WorldWideScience

Sample records for fields current drive

  1. The effect of toroidal field on the rotating magnetic field current drive in rotamak plasmas

    Institute of Scientific and Technical Information of China (English)

    Zhong Fang-Chuan; Huang Tian-Sen; Petrov Yuri

    2007-01-01

    A rotamak is one kind of compact spherically shaped magnetic-confinement device. In a rotamak the plasma current is driven by means of rotating magnetic field (RMF). The driven current can reverse the original equilibrium field and generate a field-reversed-configuration. In a conventional rotamak, a toroidal field (TF) is not necessary for the RMF to drive plasma current, but it was found that the present of an additional TF can influence the RMF current drive. In this paper the effect of TF on the RMF current drive in a rotamak are investigated in some detail.The experimental results show that addition of TF increases the RMF driven current greatly and enhances the RMF penetration dramatically. Without TF, the RMF can only penetrate into plasma in the edge region. When a TF is added, the RMF can reach almost the whole plasma region. This is an optimal strength of toroidal magnetic field for getting maximum plasma current when Bv and radio frequency generator power are fixed. Besides driving current,the RMF generates high harmonic fields in rotamak plasma. The effect of TF on the harmonic field spectra are also reported.

  2. Principal physics of rotating magnetic-field current drive of field reversed configurations

    Science.gov (United States)

    Hoffman, A. L.; Guo, H. Y.; Miller, K. E.; Milroy, R. D.

    2006-01-01

    After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude Bω at a given frequency ω is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field Bo a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density nm∝Bω/η1/2ω1/2rs, where rs is the FRC separatrix radius and η is an effective weighted plasma resistivity. The plasma total temperature Tt is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I'dia≈2Be/μo, is less than the maximum possible synchronous current, I'sync=⟨ne⟩eωrs2/2. The RMF will self-consistently penetrate a distance δ* governed by the ratio ζ =I'dia/I'sync. Since the FRC is a diamagnetic entity, its peak pressure pm=nmkTt determines its external magnetic field Be≈(2μopm)1/2. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.

  3. Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive

    Science.gov (United States)

    Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2010-06-01

    Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.

  4. A New High Speed Induction Motor Drive based on Field Orientation and Hysteresis Current Comparison

    Science.gov (United States)

    Ogbuka, Cosmas; Nwosu, Cajethan; Agu, Marcel

    2016-09-01

    This paper presents a new high speed induction motor drive based on the core advantage of field orientation control (FOC) and hysteresis current comparison (HCC). A complete closed loop speed-controlled induction motor drive system is developed consisting of an outer speed and an inner HCC algorithm which are optimised to obtain fast and stable speed response with effective current and torque tracking, both during transient and steady states. The developed model, being speed-controlled, was examined with step and ramp speed references and excellent performances obtained under full load stress. A speed response comparison of the model with the standard AC3 (Field-Oriented Control Induction Motor Drive) of MATLAB Simpower systems shows that the model achieved a rise time of 0.0762 seconds compared to 0.2930 seconds achieved by the AC3. Also, a settle time of 0.0775 seconds was obtained with the developed model while that of the AC3 model is 0.2986 seconds confirming, therefore, the superiority of the developed model over the AC3 model which, hitherto, served as a reference standard.

  5. Balancing Current Drive and Heating in DIII-D High Noninductive Current Fraction Discharges Through Choice of the Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J.R. [General Atomics, San Diego; Holcomb, C T [Lawrence Livermore National Laboratory (LLNL); Luce, T.C. [General Atomics, San Diego; Politzer, P. A. [General Atomics, San Diego; Turco, F. [Oak Ridge Associated Universities (ORAU); DeBoo, J. C. [General Atomics; Doyle, E. J. [University of California, Los Angeles; In, Y. [FAR Tech Inc. San Diego, CA; La Haye, R. [General Atomics, San Diego; Murakami, Masanori [ORNL; Okabayashi, M. [Princeton Plasma Physics Laboratory (PPPL); Park, J. M. [Oak Ridge National Laboratory (ORNL); Petrie, T W [General Atomics, San Diego; Petty, C C. [General Atomics, San Diego; Reimerdes, H. [Columbia University

    2011-01-01

    In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted.

  6. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  7. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  8. Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.J.G.

    1998-09-01

    Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport.

  9. Fokker-Planck Simulation of Fast Wave Current Drive and Heating in the Reversed Field Pinch

    Science.gov (United States)

    Uchimoto, E.; Shiina, S.; Harvey, R. W.; Smirnov, A. P.; Forest, C. B.; Prager, S. C.; Wright, J. C.

    1999-11-01

    Fast wave current drive (FWCD) has been shown theoretically to be a good candidate for improving plasma confinement characteristics of a high-beta, reactor-grade RFP via current profile control.footnote S. Shiina, Y. Kondoh, H. Ishii, Nuclear Fusion 34, 1473 (1994); T. Nagai et al., Proc. ICPP (Nagoya, 1996), p. 1042; K. Kusano et al., 17th IAEA Fusion Energy Conf. (Yokohama, 1998), paper THP1/12. To assess the effects of toroidicity and quasilinear modifications to the electron distribution function on FWCD, we are using the RFP version of ray-tracing and Fokker-Planck codes (GENRAY and CQL3D). Although lower hybrid slow waves are ideally suited for poloidal current drive in large RFPs presently in operation, possible use of fast waves is being considered for core current drive and heating in these devices. For MST parameters, our calculations focus on intermediate to high harmonic fast waves for which geometric optics is valid.

  10. Turbulent current drive

    Science.gov (United States)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2014-11-01

    The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.

  11. Non-inductive current drive

    NARCIS (Netherlands)

    Westerhof, E.

    2012-01-01

    This lecture addresses the various ways of non-inductive current generation. In particular, the topics covered include the bootstrap current, RF current drive, neutral beam current drive, alternative methods, and possible synergies between different ways of non-inductive current generation.

  12. NON-INDUCTIVE CURRENT DRIVE

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    This lecture addresses the various ways of non-inductive current generation. In particular, the topics covered include the bootstrap current, RF current drive, neutral beam current drive, alternative methods, and possible synergies between different ways of non-inductive current generation.

  13. Three-Axis Magnetic Field Measurements in the TCSU RMF Current Drive Experiment

    Science.gov (United States)

    Velas, K. M.; Milroy, R. D.

    2011-10-01

    A 3-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions and is fully translatable. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Initially, data has been processed with a 10 kHz low pass filter to capture the steady field. Higher frequency content has more shot-to-shot variability; it is difficult to map this axially. Plans include using a band pass filter to isolate the RMF frequency, which is consistent between shots. It is anticipated that the RMF field, in conjunction with the steady field, will yield a map of the full 3D rotating field structure. The 3- axis probe measurements are used to calculate the end-shorting torque, which opposes the RMF torque. Data from even- and odd-parity experiments will be compared. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n = 0 components of the calculated fields to the 3- axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  14. Influence of impurity and recycling on high-β steady-state plasmas sustained by rotating magnetic fields current drive

    Science.gov (United States)

    Guo, H. Y.; Grossnickle, J. A.; Hoffman, A. L.; Vlases, G. C.

    2009-06-01

    A new upgrade of the Translation, Confinement, and Sustainment (TCS) device, TCSU, has been built to form and sustain high temperature compact toroids (CT), known as Field Reversed Configurations, using Rotating Magnetic Fields (RMF). In TCS the plasma temperature was limited to several 10s of eV due to high impurity content. These impurities are greatly reduced in TCSU by using advanced plasma chamber and helium glow discharge cleaning. Reducing impurity radiation, when coupled with reduced overall recycling, enabled the plasma to enter into a new, collisionless regime with temperatures well over 200 eV, substantially exceeding the radiation barrier. This is a first for CTs at low input power density. This was achieved using the simple even-parity RMF drive (despite transient opening of field lines by the RMF) because the associated energy loss is sheath-limited, coupled with the low edge density resulting from the RMF pinch effect.

  15. Electron cyclotron heating and current drive

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    Plasma heating and non-inductive current drive by waves in the electron cyclotron range of frequencies are reviewed. Both theoretical aspects concerning wave properties, heating and current drive mechanisms, as well as the major experimental results are summarized.

  16. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  17. Current drive induced by intermittent trapping

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel (Israel)

    1999-02-01

    We propose a mechanism for driving a current in a dispersive plasma based on intermittent trapping of electrons in a ponderomotive well generated by two- counterpropagating electron cyclotron waves. By choosing properly the parameters of the system, this mechanism is expected to induce a high efficiency current drive. (authors)

  18. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  19. Collisional current drive in two interpenetrating plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-10-15

    The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.

  20. Effective resonant interactions via a driving field

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A B [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Sainz, I [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Saavedra, C [Center for Quantum Optics and Quantum Information, Departamento de FIsica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2004-11-01

    Effective resonant quantum atom-field interactions are studied. These resonant interactions are induced by the presence of an external classical driving field. An adequate choice for frequencies of the driving field produces nonlinear effective Hamiltonians both for atom-field and for spin-spin interactions. It is shown that the exact numerical evolution for each resonance condition is well described by the corresponding effective Hamiltonian.

  1. ITER (International Thermonuclear Experimental Reactor) current drive and heating physics

    Energy Technology Data Exchange (ETDEWEB)

    Nevins, W.M.; Lindquist, W. (Lawrence Livermore National Lab., CA (USA)); Fujisawa, N.; Kimura, H. (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Hopman, H.; Rebuffi, L.; Wegrowe, J.G. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.). NET Design Team); Parail, V.; Vdovin, V. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow (USSR). Inst. Atomnoj Ehn

    1990-01-01

    The ITER Current Drive and Heating (CD H) systems are required for: Ionization and current initiation; Non-inductive current ramp-up assist; Heating of the plasma; Steady-state operation with full non-inductive current drive; Current profile control; and Burn control by modulation of the auxiliary power. Steady-state current drive is the most demanding requirement, so this has driven the choice of the ITER current drive and heating systems.

  2. Current drive experiments in the Helicity Injected Torus - II

    Science.gov (United States)

    Hamp, W. T.; Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Mueller, D.

    2006-10-01

    The HIT-II spherical torus (ST) device has demonstrated four toroidal plasma current drive configurations to form and sustain a tokamak: 1) inductive (ohmic) current drive, 2) coaxial helicity injection (CHI) current drive, 3) CHI initiated plasmas with ohmic sustainment (CHI+OH), and 4) ohmically initiated plasmas with CHI edge current drive (OH+ECD). CHI discharges with a sufficiently high ratio of injector current to toroidal field current form a closed flux core, and amplify the injector poloidal flux through magnetic reconnection. CHI+OH plasmas are more robust than unassisted ohmic discharges, with a wider operating space and more efficient use of the transformer Volt-seconds. Finally, edge CHI can enhance the plasma current of an ohmic discharge without significantly degrading the quality of the discharge. Results will be presented for each HIT-II operating regime, including empirical performance scalings, applicable parametric operating spaces, and requirements to produce these discharges. Thomson scattering measurements and EFIT simulations are used to evaluate confinement in several representative plasmas. Finally, we outline extensions to the HIT-II CHI studies that could be performed with NSTX, SUNIST, or other ST devices.

  3. Lower Hybrid Current Drive in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Goniche, M.; Guilhem, D.; Kazarian, F.; Peysson, Y. and Tore Supra Team [CEA, IRFM, F-13108 St Paul Les Durance, (France)

    2009-07-01

    Since the mission of Tore Supra is to produce quasi-steady-state discharges, the lower hybrid current drive (LHCD) system constitutes the most important method of additional hewing and noninductive current drive. A description of the LHCD is given, including the different launcher designs developed for the Tore Supra long-pulse program. Following the completion of the Composants Internes et Limiteur project, together with the installation of a high-performance LHCD launcher, world record discharges, injected and extracted energy exceeding 1 GJ, were obtained in 2003. With the flexibility of lower hybrid (LH) waves to tailor the current profile, an enhanced performance regime, the so-called LHEP has been maintained in quasi-steady-state discharges. Detailed measurements of the fast electron distribution have allowed us to constrain LHCD ray-tracing models and to quantify parametric dependencies describing the fast electron tail. Localized heat loads oil the LHCD launchers due to interaction with fast particles have been measured and quantified, using infrared imaging and calorimetric measurements oil water-cooled plasma facing components. Furthermore, experimental results in the area of LH wave coupling are presented. (authors)

  4. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  5. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  6. TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE

    Energy Technology Data Exchange (ETDEWEB)

    CHU, M.S.; PARKS, P.B.

    2002-06-01

    OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.

  7. Current Drive in a Ponderomotive Potential with Sign Reversal

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; J.M. Rax; I.Y. Dodin

    2003-07-30

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  8. Current Drive in a Ponderomotive Potential with Sign Reversal

    CERN Document Server

    Fisch, N J; Rax, J M

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  9. Direct calculation of current drive efficiency in FISIC code

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.C.; Phillips, C.K. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451 (United States); Bonoli, P.T. [Plasma Fusion Center, MIT Cambridge, Massachusetts 02139 (United States)

    1996-02-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires {ital a} {ital priori} knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. {copyright} {ital 1996 American Institute of Physics.}

  10. Direct calculation of current drive efficiency in FISIC code

    Science.gov (United States)

    Wright, J. C.; Phillips, C. K.; Bonoli, P. T.

    1996-02-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented.

  11. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    Science.gov (United States)

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design.

  12. Enhanced Lower Hybrid Current Drive Experiments on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement exper-iments in higher plasma parameters (Ip > 200 kA, ne> 2×1013 cm-3, Te ≥ 1 keⅤ) havebeen curried out in optimized LH wave spectrum and plasma parameters in HT-7 supercon-ducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasmadensity ne and toroidal magnetic field BT has been obtained under optimal conditions. A goodCD efficiency was obtained at higher plasma current and higher electron density. The improve-ment of the energy confinement time is accompanied with the increase in line averaged electrondensity, and in ion and electron temperatures. The highest current driving efficiency reachedηCD = IpneR/PRF ≈ 1.05 × 1019 Am-2/W. Wave-plasma coupling was sustained in a good stateand the reflective coefficient was less than 5%. The experiments have also demonstrated the abilityof LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporaldistribution of plasma parameter shows that lower hybrid leads to a broader profile in plasmaparameter. The LH power deposition profile and the plasma current density profile were modeledwith a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detectorarray.

  13. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    Science.gov (United States)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  14. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  15. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  16. Direct Calculations of Current Drive with a Full Wave Code

    Science.gov (United States)

    Wright, John C.; Phillips, Cynthia K.

    1997-11-01

    We have developed a current drive package that evaluates the current driven by fast magnetosonic waves in arbitrary flux geometry. An expression for the quasilinear flux has been derived which accounts for coupling between modes in the spectrum of waves launched from the antenna. The field amplitudes are calculated in the full wave code, FISIC, and the current response function, \\chi, also known as the Spitzer function, is determined with Charles Karney's Fokker-Planck code, adj.f. Both codes have been modified to incorporate the same numerical equilibria. To model the effects of a trapped particle population, the bounce averaged equations for current and power are used, and the bounce averaged flux is calculated. The computer model is benchmarked against the homogenous equations for a high aspect ratio case in which the expected agreement is confirmed. Results from cases for TFTR, NSTX and CDX-U are contrasted with the predictions of the Ehst-Karney parameterization of current drive for circular equilibria. For theoretical background, please see the authors' archive of papers. (http://w3.pppl.gov/ ~jwright/Publications)

  17. Current drive generation based on autoresonance and intermittent trapping mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Tel-Aviv (Israel)

    1999-10-15

    Two mechanisms for generating streams of high parallel velocity of electrons are presented. One has its origin in Autoresonance (AR) interaction taking place after a trapping conditioning stage, the second being dominated by the trapping itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a uniform magnetic field in a dispersive medium. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process which is characteristic for a dispersive medium, allowing for an effective generation of current drive. (author)

  18. Current European developments in solar paddle drives

    Science.gov (United States)

    Bentall, R. H.

