimetric failure of the dosimeter is signalised by the instrument itself. This method is not applicable to all combinations of APD and pulsed radiation field. The necessary requirements for the APD and for the parameters of the pulsed radiation field are given in the paper. Up to now, all such requirements for APDs have not been tested or verified in a type test. The suitability of the method is verified for the use of one APD used in two clinical pulsed fields.

  19. Influence of ambient meteorology on the accuracy of radiation measurements: insights from field and laboratory experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Rieder, Harald E.

    2016-04-01

    A precise knowledge of the surface energy budget, which includes the solar and terrestrial radiation fluxes, is needed to accurately characterize the global energy balance which is largely determining Earth's climate. To this aim national and global monitoring networks for surface radiative fluxes have been established in recent decades. The most prominent among these networks is the so-called Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Programme (WCRP) (Ohmura et al., 1998). National monitoring networks such as the Austrian RADiation Monitoring Network (ARAD), which has been established in 2010 by a consortium of the Central Agency of Meteorology and Geodynamics (ZAMG), the University of Graz, the University of Innsbruck, and the University of Natural Resources and Applied Sciences, Vienna (BOKU), orient themselves on BSRN standards (McArthur, 2005). ARAD comprises to date five sites (Wien Hohe Warte, Graz/University, Innsbruck/University, Kanzelhöhe Observatory and Sonnblick (which is also a BSRN site)) and aims to provide long-term monitoring of radiation budget components at highest accuracy and to capture the spatial patterns of radiation climate in Austria (Olefs et al., 2015). Given the accuracy requirement for the local monitoring of radiative fluxes instrument offsets, triggered by meteorological factors and/or instrumentation, pose a major challenge in radiation monitoring. Within this study we investigate effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems), all of which used in regular operation within the ARAD network. We focus particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation we performed a series of controlled laboratory experiments as well as targeted field campaigns in 2015 and 2016. Our results indicate

  20. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  1. Radiation impedance of condenser microphones and their diffuse-field responses

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2010-01-01

    The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone....... In this way, a hybrid estimate of the radiation impedance is obtained. The resulting estimate of the diffuse-field response is compared with experimental estimates of the diffuse-field response determined using reciprocity and the random-incidence method. The different estimates are in good agreement...

  2. Effect of Exposure to Non-ionizing Radiation (Electromagnetic Fields on Human System: A Literature Review

    Directory of Open Access Journals (Sweden)

    Paula Rubya Souza C and acirc;mara

    2014-08-01

    Full Text Available The indiscriminate presence of radio base stations, which emit non-ionizing radiation (NIR, as well as the frequent use of mobile phones, can cause increased susceptibility of populations to the emergence of diseases such as cancers of the head and neck, biochemical, hematopoietic and hepatic changes, among others. Exposure to physical contamination, including NIR, has been implicated in numerous diseases, raising concerns about the widespread sources of exposure to this type of radiation. This paper reviews studies that have assessed associations between likely exposure to electromagnetic fields, such as radiofrequency transmissions, and many kinds of human diseases including cancer, as well as alerts to the current knowledge on the association between environmental exposure to NIR and the risk of development of adverse human health effects. This way, there appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research. [J Interdiscipl Histopathol 2014; 2(4.000: 187-190

  3. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    Energy Technology Data Exchange (ETDEWEB)

    Mordik, S.N. E-mail: iapuas@gluk.apc.org; Ponomarev, A.G

    2002-03-21

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  4. Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects

    CERN Document Server

    Mordik, S N

    2002-01-01

    The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.

  5. Russian investigations in the field of atmospheric radiation in 2011-2014

    Science.gov (United States)

    Timofeev, Yu. M.; Shul'gina, E. M.

    2016-09-01

    A short survey prepared by the Russian Commission on Atmospheric Radiation contains the most significant results of work in the field of atmospheric-radiation studies performed in 2011-2014. It is part of the Russian National Report on Meteorology and Atmospheric Sciences prepared for the International Association on Meteorology and Atmospheric Sciences (IAMAS)1. During this period, the Russian Commission on Atmospheric Radiation, jointly with the concerned departments and organizations, organized two International Symposiums on Radiation and Dynamics (ISARD-2011 and ISARD-2013). At these conferences, the central problems in modern atmospheric physics were discussed: radiative transfer (RT) and atmospheric optics; greenhouse gases, clouds, and aerosols; remote methods of measurements; and new measurement data. This survey presents six directions covering the whole spectrum of investigations performed in the field of atmospheric radiation.

  6. Enhancement of threshold electric field for relativistic runaway electrons due to magnetic fluctuation and synchrotron radiation

    Science.gov (United States)

    Li, Shucai; Wang, Lu; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai

    2016-10-01

    The dynamics of relativistic electrons are analyzed using the relativistic Fokker-Planck equation including deceleration due to synchrotron radiation (SR) and radial diffusion loss caused by magnetic fluctuation (MF). Threshold electric field for avalanche growth is enhanced, and the growth rate is reduced by the combined effect of MF and SR as compared to the case with only SR. The threshold electric field is determined by the time scales balance between momentum evolution and radial diffusion loss induced by MF, and increased with level of MF. More importantly, the hysteresis behavior of runaway pointed out by does not exist anymore. This is because the ``seed electrons'' cannot be sustained as a result of diffusion loss. This work was supported by NSFC Grant No. 11305071, and the Ministry of Science and technology of China, under Contract Nos. 2013GB112002, 2015GB111002 and 2015GB111001.

  7. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  8. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  9. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  10. Thermodynamics and energy conversion of near-field thermal radiation: Maximum work and efficiency bounds

    Directory of Open Access Journals (Sweden)

    Latella Ivan

    2014-01-01

    Full Text Available We analyse the process of conversion of near-field thermal radiation into usable work by considering the radiation emitted between two planar sources supporting surface phonon-polaritons. The maximum work flux that can be extracted from the radiation is obtained taking into account that the spectral flux of modes is mainly dominated by these surface modes. The thermodynamic efficiencies are discussed and an upper bound for the first law efficiency is obtained for this process.

  11. Radiation reaction dynamics in an electromagnetic wave and constant electric field

    Science.gov (United States)

    Atlee Jackson, E.

    1984-05-01

    The relativistic motion of a charged particle is studied when it is acted on simultaneously by a constant electric field and a plane electromagnetic wave, propagating in the direction of the electric field (x axis). The dynamics includes the radiation reaction (self-force) on the particle through a standard approximation of the Lorentz-Dirac equation. The interest is to determine the result of the competition between the average acceleration due to the electromagnetic wave (``radiation pressure'') and the acceleration due to the constant force of the static field. Each of these actions alone of course produce an unbounded particle energy asymptotically in time. However, it is proved first that, when the ``forces'' are in opposite directions, the particle can never accelerate (on the average) indefinitely in the x direction, regardless how weak the electric field (E0) is compared to the amplitude of the wave (A). It is then proved that all solutions converge to a region of zero area in a suitable velocity phase space and, if there exists a periodic solution [in the phase ξ=ω (t-x/c)] in a specified region of this phase space, then all solutions must converge to this solution asymptotically (ξ→+∞). In the case when (E0A2/ω2) has a specified bound (ω: wave frequency), an iterative method is developed which explicitly yields such a periodic solution, showing that the energy remains bounded. The direction of the average drift is determined in terms of (A,E0,ω). When the parameter (E0A2/ω2) is above this bound, a combination of numerical and analytic results are obtained which indicate that this periodic solution persists. These results indicate that all motions tend to states with bounded energy, regardless of the field strengths.

  12. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    CERN Document Server

    Lazar, Markus

    2013-01-01

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  13. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  14. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  15. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    KAUST Repository

    Baumgartner, Stefan

    2013-05-03

    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor. © 2013 IOP Publishing Ltd.

  16. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  17. Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region

    CERN Document Server

    Matyash, K; Mutzke, A; Kalentev, O; Taccogna, F; Koch, N; Schirra, M

    2009-01-01

    The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calc...

  18. Dosimeters for small radiation fields; Dosimetrie fuer kleine Strahlungsfelder

    Energy Technology Data Exchange (ETDEWEB)

    Illemann, Jens [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2013-06-15

    For radiation-therapeutic accelerators for the first time a patented concept exists, by which reference-dose measurements become possible in spite of smallest chamber dimension in few seconds measuring time per point. Because of the additionally obtained microdosimetric information in the future statements can be made on the relative biological effectiveness for the treatment of patients.

  19. Modelling of radiation field around spent fuel container

    NARCIS (Netherlands)

    Kryuchkov, EF; Opalovsky, VA; Tikhomirov, GV

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiat

  20. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    Science.gov (United States)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  1. Non-axisymmetric reflectors concentrating radiation from an asymmetric heliostat field onto a circular absorber

    Energy Technology Data Exchange (ETDEWEB)

    Spirkl, W.; Timinger, A.; Muschaweck, J. [Ludwig-Maximilians-Universitaet, Munich (Germany). Sektion Physik; Ries, H. [Paul Scherrer Institute, Villigen (Switzerland); Kribus, A. [Weizmann Institute of Science, Rehovot (Israel). Environmental Sciences and Energy Research Dept.

    1998-07-01

    In solar tower plants, where a rotationally symmetric field of heliostats surrounds the tower, an axisymmetric secondary concentrator such as a compound parabolic concentrator (CPC) or a tailored concentrator or a cone is the obvious choice. For locations at higher latitudes, however, the reflecting area of the heliostats may be used more efficiently if the field of heliostats is located opposite to the sun as seen from the tower. Then the field is asymmetric with regard to the tower. In the case of an asymmetric field, an axisymmetric concentrator necessarily has a concentration significantly lower than the upper limit. Furthermore, the area on the ground from which a tilted axisymmetric concentrator accepts radiation is an ellipse, including also heliostats very distant to the tower producing a large image of the sun. For these reasons we investigate asymmetric secondaries. From the shape of the edge ray reflectors constructed for rays in the central south-north plane we conclude that a skew cone reflector might be appropriate for the field, and optimize its free parameters by means of ray tracing. Asymmetric concentrators may increase the concentration by up to 25% at the same efficiency compared to optimized axisymmetric CPC or cone reflectors. (author)

  2. Including Media in Field Research and Becoming Part of the Science Media

    Science.gov (United States)

    Pelto, M. S.

    2015-12-01

    There are two primary strategies that I have pursued over the last decade to engage the media, policy makers, and public; after two decades of typical scientific publication methods. An effective method to engage the media with our ongoing 32 year glacier field research program has been to invite media members to join us in the field. From climate videographers to traditional reporters we have had a member of the media with us in nine of the last ten field seasons; two in 2015. The resulting stories have led to several awards for the journalists and an ongoing relationship with our research program. The second part of this science research communication strategy is to have readily available material on specific topics for the media to utilize; this requires social media outreach. The primary outlet media find is the AGU Blog: From a Glacier's Perspective. This blog pubishes two articles a week on a specific glacier's response to climate change. The blog yields on average a media contact on every fourth blog post in 2015. The contacts revolve around specific local glacier information published on the blog. The goal of each blog post is to tell a story about how each glacier is impacted by climate change.

  3. Field theory of bicritical and tetracritical points. IV. Critical dynamics including reversible terms.

    Science.gov (United States)

    Folk, R; Holovatch, Yu; Moser, G

    2012-02-01

    This article concludes a series of papers [Folk, Holovatch, and Moser, Phys. Rev. E 78, 041124 (2008); 78, 041125 (2008); 79, 031109 (2009)] where the tools of the field theoretical renormalization group were employed to explain and quantitatively describe different types of static and dynamic behavior in the vicinity of multicritical points. Here we give the complete two-loop calculation and analysis of the dynamic renormalization-group flow equations at the multicritical point in anisotropic antiferromagnets in an external magnetic field. We find that the time scales of the order parameters characterizing the parallel and perpendicular ordering with respect to the external field scale in the same way. This holds independent whether the Heisenberg fixed point or the biconical fixed point in statics is the stable one. The nonasymptotic analysis of the dynamic flow equations shows that due to cancellation effects the critical behavior is described, in distances from the critical point accessible to experiments, by the critical behavior qualitatively found in one-loop order. Although one may conclude from the effective dynamic exponents (taking almost their one-loop values) that weak scaling for the order parameter components is valid, the flow of the time-scale ratios is quite different, and they do not reach their asymptotic values.

  4. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Calvente, I.; Fernandez, M.F. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Villalba, J. [Department of Radiology, University of Granada, Granada (Spain); Olea, N. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Nunez, M.I., E-mail: isabeln@ugr.es [Department of Radiology, University of Granada, Granada (Spain)

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and 'window' of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  5. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    Science.gov (United States)

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  6. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    Science.gov (United States)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  7. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R. [Vanderbilt Univ., Nashville, TN (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L. [VTC Inc., Bloomington, MN (United States)

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  8. Attenuation of VHE gamma rays by the Milky Way interstellar radiation field

    CERN Document Server

    Moskalenko, I V; Strong, A W

    2006-01-01

    The attenuation of very high energy gamma rays by pair production on the Galactic interstellar radiation field has long been thought of as negligible. However, a new calculation of the interstellar radiation field consistent with multi-wavelength observations by DIRBE and FIRAS indicates that the Galactic interstellar radiation field is intense. We have made a calculation of the attenuation of very high energy gamma rays in the Galaxy using this new interstellar radiation field which takes into account its nonuniform spatial and angular distributions. We find that the maximum attenuation occurs around 100 TeV at the level of about 25% for sources located at the Galactic center, within the energy range of the HESS instrument, and is important for both Galactic and extragalactic sources.

  9. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    Science.gov (United States)

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  10. Nanoscale Heat Transfer Due to Near Field Radiation and Nanofluidic Flows

    Science.gov (United States)

    2015-07-21

    AFRL-OSR-VA-TR-2015-0205 Nanoscale heat transfer due to near field radiation and nanofluidic flows Peter Taborek UNIVERSITY OF CALIFORNIA IRVINE...TITLE AND SUBTITLE Nanoscale heat transfer due to near field radiation and nanofluidic flows 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0065...liquid flows through the pipe would spontaneously form a liquid/vapor interface either inside the pie or near the exit. We developed a model which

  11. Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth Simulator.

    Science.gov (United States)

    Takahashi, Futoshi; Matsushima, Masaki; Honkura, Yoshimori

    2005-07-15

    High-resolution, low-viscosity geodynamo simulations have been carried out on the Earth Simulator, one of the fastest supercomputers, in a dynamic regime similar to that of Earth's core, that is, in a quasi-Taylor state. Our dynamo models exhibit features of the geodynamo not only in spatial and temporal characteristics but also in dynamics. Polarity reversals occurred when magnetic flux patches at high latitudes moved poleward and disappeared; patches with reversed field at low and mid-latitudes then moved poleward.

  12. Numerical analysis of ionized fields associated with HVDC transmission lines including effect of wind

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.

    1998-12-31

    The effects of corona discharge on the conductor surface of HVDC power transmission lines were studied. Corona discharges generate ion flow and can cause power losses and environmental concerns. Solving the problem of the ion flow field is difficult because of its nonlinearity and the effect of wind. The following two numerical algorithms were presented which address the problem associated with strong wind or bundled lines: (1) the finite element method (FEM) based optimization algorithm, and (2) the upwind FVM based relaxation algorithm. Both were successfully tested on a coaxial cylindrical configuration and on a unipolar line model in the presence of wind.

  13. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.

    Science.gov (United States)

    Underwood, H R; Peterson, A F; Magin, R L

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode-dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low (epsilon r = 10) and high (epsilon r = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios at 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  14. Effects of External Radiation Fields on Line Emission—Application to Star-forming Regions

    Science.gov (United States)

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; van Hoof, P. A. M.

    2013-12-01

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  15. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  16. Strong far field coherent scattering of ultraviolet radiation by holococcolithophores

    CERN Document Server

    Quintero-Torres, R; Torres, M; Estrada, M; Cros, L

    2007-01-01

    By considering the structure of holococcoliths (calcite plates that cover holococcolithophores, a haploid phase of the coccolithophore life cycle) as a photonic structure, we apply a discrete dipolar approximation to study the light backscattering properties of these algae. We show that some holococcolith structures have the ability to scatter the ultraviolet (UV) radiation. This property may represent an advantage for holococcolithophores possessing it, by allowing them to live higher in the water column than other coccolithophores.

  17. Radiation reaction in strong fields from an alternative perspective

    CERN Document Server

    Kravets, Yevgen

    2014-01-01

    Current classical theory of radiation reaction has several deficiencies such as "runaway solutions" and violation of causality. The Landau-Lifshitz approximation to the exact equation introduced by Lorentz, Abraham and Dirac is widely used, though questions remain regarding its domain of validity. This thesis explores an alternative treatment of the motion of a radiating electron, based on an equation first proposed by Ford and O'Connell. A general condition is found for solutions of this equation to deviate from those of Landau-Lifshitz. By exploring radiation reaction effects on a particle colliding with an ultra-intense laser pulse we show that the regime where there is a significant deviation of these two approaches can never be reached with existing or proposed laser facilities. The methods used to explore single particle interaction with an intense laser pulse are extended to describe the interaction of a particle bunch with various realistic laser pulses. We find that the interaction leads to a decreas...

  18. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    Science.gov (United States)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are

  19. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland

    Science.gov (United States)

    Ostrowski, Rafał; Schönhofer, Jan; Szmytkiewicz, Piotr

    2016-10-01

    The paper contains a brief description of selected investigations carried out in the south Baltic coastal zone, with the particular focus on the history and recent activities conducted at the Coastal Research Station in Lubiatowo (CRS Lubiatowo), Poland. These activities comprise field investigations of nearshore hydrodynamic, lithodynamic, and morphodynamic processes. The study area is a sandy multi-bar shore with a mild slope, much exposed to the impact of waves approaching from NW-NE sector. The shore has a dissipative character which means that the wave energy is subject to gradual dissipation in the nearshore zone and only a small part of this energy is reflected by the shore. Due to the big wind fetch in N-NNE direction, the location of CRS Lubiatowo is favourable to registration of the maximum values of parameters of hydrodynamic and morphodynamic processes which occur in the Baltic during extreme storms.

  20. Acoustic radiation force in tissue-like solids due to modulated sound field

    Science.gov (United States)

    Dontsov, Egor V.; Guzina, Bojan B.