    1973-01-01

    The European Space Research and Technology Centre (ESTEC) is sponsoring the development of a number of critical spacecraft hardware items. The hardware under development includes two competing solar paddle drives which are being produced to similar specifications. Three mechanisms of each type are being produced and will undergo thermal vacuum testing. All mechanisms have lead lubricated bearings.

  19. Modeling of finite aspect ratio effects on current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.C.; Phillips, C.K. [Princeton Plasma Physics Lab., NJ (United States)

    1996-12-31

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, {eta}, is judged by a comparison with a direct calculation: where {chi} is the adjoint function, {epsilon} is the kinetic energy, and {rvec {Gamma}} is the quasilinear flux. It is shown that for large aspect ratio devices ({epsilon} {r_arrow} 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear.

  20. Characterization of Input Current Interharmonics in Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz

    2017-01-01

    -edge symmetrical regularly sampled Space Vector Modulation (SVM) technique, on the input current interharmonic components are presented and discussed. Particular attention is also given to the influence of the asymmetrical regularly sampled modulation technique on the drive input current interharmonics...

  1. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  2. High Harmonic Fast Wave heating and current drive for NSTX

    Science.gov (United States)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  3. Plasma heating and current drive using intense, pulsed microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  4. Current drive generation based on autoresonance and intermittent trapping mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel(Israel)

    1999-04-01

    Two mechanisms for generating stream of high velocity of electrons are presented. One has its origin in Auto Resonance interaction (AR) which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of stream of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process which is characteristic for a dispersive medium, allowing for an effective generation of current drive. Discussion of the results follows. (author)

  5. Trapped electron effects on ICRF Current Drive Predictions in TFTR

    Science.gov (United States)

    Wright, John C.; Phillips, Cynthia K.; Bonoli, Paul T.

    1996-11-01

    Most 2D RF modeling codes use a parameterization^1 of current drive efficiencies to calculate fast wave driven currents. Because this parameterization is derived from a ray--tracing model, there are difficulties in applying it to a spectrum of waves. In addition, one cannot account for multiple resonances and coherency effects between the electrons and the waves. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient in an inhomogenous geometry coupled with a full wave code for the field polarizations. Current profiles are then calculated using the adjoint formulation^2, with the magnetic equilibrium specified consistently in both the adjoint routine and the full wave code. This approach has been implemented in the FISIC code^3. Results are benchmarked by comparing a power deposition calculation from conductivity to one from the quasilinear expression. It is shown that the two expressions agree. We quantify differences seen based upon aspect ratio and elongation. The largest discrepancies are seen in the regime of small aspect ratio, and little loss in accuracy for moderate aspect ratios ~>3. This work supported by DoE contract No. DE--AC02--76--CH03073. ^1 D. A. Ehst and C. F. F. Karney, Nucl. Fusion 31, 1933 (1991). ^2 C. F. F. Karney, Computer Physics Reports 4, 183 (1986). ^3 M. Brambilla and T. Krücken, Nucl. Fusion 28, 1813 (1988).

  6. Heliostat field cost reduction by `slope drive' optimization

    Science.gov (United States)

    Arbes, Florian; Weinrebe, Gerhard; Wöhrbach, Markus

    2016-05-01

    An algorithm to optimize power tower heliostat fields employing heliostats with so-called slope drives is presented. It is shown that a field using heliostats with the slope drive axes configuration has the same performance as a field with conventional azimuth-elevation tracking heliostats. Even though heliostats with the slope drive configuration have a limited tracking range, field groups of heliostats with different axes or different drives are not needed for different positions in the heliostat field. The impacts of selected parameters on a benchmark power plant (PS10 near Seville, Spain) are analyzed.

  7. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  8. Heating and Current Drive by Electron Cyclotron Waves

    Science.gov (United States)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  9. Light-field driven currents in graphene

    CERN Document Server

    Higuchi, Takuya; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter

    2016-01-01

    Ultrafast electron dynamics in solids under strong optical fields has recently found particular attention. In dielectrics and semiconductors, various light-field-driven effects have been explored, such as high-harmonic generation, sub-optical-cycle interband population transfer and nonperturbative increase of transient polarizability. In contrast, much less is known about field-driven electron dynamics in metals because charge carriers screen an external electric field in ordinary metals. Here we show that atomically thin monolayer Graphene offers unique opportunities to study light-field-driven processes in a metal. With a comparably modest field strength of up to 0.3 V/{\\AA}, we drive combined interband and intraband electron dynamics, leading to a light-field-waveform controlled residual conduction current after the laser pulse is gone. We identify the underlying pivotal physical mechanism as electron quantum-path interference taking place on the 1-femtosecond ($10^{-15}$ second) timescale. The process can...

  10. Stray Field Reduction in ALS Eddy Current Septum Magnets

    CERN Document Server

    Shuman, Derek; Prestemon, Soren; Schlüter, Ross D; Steier, Christoph; Stover, Gregory D

    2005-01-01

    Stray field from an eddy current septum magnet adversely affects the circulating beam and can be reduced using several techniques. The stray field time history typically has a fast rise section followed by a long exponential decay section when pulsed with a half sine drive current. Changing the drive current pulse to a full sine has the effect of both reducing peak stray field magnitude by ~3x, and producing a quick decay from this peak to a lower field level which then has a similar long decay time constant as that from the half sine only drive current pulse. A method for tuning the second half sine (reverse) drive current pulse to eliminate the long exponential decay section is given.

  11. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  12. The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.

    Science.gov (United States)

    Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan

    2015-09-01

    Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. © 2015 American Academy of Forensic Sciences.

  13. Assessment of Electron-Cyclotron-Current-Drive-Assisted Operation in DEMO

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2012-09-01

    Full Text Available The achievable efficiency for external current drive through electron-cyclotron (EC waves in a demonstration tokamak reactor is discussed. Two possible reactor designs, one for steady state and one for pulsed operation, are considered. It is found that for midplane injection the achievable current drive efficiency is limited by secondharmonic absorption at levels consistent with previous studies. Propagation through the second-harmonic region can be reduced by moving the launch position to the high-field side (this can be obtained by injecting the beam from an upper port in the vacuum vessel. In this case, beam tracing calculations deliver values for the EC current drive efficiency approaching those usually reported for neutral beam current drive.

  14. Research on Predicting Drive Current of Shipborne Satcom Antenna

    Directory of Open Access Journals (Sweden)

    Kong Jinping

    2015-01-01

    Full Text Available Predicting the effect of antenna wind load on servo system precisely is meaningful to ensure the safety of satcom antenna on operation, which can avoid overload operation. In this paper, the computational fluid dynamics is used to proceed numerical computation on the pressure distribution of the reflector and torque of drive shaft under different wind speed, windward angle and angle of pitch of the antenna. The simulation model is built under MATLAB/Simulink simulation environment, and the drive current of the antenna servo system is analyzed under wind load effect and ship swing. Then, a method of predicting drive current of antenna servo system according to the wind speed, wind direction and attitude of the antenna is concluded. And this method is verified by simulation at last.

  15. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  16. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  17. Current drive generation based on autoresonance and intermittent trapping mechanisms.

    Science.gov (United States)

    Gell, Y; Nakach, R

    1999-09-01

    Two mechanisms for generating streams of high-velocity electrons are presented. One has its origin in auto resonance (AR) interaction, which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of streams of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis, which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process that is characteristic for a dispersive medium, thus allowing for an effective generation of a current drive. Discussion of the results follows.

  18. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  19. Current drive at plasma densities required for thermonuclear reactors.

    Science.gov (United States)

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  20. Physics of electron cyclotron current drive on DIII-D

    CERN Document Server

    Petty, C C; Harvey, R W; Kinsey, J E; Lao, L L; Lohr, J; Luce, T C; Makowski, M A; Prater, R

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  1. Fast wave current drive antenna performance on D3-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.

    1991-10-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  2. Fast Wave Current Drive Antenna Performance on DIII-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Porkolab, M.; Prater, R.; Baity, F. W.; Goulding, R. H.; Hoffman, D. J.

    1992-01-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the DIII-D tokamak for the first time in high electron temperature, high β target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n∥ value (≂7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90°) in each of the straps for a directional spectrum. In this paper we describe the performance of the DIII-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  3. Remote field eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M

    2001-03-01

    The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included.

  4. Brushless DC motor Drive during Speed regulation with Current Controller

    Directory of Open Access Journals (Sweden)

    Bhikshalu Manchala

    2015-04-01

    Full Text Available Brushless DC Motor (BLDC is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling the stator phase current in a brushless DC drive are practically effective in low speed and cannot reduce the commutation torque ripple in high speed range. This paper presents the PI controller for speed control of BLDC motor. The output of the PI controllers is summed and is given as the input to the current controller. The BLDC motor is fed from the inverter where the rotor position and current controller is the input. The complete model of the proposed drive system is developed and simulated using MATLAB/Simulink software. The operation principle of using component is analysed and the simulation results are presented in this to verify the theoretical analysis.

  5. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati, 00044, Frascati (Italy); Amicucci, L.; Galli, A. [Università di Roma Sapienza, Dipartimento Ingegneria Elettronica, Rome (Italy); Giruzzi, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Napoli, F.; Schettini, G. [Università di Roma Tre, Dipartimento Ingegneria Elettronica, Rome (Italy)

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  6. Towards fully non-inductive current drive operation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X. [Association Euratom-CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Crisanti, F. [Association Euratom-ENEA sulla Fusione, Centro Ricerche Frascati (Italy); Alper, B. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)] [and others

    2002-01-01

    Quasi steady operation has been achieved at JET in the high confinement regime with Internal Transport Barriers, ITBs. The ITBs' performances are maintained up to 11 s. This duration, much larger than the energy confinement time, is already approaching a current resistive time. The high performance phase is limited only by plant constraints. The radial profiles of the thermal electron and ion pressures have steep gradients typically at mid-plasma radius. A large fraction of non-inductive current (above 80%) is sustained throughout the high performance phase with a poloidal beta exceeding unity. The safety factor profile plays an important role in sustaining the ITB characteristics. In this regime where the self-generated bootstrap current (up to LOMA) represents 50% of the total current, the resistive evolution of the non-monotonic q-profile is slowed down by using off-axis lower hybrid current drive. (authors)

  7. Current drive for stability of thermonuclear plasma reactor

    Science.gov (United States)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  8. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  9. Electron cyclotron heating and current drive in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  10. Current drive by electron cyclotron waves in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Alejaldre, C.; Coarasa, J. A.

    1992-07-01

    In this paper we propose a method to estimate the induced current by Electron Cyclotron waves fast enough, from the numerical point of view, to be included in a ray-tracing code, and yet accounting for the complicated geometry of stellarators. Since trapped particle effects are particularly important in this Current Drive method and in stellarator magnetic configuration, they are considered by the modification they introduce in the current drive efficiency. Basically, the method consists of integrating the Fisch and Boozer relativistic efficiency, corrected with the effect of trapped particles, times the absorbed power per momentum interval. This one is calculated for a Maxwellian distribution function, assuming a nearly linear regime. The influence of impurities and of species which are not protons is studied, calculating the efficiency for plasmas with Zeff) - Finally, a numerical analysis particularized to TJ-II stellarator is presented. The absorbed power density is calculated by the ray tracing code RAYS, taking into account the actual microwave beam structure. (Author) 23 refs.

  11. Fluid equations in the presence of electron cyclotron current drive

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  12. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    Science.gov (United States)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  13. Influence of various physics phenomena on fast-wave current drive in advanced tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Goldfinger, R.C.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)

    1992-12-31

    The need for some type of noninductive current drive in advanced tokamaks has been recognized for some time. In reactor-grade plasmas, as envisioned in the International Thermonuclear Experimental Reactor (ITER), high density and temperature may limit the penetration of lower hybrid (LH) waves to only the outer layers of the plasma. Fast waves in the ion cyclotron range of frequencies (ICRF), however, can easily penetrate to the center of such high-density plasmas. With sufficient directivity in the launched wave spectrum, currents can be driven by combined damping of the fast waves on resonant electrons through electron Landau damping (ELD) and transit-time magnetic pumping (TTMP). Experiments to study the feasibility of fast-wave current drive (FWCD) have only recently begun, but theoretical predictions look promising. In this paper we analyze the influence of the relevant physics phenomena, which are not necessarily independent, on current drive performance. Such phenomena include diffraction and other nongeometrical optics processes, k{sub ||} modification, single-pass absorption, and antenna characteristics, such as poloidal extent and poloidal location. To do this, we apply a two-and-one-half dimensional (2 1/2-D), full-wave code (PICES) for modeling ion cyclotron resonance heating (ICRH) and current drive based on the poloidal mode expansion method and the reduced-order expansion. By 2 1/2-D, we mean that 3-D wave fields are calculated in axisymmetric geometry (2-D solution domain - r, {theta}), while the correct toroidal dependence of the antenna source currents is obtained from a 2-D (r, {phi}) recessed antenna code. The model includes the poloidal and toroidal structure of the antennas, the modification of the k{sub ||} spectrum due to the poloidal magnetic field, and a nonperturbative solution for E{sub ||}. A semianalytical model for current drive, including trapped electron effects, is employed. (author) 10 refs., 4 figs.

  14. Single-current-sensor-based active front-end-converter-fed four quadrants induction motor drive

    Indian Academy of Sciences (India)

    JOSEPH KIRAN BANDA; AMIT KUMAR JAIN

    2017-08-01

    Induction motor (IM) is a workhorse of the industry, whose dynamics can be modified close to that of a separately excited DC machine by field-oriented control technique, which is commonly known as vector control of induction machine. This paper presents a complete performance of the field-oriented control of IM drive in all four quadrants with a single-current-sensor-based active front end converter whose work is to regulate DC link voltage, draw pure sinusoidal currents at unity power factor and to facilitate bi-directional power flow between the grid and the drive. The entire system is completely modelled in MATLAB/SIMULINK and the results are discussed in detail. The vector control analogy of the back to back converters is highlighted along with the experimental results of field-oriented control of induction machine using a dsPIC30F6010A digital signal controller.

  15. Recent experimental results of KSTAR RF heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G. [National Fusion Research Institute, Daejoen, 305-806 (Korea, Republic of)

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  16. Lower Hybrid Wave Current Drive Efficiency on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong; LI Guo-Chao

    2005-01-01

    @@ Lower hybrid (LH) wave current drive efficiency on our HT-7 tokamak has been investigated based on the hot electrical conductivity theory.The interaction of the residual toroidal electric field with fast electrons has been included in the determination of current drive efficiency.The LH wave power scan was performed in the plasma parameter ranges of Ip = 50-156kA, (n)e = 0.5 × 1019-1.6 × 1019 m-3, PLH = 50-350kW.The current drive efficiency is derived to be about 0.1 × 1019-0.4 × 1019 Am-2W-1 on the HT-7 tokamak, which depends on the electron density and the LH wave phase velocity.At the electron density of about 1.5 × 1019 m-3, with the LH wave parallel refraction index peaked at 1.8, the highest current drive efficiency was obtained.A more generally normalized method is introduced to analyse the experimental data, which combines all the data in one curve.The normalized parameters are independent of the plasma parameters.

  17. Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks

    Science.gov (United States)

    Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.

    2012-03-01

    It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).

  18. Conditions for Lower Hybrid Current Drive in ITER

    Science.gov (United States)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Napoli, F.; Tuccillo, A. A.; Galli, A.; Schettini, G.