    2012-10-01

    The focus of this study is the sustained body force (the so-called acoustic radiation force) in homogeneous tissue-like solids generated by an elevated-intensity, focused ultrasound field (Mach number=O(10-3)) in situations when the latter is modulated by a low-frequency signal. This intermediate-asymptotics problem, which bears relevance to a number of emerging biomedical applications, is characterized by a number of small (but non-vanishing) parameters including the Mach number, the ratio between the modulation and ultrasound frequency, the ratio of the shear to bulk modulus, and the dimensionless attenuation coefficient. On approximating the response of soft tissues as that of a nonlinear viscoelastic solid with heat conduction, the featured second-order problem is tackled via a scaling paradigm wherein the transverse coordinates are scaled by the width of the focal region, while the axial and temporal coordinate are each split into a "fast" and "slow" component with the twin aim of: (i) canceling the linear terms from the field equations governing the propagation of elevated-intensity ultrasound, and (ii) accounting for the effect of ultrasound modulation. In the context of the focused ultrasound analyses, the key feature of the proposed study revolves around the dual-time-scale treatment of the temporal variable, which allows one to parse out the contribution of ultrasound and its modulation in the nonlinear solution. In this way the acoustic radiation force (ARF), giving rise to the mean tissue motion, is exacted by computing the "fast" time average of the germane field equations. A comparison with the existing theory reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam.

  1. Assessment of magnetic field interactions and radiofrequency-radiation-induced heating of metallic spinal implants in 7 T field.

    Science.gov (United States)

    Tsukimura, Itsuko; Murakami, Hideki; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru

    2016-10-21

    The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  2. VizieR Online Data Catalog: Radiation fields of the Milky Way (Popescu+, 2017)

    Science.gov (United States)

    Popescu, C. C.; Yang, R.; Tuffs, R. J.; Natale, G.; Rushton, M.; Aharonian, F.

    2017-06-01

    Radiative transfer model calculations of energy density of radiation fields (RFs) in the Milky Way are presented on a cylindrical grid (r,z) sampled at 23x22 positions. There are 15 files of RFs in direct stellar light corresponding to 15 wavelengths in the range 0.0912 to 5 micron and one IDL file containing the radiation fields in the dust emission corresponding to 120 wavelengths in the range 3 to 1000 microns, sampled at the same (r,z) positions. (3 data files).

  3. Monte Carlo simulations of the complex field in the LHC radiation test facility at CERN

    CERN Document Server

    Tsoulou, A; Rausch, R; Wijnands, Thijs

    2004-01-01

    The hard radiation environment of the Large Hadron Collider (LHC) demands for a careful choice of COTS (Components Off The Shelf) that will be installed in the tunnel. All the electronic equipment should be tested in a mixed radiation field, similar to that of the LHC. To obtain optimum results it is essential to study thoroughly the complex radiation field in the test facility at CERN. For this purpose a detailed Monte Carlo simulation of the test area was carried out and the calculations were compared with the dosimetry measurements already available.

  4. Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

  5. Including the effects of a harsh radiation environment in the simulation and design of nanoelectronic devices and circuits Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nanoelectronic devices, and circuits based on such devices, are expected to be more susceptible to the effects of radiation than the previous generation of devices...

  6. Analysis of Far-Field Radiation from Apertures Using Monte Carlo Integration Technique

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Fakharian

    2014-12-01

    Full Text Available An integration technique based on the use of Monte Carlo Integration (MCI is proposed for the analysis of the electromagnetic radiation from apertures. The technique that can be applied to the calculation of the aperture antenna radiation patterns is the equivalence principle followed by physical optics, which can then be used to compute far-field antenna radiation patterns. However, this technique is often complex mathematically, because it requires integration over the closed surface. This paper presents an extremely simple formulation to calculate the far-fields from some types of aperture radiators by using MCI technique. The accuracy and effectiveness of this technique are demonstrated in three cases of radiation from the apertures and results are compared with the solutions using FE simulation and Gaussian quadrature rules.

  7. Numerical Treatment of Anisotropic Radiation Field Coupling with the Relativistic Resistive Magnetofluids

    CERN Document Server

    Takahashi, Hiroyuki R

    2013-01-01

    We develop a numerical scheme for solving a fully special relativistic resistive radiation magnetohydrodynamics. Our code guarantees conservations of total mass, momentum and energy. Radiation energy density and radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation fields in contrast to the Eddington approximation as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of the Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly HLL scheme, and HLLC and HLLD schemes for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in optically thick regime or a large magnetic Reynolds number regime. Although we need to invert $4\\times 4$ (for gas-radiation interaction) and $3\\times 3$ (for magnetic energy dissipation) matrices at each grid ...

  8. Evaluation of the Leon3 soft-core processor within a Xilinx radiation-hardened field-programmable gate array.

    Energy Technology Data Exchange (ETDEWEB)

    Learn, Mark Walter

    2012-01-01

    The purpose of this document is to summarize the work done to evaluate the performance of the Leon3 soft-core processor in a radiation environment while instantiated in a radiation-hardened static random-access memory based field-programmable gate array. This evaluation will look at the differences between two soft-core processors: the open-source Leon3 core and the fault-tolerant Leon3 core. Radiation testing of these two cores was conducted at the Texas A&M University Cyclotron facility and Lawrence Berkeley National Laboratory. The results of these tests are included within the report along with designs intended to improve the mitigation of the open-source Leon3. The test setup used for evaluating both versions of the Leon3 is also included within this document.

  9. Evolution of a magnetic field in a differentially rotating radiative zone

    CERN Document Server

    Gaurat, Mathieu; Lignières, François; Gastine, Thomas

    2015-01-01

    Recent spectropolarimetric surveys of main-sequence intermediate-mass stars have exhibited a dichotomy in the distribution of the observed magnetic field between the kG dipoles of Ap/Bp stars and the sub-Gauss magnetism of Vega and Sirius. We would like to test whether this dichotomy is linked to the stability versus instability of large-scale magnetic configurations in differentially rotating radiative zones. We computed the axisymmetric magnetic field obtained from the evolution of a dipolar field threading a differentially rotating shell. A full parameter study including various density profiles and initial and boundary conditions was performed with a 2D numerical code. We then focused on the ratio between the toroidal and poloidal components of the magnetic field and discuss the stability of the configurations dominated by the toroidal component using local stability criteria and insights from recent 3D numerical simulations. The numerical results and a simple model show that the ratio between the toroida...

  10. The radiated fields of focussing air-coupled ultrasonic phased arrays.

    Science.gov (United States)

    Neild, A; Hutchins, D A; Robertson, T J; Davis, L A J; Billson, D R

    2005-01-01

    This paper presents an investigation into the fields radiated into air by ultrasonic phased arrays under transient excitation. In particular, it includes a theoretical prediction of spatial variations in amplitude throughout the both the near-field and far-field of such arrays. The approach has been used to predict the result of phasing to produce a focus in air, which can be seen to be particularly effective in the near-field of the array. Interesting features are observed, which are then described in terms of the performance of both individual elements and the resulting array. It is shown how some elements of design can be used to improve performance in focussing. The predictions are compared to the results of experiments in air using electrostatic arrays, where good focussing could be achieved provided the appropriate design principles were followed. The approach has been developed specifically for use in air, but the results would also hold for modelling in certain medical arrays where a focussing requirement might be needed close to the array itself.

  11. Coherent regime and far-to-near-field transition for radiative heat transfer

    Science.gov (United States)

    Tsurimaki, Yoichiro; Chapuis, Pierre-Olivier; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao; Vaillon, Rodolphe

    2017-01-01

    Radiative heat transfer between two semi-infinite parallel media is analyzed in the transition zone between the near-field and the classical macroscopic, i.e. incoherent far-field, regimes of thermal radiation, first for model gray materials and then for real metallic (Al) and dielectric (SiC) materials. The presence of a minimum in the flux-distance curve is observed for the propagative component of the radiative heat transfer coefficient, and in some cases for the total coefficient, i.e. the sum of the propagative and evanescent components. At best this reduction can reach 15% below the far-field limit in the case of aluminum. The far-to-near-field regime taking place for the distance range between the near-field and the classical macroscopic regime involves a coherent far-field regime. One of its limits can be practically defined by the distance at which the incoherent far-field regime breaks down. This separation distance below which the standard theory of incoherent thermal radiation cannot be applied anymore is found to be larger than the usual estimate based on Wien's law and varies as a function of temperature. The aforementioned effects are due to coherence, which is present despite the broadband spectral nature of thermal radiation, and has a stronger impact for reflective materials.

  12. Design and construction of a photobioreactor for hydrogen production, including status in the field.

    Science.gov (United States)

    Skjånes, Kari; Andersen, Uno; Heidorn, Thorsten; Borgvang, Stig A

    Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by "rocking motion"). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.

  13. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  14. Determination of relevant parameters for the use of electronic dosemeters in pulsed fields of ionising radiation.

    Science.gov (United States)

    Zutz, H; Hupe, O; Ambrosi, P; Klammer, J

    2012-09-01

    Active electronic dosemeters using counting techniques are used for radioprotection purposes in pulsed radiation fields in X-ray diagnostics or therapy. The disadvantage of the limited maximum measurable dose rate becomes significant in these radiation fields and leads to some negative effects. In this study, a set of relevant parameters for a dosemeter is described, which can be used to decide whether it is applicable in a given radiation field or not. The determination of these relevant parameters-maximum measurable dose rate in the radiation pulse, dead time of the dosemeter, indication per counting event and measurement cycle time-is specified. The results of the first measurements on the determination of these parameters for an electronic personal dosemeter of the type Thermo Fisher Scientific EPD Mk2 are shown.

  15. Predictions of integrated circuit serviceability in space radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Khamidullina, N.M.; Kuznetsov, N.V.; Pichkhadze, K.M.; Popov, V.D

    1999-10-01

    The present paper suggests an approach to estimating and predicting the serviceability of on-board electronic equipment. It is based on the postulates of the reliability theory and accounts for total-dose and single-event radiation effects as well as other exterior destabilizing factors. The methods of determination of failure and upset rates for CMOS devices are considered. The probability of non-failure operation of a two CMOS RAM is calculated along the whole trajectory of the 'Solar Probe' spacecraft.

  16. Modern Radiation Therapy for Extranodal Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, Joachim, E-mail: yahalomj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, The Christie National Health Service Foundation Trust, Manchester (United Kingdom); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Li, Ye-Xiong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tsang, Richard [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Wirth, Andrew [Division of Radiation Oncology, Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne (Australia)

    2015-05-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL, involving any organ in the body and the spectrum of histological sub-types, poses a challenge both for routine clinical care and for the conduct of prospective and retrospective studies. This has led to uncertainty and lack of consistency in RT approaches between centers and clinicians. Thus far there is a lack of guidelines for the use of RT in the management of ENL. This report presents an effort by the International Lymphoma Radiation Oncology Group (ILROG) to harmonize and standardize the principles of treatment of ENL, and to address the technical challenges of simulation, volume definition and treatment planning for the most frequently involved organs. Specifically, detailed recommendations for RT volumes are provided. We have applied the same modern principles of involved site radiation therapy as previously developed and published as guidelines for Hodgkin lymphoma and nodal NHL. We have adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other treatment modalities that may be have been used before RT.

  17. Relativistic symmetry of position-dependent mass particles in a Coulomb field including tensor interaction

    Institute of Scientific and Technical Information of China (English)

    M.Eshghi; M.Hamzavi; S.M.Ikhdair

    2013-01-01

    The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.

  18. Field theory of bicritical and tetracritical points. III. Relaxational dynamics including conservation of magnetization (model C).

    Science.gov (United States)

    Folk, R; Holovatch, Yu; Moser, G

    2009-03-01

    We calculate the relaxational dynamical critical behavior of systems of O(n_{ parallel}) plus sign in circleO(n_{ perpendicular}) symmetry including conservation of magnetization by renormalization group theory within the minimal subtraction scheme in two-loop order. Within the stability region of the Heisenberg fixed point and the biconical fixed point, strong dynamical scaling holds, with the asymptotic dynamical critical exponent z=2varphinu-1 , where varphi is the crossover exponent and nu the exponent of the correlation length. The critical dynamics at n_{ parallel}=1 and n_{ perpendicular}=2 is governed by a small dynamical transient exponent leading to nonuniversal nonasymptotic dynamical behavior. This may be seen, e.g., in the temperature dependence of the magnetic transport coefficients.

  19. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression.

    Science.gov (United States)

    Pall, Martin L

    2016-09-01

    Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression

  20. Self-constructed detectors for environmental radiation sources. Instruments for detecting and measuring electric and magnetic fields as well as radioactive radiation; Selbstgebaute Detektoren fuer Strahlenquellen in der Umwelt. Pruef- und Messgeraete fuer elektrische und magnetische Felder sowie radioaktive Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Peter

    2011-07-01

    The book presents experiments for detecting and measuring radiation sources. This includes detectors for electric and magnetic fields, radioactive radiation and even cosmic radiation, all of which can be detected by simple (electronic) circuits. Apart from the practical experiments, also basic physical knowledge is provided. The book comprises the following chapters: 1. Introduction; 2. Electrostatic fields in the environment; 3. Magnetostatic fields; 4. Electrodynamic fields; 5. Magnetodynamic fields; 6. Electromagnetic radiation in the environment; 7. Radioactive radiation in the environment; 8. Cosmic radiation; 9. PC interface; 10. Professional radiation measurement; 11. Risk potential. [German] In diesem Buch werden Experimente vorgestellt, mit denen man die verschiedenen Strahlenquellen nachweisen und messtechnisch erfassen kann. Darunter zaehlen Detektoren zum Nachweis elektrischer und magnetischer Felder, radioaktiver Strahlung und sogar von Strahlen aus dem Weltall. Mit einfachen (elektronischen) Schaltungen werden diese Gefahrenquellen aufgespuert. Neben vielen praxiserprobten Experimenten wird auch das physikalische Grundwissen vermittelt. Das Buch ist in folgende Kapitel aufgeteilt: 1. Einfuehrung; 2. Elektrostatische Felder in der Umwelt; 3. Magnetostatische Felder; 4. Elektrodynamische Felder; 5. Magentodynamische Felder; 6. Elektromagnetische Strahlen in der Umwelt; 7. Radioaktive Strahlen in der Umwelt; 8. Strahlen aus dem Weltall; 9. PC-Schnittstelle; 10. Professionelle Strahlenmessung; 11. Gefahrenpotenzial.

  1. Radiation from relativistic particles in nongeodesic motion in a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, A.N. (AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya); Galtsov, D.V. (Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Teoreticheskoj Fiziki)

    1981-10-01

    The scalar and electromagnetic radiation emitted by relativistic particles moving along the stable nongeodesic trajectories in the Kerr gravitational field are described. Two particular models of the nongeodesic motion are developed involving a slightly charged rotating black hole and a rotating black hole immersed in an external magnetic field.

  2. Analytical Account for the Constant Magnetic Field Effect on the Undulator Radiation Spectrum

    Science.gov (United States)

    Zhukovsky, K. V.

    2013-11-01

    The effect of the constant magnetic field on the planar undulator radiation (UR) is studied. We employ generalized special functions to investigate the UR intensity and spectrum, calculate critical strength of the constant field, affecting the electron motion in undulators. The influence of the Earth magnetism on several real undulators' emission and spectrum is investigated.

  3. Efficient Compression of Far Field Matrices in Multipole Algorithms based on Spherical Harmonics and Radiating Modes

    Directory of Open Access Journals (Sweden)

    A. Schroeder

    2012-09-01

    Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.

  4. Analytical form of EM fields radiated by circular aperture antennas of various current distributions

    Institute of Scientific and Technical Information of China (English)

    Le-Wei Li; Qun Wu

    2005-01-01

    In this paper, the electromagnetic radiation by circular aperture antennas fed by circular waveguides is considered. Electromagnetic fields radiated by the aperture antennas are formulated in detail and two aperture field distributions are considered, one being the uniform distribution and the other being the TE11-mode distribution. Some mistakes existing in the literature are pointed out. The detailed derivations for the fields by the TE11-mode distribution aperture were not commonly available in the public literature, although the solution is available. The analytical results obtained here are useful for antenna designers and antenna engineering education.

  5. Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

    Science.gov (United States)

    Anderson, Brooke M.; Clowdsley, Martha S.; Qualls, Garry D.; Nealy, John E.

    2005-01-01

    Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models. The background environment is taken to consist not only of exposure from incident cosmic ray ions and their secondaries, but also include the contribution from secondary neutron fields produced in the tenuous atmosphere and the underlying regolith.

  6. Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials

    Science.gov (United States)

    Song, Jinlin; Cheng, Qiang

    2016-09-01

    We numerically investigate the near-field radiative heat transfer (NFRHT) between graphene and anisotropic magneto-dielectric hyperbolic metamaterials (AMDHMs) according to the fluctuational dissipation theorem. In this configuration, multiple modes, including the p - and s -polarized surface phonon polaritons (SPhPs) and hyperbolic modes supported by AMDHMs as well as the high-frequency antisymmetric modes supported by graphene for p polarization, can be observed. These extraordinary propagating modes enable the total NFRHT flux between graphene and AMDHMs to exceed that between graphene and SiC nanowires by several times. Numerical results suggest that the hyperbolic modes and SPhPs for both polarizations effectively impact the NFRHT flux via tuning the geometry of AMDHMs and the conductivity of graphene. This study paves the way toward studying the NFRHT involving graphene and metamaterials and facilitates in-depth study of the s -polarized NFRHT.

  7. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  8. Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors

    Science.gov (United States)

    Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.

    2007-01-01

    The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.

  9. Effects of radiation damping on particle motion in pulsar vacuum fields

    Science.gov (United States)

    Finkbeiner, B.; Herold, H.; Ertl, T.; Ruder, H.

    1989-11-01

    The effects of radiation reaction on the motion of charged particles are studied in strong electric and magnetic fields with special attention to the vacuum near-field region of an oblique rotator. For strong radiation damping a local velocity field is derived from the Lorentz-Dirac equation, which efficiently describes the motion of electrons and positrons in the whole range of typical pulsar parameters. The velocity field makes it possible to define regions in the inner magnetosphere, where particle trapping occurs due to the radiation losses. By numerical integration of particle trajectories from the pulsar surface, regions around the magnetic poles are found which are defined by particle emission into the wave zone. The shapes of the escape regions on the pulsar surface are determined to a considerable extent by the presence of the accumulation regions.

  10. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    ' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement......Rigorous formulas have been derived for the field from a square, helical antenna with a uniformly progressing current wave of constant amplitude. These formulas that have the advantage of great simplicity are of direct use for helical antennas in the meter band, where for practical reasons only...... square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus...

  11. Multipole radiation fields from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field

    CERN Document Server

    Souza, R de Melo e; Farina, C; Moriconi, M

    2008-01-01

    We show how to obtain the first multipole contributions to the electromagnetic radiation emited by an arbitrary localized source directly from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field. This procedure avoids the unnecessary calculation of the electromagnetic potentials.

  12. Multipole radiation fields from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field

    Science.gov (United States)

    de Melo e Souza, R.; Cougo-Pinto, M. V.; Farina, C.; Moriconi, M.

    2009-01-01

    We show how to obtain the first multipole contributions to the electromagnetic radiation emitted by an arbitrary localized source directly from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field. This procedure avoids the unnecessary calculation of the electromagnetic potentials.

  13. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...... two-dimensional grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse-magnetic spoof surface-plasmon polaritons and a series of transverse-electric bonding- and anti-bonding-waveguide modes at surfaces. The RHT spectrum is frequency selective...... and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy...

  14. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  15. Radiation-Reaction Trapping of Electrons in Extreme Laser Fields

    CERN Document Server

    Ji, L L; Kostyukov, I Yu; Shen, B F; Akli, K

    2014-01-01

    proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  16. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    DEFF Research Database (Denmark)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.

    2015-01-01

    to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation...

  17. Effects of External Radiation Fields on Line Emission - Application to Star-forming Regions

    CERN Document Server

    Chatzikos, Marios; Williams, Robin; van Hoof, Peter; Porter, Ryan

    2013-01-01

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background (CMB), as well as by a nearby active galactic nucleus (AGN). These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code Cloudy. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field, and show that about 60 percent of it...

  18. Radiation reaction from electromagnetic fields in the neighborhood of a point charge

    CERN Document Server

    Singal, Ashok K

    2015-01-01

    From the electromagnetic field in the neighborhood of a "point charge" in arbitrary motion, it is shown that the Poynting flux across a spherical surface of vanishingly small radius, surrounding the charge in its instantaneous rest-frame, is nil. The absence of the Poynting flux in the neighborhood of such a charge explicitly shows that there are no radiative losses from an instantly stationary point charge. While this might appear to contradict Larmor's formula for radiation, nevertheless, it is in complete conformity with energy conservation. After all a charge stationary, even if for an instant, possesses no kinetic energy at the moment that could be lost into radiation. Further, from the rate of electromagnetic momentum flow, calculated using the Maxwell stress tensor, across a surface surrounding the charge, the radiation reaction is determined which turns out to be proportional to the first time derivative of the acceleration of the charge. The power loss due to radiation reaction, hitherto derived in t...

  19. SEL Hardness Assurance in a Mixed Radiation Field

    CERN Document Server

    Garcia Alia, Ruben; Danzeca, Salvatore; Ferlet-Cavrois, Veronique; Frost, Christopher; Gaillard, Remi; Mekki, Julien; Saigné, Frédéric; Thornton, Adam; Uznanski, Slawosz; Worbel, Frédéric; CERN. Geneva. ATS Department

    2015-01-01

    This paper explores the relationship between monoenergetic and mixed-field Single Event Latchup (SEL) cross sections, concluding for components with a very strong energy dependence and highly-energetic environments, test results from monoenergetic or soft mixed-field spectra can significantly underestimate the operational failure rate. We introduce a semi-empirical approach that can be used to evaluate the SEL rate for such environments based on monoenergetic measurements and information or assumptions on the respective sensitive volume and materials surrounding it. We show that the presence of high-Z materials such as tungsten is particularly important in determining the hadron cross section energy dependence for components with relatively large LET thresholds.

  20. Thermal Diodes Based on Near-Field Radiation

    Science.gov (United States)

    2015-10-01

    rectifiers and switches. 21 Approved for public release; distribution unlimited. 1. E. Rousseau , A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier...4. A. Narayanaswamy and G. Chen, "Surface modes for near field thermophotovoltaics," Applied Physics Letters 82, 3544-3546 (2003). 5. E. Rousseau , A...Lett. 2008, 93 (4), 043109. (7) Rousseau , E.; Siria, A.; Jourdan, G.; Volz, S.; Comin, F.; Chevrier, J.; Greffet, J.-J. Nat. Photon. 2009, 3 (9

  1. Rounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study

    Directory of Open Access Journals (Sweden)

    Zhou Dong

    2015-09-01

    Full Text Available Background. Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing.

  2. Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Krtous, Pavel; Podolsky, JirI [Institute of Theoretical Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2004-12-21

    We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity I. The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of I. The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for {lambda} > 0) or timelike (for {lambda} < 0), and the radiative component of each field depends substantially on the null direction along which P is approached. The directional dependence of asymptotic fields near such de Sitter-like or anti-de Sitter-like I is explicitly found and described. We demonstrate that the corresponding directional structure of radiation has a universal character that is determined by the algebraic (Petrov) type of the field. In particular, when {lambda} > 0 the radiation vanishes only along directions which are opposite to principal null directions. For {lambda} < 0 the directional dependence is more complicated because it is necessary to distinguish outgoing and ingoing radiation. Near such anti-de Sitter-like conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to I. The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant. (topical review)

  3. Probing the magnetic field structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    CERN Document Server

    Gold, Roman; Johnson, Michael D; Doeleman, Sheperd S

    2016-01-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic-field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical (MHD) simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A$^\\ast$ (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability (MRI) as well as models with large-scale ordered fields in magnetically-arrested disks (MAD). We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-...

  4. Nuclear forward scattering of synchrotron radiation in pulsed high magnetic fields.

    Science.gov (United States)

    Strohm, C; Van der Linden, P; Rüffer, R

    2010-02-26

    We report the demonstration of nuclear forward scattering of synchrotron radiation from 57Fe in ferromagnetic alpha iron in pulsed high magnetic fields up to 30 T. The observed magnetic hyperfine field follows the calculated high field bulk magnetization within 1%, establishing the technique as a precise tool for the study of magnetic solids in very high magnetic fields. To perform these experiments in pulsed fields, we have developed a detection scheme for fully time resolved nuclear forward scattering applicable to other pump probe experiments.

  5. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Bruno, S.; Siemon, Richard, E.

    2008-10-22

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: • 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; • An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; • Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables. • Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  6. Pulsed mixed n, {gamma} radiation fields for electronic testing

    Energy Technology Data Exchange (ETDEWEB)

    Nurdin, G.; Becret, C.; Jaureguy, J.C. [Etablissement Technique Central de l`Armement (ETCA), 94 - Arcueil (France); Vie, M.; Baboulet, J.P.; Lapeyre, P.; Ramisse, D. [D.G.A., 46 - Gramat (France)

    1994-12-31

    For combined n, {gamma} TREE testing we have modified the CALIBAN Fast Burst Reactor Field with CdO/Epoxy converters to cover the range [10{sup 11} -10{sup 12}] n.cm{sup -2} (1 MeV Si), [10{sup 7} - 10{sup 8}] cGy(Si).s{sup -1}. Activation and fission {sigma} {phi}vector, 1 MeV(Si) fluences, neutron spectra, total exposures and dose rates were predicted with good agreement by n, {gamma} photon transport codes. (author). 12 refs., 2 figs., 1 tab.

  7. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    Science.gov (United States)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  8. Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation

    CERN Document Server

    Epstein, Ariel

    2014-01-01

    We present a semi-analytical formulation of the interaction between a given source field and a scalar Huygens metasurface (HMS), a recently introduced promising concept for wavefront manipulation based on a sheet of orthogonal electric and magnetic dipoles. Utilizing the equivalent surface impedance representation of these metasurfaces, we establish that an arbitrary source field can be converted into directive radiation via a passive lossless HMS if two physical conditions are met: local power conservation and local impedance equalization. Expressing the fields via their plane-wave spectrum and harnessing the slowly-varying envelope approximation we obtain semi-analytical formulae for the scattered fields, and prescribe the surface reactance required for the metasurface implementation. The resultant design procedure indicates that the local impedance equalization induces a Fresnel-like reflection, while local power conservation forms a radiating virtual aperture which follows the total excitation field magni...

  9. The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Liu, Hui; Jiang, Binhao [Harbin Institute of Technology, Mail Box 402, Harbin 150001 (China); Li, Xueai [Harbin Electric Machinery Company Limited, Harbin 150001 (China)

    2015-06-15

    A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.

  10. Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field

    Science.gov (United States)

    Tabi, C. B.; Motsumi, T. G.; Bansi Kamdem, C. D.; Mohamadou, A.

    2017-08-01

    A nonlinear model of blood flow in large vessels is addressed. The influence of radiations, viscosity and uniform magnetic fields on velocity and temperature distribution waveforms is studied. Exact solutions for the studied model are investigated through the F - expansion method. Based on the choice of parameter values, single-, multi-soliton and Jacobi elliptic function solutions are obtained. Viscosity and permanent magnetic field bring about wave spreading and reduce the velocity of blood, while radiations have reversed effects with strong impact on the waveform frequency of both the velocity and temperature distribution.

  11. [Shaping of electron radiation fields using homogeneous absorbent materials].

    Science.gov (United States)

    Eichhorn, M; Reis, A; Kraft, M

    1990-01-01

    Proof of shielding and forming by absorbers was done in water phantom dosimetrically. Alterations of isodose course were measured in dependence of primary energy, as well as of thickness and density of the absorber materials. Piacryl or aluminium are not suitable for forming of irregular electron fields. They only effect a reduction of therapeutic range. For primary energies of 10.0 less than or equal to MeV less than or equal to E0- less than or equal to 20.0 MeV lead rubber and wood metal are to recommended in a thickness of less than or equal to 10 mm or less than or equal to 8 mm respectively.

  12. Dispersion of rotation of polarization plane and circular dichroism for alkaline atoms in intense radiation fields

    Science.gov (United States)

    Karagodova, Tamara Y.; Kuptsova, Anna V.

    1998-10-01

    The method of computer simulations on nonlinear resonant magneto-optical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarizations and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasienergies on parameters (detunings and intensities of radiation fields, magnetic field strength), which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magneto-optical effects. One-photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dicohroizm of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magneto-optical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.

  13. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    Science.gov (United States)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  14. Superluminal Propagation Caused by Radiative Corrections in a Uniform Electromagnetic Field

    CERN Document Server

    Shiba, Noburo

    2012-01-01

    We consider the effect of radiative corrections on the maximum velocity of propagation of neutral scalar fields in a uniform electromagnetic field. The propagator of neutral scalar fields interacting with charged fields depends on the electromagnetic field through charged particle loops. The kinetic terms of the scalar fields are corrected and the maximum velocity of the scalar particle becomes greater or less than unity. We show that the maximum velocity becomes greater than unity in a simple example, a neutral scalar field coupled with two charged Dirac fields by Yukawa interaction. The maximum velocity depends on the frame of reference and causality is not violated. We discuss the possibility of this superluminal propagation in the Standard Model.

  15. A phenomenological relative biological effectiveness approach for proton therapy based on an improved description of the mixed radiation field

    Science.gov (United States)

    Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Bauer, J.; Böhlen, T. T.; Ciocca, M.; Ferrari, A.; Sala, P. R.; Jäkel, O.; Debus, J.; Haberer, T.; Abdollahi, A.; Parodi, K.

    2017-02-01

    Proton therapy treatment planning systems (TPSs) are based on the assumption of a constant relative biological effectiveness (RBE) of 1.1 without taking into account the found in vitro experimental variations of the RBE as a function of tissue type, linear energy transfer (LET) and dose. The phenomenological RBE models available in literature are based on the dose-averaged LET (LET D ) as an indicator of the physical properties of the proton radiation field. The LET D values are typically calculated taking into account primary and secondary protons, neglecting the biological effect of heavier secondaries. In this work, we have introduced a phenomenological RBE approach which considers the biological effect of primary protons, and of secondary protons, deuterons, tritons (Z  =  1) and He fragments (3He and 4He, Z  =  2). The calculation framework, coupled with a Monte Carlo (MC) code, has been successfully benchmarked against clonogenic in vitro data measured in this work for two cell lines and then applied to determine biological quantities for spread-out Bragg peaks and a prostate and a head case. The introduced RBE formalism, which depends on the mixed radiation field, the dose and the ratio of the linear–quadratic model parameters for the reference radiation {{≤ft(α /β \\right)}\\text{ph}} , predicts, when integrated in an MC code, higher RBE values in comparison to LET D -based parameterizations. This effect is particular enhanced in the entrance channel of the proton field and for low {{≤ft(α /β \\right)}\\text{ph}} tissues. For the prostate and the head case, we found higher RBE-weighted dose values up to about 5% in the entrance channel when including or neglecting the Z  =  2 secondaries in the RBE calculation. TPSs able to proper account for the mixed radiation field in proton therapy are thus recommended for an accurate determination of the RBE in the whole treatment field.

  16. Near-field thermal radiation between homogeneous dual uniaxial electromagnetic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Yung; Basu, Soumyadipta; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-06-07

    Recently, near-field thermal radiation has attracted much attention in several fields since it can exceed the Planck blackbody limit through the coupling of evanescent waves. In this work, near-field radiative heat transfer between two semi-infinite dual uniaxial electromagnetic metamaterials with two different material property sets is theoretically analyzed. The near-field radiative heat transfer is calculated using fluctuational electrodynamics incorporated with anisotropic wave optics. The underlying mechanisms, namely, magnetic hyperbolic mode, magnetic surface polariton, electrical hyperbolic mode, and electrical surface polariton, between two homogeneous dual uniaxial electromagnetic metamaterials are investigated by examining the transmission coefficient and the spectral heat flux. The effect of vacuum gap distance is also studied, which shows that the enhancement at smaller vacuum gap is mainly due to hyperbolic mode and surface plasmon polariton modes. In addition, the results show that the contribution of s-polarized waves is significant and should not be excluded due to the strong magnetic response regardless of vacuum gap distances. The fundamental understanding and insights obtained here will facilitate the finding and application of novel materials for near-field thermal radiation.

  17. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    Science.gov (United States)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  18. Defeating radiation damping and magnetic field inhomogeneity with spatially encoded noise.

    Science.gov (United States)

    Michal, Carl A

    2010-11-15

    A simple NMR experiment capable of providing well resolved spectra under conditions where either radiation damping or static magnetic field inhomogeneity would broaden otherwise high-resolution NMR spectra is introduced. The approach involves using a strong pulsed magnetic field gradient and a selective radio-frequency pulse to encode a predetermined noise pattern into the spatial distribution of magnetization. Following readout in a much smaller field gradient, the noise sequence may be deconvolved from the acquired data and a high-resolution spectrum is obtained, eliminating the effects of either radiation damping or the static field inhomogeneity. In the presence of field inhomogeneity a field map is also obtained from the same single transient. A quasi-two-dimensional version of the experiment eliminates the need for deconvolution and produces improved results with simplified processing, but without requiring a full two-dimensional experiment. Example spectra are shown for both radiation damping and one-dimensional field inhomogeneity with improvement in linewidths of more than a factor of 40.

  19. Evaluation of dosimetric characteristics of multi-leaf and conventional collimated radiation fields using a scanning liquid ionization chamber EPID.

    Science.gov (United States)

    Mohammadi, M; Bezak, E

    2008-12-01

    The characteristics of radiation fields set up using conventional and Multi-Leaf collimators were investigated using a Scanning Liquid Ionization Chamber Electronic Portal Imaging Device (SLIC-EPID). Results showed that the radiation fields set up using MLCs are generally larger than those set up using conventional collimators. A significant difference was observed between the penumbra width for conventional and MLC radiation fields. SLIC-EPID was found to be a sensitive device to evaluate the characteristics of the radiation fields generated with MLCs.

  20. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    Science.gov (United States)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  1. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  2. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    Science.gov (United States)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  3. Radiation force on a spherical object in the field of a focused cylindrical transducer.

    Science.gov (United States)

    Chen, X; Apfel, R E

    1997-05-01

    An exact solution of the radiation force on a spherical object, when positioned on the acoustic axis of a cylindrical transducer, is provided. The solution is valid for any type of sphere of any size. The radiation force function allows the calibration of high-frequency focused ultrasound fields from radiation force measurements and expands the utility of the elastic sphere radiometer developed by Dunn et al. [Acustica 38, 58-61 (1977)]. Numeral results reveal an oscillatory behavior of the radiation force function for small spheres near the transducer surface and this behavior may present an opportunity for particle sorting based on the mechanical properties of the particle and other types of manipulation.

  4. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    CERN Document Server

    Anderson, Benjamin

    2013-01-01

    All observations of photodegradation and self healing follow the predictions of the correlated chromophore domain model. [Ramini et.al. Polym. Chem., 2013, 4, 4948.] In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species. As in previous studies, the model with a one-dimensional domain best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated d...

  5. An analysis of the radiation from apertures in curved surfaces by the geometrical theory of diffraction. [ray technique for electromagnetic fields

    Science.gov (United States)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    In this paper the geometrical theory of diffraction is extended to treat the radiation from apertures of slots in convex perfectly conducting surfaces. It is assumed that the tangential electric field in the aperture is known so that an equivalent infinitesimal source can be defined at each point in the aperture. Surface rays emanate from this source which is a caustic of the ray system. A launching coefficient is introduced to describe the excitation of the surface ray modes. If the field radiated from the surface is desired, the ordinary diffraction coefficients are used to determine the field of the rays shed tangentially from the surface rays. The field of the surface ray modes is not the field on the surface; hence if the mutual coupling between slots is of interest, a second coefficient related to the launching coefficient must be employed. In the region adjacent to the shadow boundary, the component of the field directly radiated from the source is represented by Fock-type functions. In the illuminated region the incident radiation from the source (this does not include the diffracted field components) is treated by geometrical optics. This extension of the geometrical theory of diffraction is applied to calculate the radiation from slots on elliptic cylinders, spheres, and spheroids.

  6. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  7. Cirrus microphysics and radiative transfer: Cloud field study on October 28, 1986

    Science.gov (United States)

    Kinne, Stefan; Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Sassen, Kenneth; Spinhirne, James D.

    1990-01-01

    The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.