    2012-12-01

    To control the plasma current profile represents one of the most important problems of the research of nuclear fusion energy based on the tokamak concept, as in the plasma column the necessary conditions of stability and confinement should be satisfied. This problem can be solved by using the lower hybrid current drive (LHCD) effect, which was demonstrated to occur also at reactor grade high plasma densities provided that a proper method should be utilised, as assessed on FTU (Frascati Tokamak Upgrade). This method, based on theoretical predictions confirmed by experiment, produces relatively high electron temperature at the plasma periphery and scrape-off layer (SOL), consequently reducing the broadening of the spectrum launched by the antenna produced by parasitic wave physics of the edge, namely parametric instability (PI). The new results presented here show that, for kinetic profiles now foreseen for the SOL of ITER, PI is expected to hugely broaden the antenna spectrum and prevent any penetration in the core of the coupled LH power. However, considering the FTU method and assuming higher electron temperature at the edge (which would be however reasonable for ITER) the PI-produced spectral broadening would be mitigated, and enable the penetration of the coupled LH power in the main plasma. By successful LHCD effect, the control of the plasma current profile at normalised minor radius of about 0.8 would be possible, with much higher efficiency than that obtainable by other tools. A very useful reinforce of bootstrap current effects would be thus possible by LHCD in ITER.

  19. Performance Analysis of Field Orientation of Induction Motor Drive Under Open Gate of IGBT Fault

    Directory of Open Access Journals (Sweden)

    Zakaria Mohamed Salem

    2013-07-01

    Full Text Available This paper  presents a performance analysis of three phase induction motor drive system when fed from three-phase inverter with one IGBT open gate. The drive system is based on indirect rotor field oriented. The performance characteristics of the drive are investigated at healthy operating condition and at faulty condition with IGBT of upper phase leg is opened. The Total Harmonic Distortion of phases current in case opened IGBT are derived. The Simulation of the case study is carried out by using the Matlab/Simulink package on 1.1 kW, 220/380V, 50 Hz three phase induction motor.

  20. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  1. Lower hybrid counter current drive for edge current density modification in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E.; Nevins, W.M. [Lawrence Livermore National Lab., CA (US); Porkolab, M.; Bonoli, P.T. [Massachusetts Inst. of Technology, Cambridge, MA (US). Plasma Fusion Center; Harvey, R.W. [General Atomics, San Diego, CA (US)

    1993-07-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g. with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results are presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n{sub e} and T{sub e}, and launched wave spectrum is also shown.

  2. Adiabatic Compression of Compact Tori for Current Drive and Heating

    Science.gov (United States)

    Woodruff, Simon; McNab, Angus; Miller, Kenneth; Ziemba, Tim

    2008-11-01

    Several critical issues stand in the development path for compact tori. An important one is the production of strong magnetic fields, (or large flux amplifications) by use of a low current source. The Pulsed Build-up Experiment is a Phase II SBIR project in which we aim to show a new means for generating strong magnetic fields from a low current source, namely, the repetitive injection of helicity-bearing plasma that also undergoes an acceleration and compression. In the Phase I SBIR, advanced computations were benchmarked against analytic theory and run to determine the best means for the acceleration and compression of a compact torus plasma. The study included detailed simulations of magnetic reconnection. In Phase II, an experiment has been designed and is being built to produce strong magnetic fields in a spheromak by the repetitive injection of magnetic helicity from a low current coaxial plasma source. The plasma will be accelerated and compressed in a similar manner to a traveling wave adiabatic compression scheme that was previously applied to a mirror plasma [1]. [1] P. M. Bellan Scalings for a Traveling Mirror Adiabatic Magnetic Compressor Rev. Sci. Instrum. 53(8) 1214 (1982) Work supported by DOE Grant No. DE-FG02-06ER84449.

  3. Effect of Alfvén resonance on low-frequency fast wave current drive

    Science.gov (United States)

    Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.

    1995-08-01

    The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.

  4. Effect of Alfven resonance on low-frequency fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Stallings, D.C. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1995-07-01

    The Alfven resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion {bold 31}, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E. [Lawrence Livermore National Lab., CA (United States); Porkolab, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-08-04

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients.

  6. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    Science.gov (United States)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  7. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    Science.gov (United States)

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  8. Current ramp-up with lower hybrid current drive in EAST

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Fisch, N. J.; Qin, H.; Li, J. G.; Wilson, J. R.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.

    2012-12-01

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency Pel/PLH was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  9. Speed Regulated Continuous DTC Induction Motor Drive in Field Weakening

    Directory of Open Access Journals (Sweden)

    MATIC, P.

    2011-02-01

    Full Text Available The paper describes sensorless speed controlled continuous Direct Torque Control (DTC Induction Motor (IM drive in the field weakening regime. Drive comprises an inner torque loop and an outer speed loop. Torque control is based on Proportional - Integral (PI controller with adaptive Gain Scheduling (GS parameters. The GS PI control provides full DC link voltage utilization and a robust disturbance rejection along with a fast torque response. Outer speed loop has a PI regulator with the gains selected so as to obtain a fast and strictly aperiodic response. Proposed drive fully utilizes the available DC bus voltage. The paper comprises analytical considerations, simulation results, and detailed description of the implementation steps. Experimental verification of the proposed solution is conducted on a fixed point Digital Signal Processor (DSP platform.

  10. Current Behaviours and Attitudes Towards Texting While Driving in Australia

    DEFF Research Database (Denmark)

    Adamsen, Jannie Mia; Beasley, Keiran

    2011-01-01

    This paper aims to understand the behaviour of texting and driving among the broader driving public in Australia and uncover whether attitudes are congruent with behaviours. Recent studies have generally been focussing on the behaviours of 18-24 year olds suggesting that the practice is mainly...... confined to people in this age bracket. Findings from an anonymous online survey show that the practice of texting and driving is widespread in Australia and not just confined to the younger demographic. Additionally, evidence suggests smart phone users are more likely to engage in texting while driving....... The paper also reveals that a majority of people continue to text and drive despite having strong views on the dangers associated with the practice....

  11. Advances in modeling of lower hybrid current drive

    Science.gov (United States)

    Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.

    2016-04-01

    First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests

  12. Capabilities of the ITER Electron Cyclotron Equatorial Launcher for Heating and Current Drive

    Directory of Open Access Journals (Sweden)

    Ramponi G.

    2012-09-01

    Full Text Available The ITER Electron Cyclotron Equatorial Launcher is designed to be one of the heating systems to assist and sustain the development of various ITER plasma scenarios starting with the very first plasma operation. Here the capabilities for Heating and Current Drive of this system are reviewed. In particular, the optimum launching conditions are investigated for two scenarios at burn, comparing toroidal and poloidal steering options. Then, the EC capabilities are investigated for different plasma parameters corresponding to various phases of the ITER plasma discharge, from current ramp-up up to burn, and for a wide range of magnetic field, focusing in particular on the EC potential for heating and for L to H-mode assist. It is found that the EC system can contribute to a wide range of heating scenarios during the ramp-up of the magnetic field, significantly increasing the applicable range as a function of magnetic field.

  13. Parafermion Fields Constructed by Current Algebra

    Institute of Scientific and Technical Information of China (English)

    YANGZhan-Ying; SHIKang-Jie; WANGPei; ZHAOLiu

    2004-01-01

    In this letter, the parafermion fields constructed by current algebra are considered. It is proved that there must be a parafermion field with respect to each form of current algebra. We also obtain the corresponding representation and unitary relation of the parafermion field from any current algebra.

  14. Plasma Heating and Current Drive for Fusion Reactors

    Science.gov (United States)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  15. The Use of Current Generators in Electrical Converter Drives for Stepper Motors

    Directory of Open Access Journals (Sweden)

    Emanoil Toma

    2014-09-01

    Full Text Available This paper presents some ways to realize electrical converters for stepper motor drives. The first part analyzes aspects for unipolar stepper motor and use of constant current generators. The second part present current sources based on peak limiting current trough the inductance of motor coil. A complete drive module for bipolar stepper motor was conceived and simulation results confirm their functionability.

  16. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  17. Ohmic Radio-Frequency Synergy Current Drive and Transformer Recharging Experiments in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong

    2005-01-01

    @@ Lower hybrid current drive (LHCD) experiments for investigating the interaction between lower hybrid (LH) wave and residual dc electric field were performed in extensive plasma parameter ranges in the HT-7 superconducting tokamak. The experimental results are well fitted to the Karney-Fisch theory on the efficiency of LH waves energy converted to poloidal magnetic field energy. The fraction of absorbed LH power is about 0.75 for the HT-7 machine, and the upshift of the LH-wave parallel refraction index during LHCD experiments have been derived by the optimizing fitting parameters. The LH wave is also used for the transformer recharging when the plasma current is maintained unchanged. The highest efficiency about 7% has been achieved in HT-7 machine.

  18. SOL plasma measurements during high density and long duration current drive on TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takeharu; Kawasaki, Shoji; Jotaki, Eriko; Makino, Ken-ichi; Sakamoto, Mizuki; Nakamura, Kazuo; Nakamura, Yukio; Itoh, Sanae; Itoh, Satoshi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1997-02-01

    In the superconducting, strong magnetic field tokamak, TRIAM-1M, for the purpose of maintaining high density plasma for long time, the current drive experiment using 8.2 GHz lower hybrid wave has been carried out. For maintaining high density plasma for long time, it is indispensable to control gas puff and recycling from wall, as these are closely related to the structure and characteristics of boundary plasma including scrape-off layer (SOL). In this study, in the high density, long time current drive using 8.2 GHz lower hybrid wave, the electron density and electron temperature of SOL plasma were measured by using double probe, and the z-direction distribution and the toroidal magnetic field dependence of the electron density and electron temperature of SOL plasma were examined and compared with OH discharge. Also the dependence of the electron density of SOL plasma on the phase difference in a adjoining waveguide tubes was examined. The experimental setup and the double probe theory are explained. The experimental results of the change with time lapse, the z-direction distribution and the magnetic field dependence of the electron density and electron temperature of SOL plasma are reported. (K.I.)

  19. Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma

    Science.gov (United States)

    Long, Chen; Jinyuan, Liu; Ping, Duan; Guangrui, Liu; Xingyu, Bian

    2017-02-01

    In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.

  20. [Effect of air-electric fields on driving and reaction patterns. Test subjects in the car driving simulator (author's transl)].

    Science.gov (United States)

    Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W

    1977-06-10

    In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.

  1. Driving a Superconductor to Insulator Transition with Random Gauge Fields

    Science.gov (United States)

    Nguyen, H. Q.; Hollen, S. M.; Shainline, J.; Xu, J. M.; Valles, J. M.

    2016-11-01

    Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.

  2. Brushless DC motor Drive during Speed regulation with Current Controller

    OpenAIRE

    Bhikshalu Manchala; T.Amar Kiran

    2015-01-01

    Brushless DC Motor (BLDC) is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM) materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling...

  3. Research on Predicting Drive Current of Shipborne Satcom Antenna

    OpenAIRE

    Kong Jinping; Xu Zhengfeng; Wu Botao

    2015-01-01

    Predicting the effect of antenna wind load on servo system precisely is meaningful to ensure the safety of satcom antenna on operation, which can avoid overload operation. In this paper, the computational fluid dynamics is used to proceed numerical computation on the pressure distribution of the reflector and torque of drive shaft under different wind speed, windward angle and angle of pitch of the antenna. The simulation model is built under MATLAB/Simulink simulation environment, and the dr...

  4. An Improved Variable-Frequency Drive Based on Current Tracking

    Directory of Open Access Journals (Sweden)

    Zhiwei He

    2013-11-01

    Full Text Available Variable frequency devices are widely used in many power systems. A current tracking based VFD is proposed in this paper. The output current is firstly fed back and compared with a standard sine wave, the difference of them is then used for a PI regulator to control the PWM signal, so as to change the output current accordingly to make it approach the standard sine wave. Simulation and experiments results show that the current tracking VFD not only has a fast dynamic response, high current tracking precision, current limiting ability, but also has small distortion of the output sine wave current and low loss of the motor.    

  5. The role of the plasma current in turbulence decrease during lower hybrid current drive

    Science.gov (United States)

    Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.

    2017-03-01

    The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.

  6. Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

    Science.gov (United States)

    Bonoli, Paul

    2007-11-01

    Recently, lower hybrid current drive (LHCD) experiments have been carried out on Alcator C-Mod using an RF system consisting of 12 klystrons at 4.6 GHz, feeding a 4 x 22 waveguide array. Up to 900 kW of LH power has been coupled in the range1.6 PLH 0.3 [1]. We have simulated the LH current drive in these discharges using the combined ray tracing / 3D (r, v, v//) Fokker Planck code GENRAY -- CQL3D [2] and found similar current drive efficiencies. Measurements of nonthermal x-ray emission and electron cyclotron emission (ECE) confirm the presence of a significant fast electron population that varies with waveguide phasing and plasma density. Studies are currently underway to investigate the role of fast electron diffusion and full-wave effects such as diffractional broadening in determining the spatial and velocity space structure of the nonthermal electrons. The 3D (r, v, v//) electron distribution function from CQL3D has been used in synthetic diagnostic codes to simulate the measured hard x-ray and ECE emissions. Fast electron diffusion times have been inferred from x-ray data by employing a radial diffusion operator in CQL3D and determining the fast electron diffusivities that are required to reproduce the experimentally observed profiles of hard x-ray emission. Finally, we have been performing full-wave LH field simulations using the massively parallel TORIC --LH solver [3] in order to assess spatial and spectral broadening of the incident wave front that can result from diffraction and wave focusing effects. [1] R. Parker, Bull. Am. Phys. Soc. 51, 20 (2006). [2] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' Proc. IAEA Tech. Comm. Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992. [3] J. C. Wright et al., Nucl. Fusion 45, 1411 (2005).

  7. Improvements on Pulsed Current Sharing in Driving Parallel MOSFETs

    Science.gov (United States)

    Takagi, Hajime; Orihara, Masato; Yamada, Tsutomu; Yanagidaira, Takeshi

    To switch high-voltage and high-current pulses by using MOS (Metal Oxide Semiconductor) transistors, it is necessary to distribute evenly the voltage and current to each element connected in series and parallel. In parallel connection, the current flowing in each element is different depending on the series resistance and wiring inductance. We verified improvements on pulsed current sharing in parallel transistors which were arranged in line on a printed circuit board. Although Gate and Drain wirings are different in length, pulsed current was evenly distributed by using transmission line transformers. Dissipation in transistors were equalized and four transistors were driven simultaneously near the rated current.

  8. Clipper for High-Impedance Current-Drive Line

    Science.gov (United States)

    Woodhouse, Christopher E.

    1987-01-01

    New circuit leakage reduced by shunting current through saturated input at operational-amplifier follower already part of Howland, or equivalent, current source. Typical application is in circuit of germanium resistance thermometer in cryogenic system.

  9. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, L., E-mail: luca.amicucci@enea.it; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A. [EUROfusion-ENEA, Centro Ricerche Frascati, Unità Fusione, Frascati (Italy); Ding, B. J.; Li, M. H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  10. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Science.gov (United States)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  11. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit and N.J. Fisch

    2010-02-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  12. Electromagnetic currents induced by color fields

    CERN Document Server

    Tanji, Naoto

    2015-01-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while for SU(3) the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  13. Field and Current Amplification in the SSPX Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Blumer, R H; Cohen, B I; Hooper, E B; McLean, H S; Moller, J; Pearlstein, L D; Ryutov, D D; Stallard, B W; Wood, R D; Woodruff, S; Holcomb, C T; Jarboe, T; Bellan, P; Romero-Talamas, C

    2002-10-08

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, <{beta}{sub e}>-4% and core {chi}{sub e} {approx} 30m{sup 2}/s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification.