  8. Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film

    OpenAIRE

    Basu, Soumyadipta; YANG, YUE; Wang, Liping

    2014-01-01

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the meta...

  9. The Spontaneous Radiation of Electrons in a Plane Wiggler with Inhomogeneous Magnetic Field

    CERN Document Server

    Ayryan, E A; Izmailian, N Sh; Oganesyan, K B

    2016-01-01

    The spectral distribution of spontaneous emission of electrons moving in a plane wiggler with inhomogeneous magnetic field is calculated. We show that electrons do complicated motion consisting of slow(strophotron) and fast(undulator) parts. The equations of motion are averaged over fast undulator part and we obtain equations for connected motion. It is shown, that the account of inhomogenity of the magnetic field leads to appearance of additional peaks in the spectral distribution of spontaneous radiation.

  10. Investigation of Field-Collected Data Using Diffuse and Specular, Forward and Reverse Radiative Transfer Models

    Science.gov (United States)

    2015-03-26

    protection in the United States. AFIT-ENP-MS-15-M-100 INVESTIGATION OF FIELD-COLLECTED DATA USING DIFFUSE AND SPECULAR , FORWARD AND REVERSE...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-15-M-100 INVESTIGATION OF FIELD-COLLECTED DATA USING DIFFUSE AND SPECULAR , FORWARD AND REVERSE... specular and diffuse properties of a set of eight materials on diffuse-only and diffuse- specular radiative transfer models in the wavelength range of

  11. Accelerated expansion in the effective field theory of a radiation dominated universe

    OpenAIRE

    Balthazar, Bruno; Ferreira, Pedro G.

    2014-01-01

    We construct the effective field theory of a perfect fluid in the early universe. Focusing on the case where the fluid has the equation of state of radiation, we show that it may lead to corrections to the background dynamics that can dominate over those of an effective field theory of gravity alone. We describe the periods of accelerated expansion, in the form of inflationary and bounce solutions, that arise in the background dynamics and discuss their regime of validity within EFT.

  12. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    Science.gov (United States)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  13. Interaction between the Kravchuck and Meixner oscillators coherent states and the coherent radiation field

    Science.gov (United States)

    Eugen Drăgănescu, Gheorghe

    2013-03-01

    To describe a series of phenomena that occur in micro- and nano-systems, we have used the discrete variable Kravchuk and Meixner oscillators for which some sets of coherent states and some squeezed states were established. For a system consisting of molecular oscillators interacting with the coherent radiation field, an oscillatory variation of the refractive index was established.

  14. RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology)

    Science.gov (United States)

    Present and future particle colliders are able to measure fundamental scattering reactions with unprecedent experimental precision. Interpretation of these high-quality data demands an equally high theoretical precison, which is acheived through radiative corrections in quantum field theory. The symposium will especially focus precision physics in the upcoming CERN LHC era.

  15. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two‐dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave constit

  16. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    DEFF Research Database (Denmark)

    Borg, J.; Christensen, P.

    1995-01-01

    of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...

  17. Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

    CERN Document Server

    Fiore, S; Baccaro, S; Busatto, G; Citterio, M; Iannuzzo, F; Lanza, A; Latorre, S; Lazzaroni, M; Sanseverino, A; Velardi, F

    2013-01-01

    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field.

  18. The field-circuit theory for direct-radiator loudspeaker system

    Institute of Scientific and Technical Information of China (English)

    SHEN Yong; SHEN Xiaoxiang; SHA Jiazheng

    2003-01-01

    In the conventional analogous circuit theory of the loudspeaker system, the vibrat-ing air in box is considered as lumped parameter; in this paper we consider the air as distributedparameter. The sound field theory and the analogous circuit theory are combined to analyze thecharacteristics of the loudspeaker system such as radiation acoustic power, frequency responseand impedance response.

  19. Radiation and Magnetic Field Effects on New Semiconductor Power Devices for Hl-Lhc Experiments

    Science.gov (United States)

    Fiore, S.; Abbate, C.; Baccaro, S.; Busatto, G.; Citterio, M.; Iannuzzo, F.; Lanza, A.; Latorre, S.; Lazzaroni, M.; Sanseverino, A.; Velardi, F.

    2014-06-01

    The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under γ, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field.

  20. Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NARCIS (Netherlands)

    Astapenko, VA

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1 : 2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection

  1. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    Science.gov (United States)

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  2. A Monte Carlo Event Generator for W Off-shell Pair Production including Higher Order Electromagnetic Radiative Corrections

    CERN Document Server

    Anlauf, H; Manakos, P; Mannel, T

    1994-01-01

    We present the Monte Carlo event generator {\\tt WOPPER} for pair production of $W$'s and their decays at high energy $e^+e^-$ colliders. {\\tt WOPPER} includes the effects from finite $W$ width and focusses on the calculation of higher order electromagnetic corrections in the leading log approximation including soft photon exponentiation and explicit generation of exclusive hard photons.

  3. LIDT-DD: A new self-consistent debris disc model including radiation pressure and coupling collisional and dynamical evolution

    CERN Document Server

    Kral, Quentin; Charnoz, Sébastien

    2013-01-01

    In most current debris disc models, the dynamical and the collisional evolutions are studied separately, with N-body and statistical codes, respectively, because of stringent computational constraints. We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough so as to be applied to any astrophysical cases where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, exozodiacal discs, etc. The code takes its basic architecture from the LIDT3D algorithm developed by Charnoz et al.(2012) for protoplanetary discs, but has been strongly modified and updated in order to handle the very constraining specificities of debris discs physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas, etc. In LIDT-DD, grains of a given size at a given location in a disc are grouped into "super-particles", whose orb...

  4. The assessment of electromagnetic field radiation exposure for mobile phone users.

    Science.gov (United States)

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  5. The assessment of electromagnetic field radiation exposure for mobile phone users

    Directory of Open Access Journals (Sweden)

    Buckus Raimondas

    2014-01-01

    Full Text Available Background/Aim. During recent years, the widespread use of mobile phones has resulted in increased human exposure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. Methods. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. Results. The highest electric field strength was recorded for calls made in rural area (indoors while the lowest electric field strength was recorded for calls made in urban area (outdoors. Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless position. Conclusion. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head during the calls.

  6. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    CERN Document Server

    Tsiligiannis, G; Bosio, A; Girard, P; Pravossoudovitch, S; Todri, A; Virazel, A; Mekki, J; Brugger, M; Wrobel, F; Saigne, F

    2014-01-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for mon- itoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of parti- cles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shield...

  7. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    Science.gov (United States)

    Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; Todri, A.; Virazel, A.; Mekki, J.; Brugger, M.; Wrobel, F.; Saigne, F.

    2014-05-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for monitoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of particles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shielded areas. By using stability estimation methods and presenting experimental data, we prove that this device is proper to be used for such a purpose.

  8. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    CERN Document Server

    Orlando, S; Argiroffi, C; Reale, F; Peres, G; Miceli, M; Matsakos, T; Stehle', C; Ibgui, L; de Sa, L; Chie`ze, J P; Lanz, T

    2013-01-01

    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, th...

  9. Ultra thin metallic coatings to control near field radiative heat transfer

    Directory of Open Access Journals (Sweden)

    R. Esquivel-Sirvent

    2016-09-01

    Full Text Available We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  10. Influence of external magnetic and laser radiation fields on Feshbach resonances in collision of atoms

    CERN Document Server

    Gazazyan, E A; Chaltykyan, V O

    2012-01-01

    We study collision of two atoms with formation of Feshbach resonance at combined interaction with the external magnetic field and laser radiation. In cases of one- and two-photon resonances of laser radiation with two discrete vibrational molecular levels, we show that Feshbach resonances appear at interaction of external magnetic field with dressed states formed via Autler-Townes effect. In addition, in case of one-photon resonance the lower vibrational molecular state is coupled by laser radiation with the continuum of the elastic channel and forms laser-induced Feshbach resonance via both Autler-Townes effect and LICS mechanism. We study the combined process of formation of Feshbach resonances; this enables the control of Feshbach resonance by varying the magnetic field and intensity and frequency of laser radiation. We obtain the cross-sections of elastic and inelastic scattering and show that quenching of resonance occurs at the energy equal to that of the systems ground state. Dependence of the cross-se...

  11. Accounting for canopy shading and emissivity in simulated radiation fields over a complex mountainous region (Invited)

    Science.gov (United States)

    Marks, D. G.; Essery, R.; Link, T. E.; Winstral, A. H.; Reba, M. L.; Pomeroy, J. W.

    2009-12-01

    Radiation fields are required to model snow and hydrologic processes and properties over forested mountain regions. We present a method that utilizes a representation of terrain and forest structure (height, crown and trunk shape, canopy density and spacing) to modulate above-canopy solar and thermal radiation fields for canopy shading and emissivity effects. The method preserves gap fraction, and accounts for terrain features of slope, aspect and local horizon-induced terrain shading. The method is initiated over a very high resolution, pre-determined distribution of canopy crowns and gaps. For development of the method, terrain structure information was derived from a LiDAR representation of both terrain and canopy over the Fraser Experimental Forest in Colorado. The method can also be applied to an artificial canopy structure, based on a statistical distribution of canopy crowns and gaps as simulated over a region. Though the method is computationally expensive, once the shading and emissivity functions have been computed for a full range of azmuthal conditions, they can be retained in look-up tables, and scaled to an arbitrary set of radiation conditions. The method is applied over the LiDAR domain at the Colorado site using by correcting above-canopy radiation fields for a series of selected dates representing high and low sun angles, and a variety of snow depth conditions.

  12. Upper limits to near-field radiative heat transfer: generalizing the blackbody concept

    Science.gov (United States)

    Miller, Owen D.; Rodriguez, Alejandro W.; Johnson, Steven G.

    2016-09-01

    For 75 years it has been known that radiative heat transfer can exceed far-field blackbody rates when two bodies are separated by less than a thermal wavelength. Yet an open question has remained: what is the maximum achievable radiative transfer rate? Here we describe basic energy-conservation principles that answer this question, yielding upper bounds that depend on the temperatures, material susceptibilities, and separation distance, but which encompass all geometries. The simple structures studied to date fall far short of the bounds, offering the possibility for significant future enhancement, with ramifications for experimental studies as well as thermophotovoltaic applications.

  13. Isotope selective photodissociation of N-2 by the interstellar radiation field and cosmic rays

    OpenAIRE

    Heays, Alan N.; Visser, Ruud; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R.; Gibson, Stephen T.; van Dishoeck, Ewine F.

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of t...

  14. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    CERN Document Server

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  15. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  16. Radiation reaction from electromagnetic fields in the neighborhood of a point charge

    Science.gov (United States)

    Singal, Ashok K.

    2017-03-01

    From the expression for the electromagnetic field in the neighborhood of a point charge, we determine the rate of electromagnetic momentum flow, calculated using the Maxwell stress tensor, across a surface surrounding the charge. From that we derive for a "point" charge the radiation reaction formula, which turns out to be proportional to the first time-derivative of the acceleration of the charge, identical to the expression for the self-force, hitherto obtained in the literature from the detailed mutual interaction between constituents of a small charged sphere. We then use relativistic transformations to arrive at a generalized formula for radiation reaction for a point charge undergoing relativistic motion.

  17. Radiation of Magnetic Dipole and Electric Quadrupole in Anisotropic Medium (Ⅱ) — Rading Electric Field

    Institute of Scientific and Technical Information of China (English)

    HONGQingquan; CHENShennian; WANGJiancheng

    2003-01-01

    Taking advantage of magnetic field ra-diated by magnetic dipole and electric quadrupole in anisotropic magnetic medium which had been calculated already, the authors go further to calculate radiating elec-tric field and to confirm the correctness of results.

  18. VizieR Online Data Catalog: Radiation fields in star-forming galaxies (Popescu+, 2013)

    Science.gov (United States)

    Popescu, C. C.; Tuffs, R. J.

    2013-09-01

    Radiative transfer model calculations of energy density of radiation fields (RFs) are presented on a cylindrical grid (r,z). The radiation fields are given for different values of central face-on dust opacity in the B-band {tau}Bf, which is the only parameter of the model shaping the spatial variation of the RFs. Since the energy densities of the radiation fields are additive quantities, they scale with the spatially integrated luminosity density at a given wavelength. Therefore RFs are only calculated for a fixed reference luminosity density (see Section 3 of journal paper). The radiation fields are separately calculated for the disk, thin disk and bulge. For the bulge different values of the Sersic index are considered. In total calculations are for seven values of the central face-on dust opacity, taufB=0.1,0.3,0.5,1.0,2.0,4.0,8.0. Solutions for other values of taufB can be found by interpolation. Four values for the Sersic index of the bulge are considered, n=1,2,4,8. In total we have 7 (for taufB) x 6 (wavelengths) x 1 (disk) + 7 (for taufB) x 15 (wavelengths) x 1 ( thin disk) + 7 (for taufB) x 6 (wavelengths) x 4 (for Sersic indices of bulge) = 315 combinations. In our model we consider the wavelength range from 912 Angstroem to 5 micron, as listed in Table E.2 of Popescu et al. (2011, Cat. J/A+A/527/109). Thus, the library contains a total of 315 files with two-dimensional spatial grids of energy densities of the RFs, in files.tar file. (2 data files).

  19. Complex Scattered Radiation Fields And Multiple Magnetic Fields In The Protostellar Cluster In NGC 2264

    Science.gov (United States)

    KWON, Jungmi; Tamura, M.; Kandori, R.; Kusakabe, N.; Hashimoto, J.; Nakajima, Y.; Nakamura, F.; Nagayama, T.; Nagata, T.; Hough, J. H.; Werner, M. W.; Teixeira, P. S.

    2012-05-01

    Near-infrared imaging polarimetry in the J, H, and Ks bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebula clusters (IRNCs) associated with NGC 2264 IRS 2 and the IRAS 12 S1 core, as well as local infrared reflection nebulae (IRNe), were detected. The illuminating sources of the IRNe were identified with known or new near- and mid-infrared sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main-sequence stars were selected to trace the magnetic field structure of the molecular cloud. The mean polarization position angle of the point-like sources is 80 degrees in the cluster core, and 60 degrees in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the magnetic field in the observed region of the cloud. The Chandrasekhar-Fermi method gives a rough estimate of the magnetic field strength to be about 100 micro-Gauss. A comparison with recent numerical simulations of the cluster formation implies that the cloud dynamics is controlled by the relatively strong magnetic field. The local magnetic field direction is well associated with that of CO outflow for IRAS 12 S1 and consistent with that inferred from submillimeter polarimetry. In contrast, the local magnetic field direction runs roughly perpendicular to the Galactic magnetic field direction.

  20. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field.

    Science.gov (United States)

    Paganetti, Harald; Athar, Basit S; Moteabbed, Maryam; A Adams, Judith; Schneider, Uwe; Yock, Torunn I

    2012-10-07

    There is clinical evidence that second malignancies in radiation therapy occur mainly within the beam path, i.e. in the medium or high-dose region. The purpose of this study was to assess the risk for developing a radiation-induced tumor within the treated volume and to compare this risk for proton therapy and intensity-modulated photon therapy (IMRT). Instead of using data for specific patients we have created a representative scenario. Fully contoured age- and gender-specific whole body phantoms (4 year and 14 year old) were uploaded into a treatment planning system and tumor volumes were contoured based on patients treated for optic glioma and vertebral body Ewing's sarcoma. Treatment plans for IMRT and proton therapy treatments were generated. Lifetime attributable risks (LARs) for developing a second malignancy were calculated using a risk model considering cell kill, mutation, repopulation, as well as inhomogeneous organ doses. For standard fractionation schemes, the LAR for developing a second malignancy from radiation therapy alone was found to be up to 2.7% for a 4 year old optic glioma patient treated with IMRT considering a soft-tissue carcinoma risk model only. Sarcoma risks were found to be below 1% in all cases. For a 14 year old, risks were found to be about a factor of 2 lower. For Ewing's sarcoma cases the risks based on a sarcoma model were typically higher than the carcinoma risks, i.e. LAR up to 1.3% for soft-tissue sarcoma. In all cases, the risk from proton therapy turned out to be lower by at least a factor of 2 and up to a factor of 10. This is mainly due to lower total energy deposited in the patient when using proton beams. However, the comparison of a three-field and four-field proton plan also shows that the distribution of the dose, i.e. the particular treatment plan, plays a role. When using different fractionation schemes, the estimated risks roughly scale with the total dose difference in%. In conclusion, proton therapy can

  1. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  2. Gauge theory extension to include number scaling by boson field: Effects on some aspects of physics and geometry

    CERN Document Server

    Benioff, Paul

    2012-01-01

    In gauge theories, separate vector spaces, Vx, are assigned to each space time point x with unitary operators as maps between basis vectors in neighboring Vx. Here gauge theories are extended by replacing the single underlying set of complex scalars, C, with separate sets, Cx, at each x, and including scaling between the Cx. In gauge theory Lagrangians, number scaling shows as a scalar boson field, B, with small coupling to matter fields. Freedom of number scaling is extended to a model with separate number structures assigned to each point x. Separate collections, Ux, of all mathematical systems based on numbers, are assigned to each x. Mathematics available to an observer, Ox, at x is that in Ux. The B field induces scaling between structures in the different Ux. Effects of B scaling on some aspects of physics and geometry are described. The lack of experimentally observed scaling means that B(z) is essentially constant for all points, z, in a region, Z, that can be occupied by us as observers. This restric...

  3. Algorithm for Active Suppression of Radiation and Acoustical Scattering Fields by Some Physical Bodies in Liquids

    Directory of Open Access Journals (Sweden)

    Vladimir V. Arabadzhi

    2009-03-01

    Full Text Available An algorithm for the suppression of the radiation and scattering fields created by vibration of the smooth closed surface of a body of arbitrary shape placed in a liquid is designed and analytically explored. The frequency range of the suppression allows for both large and small wave sizes on the protected surface. An active control system is designed that consists of: (a a subsystem for fast formation of a desired distribution of normal oscillatory velocities or displacements (on the basis of pulsed Huygens' sources and (b a subsystem for catching and targeting of incident waves on the basis of a grid (one layer of monopole microphones, surrounding the surface to be protected. The efficiency and stability of the control algorithm are considered. The algorithm forms the control signal during a time much smaller than the minimum time scale of the waves to be damped. The control algorithm includes logical and nonlinear operations, thus excluding interpretation of the control system as a traditional combination of linear electric circuits, where all parameters are constant (in time. This algorithm converts some physical body placed in a liquid into one that is transparent to a special class of incident waves. The active control system needs accurate information on its geometry, but does not need either prior or current information about the vibroacoustical characteristics of the protected surface, which in practical cases represents a vast amount of data.

  4. TOPICAL REVIEW: Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant

    Science.gov (United States)

    Krtous, Pavel; Podolský, Jirí

    2004-12-01

    We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity \\scri . The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of \\scri . The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for Λ > 0) or timelike (for Λ 0 the radiation vanishes only along directions which are opposite to principal null directions. For Λ conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to \\scri . The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant.

  5. Effects of radiation damping on the dynamics of electrons in ELI intensity laser fields

    Science.gov (United States)

    Harvey, Christopher; Marklund, Mattias

    2012-07-01

    An electron in the presence of a high intensity laser field, such as that anticipated at ELI, will be accelerated so strongly that its own radiation emission may significantly affect its motion. This opens up the possibility of testing experimentally the classical theory of radiation reaction in such a context. We therefore explore the effects of radiation damping on the dynamics of electrons in optical laser pulses. In the case of high intensities and high initial electron energies, the trajectories and net energy changes of the electrons are found to be significantly altered. These effects are found to become increasingly significant the closer one gets to a directly head on collision between the laser and electrons.

  6. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  7. Bulk gravitational field and dark radiation on the brane in dilatonic brane world

    CERN Document Server

    Yoshiguchi, H; Yoshiguchi, Hiroyuki; Koyama, Kazuya

    2004-01-01

    We discuss the connection between the dark radiation on the brane and the bulk gravitational field in a dilatonic brane world model proposed by Koyama and Takahashi where the exact solutions for the five dimensional cosmological perturbations can be obtained analytically. It is shown that the dark radiation perturbation is related to the non-normalizable Kaluza-Klein (KK) mode of the bulk perturbations. For the de Sitter brane in the anti-de Sitter bulk, the squared mass of this KK mode is $2 H^2$ where $H$ is the Hubble parameter on the brane. This mode is shown to be connected to the excitation of small black hole in the bulk in the long wavelength limit. The exact solution for an anisotropic stress on the brane induced by this KK mode is found, which plays an important role in the calculation of cosmic microwave background radiation anisotropies in the brane world.

  8. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning - an ultrahigh-field MR pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Sinnecker, Tim [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Asklepios Fachklinikum Teupitz, Department of Neurology, Teupitz (Germany); Oberwahrenbrock, Timm; Zimmermann, Hanna; Ramien, Caren; Brandt, Alexander U. [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Metz, Imke; Brueck, Wolfgang [University Medicine Goettingen, Institute of Neuropathology, Goettingen (Germany); Pfueller, Caspar F.; Doerr, Jan [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Harms, Lutz; Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Hahn, Katrin [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Niendorf, Thoralf [Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Clinical and Experimental Multiple Sclerosis Research Center, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F), Berlin (Germany); University Medicine Goettingen, Institute of Neuroradiology, Goettingen (Germany)

    2015-01-15

    To investigate posterior visual pathway damage in multiple sclerosis using ultrahigh-field magnetic resonance imaging (MRI) at 7 Tesla (7 T), and to determine its correlation with visual disability and retinal fibre layer (RNFL) damage detectable by optic coherence tomography (OCT). We studied 7 T MRI, OCT, functional acuity contrast testing (FACT), and visually evoked potentials (VEP, n = 16) in 30 patients (including 26 relapsing-remitting MS and four clinically isolated syndrome patients) and 12 healthy controls to quantify RNFL thickness, optic radiation lesion volume, and optic radiation thickness. Optic radiation lesion volume was associated with thinning of the optic radiation (p < 0.001), delayed VEP (p = 0.031), and visual disability indicated by FACT (p = 0.020). Furthermore, we observed an inverse correlation between optic radiation lesion volume and RNFL thickness (p < 0.001), including patients without previous optic neuritis (p < 0.001). Anterior visual pathway damage, but also (subclinical) optic radiation integrity loss detectable by 7 T MRI are common findings in MS that are mutually affected. Given the association between optic radiation damage, visual impairment, and increased VEP latency in this exploratory study of a limited sample size, clinicians should be aware of acute lesions within the optic radiation in patients with (bilateral) visual disturbances. (orig.)

  9. A unified analytical drain current model for Double-Gate Junctionless Field-Effect Transistors including short channel effects

    Science.gov (United States)

    Raksharam; Dutta, Aloke K.

    2017-04-01

    In this paper, a unified analytical model for the drain current of a symmetric Double-Gate Junctionless Field-Effect Transistor (DG-JLFET) is presented. The operation of the device has been classified into four modes: subthreshold, semi-depleted, accumulation, and hybrid; with the main focus of this work being on the accumulation mode, which has not been dealt with in detail so far in the literature. A physics-based model, using a simplified one-dimensional approach, has been developed for this mode, and it has been successfully integrated with the model for the hybrid mode. It also includes the effect of carrier mobility degradation due to the transverse electric field, which was hitherto missing in the earlier models reported in the literature. The piece-wise models have been unified using suitable interpolation functions. In addition, the model includes two most important short-channel effects pertaining to DG-JLFETs, namely the Drain Induced Barrier Lowering (DIBL) and the Subthreshold Swing (SS) degradation. The model is completely analytical, and is thus computationally highly efficient. The results of our model have shown an excellent match with those obtained from TCAD simulations for both long- and short-channel devices, as well as with the experimental data reported in the literature.

  10. New in-flight calibration adjustment of the Nimbus 6 and 7 earth radiation budget wide field of view radiometers

    Science.gov (United States)

    Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.

    1984-01-01

    In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.

  11. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  12. Modelling emission turbulence-radiation interaction by using a hybrid flamelet/stochastic Eulerian field method

    Science.gov (United States)

    Consalvi, Jean-Louis

    2017-01-01

    The time-averaged Radiative Transfer Equation (RTE) introduces two unclosed terms, known as `absorption Turbulence Radiation Interaction (TRI)' and `emission TRI'. Emission TRI is related to the non-linear coupling between fluctuations of the absorption coefficient and fluctuations of the Planck function and can be described without introduction any approximation by using a transported PDF method. In this study, a hybrid flamelet/ Stochastic Eulerian Field Model is used to solve the transport equation of the one-point one-time PDF. In this formulation, the steady laminar flamelet model (SLF) is coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities and the PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. Soot production is modeled by a semi-empirical model and the spectral dependence of the radiatively participating species, namely combustion products and soot, are computed by using a Narrow Band Correlated-k (NBCK) model. The model is applied to simulate an ethylene/methane turbulent jet flame burning in an oxygen-enriched environment. Model results are compared with the experiments and the effects of taken into account Emission TRI on flame structure, soot production and radiative loss are discussed.

  13. Nonbaryonic dark matter and scalar field coupled with a transversal interaction plus decoupled radiation

    CERN Document Server

    Chimento, Luis P

    2013-01-01

    We analyze a universe filled with interacting dark matter, a scalar field accommodated as dark radiation along with dark energy plus a decoupled radiation term within the framework of spatially flat Friedmann-Robertson-Walker (FRW) spacetime. We work in a three-dimensional internal space spanned by the interaction vector and use a transversal interaction $\\mathbf{Q_t}$ for solving the source equation in order to find all the interacting component energy densities. We asymptotically reconstruct the scalar field and potential from an early radiation era to the late dominate dark energy one, passing through an intermediate epoch dominated by dark matter. We apply the $\\chi^{2}$ method to the updated observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model fulfills the severe bound of $\\Omega_{\\rm \\phi}(z\\simeq 1100)<0.018$ at $2\\sigma$ level, is consistent with the r...

  14. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    Science.gov (United States)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  15. A space weather index for the radiation field at aviation altitudes

    Directory of Open Access Journals (Sweden)

    Meier Matthias M.

    2014-04-01

    Full Text Available The additional dose contribution to the radiation exposure at aviation altitudes during Solar Particle Events (SPEs has been a matter of concern for many years. After the Halloween storms in 2003 several airlines began to implement mitigation measures such as rerouting and lowering flight altitudes in response to alerts on the NOAA S-scale regarding solar radiation storms. These alerts are based on the integral proton flux above 10 MeV measured aboard the corresponding GOES-satellite which is operated outside the Earth’s atmosphere in a geosynchronous orbit. This integral proton flux has, however, been proved to be an insufficient parameter to apply to the radiation field at aviation altitudes without an accompanying analysis of the shape of the energy spectrum. Consequently, false alarms and corresponding disproportionate reactions ensued. Since mitigating measures can be quite cost-intensive, there has been a demand for appropriate space weather information among responsible airline managers for about a decade. Against this background, we propose the introduction of a new Space Weather index D, based on dose rates at aviation altitudes produced by solar protons during solar radiation storms, as the relevant parameter for the assessment of corresponding radiation exposure. The Space Weather index D is a natural number given by a graduated table of ranges of dose rates in ascending order which is derived by an equation depending on the dose rate of solar protons.

  16. EM modeling of far-field radiation patterns for antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-05-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  17. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  18. Analytic 1D pn junction diode photocurrent solutions following ionizing radiation and including time-dependent changes in the carrier lifetime.

    Energy Technology Data Exchange (ETDEWEB)

    Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)

    2011-04-01

    Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.

  19. Radiation doses to patients in computed tomography including a ready reckoner for dose estimation; Patientdoser vid datortomografi med lathund foer beraekning av effektiv dos

    Energy Technology Data Exchange (ETDEWEB)

    Szendroe, G.; Axelsson, B.; Leitz, W.

    1995-11-01

    The radiation burden from CT-examinations is still growing in most countries and has reached a considerable part of the total from medical diagnostic x-ray procedures. Efforts for avoiding excess radiation doses are therefore especially well motivated within this field. A survey of CT-examination techniques practised in Sweden showed that standard settings for the exposure variables are used for the vast majority of examinations. Virtually no adjustments to the patient`s differences in anatomy have been performed - even for infants and children on average the same settings have been used. The adjustment of the exposure variables to the individual anatomy offers a large potential of dose savings. Amongst the imaging parameters, a change of the radiation dose will primarily influence the noise. As a starting point it is assumed that, irrespective of the patient`s anatomy, the same level of noise can be accepted for a certain diagnostic task. To a large extent the noise level is determined by the number of photons that are registered in the detector. Hence, for different patient size and anatomy, the exposure should be adjusted so that the same transmitted photon fluence is achieved. An appendix with a ready reckoner for dose estimation for CT-scanners used in Sweden is attached. 7 refs, 5 figs, 8 tabs.

  20. The impact of aerosol and clouds on the radiation field during the ALBATROSS 1996 field campaign in the Atlantic Ocean

    Science.gov (United States)

    Kylling, A.; Hofzumahaus, A.; Brauers, T.; Kraus, A.

    2003-04-01

    In october-november 1996 the research vessel Polarstern traversed the Atlantic Ocean from about 66.7oN to 47.2oS. Data recorded during the cruise included the global irradiance and the 2pi downwelling actinic flux. The data are presented and discussed in terms of the various climatic conditions under which the data were recorded. The actinic flux measurements in the UV-A region of the spectrum are used to derive an effective cloud optical depth. Together with the global radiation data the cloud optical depths are used to quantify the effect of clouds on the radiative forcing. During the cruise Polarstern passed through a region with Saharan dust. The radiative impact of the aerosol on the actinic flux and the global irradiance is elucidated with the aid of radiative transfer model simulations. The impact of the aerosol depends on the solar zenith angle. The actinic flux was reduced by 8-30% with the largest reduction taking place at solar zenith angles around 70o.

  1. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  2. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    Science.gov (United States)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  3. Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces

    Science.gov (United States)

    Kralik, Tomas; Hanzelka, Pavel; Zobac, Martin; Musilova, Vera; Fort, Tomas; Horak, Michal

    2012-11-01

    Near-field heat transfer across a gap between plane-parallel tungsten layers in vacuo was studied experimentally with the temperature of the cold sample near 5 K and the temperature of the hot sample in the range 10-40 K as a function of the gap size d. At gaps smaller than one-third of the peak wavelength λm given by Wien’s displacement law, the near-field effect was observed. In comparison with blackbody radiation, hundred times higher values of heat flux were achieved at d≈1μm. Heat flux normalized to the radiative power transferred between black surfaces showed scaling (λm/d)n, where n≈2.6. This Letter describes the results of experiment and a comparison with present theory over 4 orders of magnitude of heat flux.

  4. Magnetic field and thermal radiation effects on steady hydromagnetic Couette flow through a porous channel

    Directory of Open Access Journals (Sweden)

    Chigozie Israel-Cookey

    2010-09-01

    Full Text Available This paper investigates effects of thermal radiation and magnetic field on hydromagnetic Couette flow of a highly viscous fluid with temperature-dependent viscosity and thermal conductivity at constant pressure through a porous channel. The influence of the channel permeability is also assessed. The relevant governing partial differential equations have been transformed to non-linear coupled ordinary differential equations by virtue of the steady nature of the flow and are solved numerically using a marching finite difference scheme to give approximate solutions for the velocity and temperature profiles. We highlight the effects of Nahme numbers, magnetic field, radiation and permeability parameters on both profiles. The results obtained are used to give graphical illustrations of the distribution of the flow variables and are discussed.

  5. Performance Testing Of Selected Types of Electronic Personal Dosimeters in X- and Gamma Radiation Fields.

    Science.gov (United States)

    Kržanović, Nikola; Živanović, Miloš; Ciraj-Bjelac, Olivera; Lazarević, Đorđe; Ćeklić, Sandra; Stanković, Srboljub

    2017-10-01

    Electronic personal dosimeters (EPDs) are increasingly being used alongside conventional thermoluminescent dosimeters to measure the dose of legal record in terms of personal dose equivalent. Therefore, it is of great importance to execute performance tests of these dosimeters in photon fields of various energies and at various angles of incidence. This testing is done in order to simulate the behavior of these dosimeters in realistic multidirectional polyenergetic ionizing radiation fields. Tests of accuracy, linearity, energy response, and angular response have been performed on 10 EPDs from multiple manufacturers. Various radiation qualities have been used in the energy range from 33 keV to 1.33 MeV and for angles of incidence 0° to 80°. This research proves that many of the EPDs tested performed according to the manufacturer's specifications and the requirements of the international standards regarding personal dosimetry.

  6. The Effects of Magnetic Fields on the Dynamics of Radiation Pressure-dominated Massive Star Envelopes

    Science.gov (United States)

    Jiang, Yan-Fei; Cantiello, Matteo; Bildsten, Lars; Quataert, Eliot; Blaes, Omer

    2017-07-01

    We use three-dimensional radiation magnetohydrodynamic simulations to study the effects of magnetic fields on the energy transport and structure of radiation pressure-dominated main sequence massive star envelopes at the region of the iron opacity peak. We focus on the regime where the local thermal timescale is shorter than the dynamical timescale, corresponding to inefficient convective energy transport. We begin with initially weak magnetic fields relative to the thermal pressure, from 100 to 1000 G in differing geometries. The unstable density inversion amplifies the magnetic field, increasing the magnetic energy density to values close to equipartition with the turbulent kinetic energy density. By providing pressure support, the magnetic field’s presence significantly increases the density fluctuations in the turbulent envelope, thereby enhancing the radiative energy transport by allowing photons to diffuse out through low-density regions. Magnetic buoyancy brings small-scale magnetic fields to the photosphere and increases the vertical energy transport, with the energy advection velocity proportional to the Alfvén velocity, although in all cases we study, photon diffusion still dominates the energy transport. The increased radiative and advective energy transport causes the stellar envelope to shrink by several scale heights. We also find larger turbulent velocity fluctuations compared with the purely hydrodynamic case, reaching ≈ 100 {{{km}}{{s}}}-1 at the stellar photosphere. The photosphere also shows vertical oscillations with similar averaged velocities and periods of a few hours. The increased turbulent velocity and oscillations will have strong impacts on the line broadening and periodic signals in massive stars.

  7. On The Relativistic Classical Motion of a Radiating Spinning Particle in a Magnetic Field

    CERN Document Server

    Kar, Arnab

    2010-01-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  8. Non ionizing radiations Sources, fields of application, problem issues and normatives

    CERN Document Server

    Raganella, L

    1988-01-01

    The purpose of this paper is briefly to review radiation sources, in work and life places, and national standards, proposed or enforced in different countries, with particular reference to ELF. RF and MW electromagnetic fields. It is aimed to give a help to qualitative valutation on the work we can carry out for the development of an effective health protection of workers and general public.

  9. Development of object simulator for radiation field of dental x-rays

    OpenAIRE

    Silva,L.F.; Ferreira,F.C.L.; Sousa, E. F.; Cardoso, Leandro Xavier; Vasconcelos, E. D. S.; Brasil, Lourdes Mattos

    2013-01-01

    In dentistry radiography is of fundamental importance to the dentist can make an accurate diagnosis. For this it is necessary to pay attention to the radiological protection of both the professional and the patient and control image quality for an accurate diagnosis. In this work, quality control tests were performed on X-ray machines in private dental intraoral in the municipality of Marabá, where they measured the diameters of the radiation field to see if these machines are ...

  10. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakes

    CERN Document Server

    Timofeev, I V; Volchok, E P

    2016-01-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ($\\sim 10$ MV/cm) narrowband terahertz pulses with the gigawatt power level and millijoule energy content.

  11. On the relativistic classical motion of a radiating spinning particle in a magnetic field

    Science.gov (United States)

    Kar, Arnab; Rajeev, S. G.

    2011-04-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  12. Diagnostics of Magnetic Field Strength in Gyrosynchrotron Radiation Regions for the Case of Transverse Propagation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ai-Hua; WANG Xin-Dong

    2000-01-01

    A set of diagnostic formulas is, for the first time, proposed to deal with the magnetic field strength B in gy rosynchrotron radiation regions for the transverse propagation case. The diagnostic formulas of B are applied to analyze a solar limb event. The differences of diagnostic results of B are compared for the different propagation cases and it is found that the differences are rather large. So in the analysis of limb burst we should use the diagnostic formulas for the transverse propagation.