  14. Intervening to decrease the probability of alcohol-impaired driving: Impact of novel field sobriety tests.

    Science.gov (United States)

    Smith, Ryan C; Robinson, Zechariah; Bazdar, Alexandra; Geller, E Scott

    2016-01-01

    The efficacy of novel field sobriety tests to predict breath alcohol content (BAC) and perceptions of driving risk was evaluated. Participants (N = 210) were passersby at two downtown locations near local bars and one on-campus location near a late-night dining facility between the hours of 10:00 p.m. and 2:00 a.m. Participants gave ratings of their perceived risk to drive at their current level of intoxication, then completed three sobriety tests (a hand-pat, tracing test, and Romberg test), and finally provided new ratings of their perceived risk to drive. After completing the final set of questions, participants were administered a Lifeloc FC20 breath alcohol test (±.005 g/dL). Each of the sobriety tests performed better than chance at predicting participant intoxication, but the performance feedback did not enhance awareness of one's risk to drive at a given BAC. Actually, after the sobriety tests, Greek-life females perceived themselves to be less at-risk to drive.

  15. Research on the influence of driving harmonic on electromagnetic field and temperature field of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-06-01

    Full Text Available At present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM. A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM, the motor temperature distribution with different harmonics was obtained.

  16. Senserless Speed and Position of Direct Field Orientation Control Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Mohammed Khalil Hussain

    2012-01-01

    Full Text Available Direct field-orientation Control (DFOC of induction motor drives without mechanical speed sensors at the motor shaft has the attractions of low cost and high reliability. To replace the sensor, information on the rotor speed and position are extracted from measured stator currents and from voltages at motor terminals. In this paper presents direct field-orientation control (DFOC with two type of kalman filter (complete order and reduced order extended kalman filter to estimate flux, speed, torque and position. Simulated results show how good performance for reduced order extended kalman filter over that of complete order extended kalman filter in tracking performance and reduced time of state estimation.

  17. Langmuir probe study in the nonresonant current drive regime of helicon discharge

    Indian Academy of Sciences (India)

    Manash Kumar Paul; Dhiraj Bora

    2008-07-01

    Characterization of the current drive regime is done for helicon wave-generated plasma in a torus, at a very high operating frequency. A radiofrequency-compensated Langmuir probe is designed and used for the measurement of plasma parameters along with the electron energy distributions in radial scans of the plasma. The electron energy distribution patterns obtained in the operational regime suggest that Landau damping cannot be responsible for the efficient helicon discharge in the present study. A typical peaked radial density profile, high plasma temperature and absence of an appreciable amount of energetic electrons for resonant wave–particle interactions, suggest that the chosen operational regime is suitable for the study of nonresonant current drive by helicon wave. Successful and significant current drive achieved in our device clearly demonstrates the capability of nonresonant current drive by helicon waves in the present operational regime.

  18. Fast wave current drive modeling using the combined RANT3D and PICES codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C. [and others

    1995-07-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  19. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Science.gov (United States)

    Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  20. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, I. E. [Harvard University, Cambridge, MA (United States). Department of Physics.; Bertelli, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, N. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  1. Experimental Research of Harmonic Spectrum of Currents at Traction Drive with PMSM

    Directory of Open Access Journals (Sweden)

    J. Novak

    2011-06-01

    Full Text Available The paper deals with the significant results of the experimental research of current harmonic spectrum of traction drive with permanent magnet synchronous motor. The experiments were done on a special workplace with a real traction drive for wheel vehicles. Current harmonic spectrum was analyzed by a specialized device on the base of central measuring station. The knowledge of current marked subharmonic components of stator winding is the most significant finding of experiments. The frequencies of these components are given by multiples of frequency of mechanical speeds. The subharmonic components also pass to input DC current of drive. This fact is important in particular from the point of view of legislative requirements to electromagnetic compatibility of drive with railway interlocking devices.

  2. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    OpenAIRE

    Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.

    2012-01-01

    A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...

  3. RF current drive by electron cyclotron waves in the presence of magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva Rosa, P.; Giruzzi, G

    1999-11-01

    The influence of the presence of magnetic islands, and the consequent modification of the tokamak magnetic surface topology, on electron current drive is analyzed. To this end, a new 3D Fokker-Planck code has been developed, taking into account the modifications of the magnetic equilibrium topology owing to the presence of the islands. Significant differences between electron cyclotron current drive efficiency with and without island inside the plasma are found, particularly in the case of interaction with locked modes. (authors)

  4. Mass of a skyrmion under a driving current

    Science.gov (United States)

    Martinez, J. C.; Jalil, M. B. A.

    2017-02-01

    We present arguments for a mass term in the Landau-Lifshitz-Gilbert equation based on the notion of mass as an inertial quantity. From trajectories of skyrmions in a confining potential and a 1-D potential we see evidence for a mass-inertia connection. We derive an expression for the effective mass for skyrmions, 1.6 ε ×10-23 kg , where ε accounts for the mismatch between the local magnetic moment induced on the conduction electrons and its corresponding effect on the current-driven skyrmion and varies from 10-2 to 1.

  5. Observable currents in lattice field theories

    CERN Document Server

    Zapata, José A

    2016-01-01

    Observable currents are spacetime local objects that induce physical observables when integrated on an auxiliary codimension one surface. Since the resulting observables are independent of local deformations of the integration surface, the currents themselves carry most of the information about the induced physical observables. I study observable currents in a multisymplectic framework for Lagrangian field theory over discrete spacetime. A weak version of observable currents preserves many of their properties, while inducing a family of observables capable of separating points in the space of physically distinct solutions. A Poisson bracket gives the space of observable currents the structure of a Lie algebra. Peierls bracket for bulk observables gives an algebra homomorphism mapping equivalence classes of bulk observables to weak observable currents. The study covers scalar fields, nonlinear sigma models and gauge theories (including gauge theory formulations of general relativity) on the lattice. Even when ...

  6. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    Science.gov (United States)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  7. Effects of passive components on the input current interharmonics of adjustable-speed drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Blaabjerg, Frede; Zare, Firuz;

    2016-01-01

    speed drives with and/or without motor current imbalance. The investigation is done at different motor operating frequencies and load torque values. It shows that selecting the small filter components (ac choke, dc choke and dc-link capacitor) results in different performances in respect to those......Current and voltage source Adjustable Speed Drives (ASDs) exert distortion current into the grid, which may produce some interharmonic components other than the characteristic harmonic components. This paper studies the effects of passive components on the input current interharmonics of adjustable...... interharmincs issued by motor current imbalance and other non-characteristic interharmonics. The results are helpful for engineers investigating the effects of drive filters on the input current interharmonic components....

  8. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  9. Progress on the heating and current drive systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA, Cadarache, France; Beaumont, Bertrand [ITER Joint Work Site, Cadarache; Bora, D. [ITER Joint Work Site, Cadarache; Campbell, D. [ITER Joint Work Site, Cadarache; Darbos, Caroline [ITER Joint Work Site, Cadarache; Decamps, H. [ITER Organization, Saint Paul Lez Durance, France; Graceffa, J. [ITER Joint Work Site, Cadarache; Gassmann, T. [ITER Joint Work Site, Cadarache; Hemsworth, R. [ITER Joint Work Site, Cadarache; Henderson, Mark [ITER Joint Work Site, Cadarache; Kobayashi, N. [ITER Joint Work Site, Cadarache; Lamalle, Philippe [ITER Joint Work Site, Cadarache; Schunke, B. [ITER Joint Work Site, Cadarache; Tanaka, M. [ITER Joint Work Site, Cadarache; Tanga, A. [ITER Joint Work Site, Cadarache; Albajar, F. [Fusion for Energy (F4E), Barcelona, Spain; Bonicelli, T. [Fusion for Energy (F4E), Barcelona, Spain; Saibene, G. [Fusion for Energy (F4E), Barcelona, Spain; Sartori, R. [Fusion for Energy (F4E), Barcelona, Spain; Becoulet, A. [CEA, Cadarache, France; Hoang, G. T. [CEA, Cadarache, France; Inoue, T. [Japan Atomic Energy Agency (JAEA), Naka; Sakamoto, K. [Japan Atomic Energy Agency (JAEA), Naka; Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka; Watanabe, K. [Japan Atomic Energy Agency (JAEA), Naka; Goulding, Richard Howell [ORNL; Rasmussen, David A [ORNL; Swain, David W [ORNL; Chakraborty, A. [ITER India - Bhat, Gandhinagar, Gujarat; Mukherjee, A. [ITER India - Bhat, Gandhinagar, Gujarat; Rao, S. L. [ITER India - Bhat, Gandhinagar, Gujarat; Denisov, G. [Russian Academy of Science, Novgorod, Russia; Nightingale, M. [EURATOM / UKAEA, Abingdon, UK; Sonato, P. [EURATOM / ENEA, Italy

    2009-06-01

    The electron cyclotron (EC), ion cyclotron (IC), heating-neutral beam (H-NB) and, although not in the day 1 baseline, lower hybrid (LH) systems intended for ITER have been reviewed in 2007/2008 in light of progress of physics and technology in the field. Although the overall specifications are unchanged, notable changes have been approved. Firstly, it has been emphasized that the H&CD systems are vital for the ITER programme. Consequently, the full 73 MW should be commissioned and available on a routine basis before the D/T phase. Secondly, significant changes have been approved at system level, most notably: the possibility to operate the heating beams at full power during the hydrogen phase requiring new shine through protection; the possibility to operate IC with 2 antennas with increased robustness (no moving parts); the possible increase to 2 MW of key components of the EC transmission systems in order to provide an easier upgrading of the EC power as may be required by the project; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognised. The review describes these changes and their rationale.

  10. The drive to strive: goal generation based on current needs

    Directory of Open Access Journals (Sweden)

    Elisabeth A Murray

    2013-06-01

    Full Text Available Hungry animals are influenced by a multitude of different factors when foraging for sustenance. Much of the work on animal foraging has focused on factors relating to the amount of time and energy animals expend searching for and harvesting foods. Models that emphasize such factors have been invaluable in determining when it is beneficial for an animal to search for pastures new. When foraging, however, animals also have to determine how to direct their search. For what food should they forage? There is no point searching for more of a particular food when you are sated from eating it. Here we review work in macaques and humans that has sought to reveal the neural circuits critical for determining the subjective value of different foods and associated objects in our environment and tracking this value over time. There is mounting evidence that a network composed of the orbitofrontal cortex (OFC, amygdala and medial thalamus is critical for linking objects in the environment with food value and adjusting those valuations in real time based on current biological needs. Temporal inactivation studies have revealed that the amygdala and OFC play distinct, but complementary roles in this valuation process. Such a network for determining the subjective value of different foods and, by extension, associated objects, must interact with systems that determine where and for how long to forage. Only by efficiently incorporating these two factors into their decisions will animals be able to achieve maximal fitness.

  11. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  12. Improving driving performance of persons with visual field defects : Results of a pilot study

    NARCIS (Netherlands)

    Coeckelbergh, TRM; Kooijman, AC; Brouwer, WH; Cornelissen, FW; Gale, AG

    1999-01-01

    Four subjects with peripheral field defects, one subject with central field defects and one subject with normal visual fields were trained to improve driving performance by means of improving their scanning behaviour. After training, overall driving performance did not improve. Viewing behaviour, ho

  13. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  14. Predicting practical fitness to drive in drivers with visual field defects caused by ocular pathology

    NARCIS (Netherlands)

    Coeckelbergh, T.RM; Brouwer, W.H.; Cornelissen, F.W; Kooijman, A.C

    2004-01-01

    Vision, viewing efficiency, visual attention, and on-road driving performance were assessed in 100 participants with central and/or peripheral visual field defects caused by ocular pathology. Driving was evaluated by the Dutch driving license authority making use of the protocol for investigating pr

  15. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Science.gov (United States)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  16. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Energy Technology Data Exchange (ETDEWEB)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  17. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Imbeaux, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France)

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride(CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/{gamma}-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  18. GENERATING OF OPTIMAL QUANTIZATION LEVELS OF CONTROL CURRENTS FOR LINEAR STEPPING DRIVES OF PRECISION MOTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. V. Dainiak

    2014-01-01

    Full Text Available The paper proposes a method of taking into account accumulated and temperature errors while forming coordinate discrete grid of a linear stepping drive. An algorithm for determination of optimal quantization levels of control currents of drive's phases has been developed in the paper; it minimizes an error of positioning that forms correction files for application of a control system in the software. Investigations on stability of discrete grid nodes coordinates have been carried our with the help of a monitoring station for accurate parameters of linear stepping drive. The investigations have proved an efficiency of the proposed algorithm and methodology for forming coordinate discrete grid.

  19. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    NARCIS (Netherlands)

    Westerhof, E.; Pratt, J.

    2014-01-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics is modified as E + v × B = η(J – J EC). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfu

  20. Concept development and numerical analysis of tokamak heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Myung Hee; Hong, Bong Guen [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    We have done the analytical study on the coupling between the KSTAR plasma and RF antenna necessary for the engineering design of the KSTAR auxiliary heating and current drive system as well as the KSTAR RF antenna. With the code TORIC, the possible parameter ranges of tokamak heating and current drive operation modes using fast wave on the KSTAR are defined and analyzed. The optimized operation scenarios corresponding to the variety of KSTAR fast wave-driven heating and current drive parameters are also developed. With the code RANT3D, the characteristics of the coupling between the KSTAR plasma and RF antenna are analyzed, and the data for the conceptual design of 6 MW KSTAR RF antenna are achieved. Finally the optimum heating and current drive scenarios for the 3 KSTAR operation modes (the baseline reference mode, the upgrade reference mode, the reverse shear mode) using ACCOME and WHIST are developed, and it was shown that they can be realized in KSTAR tokamak with the planned heating and current drive systems. (author). 20 refs., 39 figs., 3 tabs.

  1. Study on driving magnetic field and performance of GMA for nozzle flapper servo valve

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan-li; DING Fan; LI Qi-peng

    2007-01-01

    The structure and principle of the GMM actuator and the new nozzle flapper valve with the GMA were presented. Based on the axis-symmetric FEM model of the GMA,driving magnetic field was computed. And the field distribution for different input currents and variant curves of magnetic flux density along the axis were determined by using FEM.Magnetic flux density of the GMM actuator was practically measured under different input currents. The experiment of output displacement and frequency response of the GMM actuator was carried out under typical working conditions. The experiment results show that the GMA for nozzle flapper servo valve has bigger output displacement and quick response speed. And theoretical basis was presented to further introduce the GMA nozzle flapper valve into two stage electro-hydraulic servo valve.

  2. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    Institute of Scientific and Technical Information of China (English)

    Li Miao-Hui; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range.These H-mode discharges are characterized by a sudden drop in Dα emission and a spontaneous rise in main plasma density.Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D2 gas from a pipe near the grill mouse.The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode,and current drive (CD) efficiency decreases due to the increase in density.Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported.

  3. MSE measurements for sawtooth and non-inductive current drive studies in KSTAR

    Science.gov (United States)

    Ko, J.; Park, H.; Bea, Y. S.; Chung, J.; Jeon, Y. M.

    2016-10-01

    Two major topics where the measurement of the magnetic-field-line rotational transform profiles in toroidal plasma systems include the long-standing issue of complete versus incomplete reconnection model of the sawtooth instability and the issue with future reactor-relevant tokamak devices in which non-inductive steady state current sustainment is essential. The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach is one of the most reliable means to measure the internal magnetic pitch, and thus the rotational transform, or its reciprocal (q), profiles. The MSE system has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR) along with the development of various techniques to minimize systematic offset errors such as Faraday rotation and mis-alignment of the bandpass filters. The diagnostic has revealed the central q is well correlated with the sawtooth oscillation, maintaining its value above unity during the MHD quiescent period and that the response of the q profile to external current drive such as electron cyclotron wave injection not only involves the local change of the pitch angle gradient but also a significant shift of the magnetic topology due to the wave energy transport. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  4. Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields

    Science.gov (United States)

    Asiri, Saeed; Xu, Jingping; Al-Amri, M.; Zubairy, M. Suhail

    2016-01-01

    We consider a three-level atomic medium and discuss how to control the Goos-Hänchen (longitudinal) and Imbert-Fedorov (transverse) shifts for a circular polarized Gaussian beam via a pump field and a coherent driving field applied to the atomic medium. The susceptibility of the atomic medium can be adjusted by changing the driving and pump fields. Consequently, for a fixed driving field, by turning on and off the pump field the amplitude and the direction of the longitudinal and transverse shifts of such beam can be changed. We adopt stationary phase and beam simulation methods to derive our results.

  5. Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells

    NARCIS (Netherlands)

    Santbergen, R.; Hairen, T.; Zeman, M.; Smets, A.H.M.

    2014-01-01

    The scattering cross-section of a plasmonic nanoparticle is proportional to the intensity of the electric field that drives the plasmon resonance. In this work we determine the driving field pattern throughout a complete thin-film silicon solar cell. Our simulations reveal that by tuning of the thic

  6. Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulationa)

    Science.gov (United States)

    Bonoli, P. T.; Ko, J.; Parker, R.; Schmidt, A. E.; Wallace, G.; Wright, J. C.; Fiore, C. L.; Hubbard, A. E.; Irby, J.; Marmar, E.; Porkolab, M.; Terry, D.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team; Wilson, J. R.; Scott, S.; Valeo, E.; Phillips, C. K.; Harvey, R. W.

    2008-05-01

    Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0/PLH≈2.5±0.2×1019(A/W/m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker-Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the presence of a significant fast electron population and the three-dimensional (r,v⊥,v∥) electron distribution function from CQL3D has been used in a synthetic diagnostic code to simulate the measured hard x-ray data.

  7. Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory

    Energy Technology Data Exchange (ETDEWEB)

    Start, D.F.H.; Baranov, Y.; Brusati, M.; Ekedahl, A.; Froissard, P.; Gormezano, C.; Jacquinot, J.; Paquin, L.; Rimini, F.G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cox, M.; Gardner, C.; O`Brien, M.R. [UKAEA Culham Lab., Abingdon (United Kingdom); Di Vita, A. [Ansaldo SpA, Genoa (Italy)

    1994-07-01

    The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs.

  8. Design of long-pulse fast wave current drive antennas for DIII-D

    Science.gov (United States)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  9. Extracting DC bus current information for optimal phase correction and current ripple in sensorless brushless DC motor drive

    Institute of Scientific and Technical Information of China (English)

    Zu-sheng HO; Chii-maw UANG; Ping-chieh WANG

    2014-01-01

    Brushless DC motor (BLDCM) sensorless driving technology is becoming increasingly established. However, op-timal phase correction still relies on complex calculations or algorithms. In finding the correct commutation point, the problem of phase lag is introduced. In this paper, we extract DC bus current information for auto-calibrating the phase shift to obtain the correct commutation point and optimize the control of BLDC sensorless driving. As we capture only DC bus current information, the original shunt resistor is used in the BLDCM driver and there is no need to add further current sensor components. Software processing using only simple arithmetic operations successfully accomplishes the phase correction. Experimental results show that the proposed method can operate accurately and stably at low or high speed, with light or heavy load, and is suitable for practical applications. This approach will not increase cost but will achieve the best performance/cost ratio and meet market expectations.

  10. On the merits of heating and current drive for tearing mode stabilization

    Science.gov (United States)

    DeLazzari, D.; Westerhof, E.

    2009-07-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high β discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flattening across a magnetic island. Control and suppression of this mode can be achieved by means of electron cyclotron waves (ECWs) which allow the deposition of highly localized power at the island location. The ECW power replenishes the missing bootstrap current by generating a current perturbation either inductively, through a temperature perturbation (electron cyclotron resonance heating), or non-inductively by direct current drive (electron cyclotron current drive). Although both methods have been applied successfully to experiments showing a predominance of ECRH for medium-sized limiter tokamaks (TEXTOR, T-10) and of ECCD for mid-to-large-sized divertor tokamaks (AUG, DIII-D, JT-60), conditions determining their relative importance are still unclear. We address this problem with a numerical study focused on the contributions of heating and current drive to the temporal evolution of NTMs as described by the modified Rutherford equation. For the effects of both heating as well as current drive, simple analytical expressions have been found in terms of an efficiency fore-factor times a 'geometrical' term depending on the power deposition width wdep, location and modulation. When the magnetic island width w equals the width of the deposition profile, w ≈ wdep, both geometric terms are practically identical. Whereas for current drive the geometric term approaches a constant for small island widths and is inversely proportional to (w/wdep)2 for large island widths, the heating term approaches a constant for large island widths and is proportional to (w/wdep) for small island widths. For medium-sized tokamaks (TEXTOR, AUG) the heating and current drive efficiencies are of the same order

  11. Lower hybrid heating and current drive in ignitor shear reversal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, E.; Pinaccione, L. [Italian Agengy for New Technologies, Energy and the Environment, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1996-05-01

    Injection of Lower Hybrid (LH) Wave power at 8 GHz is considered into IGNITOR shear reversal scenarios, characterized by a reduced plasma current and density. Power deposition calculation are performed to establish whether LH waves can be used both as central heating and off axis current drive tool. It turns out that LH waves can be used (a) for central plasma heating purpose during the current vamp phase, to freeze the shear reversed configuration, at the power level of {approx}10 MW. (b) to drive a current in the outer part of the plasma at the power level of 20 MW. In this way around 1/3-1/6 of the total current in the proper plasma position (i.e. where q is minimum) is driven.

  12. Lower hybrid heating and current drive design for ITER and application for present tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Froissard, P.; Rey, G.; Bibet, P.; Goniche, M.; Kazarian, F.; Portafaix, C.; Tonon, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bosia, G.; Bruno, L. [ITER Joint Work Site, Garching (Germany); Kuzikov, S. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Wasastjerna, F. [VTT Energy (Finland)

    1998-07-01

    The lower Hybrid Heating and Current Drive (LHH and CD) System shall provide on ITER off-axis current profile control during burn, main contribution to the non-inductive current generation in the advanced Tokamak scenario, current profile tailoring during ramp up phase, heating and current drive during plasma shut-down, extension of the pulse duration during commissioning phase. The LHH and CD system operates at 5 GHz, this frequency being a trade-off between power absorption by alpha particles and klystron technology and couples a minimum of 50 MW using two ITER ports. This article describes the launcher plug and the transmission lines. Specific converters, such as the mode converters, RF windows and the hyper-guide have now been successfully tested at high power and long pulse duration.

  13. Theory and experiments on RF plasma heating, current drive and profile control in TORE SUPRA

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D.

    1994-01-01

    This paper reviews the main experimental and theoretical achievements related to the study of RF heating and non-inductive current drive and particularly phenomena related to the current density profile control and the potentiality of producing stationary enhanced performance regimes: description of the Lower Hybrid (LH) and Ion Cyclotron Resonant Frequency (ICRF) systems; long pulse coupling performance of the RF systems; observation of the transition to the so-called ``stationary LHEP regime`` in which the (flat) central current density and (peaked) electron temperature profiles are fully decoupled; experiments on ICRF sawtooth stabilization with the combined effect of LHCD modifying the current density profile; diffusion of fast electrons generated by LH waves; ramp-up experiments in which the LH power provided a significant part of the resistive poloidal flux and flux consumption scaling; theory of spectral wave diffusion and multipass absorption; fast wave current drive modelling with the Alcyon full wave code; a reflector LH antenna concept. 18 figs., 48 refs.

  14. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  15. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; XU Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical Gelds and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.%We investigate the quantum discord dynamics in a cavity quantum electrodynamics system,which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields,and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields.It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields.Finally,the influence of the classical driving field on the fidelity of the system is also examined.

  16. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  17. Compensation methods applied in current control schemes for large AC drive systems

    DEFF Research Database (Denmark)

    Rus, D. C.; Preda, N. S.; Teodorescu, Remus;

    2012-01-01

    The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...

  18. Advanced launcher design options for electron cyclotron current drive on ITER based on remote steering

    NARCIS (Netherlands)

    Graswinckel, M. R.; Bongers, W. A.; M.R. de Baar,; van den Berg, M. A.; Denisov, G.; Donne, A. J. H.; Elzendoorn, B. S. Q.; Goede, A. P. H.; Heidinger, R.; Kuzikov, S.; Kruijt, O. G.; Kruizinga, B.; Moro, A.; Poli, E.; Ronden, D. M. S.; Saibene, G.; Thoen, D. J.; Verhoeven, A. G. A.

    2008-01-01

    Electron cyclotron current drive will become the main scheme on ITER for the stabilization of neoclassical tearing modes (NTMs) and the control of sawtooth oscillations. The effectiveness of this scheme forms the basis for the requirements of the ITER Upper Port Launcher. These requirements include

  19. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  20. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  1. Globalisation and the foreignisation of space: The seven processes driving the current global land grab.

    NARCIS (Netherlands)

    Zoomers, E.B.

    2010-01-01

    The current global land grab is causing radical changes in the use and ownership of land. The main process driving the land grab, or ‘foreignisation of space’, as highlighted in the media and the emerging literature is the production of food and biofuel for export in the aftermath of recent food and

  2. Heating, current drive and energetic particle studies on JET in preparation of ITER operation

    NARCIS (Netherlands)

    Noterdaeme, J. M.; Budny, R.; Cardinali, A.; Castaldo, C.; Cesario, R.; Crisanti, F.; DeGrassie, J.; D' Ippolito, D. A.; Durodie, F.; Ekedahl, A.; Figueiredo, A.; Ingesson, C.; Joffrin, E.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Jones, T.; Kiptily, V.; Lamalle, P.; Litaudon, X.; Nguyen, F.; Mailloux, J.; Mantsinen, M.; Mayoral, M.; Mazon, D.; Meo, F.; Monakhov, I.; Myra, J. R.; Pamela, J.; Pericoli, V.; Petrov, Y.; Sauter, O.; Sarazin, Y.; Sharapov, S. E.; Tuccillo, A. A.; Van Eester, D.

    2003-01-01

    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated

  3. Study of multipass regimes in lower hybrid current drive experiments on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Arslanbekov, R.; Litaudon, X.; Peysson, Y.; Hoang, G.T.; Kazarian, F.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Shoucri, M.; Shkarofsky, I.P. [Centre Canadien de Fusion Magnetique, Varennes, PQ (Canada); Baranov, Y. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Kupfer, K. [General Atomics, San Diego, CA (United States)

    1995-12-31

    This document presents a study of multipass regimes in Lower Hybrid Current Drive on Tore Supra. A statistical model of the plasma wave propagation based on the Fokker-Planck theory is proposed, together with experimental results performed on Tore Supra. (TEC). 9 refs., 4 figs.

  4. Impact of heating and current drive mix on the ITER hybrid scenario

    NARCIS (Netherlands)

    Citrin, J.; Artaud, J. F.; Garcia, J.; Hogeweij, G. M. D.; Imbeaux, F.

    2010-01-01

    Hybrid scenario performance in ITER is studied with the CRONOS integrated modelling suite, using the GLF23 anomalous transport model for heat transport prediction. GLF23 predicted core confinement is optimized through tailoring the q-profile shape by a careful choice of current drive actuators, affe

  5. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C.; Carter, M.D.; Wang, C.Y.; Galambos, J.D.; Batchelor, D.B.; Baity, F.W.; Bell, G.L.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States); Chiu, S.C.; DeGrassie, J.S.; Forest, C.B. [General Atomics, San Diego, California 92186-9784 (United States); Kupfer, K. [ORISE Postdoctoral Fellow at General Atomics, San Diego, California 92186-9784 (United States); Petty, C.C.; Pinsker, R.T.; Prater, R.; Lohr, J. [General Atomics, San Diego, California 92186-9784 (United States); Lee, K.M. [University of California, Los Angeles, California 90024-1597 (United States)

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment. {copyright} {ital 1996 American Institute of Physics.}

  6. Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions

    NARCIS (Netherlands)

    Prater, R.; Farina, D.; Gribov, Y.; Harvey, R. W.; Ram, A. K.; Lin-Liu, Y. R.; Poli, E.; Smirnov, A. P.; Volpe, F.; Westerhof, E.; Zvonkovo, A.

    2008-01-01

    Optimal design and use of electron cyclotron heating requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories wor

  7. Field oriented control design of inset rotor PMSM drive

    Science.gov (United States)

    Mukti, Ersalina Werda; Wijanarko, Sulistyo; Muqorobin, Anwar; Rozaqi, Latif

    2017-06-01

    The main challenge of PMSM implementation in the adjustable-speed drives especially in automotive industry is to attain the optimal PMSM drive performance. Vector control is proved to be the best method in controlling synchronous machine such as PMSM. This paper objective is to design a speed control system for the manufactured inset rotor PMSM, which integrates the interleaved DC-DC boost converter, inverter, and sinusoidal pulse width modulation and fed by the battery bank DC source. The proposed speed control in this paper employs FOC vector control technique with PI controller which control both converter and inverter independently. This paper investigates the effectiveness of the proposed speed control method for driving the manufactured inset rotor PMSM. To verify the effectiveness of the designed speed control system, computer simulation is conducted. The motor performances are observed in operating condition with disturbance in form of sudden change of load torque. The simulation results show that the control method is stable but the rotor speed still affected by the given disturbance.

  8. "When can I return to driving?": a review of the current literature on returning to driving after lower limb injury or arthroplasty.

    Science.gov (United States)

    MacLeod, K; Lingham, A; Chatha, H; Lewis, J; Parkes, A; Grange, S; Smitham, P J

    2013-03-01

    Clinicians are often asked by patients, "When can I drive again?" after lower limb injury or surgery. This question is difficult to answer in the absence of any guidelines. This review aims to collate the currently available evidence and discuss the factors that influence the decision to allow a patient to return to driving. Medline, Web of Science, Scopus, and EMBASE were searched using the following terms: 'brake reaction time', 'brake response time', 'braking force', 'brake pedal force', 'resume driving', 'rate of application of force', 'driving after injury', 'joint replacement and driving', and 'fracture and driving'. Of the relevant literature identified, most studies used the brake reaction time and total brake time as the outcome measures. Varying recovery periods were proposed based on the type and severity of injury or surgery. Surveys of the Driver and Vehicle Licensing Agency, the Police, insurance companies in the United Kingdom and Orthopaedic Surgeons offered a variety of opinions. There is currently insufficient evidence for any authoritative body to determine fitness to drive. The lack of guidance could result in patients being withheld from driving for longer than is necessary, or returning to driving while still unsafe.

  9. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  10. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...... is analysis through transfer function based linear control methodology. Measurements are performed on a single-ended ± 300 V half-bridge amplifier driving a capacitive load of 100 nF. Total Harmonic Distortion plus noise (THD+N) below 0.1 % are reported. Transducers representing a capacitive load and obeying...

  11. High efficiency off-axis current drive by high frequency fast waves

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-01

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves ("helicons" or "whistlers"). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n∥, a result that can be understood from examination of the evolution of n∥ as the waves propagate in the plasma. Because of this insensitivity, relatively large values (˜3) of n∥ can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n∥ spectrum, which also helps avoid mode conversion.

  12. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.

  13. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    harmonic mitigation methods have been developed over the years, the total cost and complexity has become the main obstacle in employing prior-art methods for motor drive systems. This paper presents a novel current modulation method based on the electronic inductor concept for three-phase ac-dc systems......Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active...... to reduce input current harmonics. The obtained results at simulation and experimental levels confirm the effectiveness of the proposed approach....

  14. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  15. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  16. Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells

    OpenAIRE

    Hammerick, Kyle E.; James, Aaron W.; Huang, Zubin; Prinz, Fritz B.; Michael T. Longaker

    2009-01-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fie...

  17. Redundant drive current imbalance problem of the Automatic Radiator Inspection Device (ARID)

    Science.gov (United States)

    Latino, Carl D.