  13. Ballistic Diffusion of a Charged Particle in a Blackbody Radiation Field

    Institute of Scientific and Technical Information of China (English)

    BAO Jing-Dong; BAI Zhan-Wu

    2005-01-01

    @@ The generalized Langevin equation is used to describe the motion of a charged particle interacting with a blackbody radiation field via dipole coupling. The exact expressions for the mean-square displacement and velocity of such a particle are obtained, which show a ballistic diffusion and a modified Kubo fluctuation-dissipation relation. In particular, a velocity-dependent coupling or force can induce this novel phenomenon.

  14. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    CERN Document Server

    Kolosnitsyn, N I

    2015-01-01

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  15. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  16. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: Retrospective physician surveys including chart reviews at numerous centers

    Energy Technology Data Exchange (ETDEWEB)

    Gossman, Michael S., E-mail: MGossman@TSRCC.com [Regulation Directive Medical Physics, Russell, KY (United States); Wilkinson, Jeffrey D. [Medtronic, Inc., Mounds View, MN (United States); Mallick, Avishek [Department of Mathematics, Marshall University, Huntington, WV (United States)

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient's sex; patient's age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient's medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  17. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers.

    Science.gov (United States)

    Gossman, Michael S; Wilkinson, Jeffrey D; Mallick, Avishek

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient׳s sex; patient׳s age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient׳s medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  18. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    Science.gov (United States)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  19. STUDIES CONCERNING THE EFFECT OF GAMMA RADIATION AND MAGNETIC FIELD EXPOSURE ON GLADIOLUS

    Directory of Open Access Journals (Sweden)

    M CANTOR

    2003-04-01

    Full Text Available Gladiolus (Gladiolus sp. is one of the most floral species cultivated over in the world and in Romania. There are many studies concerning the effect of gamma radiation on ornamental plants but little is known about the synergetic effect of gamma radiation and exposure to magnetic fields on Gladiolus. In our investigation we have tested the effect of gamma irradiation and magnetic field exposure of gladiolus corms and cormels of the cultivars: Her Majesty, Applause and Speranţa. The corms and cormels were irradiated for 72 hrs with 137 Cs gamma source on cylindrical exposure geometry. At medium dose of 1 Gy has been accumulated for each corm and cormel. For each variety we used 10 corms and 30 cormels in five variants. The comportment of various varieties was evaluated by recording the following characteristics: length of roots and growth tip. Significant effect was obtained at the variants which was irradiated with 1 Gy gamma radiation and 3 Gauss magnetic fields.

  20. Radiative transfer with POLARIS. I. Analysis of magnetic fields through synthetic dust continuum polarization measurements

    Science.gov (United States)

    Reissl, S.; Wolf, S.; Brauer, R.

    2016-09-01

    Aims: We present POLARIS (POLArized RadIation Simulator), a newly developed three-dimensional Monte-Carlo radiative transfer code. POLARIS was designed to calculate dust temperature, polarization maps, and spectral energy distributions. It is optimized to handle data that results from sophisticated magneto-hydrodynamic simulations. The main purpose of the code is to prepare and analyze multi-wavelength continuum polarization measurements in the context of magnetic field studies in the interstellar medium. An exemplary application is the investigation of the role of magnetic fields in star formation processes. Methods: We combine currently discussed state-of-the-art grain alignment theories with existing dust heating and polarization algorithms. We test the POLARIS code on multiple scales in complex astrophysical systems that are associated with different stages of star formation. POLARIS uses the full spectrum of dust polarization mechanisms to trace the underlying magnetic field morphology. Results: Resulting temperature distributions are consistent with the density and position of radiation sources resulting from magneto-hydrodynamic (MHD) - collapse simulations. The calculated layers of aligned dust grains in the considered cirumstellar disk models are in excellent agreement with theoretical predictions. Finally, we compute unique patterns in synthetic multi-wavelength polarization maps that are dependent on applied dust-model and grain-alignment theory in analytical cloud models.

  1. Near-field radiation between graphene-covered carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M., E-mail: zhuomin.zhang@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  2. Near-field radiation between graphene-covered carbon nanotube arrays

    Directory of Open Access Journals (Sweden)

    Richard Z. Zhang

    2015-05-01

    Full Text Available It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP. In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  3. Near-field radiation between graphene-covered carbon nanotube arrays

    Science.gov (United States)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M.

    2015-05-01

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  4. Near-field radiative heat transfer between arbitrarily-shaped objects and a surface

    CERN Document Server

    Edalatpour, Sheila

    2016-01-01

    A fluctuational electrodynamics-based formalism for calculating near-field radiative heat transfer between objects of arbitrary size and shape and an infinite surface is presented. The surface interactions are treated analytically via Sommerfeld's theory of electric dipole radiation above an infinite plane. The volume integral equation for the electric field is discretized using the thermal discrete dipole approximation (T-DDA). The framework is verified against exact results in the sphere-surface configuration, and is applied to analyze near-field radiative heat transfer between a complex-shaped probe and an infinite plane both made of silica. It is found that when the probe tip size is approximately equal to or smaller than the gap d separating the probe and the surface, coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due to LSPhs along the minor axis of the probe while the net tota...

  5. L1599B: Cloud Envelope and C+ Emission in a Region of Moderately Enhanced Radiation Field

    CERN Document Server

    Goldsmith, Paul F; Langer, William D; Liu, Tie; Requena-Torres, Miguel; Ricken, Oliver; Riquelme, Denise

    2016-01-01

    We study the effects of an asymmetric radiation field on the properties of a molecular cloud envelope. We employ observations of carbon monoxide (12CO and 13CO), atomic carbon, ionized carbon, and atomic hydrogen to analyze the chemical and physical properties of the core and envelope of L1599B, a molecular cloud forming a portion of the ring at approximately 27 pc from the star Lambda Ori. The O III star provides an asymmetric radiation field that produces a moderate enhancement of the external radiation field. Observations of the [CII] fine structure line with the GREAT instrument on SOFIA indicate a significant enhanced emission on the side of the cloud facing the star, while the [Ci], 12CO and 13CO J = 1-0 and 2-1, and 12CO J = 3-2 data from the PMO and APEX telescopes suggest a relatively typical cloud interior. The atomic, ionic, and molecular line centroid velocities track each other very closely, and indicate that the cloud may be undergoing differential radial motion. The HI data from the Arecibo GAL...

  6. Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    CERN Document Server

    Kotanjyan, A S

    2007-01-01

    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.

  7. An analysis of the radiation field characteristics for extremity dose assessment during maintenance periods at nuclear power plants in Korea.

    Science.gov (United States)

    Kim, Hee Geun; Kong, Tae Young

    2012-12-01

    Workers who maintain the water chambers of steam generators during maintenance periods in nuclear power plants (NPPs) have a higher likelihood of high radiation exposure, even if they are exposed for a short period of time. In particular, it is expected that the hands of workers would receive the highest radiation exposure as a consequence of hand contact with radioactive materials. In this study, a characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosemeters for the whole body and extremities during maintenance periods at Korean NPPs. It was observed that inhomogeneous radiation fields for contact operations at NPPs were dominated by high-energy photons.

  8. Radiation Emission and Its Influence on the Motion of Multi-GeV Electrons and Positrons in Strong Crystalline Fields

    Science.gov (United States)

    Baurichter, A.; Kirsebom, K.; Kononets, Yu. V.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Elsener, K.; Ballestrero, S.; Sona, P.; Romano, J.; Connell, S. H.; Sellschop, J. P.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.

    1997-11-01

    Presented is the first experimental demonstration of a dramatic radiative redistribution in transverse states for multi-GeV electrons/positrons, interacting with strong crystalline fields. Detailed analysis of energy loss, photon multiplicities, and scattering distributions leads to new physical insight into open questions such as radiative cooling/heating of the beams in aligned crystals, validity of the constant-field approximation, radiative capture of random particles (``feed in'') into channeled states, and the Landau-Pomeranchuk effect in multiphoton radiation spectra.

  9. Effect Of The Focusing Magnetostatic Field Profile On The Diffraction Radiation Oscillator Excitation

    Directory of Open Access Journals (Sweden)

    E.M. Khutoryan

    2009-01-01

    Full Text Available Effect of the focusing magnetostatic field (FMF profile on the output characteristics of diffraction radiation oscillator (DRO is studied experimentally. The laboratory prototype of the mm range DRO produced in IRE NAS of Ukraine was used in the research. Peculiarities of the output power, oscillation frequency, starting current and other DRO characteristics for the cases of the decreasing, sagging and increasing magnetostatic field along the direction of the electron flow motion were determined. Prospects for the use of the increasing FMF in DRO are shown.

  10. Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities

    CERN Document Server

    Bykov, Andrei M; Osipov, Sergei M; Vladimirov, Andrey E

    2014-01-01

    We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration (DSA) where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock, to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification (MFA), and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the d...

  11. Trace organic contaminants, including toxaphene and trifluralin, in cotton field soils from Georgia and South Carolina, USA.

    Science.gov (United States)

    Kannan, K; Battula, S; Loganathan, B G; Hong, C S; Lam, W H; Villeneuve, D L; Sajwan, K; Giesy, J P; Aldous, K M

    2003-07-01

    Residues of organic contaminants--including toxaphene, DDT, trifluralin, hexachlorocyclohexanes, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs) and nonylphenol--were measured in 32 cotton field soils collected from South Carolina and Georgia in 1999. Toxaphene, trifluralin, DDT and PAHs were the major contaminants found in these soils. The maximum concentration of toxaphene measured was 2,500 ng/g dry weight. Trifluralin was detected in all the soils at concentrations ranging from 1 to 548 ng/g dry weight. Pesticide residues were not proportional to soil organic carbon content, indicating that their concentrations were a reflection of application history and dissipation rates rather than air-soil equilibrium. Soil extracts were also subjected to in vitro bioassays to assess dioxinlike, estrogenic, and androgenic/glucocorticoid potencies. Relatively more polar fractions of the soils elicited estrogenic and androgenic/glucocorticoid activities, but the magnitude of response was much less than those found in coastal marine sediments from industrialized locations.

  12. Star Formation In the Galaxy and the Fluctuating UV Radiation Field

    Science.gov (United States)

    Hollenbach, David; Parravano, Antonio; McKee, Christopher H.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV (ultraviolet) radiation field, and the effect of this field on the star-forming interstellar medium. There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years). The FUV (far ultraviolet) (6 eV less than hv less than 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T approx. 10(exp 4) K) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM (interstellar medium) and the mutual relation between the ISM and the star formation rate.

  13. Calculation of radiation acoustical fields from phased arrays with nonparaxial multi-Gaussian beam model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xinyu; GANG Tie; ZHANG Bixing

    2009-01-01

    A nonparaxial multi-Gaussian beam model based on the rectangular aperture is proposed in order to overcome the hmitation of paraxial Gaussian beam model which losing accuracy in off-axis beam fields. With the method, acoustical field generated by an ultra-sonic linear phased array transducer is calculated and compared with the corresponding field obtained by Rayleigh-Sommerfeld integral, paraxial multi-Gaussian beam model, and Fraunhof-fer approximation method. Simulation examples show that nonparaxial multi-Gaussian beam model is not limited by the paraxial approximation condition and can predict efficiently and accurately the acoustical field radiated by a linear phased array transducer over a wide range of steering angles.

  14. Radiative processes of a static atom interacting with a quantum scalar field in global monopole spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2017-09-01

    We investigate the rate of change of energy for a static two-level atom interacting with a massless quantum scalar field in global monopole spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We discuss two different kinds of atom-field interactions separately. The behaviors of the atomic transition rates are analyzed in different circumstances such as near distance and big solid angle deficit. Moreover, we compare the results with those in Minkowski spacetime so as to reveal the effects of the global monopole. In general, as the atom-monopole distance increases, the transition rates oscillate around the results in Minkowski spacetime and the amplitude of oscillation gradually decreases. The oscillation is more severe for larger solid angle deficit. Our works suggest that the transition rates can profoundly change with different atom-field interactions and different types of scalar field.

  15. YoungRad-seminar. Proceedings. Seminar for young scientists in the fields of radiophysics, radiochemistry, radioecology, radiation protection and related fields

    Energy Technology Data Exchange (ETDEWEB)

    Straelberg, E.; Sidhu, R. [Institute for Energy Technology (Norway); Petersen, R. [Technological Univ. of Denmark (Denmark); Salminen, S. [Univ. of Helsinki (Finland)

    2007-09-15

    To provide an inspiring working environment for young students and scientists, it is important that they at an early stage can take part in a network of scientists working in their fields of interest. However, within each of the five Nordic countries the network of people involved in the fields of radiophysics, radiochemistry, radioecology, radiation protection and other related fields is rather small. Educational networking is a key factor in keeping young researchers motivated to continue working within these fields, and to recruit new students. For that reason the first YoungRad-seminar was held in Helsinki 14-15 December 2006. 43 young participants including MSc and PhD students at universities, researchers at different institutes and personnel from Nordic authorities took part in the seminar. All Nordic countries except Iceland were represented. The seminar was divided into four sessions including oral and poster presentations. In addition two senior researchers were invited to speak about Nordic radioecology and NKS. This report contains the abstracts and presentations made at the seminar. (au)

  16. Probing the Magnetic Field Structure in {Sgr}\\,{\\rm{A}}* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Science.gov (United States)

    Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.

    2017-03-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  17. Long-term Symptoms after External Beam Radiation Therapy for Prostate Cancer with Three or Four Fields

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abany, Massoud; Helgason, Asgeir R.; Aagren-Cronqvist, Anna-Karin; Svensson, Christer; Wersaell, Peter; Steineck, Gunnar [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology-Pathology

    2002-10-01

    The aim of this study was to investigate whether external beam radiation treatment with three or four fields affects the risk of long-term distressful symptoms. The study included 145 patients who had been treated in Stockholm from 1993 to 1996 for localized prostate cancer. Bowel, urinary and sexual function as well as symptom-induced distress were assessed by means of a postal questionnaire 29-59 months after therapy. Among patients treated with a multileaf collimator, defecation urgency, diarrhoea and loose stools were more common after four fields than after three fields, but faecal leakage necessitating the use of pads and distress from the gastrointestinal tract were less common (although not statistically significantly so). Among bowel symptoms, the strongest association with gastrointestinal distress was found for faecal leakage. Three fields without a multileaf collimator entailed a higher risk of defecation urgency than three fields with a multileaf collimator. We conclude that the choice of three or four fields may imply a contrasting risk scenario for defecation urgency or diarrhoea in comparison with faecal leakage.

  18. Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations

    Directory of Open Access Journals (Sweden)

    B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3

    2013-04-01

    Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma

  19. Characteristics of the Radiation Field Waveforms Produced by Lightning Return Strokes

    Science.gov (United States)

    Lee, Bok-Hee; Eom, Ju-Hong; Kang, Sung-Man; Paek, Seung-Kwon; Kawamura, Tatsuo

    2004-07-01

    Some features of the radiation field waveforms produced by cloud-to-ground lightning return strokes were investigated. A transient analyzer was used together with electric and magnetic field measuring devices with frequency bandwidths of 200 Hz to 1.6 MHz and 270 Hz to 2.3 MHz, respectively. The initial peak of the first lightning return stroke fields is followed by several large subsidiary peaks, whose amplitudes are a fraction of that of the initial peak and decrease with time. The subsidiary peaks of the first lightning return stroke fields may be caused by the effect of branches of leader channels. The mean amplitude ratios of the subsidiary peaks to the first return stroke field peak were widely distributed over the ranges of 0.25-0.8, and the mean time interval between the subsidiary peaks ranged from 5 to 15 μs. Detailed statistical analysis showed that the time interval between the subsidiary peaks and the ratio of the subsidiary peaks to the first lightning return stroke field peak in the present work are less than those obtained in subtropical and tropical regions. The parameters characterizing the wave tail of lightning return stroke fields are closely related to the propagation velocity and length of return stroke throughout the entire leader channel, and the subsidiary large pulses in the wave tail of return stroke fields seem to be associated with the resonance in major branches of lightning return stroke channels.

  20. Complex Scattered Radiation Fields and Multiple Magnetic Fields in the Protostellar Cluster in NGC 2264

    CERN Document Server

    Kwon, Jungmi; Kandori, Ryo; Kusakabe, Nobuhiko; Hashimoto, Jun; Nakajima, Yasushi; Nakamura, Fumitaka; Nagayama, Takahiro; Nagata, Tetsuya; Hough, James H; Werner, Michael W; Teixeira, Paula S

    2011-01-01

    Near-infrared (IR) imaging polarimetry in the J, H, and Ks bands has been carried out for the protostellar cluster region around NGC 2264 IRS 2 in the Monoceros OB1 molecular cloud. Various infrared reflection nebulae clusters (IRNCs) associated with NGC 2264 IRS 2 and IRAS 12 S1 core were detected as well as local infrared reflection nebulae (IRNe). The illuminating sources of the IRNe were identified with known or new near- and mid-IR sources. In addition, 314 point-like sources were detected in all three bands and their aperture polarimetry was studied. Using a color-color diagram, reddened field stars and diskless pre-main sequence stars were selected to trace the magnetic field (MF) structure of the molecular cloud. The mean polarization position angle of the point-like sources is 81 \\pm 29 degree in the cluster core, and 58 \\pm 24 degree in the perimeter of the cluster core, which is interpreted as the projected direction on the sky of the MF in the observed region of the cloud. The Chandrasekhar-Fermi ...

  1. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  2. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics★

    Science.gov (United States)

    Popescu, C. C.; Yang, R.; Tuffs, R. J.; Natale, G.; Rushton, M.; Aharonian, F.

    2017-09-01

    We present a solution for the ultraviolet - submillimetre (submm) interstellar radiation fields (ISRFs) of the Milky Way (MW), derived from modelling COBE, IRAS and Planck maps of the all-sky emission in the near-, mid-, far-infrared and submm. The analysis uses the axisymmetric radiative transfer model that we have previously implemented to model the panchromatic spectral energy distributions (SEDs) of star-forming galaxies in the nearby universe, but with a new methodology allowing for optimization of the radial and vertical geometry of stellar emissivity and dust opacity, as deduced from the highly resolved emission seen from the vantage point of the Sun. As such, this is the first self-consistent model of the broad-band continuum emission from the MW. In this paper, we present model predictions for the spatially integrated SED of the MW as seen from the Sun, showing good agreement with the data, and give a detailed description of the solutions for the distribution of ISRFs, as well as their physical origin, throughout the volume of the galaxy. We explore how the spatial and spectral distributions of our new predictions for the ISRF in the MW affects the amplitude and spectral distributions of the gamma rays produced via inverse Compton scattering for cosmic ray (CR) electrons situated at different positions in the galaxy, as well as the attenuation of the gamma rays due to interactions of the gamma-ray photons with photons of the ISRF. We also compare and contrast our solutions for the ISRF with those incorporated in the galprop package used for modelling the high-energy emission from CR in the MW.

  3. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Science.gov (United States)

    Ferrari, A.; Amato, E.; Margarone, D.; Cowan, T.; Korn, G.

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 109-1010 for the electron beams and 1010-1012 for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the "source terms" in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  4. Role of the UV external radiation field on the presence of astrophysical ices in protostellars environments

    Science.gov (United States)

    Robson Monteiro Rocha, Will; Pilling, Sergio

    2016-07-01

    The astrophysical ices survival is directly related with the temperature and ionizing radiation field in protostellars environments such as disks and envelopes. Computational models has shown that pure volatile molecules like CO and CH _{4} should survive only inside densest regions of molecular clouds or protoplanetary disks On the other hand, solid molecules such as H _{2}O and CH _{3}OH can be placed around 5 - 10 AU from the central protostar. Unlike of the previous models, we investigate the role of the UV external radiation field on the presence of ices in disks and envelopes. Once that a star-forming region is composed by the formation of many protostars, the external radiation field should be an important component to understand the real localization of the ices along the sight line. To address this topic it was employed the radiative transfer code RADMC-3D based on the Monte Carlo method. The code was used to model the spectrum and the near-infrared image of Elias 29. The initial parameters of the disk and envelope was taken from our previous paper (Rocha & Pilling (2015), ApJ 803:18). The opacities of the ices were calculated from the complex refractive index obtained at laboratory experiments perfomed at Grand Accélerateur National d'Íons Lourds (GANIL), by using the NKABS code from Rocha & Pilling (2014), SAA 123:436. The partial conclusions that we have obtained shows that pure CO volatile molecule cannot be placed at disk or envelope of Elias 29, unlike shown in our paper about Elias 29. Once it was observed in Elias 29 spectrum obtained with Infrared Space Observatory (ISO) between 2.5 - 190 μm, this molecule should be placed in foreground molecular clouds or trapped in the water ice matrix. The next calculations will be able to show where are placed the ices such as CH _{3}OH and CH _{3}CHO observed in Elias 29 spectrum.

  5. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  6. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  7. Phase-space of flat Friedmann-Robertson-Walker models with both a scalar field coupled to matter and radiation

    CERN Document Server

    Leon, Genly; Fadragas, Carlos R

    2010-01-01

    We investigate the phase-space of a flat FRW universe including both a scalar field, $\\phi,$ coupled to matter, and radiation. The model is inspired in scalar-tensor theories of gravity, and thus, related with $F(R)$ theories through conformal transformation. The aim of the chapter is to extent several results to the more realistic situation when radiation is included in the cosmic budget particularly for studying the early time dynamics. Under mild conditions on the potential we prove that the equilibrium points corresponding to the non-negative local minima for $V(\\phi)$ are asymptotically stable. Normal forms are employed to obtain approximated solutions associated to the inflection points and the strict degenerate local minimum of the potential. We prove for arbitrary potentials and arbitrary coupling functions $\\chi(\\phi),$ of appropriate differentiable class, that the scalar field almost always diverges into the past. It is designed a dynamical system adequate to studying the stability of the critical p...

  8. Equation of Motion for an Arbitrarily Shaped Particle Moving in a Radiation Field

    CERN Document Server

    Klacka, J

    2003-01-01

    We consider the motion of uncharged dust grains of arbitrary shape including the effects of electromagnetic radiation and thermal emission. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Explicit expressions for secular changes of osculating orbital elements are derived in detail for the special case of the Poynting-Robertson effect. Two subcases are considered: (i) central acceleration due to gravity and the radial component of radiation pressure independent of the particle velocity, (ii) central acceleration given by gravity and the radiation force as the disturbing force. The latter case yields results which may be compared with secular orbital evolution in terms of orbital elements for an arbitrarily shaped dust particle. The effects of solar wind are also presented.

  9. Field studies on long term ecosystem consequences of ionising radiation and chemical pollutants (EANOR Project)

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, D. [Centre for Environmental Radioactivity - CERAD (Norway); Evseeva, T. [Institute of Biology RAS (Russian Federation); Erenturk, S. [Istanbul Technical University (Turkey)

    2014-07-01

    Chernobyl and other nuclear accidents have demonstrated that high levels of ionizing radiation can result in impacts on plants and animals, however little is known about the long-term effects of chronic exposure on biodiversity or other population and ecosystem level effects. The issue of ecological impact has been addressed after the Fukushima accident, which has raised questions about the impacts of radioactivity not only on human health, but also on wildlife. The overall aim of the EANOR project (2012-2015) is to assess the impacts of chronic exposure to enhanced radioactivity and chemical pollutants by studying the diversity of plant and soil invertebrate populations at two field sites. The first is a radium contaminated site in the Vodny area of the Komi Republic, Russia. Between 1931 and 1956, this was the main location of Soviet radium production. Wastes from the industry caused contamination of the environment, leading to high levels of radionuclides, heavy metals and rare-earth elements in the surroundings. The prolonged exposure of the ecosystem, combined with relatively low human activities, makes the site an excellent field laboratory for investigating the long-term effects of pollution. The second site is metal mining (Fe, Au, Ag, Mn, Mo, Cu, Pb and Zn) and industrial area on the Eastern Black Sea Region, Turkey, having elevated levels of both heavy metals and radionuclides for many decades. Eastern Black Sea Region is a mountainous area covered with dense forests, where numerous rivers and torrents flow through gorges and is characterized by heavy rainfall, humid summers, and mild winters. Based on these conditions, the region is rich in biological diversity. Joint field expeditions have been carried out in 2012 and 2013 with the objective of documenting levels of radionuclides and other chemical contaminants in soils and organisms, and assessing plant and soil invertebrate biodiversity. Measurement of a range of biomarkers, including soil meta

  10. Dose estimation outside radiation field using Pinpoint and Semiflex ionization chamber detectors

    Science.gov (United States)

    Abdelaal, Ahmed M.; Attalla, Ehab M.; Elshemey, Wael M.

    2017-10-01

    This work aims to provide a comparison between two important detectors (Pinpoint and Semiflex) that are frequently used in radiation dosimetery in radiotherapy. This is carried out through the employment of both detectors in a quantitative estimation of the change in out-of-field dose with important dosimetric parameters such as field size (from 5×5 cm2 to 30×30 cm2) and depth (from 1.5 cm to 30 cm) at two different energies (6 MV and 15 MV) and two different collimator angles (0-90°). The change in out-of-field dose with Source-Skin-Distance (SSD) from 80 to 115 cm is also studied using both detectors. Results show that, the Pinpoint and Semiflex detectors both reported an increase in out-of-field dose with field size, depth, energy and SSD. In almost all measurements, Pinpoint detector reported considerably higher out-of-field dose values compared to Semiflex. For 6 MV and 0° collimator angle, the out-of-field dose at field size of 30×30 cm2 and at a depth of 1.5 cm is 7.3% for Pinpoint detector compared to 4.3% for Semiflex. At collimator angle of 90°, the out-of-field dose is 6.5% for Pinpoint detector compared to 5.5% for semiflex. The out-of-field dose for a depth of 30 cm and field size of 10×10 cm is 7.9% for Pinpoint detector compared to 5.9% for Semiflex. For 15 MV and 0° collimator angle, the out-of-field dose at field size of 30×30 cm2 and at a depth of 1.5 cm is 7.5% for Pinpoint detector compared 5.1% for Semiflex. At 6 MV, field size of 10×10 cm2 and depth of 1.5 cm, the out-of-field dose at SSD 115 cm is 3.7% for Pinpoint detector compared to 3.4% for Semiflex. The considerably higher out-of-field dose values reported by Pinpoint detector compared to Semiflex may be attributed to the relatively higher sensitivity of Pinpoint detector for low doses (such as out-of-field doses). Therefore, for reliable out-of-field dose measurements a Pinpoint detector is highly recommended.

  11. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    A method of estimating the sound field radiated by a source under non-anechoic conditions has been examined. The method uses near field acoustic holography based on a combination of pressure and particle velocity measurements in a plane near the source for separating outgoing and ingoing wave...... components. The outgoing part of the sound field is composed of both radiated and scattered waves. The method compensates for the scattered components of the outgoing field on the basis of the boundary condition of the problem, exploiting the fact that the sound field is reconstructed very close...... to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  12. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors

    Science.gov (United States)

    McMorrow, Julian J.; Cress, Cory D.; Arnold, Heather N.; Sangwan, Vinod K.; Jariwala, Deep; Schmucker, Scott W.; Marks, Tobin J.; Hersam, Mark C.

    2017-02-01

    Atomically thin MoS2 has generated intense interest for emerging electronics applications. Its two-dimensional nature and potential for low-power electronics are particularly appealing for space-bound electronics, motivating the need for a fundamental understanding of MoS2 electronic device response to the space radiation environment. In this letter, we quantify the response of MoS2 field-effect transistors (FETs) to vacuum ultraviolet (VUV) total ionizing dose radiation. Single-layer (SL) and multilayer (ML) MoS2 FETs are compared to identify differences that arise from thickness and band structure variations. The measured evolution of the FET transport properties is leveraged to identify the nature of VUV-induced trapped charge, isolating the effects of the interface and bulk oxide dielectric. In both the SL and ML cases, oxide trapped holes compete with interface trapped electrons, exhibiting an overall shift toward negative gate bias. Raman spectroscopy shows no variation in the MoS2 signatures as a result of VUV exposure, eliminating significant crystalline damage or oxidation as possible radiation degradation mechanisms. Overall, this work presents avenues for achieving radiation-hard MoS2 devices through dielectric engineering that reduces oxide and interface trapped charge.

  13. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  14. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    Science.gov (United States)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  15. The Lambda CDM-model in quantum field theory on curved spacetime and Dark Radiation

    CERN Document Server

    Hack, Thomas-Paul

    2013-01-01

    In the standard model of cosmology, the universe is described by a Robertson-Walker spacetime, while its matter/energy content is modeled by a perfect fluid with three components corresponding to matter/dust, radiation and a cosmological constant. On the other hand, in particle physics matter and radiation are described in terms of quantum field theory on Minkowski spacetime. We unify these seemingly different theoretical frameworks by analysing the standard model of cosmology from first principles within quantum field theory on curved spacetime: assuming that the universe is homogeneous and isotropic on large scales, we specify a class of quantum states whose expectation value of the energy density is qualitatively and quantitatively of the standard perfect fluid form up to potential corrections. Qualitatively, these corrections depend on new parameters not present in the standard Lambda CDM-model and can account for e.g. the phenomenon of Dark Radiation (N_eff>3.046), having a characteristic signature which...

  16. Internal Radiation Field in the Nonlinear Transfer Problem for a One-Dimensional Anisotropic Medium. II

    Science.gov (United States)

    Pikichyan, H. V.

    2016-06-01

    It is shown that for the nonlinear boundary value problem of determining the radiation field inside a one-dimensional anisotropic medium illuminated from outside at its boundaries on both sides, the formulas for adding layers in semilinear systems of differential equations for radiative transfer, invariant embedding, and total Ambartsumyan invariance can be used to reduce the equations for the problem to separable equations with initial conditions. The fields travelling to the left and right are thereby found independently of one another. In addition, when one of them has been determined, the other can be found directly using an explicit expression. A general equivalence property of operators with respect to a certain mathematical form, expression, or functional is formulated mathematically. New equations, referred to as kinetic equations of equivalency, are derived from the mutual equivalence of the differential operators of the Boltzmann kinetic equation (the equations of radiative transfer) and the functional equation of the Ambartsumian's complete invariance. Besides separability, these new equations also have the property of linearity. Formulas are also introduced for special problems of single sided illumination of a medium that in this case serve as supplementary information in the initial conditions for formulating Cauchy problems.

  17. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.

    Science.gov (United States)

    St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2016-06-01

    Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.

  18. Shape-Independent Limits to Near-Field Radiative Heat Transfer.

    Science.gov (United States)

    Miller, Owen D; Johnson, Steven G; Rodriguez, Alejandro W

    2015-11-13

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ|(2)/Im χ, optimally mediated by near-field photon transfer proportional to 1/d(2) across a separation distance d. Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.

  19. Direct writing of nano patterns with near-field enhanced laser radiation

    Science.gov (United States)

    Jersch, Johann; Demming, Frank; Hildenhagen, L. J.; Dickmann, Klaus

    1997-08-01

    Nano processing is a cornerstone technology for several future oriented applications, as for example in the fields of high density data storage, nano matching of X-ray fresnel optics, micro electronics, micro robotics and biomolecularic. However, as well known, processing in the nanometer range with laser radiation is not possible by lenses or mirrors due to diffraction limitation. Recent research work has shown, that `focusing' of laser radiation down to a few nanometer can be obtained by using lasers in combination with nearfield technology (e.g. SNOM--Scanning Nearfield Optical Microscopy, SPM--Scanning Probe Microscopy). Lateral externally illumination of SPM probe tips with laser radiation can cause tremendous intensity enhancement in the nearfield underneath the tip. A brief theoretical consideration of this effect and results of calculations based on boundary element method is done. This kind of field energy concentration we named FOLANT-technique (FOcusing of LAserradiation in the Nearfield of a Tip). The interaction area with nanometer scale can be applied for material processing even down to atomic dimensions. Using FOLANT-technique hillocks, pits and grooves with lateral dimensions down to 10 nm have been obtained on conductive substrates as well as on dielectric materials (for example polycarbonate). Our experiments have shown, that FOLANT- technique is a promising tool for various applications in nanometer material processing.

  20. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    Science.gov (United States)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  1. Cosmological consequences of classical flavor-space locked gauge field radiation

    Science.gov (United States)

    Bielefeld, Jannis; Caldwell, Robert R.

    2015-06-01

    We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.

  2. Radiation-induced solidification of ionic liquid under extreme electric field

    Science.gov (United States)

    Terhune, Kurt J.; King, Lyon B.; He, Kai; Cumings, John

    2016-09-01

    An extreme electric field on the order of 1010 V m-1 was applied to the free surface of an ionic liquid to cause electric-field-induced evaporation of molecular ions from the liquid. The point of ion emission was observed in situ using a TEM. The resulting electrospray emission process was observed to create nanoscale high-aspect-ratio dendritic features that were aligned with the direction of the electric field. Upon removal of the stressing field the features were seen to remain, indicating that the ionic liquid residue was solidified or gelled. Similar electrospray experiments performed in a field-emission scanning electron microscope revealed that the features are created when the high-energy electron beam damages the molecular structure of the ionic liquid. While the electric field does not play a direct role in the fluid modification, the electric stress was critical in detecting the liquid property change. It is only because the electric stress mechanically elongated the fluid during the electrospray process and these obviously non-liquid structures persisted when the field was removed that the damage was evident. This evidence of ionic liquid radiation damage may have significant bearing on electrospray devices where it is possible to produce high-energy secondary electrons through surface impacts of emitted ions downstream of the emitter. Any such impacts that are in close proximity could see reflected secondary electrons impact the emitter causing gelling of the ionic liquid.

  3. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    Science.gov (United States)

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.

  4. Relating the radiated piano sound field to the vibrational modes of the soundboard

    Science.gov (United States)

    Hansen, Uwe J.; Bork, Ingolf; Rossing, Thomas D.

    2003-10-01

    The sound field near a piano sound board is determined by moving a microphone over a grid of points above and below the sound board as well as in a plane in front of the piano using the experimental techniques of modal analysis with soundboard excitation at a bridge point by a swept sine signal. Since the standard modal analysis signal processing technique relies on tracking phase relations between excitation and response, it is possible to relate the sound field in terms of the vibrating structure which radiated it. Animations of sound board motion and sound field pressure variations are shown for the lowest four modes. It is noted that in all modes the locations of maximal excursion correlate with the sound pressure maxima or minima, respectively.

  5. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    Science.gov (United States)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  6. Measurement of acoustic field radiated by low frequency power ultrasonic transducer with laser-interferometer

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; GAO Wen; HU Wenxiang

    2000-01-01

    Based on the piezo-optic effect of medium, the refractive index of medium is the function of its density, and so it's also the function of acoustic pressure. Therefore, acoustic pressure in the optical path everywhere can be determined absolutely by laser-interferometric technique and relative distribution of pressure in the middle and far acoustic field, which can be obtained from theory or experiment respectively. Theory and experiment of measurement of pressure in acoustic field with laser-interferometer are introduced. Distribution of pressure radiated by a power ultrasonic transducer is determined by laser interferometric technique.The theoretical and experimental results are in good agreement. The receiving sensitivity of a PVDF (Polyvinylidene fluoride) transducer in free field is also calibrated absolutely due to above results and its sensitivity is -118.5 dB.

  7. Research on vibration and near-field sound radiation of ring-ribbed cylindrical shell coated deadening and decoupling materials

    Institute of Scientific and Technical Information of China (English)

    YAO Xiong-liang; LIU Qing-jie; YU Xiu-bo

    2007-01-01

    The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.

  8. Evaluation of the radiation field in the future circular collider detector

    CERN Document Server

    Besana, Maria Ilaria; Ferrari, Alfredo; Riegler, Werner; Vlachoudis, Vasilis

    2016-01-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the future circular collider (FCC) study, is presented. A first concept of the detector has been modeled and relevant fluence and dose distributions have been calculated using the FLUKA Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and photons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different subdetectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technologies. The effect of the magnetic field is also discussed. Two shielding solutions have been conceived to minimize the backscattering from the forward calorimeters to the muon chambers and the forward tracking stations. The two possible designs are presented and their effectiveness is discussed.

  9. Near-to-far field transformations for radiative and guided waves

    CERN Document Server

    Yang, Jianji; Lalanne, Philippe

    2015-01-01

    Light emitters or scatterers embedded in stratified media may couple energy to both free space and guided modes of the stratified structure. For a thorough analysis of such structures, it is important to evaluate the angular intensity distribution of both the free-space-propagative and guided waves. In this work, we propose an original method based on Lorentz-reciprocity theorem and on the computation of the near-field around the emitters or scatterers, to efficiently calculate the free-space and guided radiation diagrams with a high accuracy. We also provide an open-source code that may be used with virtually any Maxwells solver. The numerical tool may help to engineer various devices, such as light-emitting diodes or nanoantennas to achieve directional and efficient radiative spontaneous decays in free space and guided optics.