    1992-09-01

    The Automatic Radiator Inspection Device (ARID) is a 4 Degree of Freedom (DOF) robot with redundant drive motors at each joint. The device is intended to automate the labor intensive task of space shuttle radiator inspection. For safety and redundancy, each joint is driven by two independent motor systems. Motors driving the same joint, however, draw vastly different currents. The concern was that the robot joints could be subjected to undue stress. It was the objective of this summer's project to determine the cause of this current imbalance. In addition it was to determine, in a quantitative manner, what was the cause, how serious the problem was in terms of damage or undue wear to the robot and find solutions if possible. It was concluded that most problems could be resolved with a better motor control design. This document discusses problems encountered and possible solutions.

  18. Design of long-pulse fast wave current drive antennas for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States))

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  19. Design of Current Controller for Two Quadrant DC Motor Drive by Using Model Order Reduction Technique

    CERN Document Server

    Ramesh, K; Nirmalkumar, A; Gurusamy, G

    2010-01-01

    In this paper, design of current controller for a two quadrant DC motor drive was proposed with the help of model order reduction technique. The calculation of current controller gain with some approximations in the conventional design process is replaced by proposed model order reduction method. The model order reduction technique proposed in this paper gives the better controller gain value for the DC motor drive. The proposed model order reduction method is a mixed method, where the numerator polynomial of reduced order model is obtained by using stability equation method and the denominator polynomial is obtained by using some approximation technique preceded in this paper. The designed controllers responses were simulated with the help of MATLAB to show the validity of the proposed method.

  20. Simulation of Field Oriented Control in Induction Motor Drive System

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2013-07-01

    Full Text Available In this paper, a 3-phase induction motor model for simulation the field oriented control (FOC system based on space vector pulse width modulation (SVPWM is established in Ansoft/Simplorer software. The theory of field oriented control (FOC and the principle of space vector pulse width modulation (SVPWM were introduced. The simulation results are presented and analyzed. A Simulink simulation model of field oriented control system is presented as a comparison under the same conditions. The results indicated that the Simplorer model had quick response speed, small torque fluctuations and good performance both in steady and dynamic states. Furthermore, the Simplorer model can be coupled with the finite element model of the motor to achieve field-circuit coupling simulation of induction motor’s field oriented control system.    

  1. Modification of The Field-Weakening Control Strategy for Linear Induction Motor Drives Considering The End Effect

    Directory of Open Access Journals (Sweden)

    HAMEDANI, P.

    2015-08-01

    Full Text Available Accurate vector control of a linear induction motor (LIM drive is a complicated subject because of the end effect phenomenon especially in the field-weakening region. This paper concentrates on a novel field-weakening speed control strategy for LIM drive in which the end effect is taken into account. Considering the end effect, new voltage and current limits have been calculated using the Duncan's model. Accordingly, control strategies such as constant force region, partial field-weakening region, and full field-weakening region have been analytically calculated for the first time in this work. In order to improve the control characteristics of the LIM drive, Fuzzy Logic Controller (FLC has been also implemented. Simulation results manifest the satisfactory resultants of the proposed FLC based LIM in the field-weakening region including fast response, no overshoot, negligible steady-state error, and adaptability to load changes. In addition, a new constant force pattern is introduced in this paper by which the reductions of the LIM thrust due to the end effect will be compensated and thus, the current and voltage amplitudes in steady state will remarkably decrease.

  2. Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    Shi Yue-Jiang; Kuang Gang-Li; Li Jian-Gang; HT-7 Team; Wan Bao-Nian; Chen Zhong-Yong; Hu Li-Qun; Lin Shi-Yao; Ruan Huai-Lin; Qian Jin-Ping; Zhen Xiang-Jun; Ding Bo-Jiang

    2005-01-01

    The dynamic behaviour of fast electron in lower hybrid current drive (LHCD) experiments is a crucial issue in the sense of enhancing plasma performance. A new hard x-ray diagnostic system on HT-7 allows the investigation of the lower hybrid wave dynamics. The behaviour of fast electron is studied in several kinds of LHCD experiments, including long pulse discharges, high performance discharges and counter-LHCD experiments.

  3. On radio frequency current drive in the ion cyclotron range of frequencies in DEMO and large ignited plasmas

    Science.gov (United States)

    Brambilla, Marco; Bilato, Roberto

    2015-02-01

    To explore the possibility of efficient fast wave current drive in an ignited plasma in the ion cyclotron (IC) range of frequency in spite of competition from absorption by ions, we have added to the full-wave toroidal code TORIC a set of subroutines which evaluate absorption by these particles at IC harmonic resonances, using a realistic ‘slowing-down’ distribution function, and taking into account that their Larmor radius is comparable or even larger than the fast wave wavelength. The thermalized population of α-particles is not a serious competitor for power absorption as long as their number density is compatible with maintenance of ignition. By contrast, the energetic slowing down fraction, in spite of its even greater dilution, can absorb from the waves a substantial amount of power at the cyclotron resonance and its harmonics. An extensive exploration both in frequency and in toroidal wavenumbers using the parameters of one of the European versions of DEMO shows that three frequency windows exist in which damping is nevertheless predominantly on the electrons. Designing an antenna capable of shaping the launched spectrum to optimize current drive, however, will not be straightforward. Only in a narrow range when the first IC harmonic of tritium is deep inside the plasma on the high-field side of the magnetic axis, and that of deuterium and helium is still outside on the low-field side, it appears possible to achieve a satisfactory current drive efficiency with a conventional multi-strap antenna, preferentially located in the upper part of the vessel. Exploiting the other two windows at quite low and quite high frequencies is either impossible on first principles, or will demand novel ideas in antenna design.

  4. Evolution of the Tore Supra Lower Hybrid Current Drive System for WEST

    Energy Technology Data Exchange (ETDEWEB)

    Delpech, Léna, E-mail: lena.delpech@cea.fr [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Achard, Joelle; Armitano, Arthur; Berger-By, Gilles; Ekedahl, Annika; Gargiulo, Laurent; Goniche, Marc; Guilhem, Dominique; Hertout, Patrick; Hillairet, Julien; Magne, Roland; Mollard, Patrick [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Piluso, P. [CNIM Industrial Systems, 83507 La Seyne-sur-Mer (France); Poli, Serge; Prou, Marc; Saille, Alain; Samaille, Franck [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)

    2015-10-15

    Highlights: • Describe the state of the Lower Hybrid heating system for the WEST project. • Detailed the experiments to assess the coupling in WEST configuration. • Give the modifications required on the launchers to be adapted to WEST configuration. • Detailed the technical modifications with the CNIM company on the launchers. - Abstract: The WEST-project (W-tungsten Environment in Steady-state Tokamak) involves equipping Tore Supra with a full tungsten divertor, capable of withstanding heat load of 10 MW/m{sup 2} in steady-state conditions, in discharges sustained by Lower Hybrid Current Drive (LHCD). The LHCD generator, recently upgraded to deliver 9.2 MW/1000 s, is equipped with sixteen TH2103C klystrons powering two launchers. The WEST transformation involves reducing the plasma volume, thus moving the launchers ∼10 cm closer to the tokamak centre. The toroidal curvature of the launchers no longer fits the plasma curvature due to the strong magnetic field ripple effect, leading to a degradation of the LH wave coupling, especially with the Full Active Multijunction Launcher (FAM). The toroidal curvature radius of the FAM launcher mouth will therefore be reshaped from 1700 mm to 2300 mm. The machining process is described in this article. In order to improve the coupling of the LH wave, the local gas injection has been modified to help to meet the requirement of 7 MW/1000 s of LH power coupled to the plasma in the WEST scenarios. Finally, the curvature radius of the waveguide septa are rounded to minimize the excitation of suprathermal electrons near the plasma edge, which can induce high power loads on the plasma facing components.

  5. First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)

    Science.gov (United States)

    Février, O.; Maget, P.; Lütjens, H.; Luciani, J. F.; Decker, J.; Giruzzi, G.; Reich, M.; Beyer, P.; Lazzaro, E.; Nowak, S.; the ASDEX Upgrade Team

    2016-04-01

    Tearing modes are MagnetoHydroDynamics (MHD) instabilities that reduce the performance of fusion devices. They can however be controlled and suppressed using electron cyclotron current drive (ECCD) as demonstrated in various tokamaks. In this work, simulations of island stabilization by ECCD-driven current have been carried out using the toroidal nonlinear 3D full MHD code xtor-2f, in which a current source term modeling the ECCD has been implemented. The efficiency parameter, {η\\text{RF}} , has been computed and its variations with respect to source width and location were also computed. The influence of parameters such as current intensity, source width and position with respect to the island was evaluated and compared to the modified Rutherford equation. We retrieved a good agreement between the simulations and the analytical predictions concerning the variations of control efficiency with source width and position. We also show that the 3D nature of the current source term can lead to the onset of an island if the source term is precisely applied on a rational surface. We report the observation of a flip phenomenon in which the O- and X-points of the island rapidly switch their position in order for the island to take advantage of the current drive to grow.

  6. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  7. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  8. On the theory of the electric field and current density in a superconductor carrying transport current

    Energy Technology Data Exchange (ETDEWEB)

    Carr, W.J. [LEI 700 Technology Dr., Pittsburgh, PA 15219 (United States)]. E-mail: wjamescarrjr@att.net

    2005-09-15

    A theory is given to explain the physics behind the flow of low-frequency ac transport current around a closed superconducting circuit, where the circuit consists of two long, straight, parallel, uniform conductors, connected to each other at one end and to an applied emf at the other end. Thus one conductor is the return path for the other. A question of interest is what drives the current at any given point in the circuit. The answer given here is a surface charge, where the purpose of the surface charge is to spread the local emf around the circuit, so that at each point in the conductor it produces, together with the electric field of the vector potential, the electric field necessary for the current to flow. But it is then necessary to explain how the surface charge gets there, which is the central problem of the present analysis. The conclusion is that the total current density consists of the superposition of a large transport current and a very much smaller current system of a different symmetry. The transport current density is defined as a two-dimensional current density with no divergence. It flows uniformly along the conductor length, but can vary over the cross-section. The small additional current density has a much different symmetry, being three-dimensional and diverging at the surface of the conductor. Based on a slightly modified Bean model the transport current is treated as supercurrent having the value {+-}J {sub c}, while the small additional system of current is like normal current, with a density given by the electric field divided by a resistivity. The electric field is computed from the sum of the negative time derivative of the vector potential and the negative gradient of the scalar potential due to the surface charge. It has components parallel and perpendicular to the long axis of the conductor. Thus the small normal current density has a perpendicular component which flows into or out of the surface thereby creating the surface charge

  9. Recent progress on lower hybrid current drive and implications for ITER

    CERN Document Server

    Hillairet, Julien; Goniche, M; Achard, J; Armitano, A; Beckett, B; Belo, J; Berger-By, G; Corbel, E; Delpech, L; Decker, J; Dumont, R; Guilhem, D; Kazarian, F; Litaudon, X; Magne, R; Marfisi, L; Mollard, P; Namkung, W; Nilsson, E; Park, S; Peysson, Y; Preynas, M; Sharma, P K; Prou, M

    2015-01-01

    The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower Hybrid Current Drive (LHCD) is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current as well as reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like LH launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long pulse scenarios. However, in order to achieve pure stationary LH sustained plasmas, some R\\&D are needed to increase the reliability of all the systems and codes, from the RF sources to the plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R\\&D program towards an ITER LH system and by the validation of an integrated LH modeling suite of...

  10. Near-field driving of a optical monopole antenna

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; Moerland, R.J.; Kuipers, L.; van Hulst, N.F.

    2007-01-01

    Nanosized optical antennas have the potential to confine and enhance optical electromagnetic fields, making nano-antennas essential tools for applications in integrated nano-optical devices and high-resolution microscopy. The size, shape and material of the nano-antenna, together with the optical

  11. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    A standard configuration of an Adjustable Speed Drive (ASD) consists of two separate units: an AC motor, which runs with fixed speed when it is supplied from a constant frequency grid voltage and a frequency converter, which is used to provide the motor with variable voltage-variable frequency...... needed to adjust the speed of the motor. The integrated motor drive concept is a result of merging the two units in order to achieve the following benefits [1-3]: reducing the design and the commissioning time in complex industrial equipments, no need for a cabinet to host the frequency converter......, no needfor shielded cables to reduce EM1 (Electro Magnetic Inteiference), no needfor cables for the speed transducers or for other sensorsfor industrial process control (e.g. pressure). This solution is currently available up to 7.5 kW being not used in the medium and high power range due to a low...

  12. Input current interharmonics in adjustable speed drives caused by fixed-frequency modulation techniques

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Loh, Poh Chiang

    2016-01-01

    Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt an approp......Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt...... an appropriate strategy for minimizing their effects. This paper investigates the ASD's input current interharmonic sources caused by applying symmetrical regularly sampled fixed-frequency modulation techniques on the inverter. The interharmonics generation process is precisely formulated and comparative results...

  13. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    Software was developed to automatically detect flux ropes using field line helicity, and tested on a previous MF model. 15.  SUBJECT TERMS Solar...helicity for robust identification of flux ropes in the corona, and published a paper on its evolution in MF simulations. • Developed software to... simplification enables much longer integration times [for example, more than a solar cycle; 7], while retaining a continuous non-potential evolution

  14. Electron cyclotron heating and current drive in toroidal geometry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  15. A Modified Bridgeless Converter for SRM Drive with Reduced Ripple Current

    Directory of Open Access Journals (Sweden)

    Maheswari C krishnakumar

    2015-06-01

    Full Text Available Single Phase Switched Reluctance Motor is more popular in many industrial purposes for high speed applications because of its robust and rugged construction. For low cost and variable speed drive applications SRM are widely used.Due to doubly salient structure of motor, the torque pulsations are high when compared to other sinusoidal machines. The major drawback in using SRM drive is torque pulsations and increased number of switching components. In order to overcome these drawbacks, a bridgeless Single Ended Primary Inductor Converter (SEPIC is proposed. The major advantages of this converter are continuous output current,smaller voltage ripple and reduced semiconductor current stress when compared to the conventional SEPIC converter. The ripple free input current is obtained by using additional winding of input inductor and auxiliary capacitors. To achieve high efficiency, active power factor correction circuits (PFC are employed to precise the power factor. Further, the unity power factor can be obtained by making the input current during switching period proportional to the input voltage is proposed. The proposed system consists of reduced components and it is also capable of reducing the conduction losses. The working principles and the waveforms of proposed converter are analyzed. To analyze the circuit operation, theoretical analysis and simulation results are provided. Finally, the  comparison between the waveforms of conventional SEPIC and proposed system is presented by using MATLAB/Simulink tools.

  16. Transient and steady-state velocity of domain walls for a complete range of drive fields

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.

  17. Evolution of Wave Energy Deposition Profile in HT-7 Lower Hybrid Current Drive Experiment

    Institute of Scientific and Technical Information of China (English)

    方瑜德; 石跃江; 匡光力; 刘岳修; 沈慰慈; 丁伯江

    2001-01-01

    Lower hybrid waves (LHWs) with a selected n‖ spectrum have been used to control the energy deposition profiles, and then the wave driven current profiles effectively in tokamak discharges. In our lower hybrid current drive experiment in the HT-7 tokamak, it was found that the set-up of the wave energy deposition profile is a graduation process. In the beginning phase of the wave injection duration, the waves (with different n‖ spectra)deposit almost all their energy in the central region of the plasma column, even if their n‖ are very different. Up to around one hundred milliseconds, the wave energy deposition profiles can only take their corresponding shapes according to the n‖ spectra of LHWs. It also shown that this evolution process is affected obviously by the LHW driven current profile, which has been formed early.

  18. High voltage power supplies for ITER RF heating and current drive systems

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, T., E-mail: thibault.gassmann@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arambhadiya, B.; Beaumont, B. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Baruah, U.K. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Bonicelli, T. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Darbos, C.; Purohit, D.; Decamps, H. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Albajar, F. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Parmar, D.; Patel, A. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Rathi, D. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Singh, N.P. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)

    2011-10-15

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  19. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    Science.gov (United States)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  20. Reduced Order Models of a Current Source Inverter Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Ibrahim K. Al-Abbas

    2009-01-01

    Full Text Available Problem Statement: The current source inverter induction motor (CSI-IM drive was widely used in various industries. The main disadvantage of this drive was nonlinearity and complexity. This work was done to develop a simple drive systems models. Approach: The MATLAB/SIMULINK software was used for system modeling. Three reduced models were developed by choosing specific frame, neglecting stator transients and ignoring stator equations. Results: The dynamic performance of the models was examined in open loop form for a step change in control variable (the input voltage as well as for step change in disturbance (mechanical load.Conclusion: The three models were equivalent in steady state. The error of these models in the transient response was less than 5 %, with the exception of the time performances of the transient model to step change of supply voltage. Recommendations: All three models were suggested to be used for designing torque control systems. The detailed and stator equation models were recommended to be used in speed control design.

  1. High efficiency off-axis current drive by high frequency fast waves

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  2. Effort of lower hybrid current drive experiments toward to H-mode in EAST

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Liu, F. K.; Shan, J. F.; Li, Y. C.; Wang, M.; Liu, L.; Zhao, L. M.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Cheng, M.; Zang, Q.; Lyu, B.; Duan, Y. M.; Lin, S. Y.; Wu, J. H.; Hillairet, J.; Ekedahl, A.; Peysson, Y.; Goniche, M.; Tuccillo, A. A.; Cesario, R.; Amicucci, L.; Shen, B.; Gong, X. Z.; Xu, G. S.; Zhao, H. L.; Hu, L. Q.; Li, J. G.; Wan, B. N.; EAST Team

    2017-02-01

    Lower hybrid current drive (LHCD) is an effective tool to achieve high confinement (H-mode) plasma in EAST. To utilize LHCD for accessing H-mode plasma, efforts have been made to improve LHW (lower hybrid wave)-plasma coupling and current drive capability at high density. Improved LHW-plasma coupling by means of local gas puffing and gas puffing from the electron side is routinely used during EAST operation with LHCD. High density experiments suggest that low recycling and high LH frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. The effect of LHCD on the current profile in EAST demonstrates that it is possible to control the plasma profile by optimizing the LHW spectrum. Repeatable H-mode plasma was obtained by LHCD and the maximum density during H-mode with the combination of 2.45 GHz and 4.6 GHz LH waves was up to 4.5  ×  1019 m-3.

  3. The targeted heating and current drive applications for the ITER electron cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, G.; Gagliardi, M. [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Farina, D.; Figini, L. [Istituto di Fisica del Plasma CNR, 20125 Milano (Italy); Hanson, G. [US ITER Project Office, ORNL, 1055 Commerce Park, PO Box 2008, Oak Ridge, Tennessee 37831 (United States); Poli, E. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 311-0193 (Japan)

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  4. Reduction of current chopping noise with DSP controller in switched reluctance motor drive system

    Institute of Scientific and Technical Information of China (English)

    郭伟; 詹琼华; 马志源

    2002-01-01

    A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor ( SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.

  5. Destabilization of fast particle stabilized sawteeth in ASDEX Upgrade with electron cyclotron current drive

    DEFF Research Database (Denmark)

    Igochine, V.; Chapman, I.T.; Bobkov, V.

    2011-01-01

    It is often observed that large sawteeth trigger the neoclassical tearing mode well below the usual threshold for this instability. At the same time, fast particles in the plasma core stabilize sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX...... Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive (ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first experiments...

  6. Effects of electron cyclotron current drive on the evolution of double tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guanglan, E-mail: sunguanglan@nciae.edu.cn; Dong, Chunying [Basic Science Section, North China Institute of Aerospace Engineering, Langfang 065000 (China); Duan, Longfang [School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000 (China)

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  7. Study of lower hybrid current drive system in tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 {mu}P is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 {mu}sec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10{sup -6} Pam{sup 3}/sm{sup 2} at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm{sup -2} (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10{sup -5} Pam{sup 3}/sm{sup 2} which is low enough for an antenna material. (author)

  8. Field aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1973-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F-region which are interpreted as being caused by the payload's passage through a structured field aligned current system. The field aligned currents have a characteristic horizontal scale size of one kilometer. Analysis of one large field fluctuation gives a current density of 0.0001 amp/m sq.

  9. Field-aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1974-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F region that are interpreted as being caused by the passage of the payload through a structured field-aligned current system. The field-aligned currents have a characteristic horizontal scale size of about 1 km. Analysis of one large field fluctuation gives a current density of .001 A/sq m.

  10. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    Electronic Inductor (EI)-based front-end rectifiers have a large potential to become the prominent next generation of Active Front End (AFE) topology used in many applications including Adjustable Speed Drives (ASDs) for systems having unidirectional power flow. The EI-based ASD is mostly...... attractive due to its improved harmonic performance compared to a conventional ASD. In this digest, the input currents of the EI-based ASD are investigated and compared with the conventional ASDs with respect to interharmonics, which is an emerging power quality topic. First, the main causes...... of the interharmonic distortions in the ASD applications are analyzed under balanced and unbalanced load conditions. Thereafter, the key role of the EI at the DC stage is investigated in terms of high impedance and current harmonics transfer. Obtained experiments and simulations for both EI-based and conventional ASD...

  11. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  12. Heating and current drive by fast wave in lower hybrid range of frequency on Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.

  13. Physiological responses related to moderate mental load during car driving in field conditions.

    Science.gov (United States)

    Wiberg, Henrik; Nilsson, Emma; Lindén, Per; Svanberg, Bo; Poom, Leo

    2015-05-01

    We measured physiological variables on nine car drivers to capture moderate magnitudes of mental load (ML) during driving in prolonged and repeated city and highway field conditions. Ecological validity was optimized by avoiding any artificial interference to manipulate drivers ML, drivers were alone in the car, they were free to choose their paths to the target, and the repeated drives familiarized drivers to the procedure. Our aim was to investigate if driver's physiological variables can be reliably measured and used as predictors of moderate individual levels of ML in naturally occurring unpredictably changing field conditions. Variables investigated were: heart-rate, skin conductance level, breath duration, blink frequency, blink duration, and eye fixation related potentials. After the drives, with support from video uptakes, a self-rating and a score made by external raters were used to distinguish moderately high and low ML segments. Variability was high but aggregated data could distinguish city from highway drives. Multivariate models could successfully classify high and low ML within highway and city drives using physiological variables as input. In summary, physiological variables have a potential to be used as indicators of moderate ML in unpredictably changing field conditions and to advance the evaluation and development of new active safety systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Current status of the polyamine research field.

    Science.gov (United States)

    Pegg, Anthony E; Casero, Robert A

    2011-01-01

    This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.

  15. Requirements on localized current drive for the suppression of neoclassical tearing modes

    Science.gov (United States)

    Bertelli, N.; De Lazzari, D.; Westerhof, E.

    2011-10-01

    A heuristic criterion for the full suppression of an NTM was formulated as ηNTM ≡ jCD,max/jBS >= 1.2 (Zohm et al 2005 J. Phys. Conf. Ser. 25 234), where jCD,max is the maximum in the driven current density profile applied to stabilize the mode and jBS is the local bootstrap current density. In this work we subject this criterion to a systematic theoretical analysis on the basis of the generalized Rutherford equation. Taking into account only the effect of jCD inside the island, a new criterion for full suppression by a minimum applied total current is obtained in the form of a maximum allowed value for the width of the driven current, wdep, combined with a required minimum for the total driven current in the form of wdepηNTM, where both limits depend on the marginal and saturated island sizes. These requirements can be relaxed when additional effects are taken into account, such as a change in the stability parameter Δ' from the current driven outside the island, power modulation, the accompanying heating inside the island or when the current drive is applied preemptively. When applied to ITER scenario 2, the requirement for full suppression of either the 3/2 or 2/1 NTM becomes wdep ~ 5 cm in agreement with (Sauter et al 2010 Plasma Phys. Control. Fusion 52 025002). Optimization of the ITER ECRH Upper Port Launcher design towards minimum required power for full NTM suppression requires an increase in the toroidal injection angle of the lower steering mirror of several degrees compared with its present design value, while for the upper steering mirror the present design value is close to the optimum.

  16. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  17. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Freidoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2009-12-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Freidoonkenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year that performs motive force in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, are dominating the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  18. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2010-07-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Feridoon-kenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year. This system performs the forcing in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, dominates the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  19. Status of the ITER Electron Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  20. Electron Cyclotron Current Drive at High Electron Temperature on DIII-D

    Science.gov (United States)

    Petty, C. C.; Austin, M. E.; Harvey, R. W.; Lohr, J.; Luce, T. C.; Makowski, M. A.; Prater, R.

    2007-09-01

    Experiments on DIII-D have measured the electron cyclotron current drive (ECCD) efficiency for co- and counter-injection in low density plasmas with radiation temperatures from electron cyclotron emission (ECE) above 20 keV. The radiation temperature is generally higher than the Thomson scattering temperature, indicating that there is a significant population of non-thermal electrons. The experimental ECCD profile measured with motional Stark effect (MSE) polarimetry is found to agree with quasi-linear theory except for the highest power density cases (QEC/ne2≫1). Radial transport of the energetic electrons with diffusion coefficients of ˜0.4 m2/s is needed to model the broadened ECCD profile at high power density.

  1. A Study on New Current Controller for 7-Phase BLDC Motor Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Surk; Jeon, Ywun Seok; Mok, Hyung Soo [Konkuk University (Korea); Kim, Duk Keun [Komotek Co., Ltd. (Korea)

    2001-04-01

    Recently, the demand of motor for industrial, household machinery is increasing. As Switching devices and control technology are progressing, so the use of BLDC Motor is increasing. But 3-phase BLCD Motor generally used has pulsating torque and speed variation in commutation, so the range of its application is limited to high speed operation. Especially, to solve these problems, it is necessary to increase phase of Motor, so study of Poly-Phase BLDC Motor is progressing. However, when hysteresis current controller is used, switching frequency is highly increasing. In this paper, 7-Phase BLDC Motor drive system is designed. Also MSTC (Minimum Switching Time Controller) is proposed and with simulation and experiment, their validities are verified. (author). 10 refs., 26 figs., 1 tab.

  2. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  3. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  4. Indirect Field Oriented Control for Five Phase Three Level Neutral Point Clamped Inverter Fed PMSM Drive

    Directory of Open Access Journals (Sweden)

    S. Sengottaian

    2015-08-01

    Full Text Available This study deals with a five phase three level Neutral Point Clamped (NPC inverter fed PMSM drive application. The motor performances depend upon mathematical model so the parameters vary are: noise, common mode voltage, flux variation and harmonic levels of the inverter or motor. Voltage saturation is one of the major problems of a motor which occurs due to speed oscillations, more current fluctuations. This problem can be solved by using PWM technique depends on the reference motor torque and flux. In this study Indirect Field Oriented Control (IFOC NPC inverter is suggested to reduce the voltage saturation. The three level neutral point clamped inverter is widely used for medium and high level applications. Compared with standard two level inverter, this type of NPC inverters have more merits. It generates greater number of levels output waveform in lower harmonic content at the same switching frequency and less voltage stress across the semiconductor switches; finally motor performance and control schemes are verified by using MATLAB/SIMULINK.

  5. Field Oriented Control for Rotor Position Estimation of IPM Drives over a Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Ekhlas Kadhum

    2013-01-01

    Full Text Available Field oriented control strategy of Interior Permanent Magnet IPM Synchronous Motor drives over a wide speed range applications is presented. Rotor position estimation using model reference adaptive system method for IPM Drive without using a mechanical sensor is illustrated considering the effects of cross-saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. The inductance measurement regards the cross saturation which is used to obtain the suitable id - characteristics in base and flux weakening regions. The simulation results show that rotor position estimation error accuracy was improved. Various dynamic conditions have been investigated

  6. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    Science.gov (United States)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  7. Two-motor single-inverter field-oriented induction machine drive dynamic performance

    Indian Academy of Sciences (India)

    Bhakti M Joshi; Mukul C Chandorkar

    2014-04-01

    Multi-machine, single-inverter induction motor drives are attractive in situations in which all machines are of similar ratings, and operate at approximately the same load torques. The advantages include small size compared to multi-inverter system, lower weight and overall cost. However, field oriented control of such drives is a challenge since no two motors will have exactly the same operating conditions at any time. In general, at least some motors in the system will operate away from perfect field orientation. It is therefore important to analyse their torque dynamics carefully. This paper discusses existing multi-machine field-oriented control methods, and analyses and compares them from the viewpoint of dynamic performance. For this, an analytical framework based on small-signal analysis is developed to compare multi-machine control methods. This analysis is verified by simulations and experiments.

  8. NUMERICAL SIMULATION OF FLOW FIELD BETWEEN FRICTIONAL PAIRS IN HYDROVISCOUS DRIVE SURFACE

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiahai; QIU Minxiu; LIAO Lingling; FU Linjian

    2008-01-01

    The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Reynolds equation or modified Reynolds equation is presented to model the flow field. Pressure and temperature distribution in radial and circumferential direction under three different conditions, i.e., isothermal, that considering viscosity-temperature characteristic as well as shear thinning non-Newtonian fluid are simulated, respectively, by utilizing the commercial computational fluid dynamics(CFD) software FLUENT. The results reveal that the grooves on the driven plate make the pressure, temperature distribution present periodic variation. The oil temperature and shear rate have important effects on the flow field between frictional pairs, and the oil temperature is more important parameter. The simulation results lay a theoretical foundation for the reasonable designs of hydroviscous drive.

  9. The evolution of arguments regarding the existence of field-aligned currents

    Science.gov (United States)

    Dessler, A. J.

    1984-01-01

    The present understanding of Birkeland (magnetically-field-aligned) currents was not obtained by a direct, logical course. The story is rather more complex. Starting at the end of the 19th century, the Norwegian scientist Kristian Birkeland laid out a compelling case, supported by both theory and experiment, for the existence of field-aligned currents that cause both the aurora and polar geomagnetic disturbances. Sydney Chapman, the British geophysicist, became the acknowledged leader and opinion maker in the field in the decades following Birkeland's death. Chapman proposed, in contradistinction to Birkeland's ideas, equivalent currents that were restricted to flow in the ionosphere with no vertical or field-aligned components. Birkeland's ideas may have faded completely if it had not been for Hannes Alfven, who became involved well after Chapman's ideas gained predominance. Alfven kept insisting that Birkeland's current system made more sense because field-aligned currents were required to drive most of the ionospheric currents. The author became personally involved when Zmuda et al. (1966) submitted to the Journal of Geophysical Research a paper reporting satellite data showing magnetic disturbances above the ionosphere that were consistent with field-aligned Birkeland currents, but which they did not interpret as being due to such currents.

  10. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    Science.gov (United States)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  11. The effect of Birkeland currents on magnetic field topology

    Science.gov (United States)

    Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

    1996-01-01

    A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

  12. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    Science.gov (United States)

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  13. Integrated Plasma Simulation of Lower Hybrid Current Drive Modification of Sawtooth in Alcator C-Mod

    Science.gov (United States)

    Bonoli, P. T.; Hubbard, A. E.; Schmidt, A. E.; Wright, J. C.; Kessel, C. E.; Batchelor, D. B.; Berry, L. A.; Harvey, R. W.

    2010-11-01

    Experiments were performed in Alcator C-Mod, where the onset time for sawteeth was delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through injection of off-axis LH current drive power [1]. In this poster we discuss simulations of these experiments using the Integrated Plasma Simulator (IPS) [2], through which driven current density profiles and hard x-ray spectra are computed using a ray tracing code (GENRAY) and Fokker Planck code (CQL3D) [3], that are executed repeatedly in time. The background plasma is evolved in these simulations using the TSC transport code with the Porcelli sawtooth model [4]. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Mtg. on Sim. and Mod. of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, Journal Comp. Phys. 66, 481 (1986).