  10. Experimental considerations on the determination of radiation fields in an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon C, L.; Ramirez J, F. J.; Garcia H, J. M.; Torres B, M. A. [ININ, Departamento de Sistemas Electronicos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez C, R.; Pena E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-10-01

    The determination of the different radiation fields in an electron accelerator requires the use of selected radiation detectors, in this work we describe the experimental considerations on the determination of the intensity of electrons and X-rays generated by Bremsstrahlung in an experimental electron accelerator covering the energy range from 80 keV to 485 keV. A lithium- drifted silicon detector, a high-purity germanium detector, a scintillation detector and a Pin diode were used in the experiments. Spectroscopic measurements allowed us to verify the terminal voltage of the accelerator. The Pin photodiode can measure the intensity of X-rays produced, with this information, we could determine its relationship with both the electron beam current and the accelerating voltage of the accelerator. (Author)

  11. Point-source idealization in classical field theories. II. Mechanical energy losses from electromagnetic radiation reaction

    Science.gov (United States)

    Kates, Ronald E.; Rosenblum, Arnold

    1982-05-01

    This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.

  12. Vacuum Radiation and Symmetry Breaking in Conformally Invariant Quantum Field Theory

    CERN Document Server

    Aldaya, V; Cerveró, J M

    1999-01-01

    The underlying reasons for the difficulty of unitarily implementing the whole conformal group $SO(4,2)$ in a massless Quantum Field Theory (QFT) are investigated in this paper. Firstly, we demonstrate that the singular action of the subgroup of special conformal transformations (SCT), on the standard Minkowski space $M$, cannot be primarily associated with the vacuum radiation problems, the reason being more profound and related to the dynamical breakdown of part of the conformal symmetry (the SCT subgroup, to be more precise) when representations of null mass are selected inside the representations of the whole conformal group. Then we show how the vacuum of the massless QFT radiates under the action of SCT (usually interpreted as transitions to a uniformly accelerated frame) and we calculate exactly the spectrum of the outgoing particles, which proves to be a generalization of the Planckian one, this recovered as a given limit.

  13. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays

    CERN Document Server

    Heays, Alan N; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules. High-resolution photodissociation cross sections of N2 are used from an accurate and comprehensive quantum- mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate dissociation rates which are input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplane...

  14. Evaluation of the radiation field in the future circular collider detector

    Directory of Open Access Journals (Sweden)

    M. I. Besana

    2016-11-01

    Full Text Available The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the future circular collider (FCC study, is presented. A first concept of the detector has been modeled and relevant fluence and dose distributions have been calculated using the fluka Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and photons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different subdetectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technologies. The effect of the magnetic field is also discussed. Two shielding solutions have been conceived to minimize the backscattering from the forward calorimeters to the muon chambers and the forward tracking stations. The two possible designs are presented and their effectiveness is discussed.

  15. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate

    Science.gov (United States)

    Jarzembski, Amun; Park, Keunhan

    2017-04-01

    Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.

  16. Synchrotron radiation with radiation reaction

    Science.gov (United States)

    Nelson, Robert W.; Wasserman, Ira

    1991-04-01

    A rigorous discussion is presented of the classical motion of a relativistic electron in a magnetic field and the resulting electromagnetic radiation when radiation reaction is important. In particular, for an electron injected with initial energy gamma(0), a systematic perturbative solution to the Lorentz-Dirac equation of motion is developed for field strengths satisfying gamma(0) B much less than 6 x 10 to the 15th G. A particularly accurate solution to the electron orbital motion in this regime is found and it is demonstrated how lowest-order corrections can be calculated. It is shown that the total energy-loss rate corresponds to what would be found using the exact Larmor power formula without including radiation reaction. Provided that the particle energy and field strength satisfy the same contraint, it is explicitly demonstrated that the intuitive prescription for calculating the time-integrated radiation spectrum described above is correct.

  17. Field tests of a portable tissue equivalent survey meter for monitoring mixed beta/gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Martz, D.E.; Rich, B.L.; Johnson, L.O.; Daniel, S.H. III

    1986-05-01

    A portable radiation survey meter that provides a tissue equivalent response to photons and beta particles has been designed and field tested. The detector is a very thin plastic scintillator that closely simulates the actual geometry and scattering properties of the relevant skin tissues. The meter reads out the D(0.07) dose rate directly, and indicates the tissue dose rates at other depths with the use of tissue equivalent filters of appropriate thicknesses. Data are presented which compare the D(0.07) and D(10) dose rates recorded by the Tissue Equivalent (TE) survey meter with dose rates recorded by two commercial ion chamber meters for a number of laboratory and field sources. Most commercial ion chamber meters fail to respond adequately to the extreme off-axis beta particles from extended beta sources, and hence require the application of large beta correction factors to change the instrument reading to the true D(0.07) dose rate. The tissue equivalent survey meter exhibits an angular response to beta particles that is very similar to the angular response of an extrapolation chamber. Consequently, there is close agreement between the TE meter and extrapolation chamber readings for a wide variety of beta and mixed beta-gamma rdiation fields. D(0.07), D(3), and D(10) dose rates, measured with the INEL TE meter at a number of typical work stations, are presented.

  18. Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields

    Science.gov (United States)

    Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.

  19. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    Science.gov (United States)

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1–2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time. PMID:26120570

  20. Rapid release of mercury from intertidal sediments exposed to solar radiation: a field experiment.

    Science.gov (United States)

    Canário, João; Vale, Carlos

    2004-07-15

    There is increasing evidence of the primary importance of photochemical reactions and transfer of gaseous mercury to the atmosphere. Although mercury in aquatic sediments is efficiently retained, resuspension and bioturbation in intertidal sediments may expose temporarily anoxic sediments to solar radiation. Field experiments were performed to investigate these processes. Anoxic sediments from two areas in the Tagus estuary with different degrees of Hg contamination (experiments I and II) were homogenized and distributed into two sets of 36 uncovered Petri dishes. The samples were placed on the intertidal sediments and exposed to direct solar radiation and kept under dark (control) for 6-8 h. The decrease rates of acid volatile sulfides (abrupt in the first 3 h) and of pyrite (linear) were the same in sediments under solar radiation and dark. The total Hg concentrations were relatively constant in sediments kept in dark, but decreased from 17.6 to 7.65 and 3.45 to 1.35 nmol g(-1) in experiments I and II, respectively. In those exposed to solar radiation during the period of higher UV intensity. Similar evolutions were found in nonreactive Hg in pore waters (3.00-2.59 and 0.725-0.105 nM). On the contrary, reactive Hg was higher in pore waters of the sediments exposed to solar radiation and increased with time, from 424 to 845 pM and 53 to 193 pM. These results indicate that most mercury released in pore waters was photochemically reduced in a short period of time and escaped rapidly to the atmosphere. Episodes of bottom resuspension and bioturbation in the intertidal sediments enhance the transfer of gaseous mercury to the atmosphere.

  1. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  2. TE/TM field solver for particle beam simulations without numerical Cherenkov radiation

    Directory of Open Access Journals (Sweden)

    Igor Zagorodnov

    2005-04-01

    Full Text Available The Yee finite-difference time domain method (FDTD is commonly used in wake field and particle-in-cell simulations. However, in accelerator modeling the high energy particles can travel in vacuum faster than their own radiation. This effect is commonly referred to as numerical Cherenkov radiation and is a consequence of numerical grid dispersion. Several numerical approaches are proposed to reduce the dispersion for all angles and for a given frequency range, that justifies itself for domains big in all three directions. On the contrary, in accelerator modeling the transverse dimensions and transverse beam velocity are small, but it is extremely important to eliminate the dispersion error in the well-defined direction of the beam motion for all frequencies. In this paper we propose a new two-level economical conservative scheme for electromagnetic field calculations in three dimensions. The scheme does not have dispersion in the longitudinal direction and is staircase-free (second order convergent. Unlike the FDTD method, it is based on a “transversal-electric/transversal-magnetic” (TE/TM-like splitting of the field components in time. The scheme assures energy and charge conservation. Additionally, the usage of damping terms allows suppressing high frequency noise generated due to the transverse dispersion and the current fluctuations. The dispersion relation of the damping scheme is analyzed. As numerical examples show, the new scheme is much more accurate on the long-time scale than the conventional FDTD approach.

  3. The analysis of complex mixed-radiation fields using near real-time imaging.

    Science.gov (United States)

    Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J

    2014-10-01

    A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected.

  4. Measurement Of Electromagnetic Field Radiation In The Internet Halls And Educational Computer Laboratories

    Directory of Open Access Journals (Sweden)

    Ghanim Thiab Hasan

    2013-04-01

    Full Text Available     There are more concerns about possible health effects related to electromagnetic fields from computer monitors and other video display terminals because of the widespread using of computers in laboratories ,offices and internet halls. This research aims to detect the effect of electromagnetic field radiations in these halls and laboratories and study the successful ways of minimizing its negative  health  effect on human health. The research has been performed on both the mathematical calculations and practical measurements. The obtaining results show that the practical measurements are consistent with the  mathematical calculations results. Comparison of  these results with the safety standard guideline  limits shows that they are within the acceptable exposuring limits recommended by the International Commission on Non-Ionizing Radiation Protection  (ICNIRP and that means there is no health risk from exposure to these fields if the exposure is within the acceptable limits.     

  5. Analysis and design of photobioreactors for microalgae production I: method and parameters for radiation field simulation.

    Science.gov (United States)

    Heinrich, Josué Miguel; Niizawa, Ignacio; Botta, Fausto Adrián; Trombert, Alejandro Raúl; Irazoqui, Horacio Antonio

    2012-01-01

    Having capabilities for the simulation of the radiation field in suspensions of microalgae constitutes a great asset for the analysis, optimization and scaling-up of photobioreactors. In this study, a combined experimental and computational procedure is presented, specifically devised for the assessment of the coefficients of absorption and scattering, needed for the simulation of such fields. The experimental procedure consists in measuring the radiant energy transmitted through samples of suspensions of microalgae of different biomass concentrations, as well as the forward and backward scattered light. At a microscopic level, suspensions of microalgae are complex heterogeneous media and due to this complexity, in this study they are modeled as a pseudocontinuum, with centers of absorption and scattering randomly distributed throughout its volume. This model was tested on suspensions of two algal species of dissimilar cell shapes: Chlorella sp. and Scenedesmus quadricauda. The Monte Carlo simulation algorithm developed in this study, when used as a supporting subroutine of a main optimization program based on a genetic algorithm, permits the assessment of the physical parameters of the radiation field model. The Monte Carlo algorithm simulates the experiments, reproducing the events that photons can undergo while they propagate through culture samples or at its physical boundaries.

  6. Calculation of wideband ultrasonic fields radiated by immersed transducers into solids

    Energy Technology Data Exchange (ETDEWEB)

    Lhemery, A.; Calmon, P.; Mephane, M.

    1996-12-31

    In ultrasonic nondestructive testing (NDT), configurations of immersion techniques where transducers radiate through non-planar interfaces are often encountered, e.g., pipe inspection where the probe can be scanned either inside or outside the pipe. When local radii of curvature are far larger that typical wave paths in the coupling fluid and into the piece, field predictions can often be made assuming a plane interface. For smaller radii, such an approximation is not valid. The model developed at the French Atomic ENergy Commission (CEA) to predict ultrasonic fields radiated by wideband transducers through liquid-interfaces (called Champ-Sons) is based on a modification of the Rayleigh integral to take account of refraction. It is derived under the geometrical optics approximation (GO) which introduces two factors: the transmission coefficient between the two media of elementary contributions from source-points to field-points and the so-called `divergence factor` of the transmitted rays (denoted by DF), accounting for the principal radii of curvature of the retransmitted rays (denoted by DF), accounting for the principal radii of curvature of the refracted wave fronts (initially spherical in the coupling medium). (authors).

  7. Numerical study on scanning radiation acoustic field in formations generated from a borehole

    Institute of Scientific and Technical Information of China (English)

    CHE Xiaohua; ZHANG Hailan; QIAO Wenxiao; JU Xiaodong

    2005-01-01

    Numerical study on scanning radiation acoustic field in formations generated by linear phased array transmitters in a fluid-filled borehole is carried out using a real axis integration (RAI) method. The main lobe width of the acoustic beams and the incident angle on the borehole wall can be controlled by means of adjusting parameters, such as the element number and the delay time between the neighboring array elements of linear phased array transmitter. The steered angle of longitudinal waves generated in the formation satisfies the Snell's law for plane waves when the incident angle on the borehole wall is less than the first critical angle. When the lobe width of the acoustic beams is narrow and the steered angle is less than the first critical angle, the acoustic field in the formation can be approximately calculated given that the linear phased array is put in the formation without borehole. The technique of scanning radiation acoustic field can be applied to enhancing investigation resolution and signal-to-noise ratio in crosswell seismic survey and borehole acoustic reflection imaging.

  8. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    Science.gov (United States)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  9. The effective mass of the atom-radiation field system and the cavity-field Wigner distribution in the presence of a homogeneous gravitational field in the Jaynes-Cummings model

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M [Department of Physics, Islamic Azad University-Shahreza Branch, Shahreza, Isfahan (Iran, Islamic Republic of)], E-mail: majid471702@yahoo.com

    2009-07-28

    The effective mass that approximately describes the influence of a classical homogeneous gravitational field on an interacting atom-radiation field system is determined within the framework of the Jaynes-Cummings model. By taking into account both the atomic motion and the gravitational field, a full quantum treatment of the internal and external dynamics of the atom is presented. By exactly solving the Schroedinger equation in the interaction picture, the evolving state of the system is found. The influence of a classical homogeneous gravitational field on the energy eigenvalues, the effective mass of the atom-radiation field system and the Wigner distribution of the radiation field are studied, when the initial condition is such that the radiation field is prepared in a coherent state and the two-level atom is in a coherent superposition of the excited and ground states.

  10. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  11. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    Science.gov (United States)

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique.

  12. Induced radioactivity of materials by stray radiation fields at an electron accelerator

    CERN Document Server

    Rokni, S H; Gwise, T; Liu, J C; Roesler, S

    2002-01-01

    Samples of soil, water, aluminum, copper and iron were irradiated in the stray radiation field generated by the interaction of a 28.5 GeV electron beam in a copper-dump in the Beam Dump East facility at the Stanford Linear Accelerator Center. The specific activity induced in the samples was measured by gamma spectroscopy and other techniques. In addition, the isotope production in the samples was calculated with detailed Monte Carlo simulations using the FLUKA code. The calculated activities are compared to the experimental values and differences are discussed.

  13. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    OpenAIRE

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructe...

  14. Huygens' principle and radiation tails in a weak Schwarzschild fields

    Energy Technology Data Exchange (ETDEWEB)

    Piir, I. (Tartuskij Gosudarstvennyj Univ. (USSR))

    1983-01-01

    In approximation of a weak gravitational field the formula generalized Poisson formula for the wave equation is derived and the mechanism of tail aprearance of radial waves is discussed. It is shown that if the initial data of the Cauchy problem differ from zero in the two-connnected region of the initial hypersurface embracing by its internal boundary the Schwarzchild singularity there always arises the radiation tail through a linear approximation of the Huygens principle realized everywhere in a flat space-time.

  15. Cyclotron radiation cooling of a short electron bunch kicked in an undulator with guiding magnetic field

    Directory of Open Access Journals (Sweden)

    I. V. Bandurkin

    2015-11-01

    Full Text Available We propose to use of an undulator with the guiding axial magnetic field as a “kicker” forming a bunch of electron gyro-oscillators with a small spread in the axial velocity. The cyclotron emission from the bunch leads to losing oscillatory velocity of electron gyrorotation, but it does not perturb the axial electron velocity. This effect can be used for transformation of minimization of the spread in electron axial velocity in the undulator section into minimization of the spread in electron energy in the cyclotron radiation section.

  16. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    Science.gov (United States)

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values.

  17. Verification of absorbed dose rates in reference beta radiation fields: Measurements with an extrapolation chamber and radiochromic film.

    Science.gov (United States)

    Reynaldo, S R; Benavente, J A; Da Silva, T A

    2016-11-01

    Beta Secondary Standard 2 (BSS 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, the reliability of the CDTN BSS2 system was verified through measurements in the (90)Sr/(90)Y and (85)Kr beta radiation fields. Absorbed dose rates and their angular variation were measured with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. The feasibility of using both methods was analyzed.

  18. The impact of involved node, involved field and mantle field radiotherapy on estimated radiation doses and risk of late effects for pediatric patients with Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M V; Jørgensen, M; Brodin, N P;

    2014-01-01

    BACKGROUND: The use of radiotherapy (RT) is debated for pediatric patients with Hodgkin lymphoma (HL) due to the late effects of treatment. Radiation doses to the thyroid, heart, lungs, and breasts are compared with the extensive mantle field (MF), Involved Field RT(IFRT), Modified IFRT (m...

  19. Importance of Compton scattering for radiation spectra of isolated neutron stars with weak magnetic fields

    CERN Document Server

    Suleimanov, V

    2007-01-01

    Emergent model spectra of neutron star atmospheres are widely used to fit the observed soft X-ray spectra of different types of isolated neutron stars. We investigate the effect of Compton scattering on the emergent spectra of hot (T_eff > 10^6 K) isolated neutron stars with weak magnetic fields. In order to compute model atmospheres in hydrostatic and radiative equilibrium we solve the radiation transfer equation with the Kompaneets operator. We calculate a set of models with effective temperatures in the range 1 - 5 * 10^6 K, with two values of surface gravity (log g = 13.9 and 14.3) and different chemical compositions. Radiation spectra computed with Compton scattering are softer than those computed without Compton scattering at high energies (E > 5 keV) for light elements (H or He) model atmospheres. The Compton effect is more significant in H model atmospheres and models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 * 10^6 K) model atmospheres can be described by diluted blackb...

  20. Smith-Purcell experiment utilizing a field-emitter array cathode measurements of radiation

    CERN Document Server

    Ishizuka, H; Yokoo, K; Shimawaki, H; Hosono, A

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 mu A up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 mu m period, 30 deg. blaze and a 0.2 mu m thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 ...