  14. Component development for the ITER Ion Cyclotron Heating and Current Drive Transmission Line and Matching System

    Science.gov (United States)

    Goulding, R. H.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.

    2013-10-01

    The transmission line and matching network for the ITER Ion Cyclotron Heating and Current Drive System feeds two equatorial launchers, each with 24 phased current straps combined into groups of three, and each designed to couple up to 20 MW into ELMy H-mode plasmas in the frequency range 40-55 MHz, for pulse lengths up to 3600 s. The network includes > 1 km of 50 Ohm 300 mm diameter transmission line carrying up to 6 MW net power per line at VSWR = 1.5. In addition, there are 8 power splitters, 32 hybrid phase shifters incorporating 64 tuning stubs, 32 additional tuning stubs, and 36 vacuum capacitors, which are configured to provide pre-matching in the port cell region adjacent to the antenna, final matching, decoupling of mutual inductances between antenna elements, and passive ELM resilience. The development and design of the various system components will be discussed. High power tests of components have begun, and the latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  15. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  16. High current, low voltage carbon nanotube enabled vertical organic field effect transistors.

    Science.gov (United States)

    McCarthy, Mitchell A; Liu, Bo; Rinzler, Andrew G

    2010-09-08

    State-of-the-art performance is demonstrated from a carbon nanotube enabled vertical field effect transistor using an organic channel material. The device exhibits an on/off current ratio >10(5) for a gate voltage range of 4 V with a current density output exceeding 50 mA/cm(2). The architecture enables submicrometer channel lengths while avoiding high-resolution patterning. The ability to drive high currents and inexpensive fabrication may provide the solution for the so-called OLED backplane problem.

  17. Landau–Zener–Stueckelberg interferometry with driving fields in the quantum regime

    Science.gov (United States)

    Ashhab, S.

    2017-03-01

    We analyze the dynamics of a two-level quantum system (TLS) under the influence of a strong sinusoidal driving signal whose origin is the interaction of the two-level system with a quantum field. In this approach the driving field is replaced by a harmonic oscillator that is either strongly coupled to the TLS or populated with a large number of photons. Starting from the Rabi model, we derive expressions for the TLS’s oscillation frequencies and compare the results with those obtained from the model where the driving signal is treated classically. We show that in the limits of weak coupling and large photon number, the well-known expression for the Rabi frequency in the strong driving regime is recovered. In the opposite limit of strong coupling and small photon number, we find differences between the predictions of the semiclassical and quantum models. The results of the quantum picture can therefore be understood as Landau–Zener–Stueckelberg interferometry in the fully quantum regime.

  18. Recent Research Results in the Field of Electric Drives and Mechatronics

    Directory of Open Access Journals (Sweden)

    Rastislav Tabacek

    2003-01-01

    Full Text Available The paper presents an overview of research results achieved in the field of Electrical Drives and Mechatronics for the period of three years. The achieved outputs are formed into three individual parts. In the field of Electric Drives the most significant outputs have been achieved in the development of a new control algorithms for a.c. drives under general name 'Forced Dynamics Control' , in improvement of shaft sensorless control methods and in implementation of developed algorithms via digital signal processors. In the field of Electric Traction the most important results have been gained in optimization of power of traction vehicles andat development of diagnostic systems for evaluation of technical conditions of traction devices. In the field of Electric Machines the most important outputs have been achieved in the research of modern electronically commutated electrical machines, their performances in steady and transient states, new design method for their configuration and new methods for automatic parameters identification. In the end the list of the most important publications for all three parts is enclosed.

  19. Self-generated magnetic fields in direct-drive implosion experiments

    Science.gov (United States)

    Igumenshchev, I. V.; Zylstra, A. B.; Li, C. K.; Nilson, P. M.; Goncharov, V. N.; Petrasso, R. D.

    2014-06-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ˜10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ˜1015 W/cm2. Proton radiographs show multiple ring-like structures produced by electric fields ˜107 V/cm and fine structures from surface defects, indicating self-generated fields up to ˜3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇Te × ∇ne source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  20. Eddy-current analysis of isolated permanent-magnet drives using two- and three-dimensional finite-element methods (abstract)

    Science.gov (United States)

    Ferreira, C. A.

    1990-05-01

    Present drive systems which rely on mechanical devices for torque transmission have some negative features: the driven component cannot be isolated from the drive motor, rotating seals have inherent leakage and friction problems, and mechanical failures often occur due to torque overloads. Magnetic couplings are especially well suited for use in isolated-drive systems. This is often the case in military and aerospace applications where pumps and compressors are vital parts of the thermal and fuel operating systems. The application of permanent-magnet couplings in isolated drives requires accurate calculation of the eddy-current losses induced on the hermetic vessel. This is because the losses along with the required output torque dictate the size and efficiency of the permanent-magnet coupling. The vessel isolates the drive member from the driven member of the turbocompressor. The paper will show the formulation of the computational method based on the Poynting-vector theorem and the concept of motional electric field intensity. The eddy-current losses are calculated using two- and three-dimensional magnetostatic finite-element (FE) analysis. A comparison of the results obtained by two- and three-dimensional FE analysis is made. The results of the analysis will be compared to test data for verification. The test-facility setup and procedure will also be described. This state-of-the-art technique for computation of eddy-current losses has several advantages over conventional analysis methods: the nonlinearities of the magnetic circuit are taken into account, magnetic field fringing and end-leakage effects are not neglected, and the method does not rely on the use of empirical factors. The significant benefits of this approach are that trial-and-error experimental design approaches are eliminated and test data provide validation of analytical results.

  1. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    Science.gov (United States)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  2. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    Directory of Open Access Journals (Sweden)

    Mohammad Marufuzzaman

    2014-01-01

    Full Text Available High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA. FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.

  3. Two-way shape memory effect and alternating current driving characteristics of a TiNi alloy spring

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiguo; ZU Xiaotao

    2004-01-01

    Two-way shape memory effect (TWSME) was induced into the TiNi shape memory alloys (SMAs) spring by thermomechanical training after annealing treatment, which has promising application in micro-actuating fields. The TWSME spring can contract upon heating and extend upon cooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of 45%. During the training procedure, transformation temperatures and hysteresis were measured by different scanning calorimetry (DSC). The results show that As (reverse transformation start temperature) and Af (revere transformation finish temperature) shift to lower temperature after training. The intervals of Af-As and Ms-Mr (Ms and Mf are the martensite start and finish temperatures, respectively) increase and the heat of transformation decreases after training. The electrothermal driving characteristics of the TWSME springs were also investigated with alternating current density of 3.2-14.7 A/mm2. It is found that the time response and the maximum contraction ratio greatly depend on the magnitude of the electrical current density.

  4. Conserved currents for electromagnetic fields in the Kerr spacetime

    Science.gov (United States)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  5. NTM stabilization by alternating O-point EC current drive using a high-power diplexer

    Science.gov (United States)

    Kasparek, W.; Doelman, N.; Stober, J.; Maraschek, M.; Zohm, H.; Monaco, F.; Eixenberger, H.; Klop, W.; Wagner, D.; Schubert, M.; Schütz, H.; Grünwald, G.; Plaum, B.; Munk, R.; Schlüter, K. H.; ASDEX Upgrade Team

    2016-12-01

    At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands were performed. For the first time, injection into the O-points of the revolving islands was performed via a fast directional switch, which toggled the EC power between two launchers synchronously to the island rotation. The switching was performed by a resonant diplexer employing a sharp resonance in the transfer function, and a small frequency modulation of the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between the two outputs of the diplexer connected to two articulating launchers was possible. Phasing and control of the modulation were performed via a set of Mirnov coils and appropriate signal processing. In the paper, technological issues, the design of the diplexer, the tracking of the diplexer resonance to the gyrotron frequency, the generation and processing of control signals for the gyrotron, and the typical performance concerning switching contrast and efficiency are discussed. The plasma scenario is described, and plasma experiments are presented, where the launchers scanned the region of the resonant surface continuously and also where the launchers were at a fixed position near to the q  =  1.5-surface. In the second case, complete stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical demonstration for the applicability of diplexers in large-scale ECRH systems.

  6. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K., E-mail: pramod@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Kazarian, F.; Garibaldi, P.; Gassman, T. [ITER Organization, CS 90 046, 13067 Saint-Paul-Les-Durance (France); Artaud, J.F. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Belo, J. [Associacao Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal); Berger-By, G.; Bernard, J.M.; Cara, Ph. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy); Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2011-10-15

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  7. High Power Antenna Design for Lower Hybrid Current Drive in MST

    Science.gov (United States)

    Thomas, M. A.; Goetz, J. A.; Kaufman, M. C.; Oliva, S. P.; Caughman, J. B. O.; Ryan, P. M.

    2003-10-01

    RF current drive has been proposed as a method for reducing the tearing fluctuations that are responsible for anomalous energy transport in the RFP. A system for launching lower hybrid slow waves at 800 MHz and n_||= 7.5 is now in operation at up to 50 kW on MST. The antenna is an enclosed interdigital line using λ/4 resonators with an opening in the cavity through which the wave is coupled to the plasma. It has an untuned VSWR of ˜2, and is instrumented on 5 of its 23 elements to allow measurement of damping length. The antenna design is being optimized for higher power handling. Improvements include larger vacuum feedthroughs, better impedance matching, and RF instrumentation on all resonators. The new antenna will be modeled in Microwave Studio^TM. The goal is a design which can handle ˜250 kW and presents a VSWR of 1.4 or better without external tuning. Full instrumentation will allow more detailed power deposition measurements.

  8. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J. [Southwest Research Inst., San Antonio, TX (United States)

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  9. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Jones, S.; Paoletti, F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center); Petravich, G. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Rimini,

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 [times] 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  10. Nonsteady dynamic properties of a domain wall for the creep state under an alternating driving field

    Science.gov (United States)

    Zhou, N. J.; Zheng, B.

    2014-07-01

    With Monte Carlo simulations, the nonsteady dynamic properties of a domain wall have been systematically investigated for the thermally activated creep state under an alternating driving field. Taking the driven random-field Ising model in two dimensions as an example, two distinct growth stages of the domain interface are identified with both the correlation length and roughness function. One stage belongs to the universality class of the random depositions, and the other to that of the quenched Edwards-Wilkinson equation. In the latter case, due to the dynamic effect of overhangs, the domain interface may exhibit an intrinsic anomalous scaling behavior, different from that of the quenched Edwards-Wilkinson equation.

  11. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A. [ENEA, Unità Tecnica Fusione, Via E Fermi 45 Rome (Italy)

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  12. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Science.gov (United States)

    Mao, Huiting; Cheng, Irene; Zhang, Leiming

    2016-10-01

    Atmospheric mercury (Hg) is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain-valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM/GEM increasing from the

  13. Current practices of driving restriction implementation for patients with brain tumors.

    Science.gov (United States)

    Thomas, Sayana; Mehta, Minesh P; Kuo, John S; Ian Robins, H; Khuntia, Deepak

    2011-07-01

    Brain tumors may impair functioning in several neuro-cognitive domains and interfere with sophisticated tasks, such as driving motor vehicles. No formalized national guidelines or recommendations for driving restrictions in patients with brain tumors exist in the US. We created and administered a 24 question survey to 1,157 US medical practitioners, mostly neurosurgeons, radiation oncologists, and medical oncologists, to identify their knowledge of local driving restriction laws and their practice patterns regarding driving restriction instructions to brain tumor patients. Response were collected from 251 (21.7%) and analyzed from 221 (19%) recipients. Seventy-one percent of the respondents indicated they discuss driving recommendations/restrictions with brain tumor patients, with 82% primarily basing this on seizure activity. Approximately 28% of respondents were unsure if they are required by their State's motor vehicle licensing authority to report medically impaired drivers. Respondents felt that longer periods of restriction prior to re-evaluation are warranted in patients with malignant versus benign brain tumors and high versus low grade gliomas. Only 25% of respondents use formal, standardized testing to determine driving eligibility and approximately 31% address driving restrictions in every patient with a brain tumor. This survey highlights the lack of consensus regarding the responsibilities of physicians treating brain tumor patients in designing and enforcing driving restrictions. We propose that a panel of experts generate driving restriction guidelines to be used in conjunction with objective testing of motor and sensory impairment. These would aid practitioners in developing individualized driving restrictions for every brain tumor patient.

  14. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Science.gov (United States)

    Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.

    2016-05-01

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  15. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  16. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies on......-shifted current control is a cost-effective solution to multiple ASD systems in terms of harmonic cancellation.......A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...

  17. Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Arslanbekov, R.; Basiuk, V.; Carrasco, J.; Litaudon, X.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bizarro, J.P. [Instituto Superior Tecnico, Lisbon (Portugal). Lab. de Quimica Organica

    1996-01-01

    Using ray-tracing, a detailed investigation of the lower hybrid (LH) wave propagation in presence of toroidal magnetic field ripple is presented. By coupling ray tracing with a one-dimensional relativistic Fokker-Planck code, simulations of LH experiments have been performed for the Tore Supra tokamak. Taking into account magnetic ripple in LH simulations, a better agreement is found between numerical predictions and experimental observations, such as non-thermal Bremsstrahlung emission, current profile, ripple-induced power losses in local magnetic mirrors, when plasma conditions correspond to the ` `few passes` regime. (author). 47 refs.

  18. Morphology of the ring current derived from magnetic field observations

    Directory of Open Access Journals (Sweden)

    G. Le

    2004-04-01

    Full Text Available Our examination of the 20 years of magnetospheric magnetic field data from ISEE, AMPTE/CCE and Polar missions has allowed us to quantify how the ring current flows and closes in the magnetosphere at a variety of disturbance levels. Using intercalibrated magnetic field data from the three spacecraft, we are able to construct the statistical magnetic field maps and derive 3-dimensional current density by the simple device of taking the curl of the statistically determined magnetic field. The results show that there are two ring currents, an inner one that flows eastward at ~3 RE and a main westward ring current at ~4–7 RE for all levels of geomagnetic disturbances. In general, the in-situ observations show that the ring current varies as the Dst index decreases, as we would expect it to change. An unexpected result is how asymmetric it is in local time. Some current clearly circles the magnetosphere but much of the energetic plasma stays in the night hemisphere. These energetic particles appear not to be able to readily convect into the dayside magnetosphere. During quiet times, the symmetric and partial ring currents are similar in strength (~0.5MA and the peak of the westward ring current is close to local midnight. It is the partial ring current that exhibits most drastic intensification as the level of disturbances increases. Under the condition of moderate magnetic storms, the total partial ring current reaches ~3MA, whereas the total symmetric ring current is ~1MA. Thus, the partial ring current contributes dominantly to the decrease in the Dst index. As the ring current strengthens the peak of the partial ring current shifts duskward to the pre-midnight sector. The partial ring current is closed by a meridional current system through the ionosphere, mainly the field-aligned current, which maximizes at local times near the dawn and dusk. The closure currents flow in

  19. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    Science.gov (United States)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  20. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  1. Higher Spin Fields in Siegel Space, Currents and Theta Functions

    CERN Document Server

    Gelfond, O A

    2009-01-01

    Dynamics of four-dimensional massless fields of all spins is formulated in the Siegel space of complex $4\\times 4$ symmetric matrices. It is shown that the unfolded equations of free massless fields, that have a form of multidimensional Schrodinger equations, naturally distinguish between positive- and negative-frequency solutions of relativistic field equations, i.e. particles and antiparticles. Multidimensional Riemann theta functions are shown to solve massless field equations in the Siegel space. We establish the correspondence between conserved higher-spin currents in four-dimensional Minkowski space and those in the ten-dimensional matrix space. It is shown that global symmetry parameters of the current in the matrix space should be singular to reproduce a nonzero current in Minkowski space. The $\\D$-function integral evolution formulae for 4d massless fields in the Fock-Siegel space are obtained. The generalization of the proposed scheme to higher dimensions and systems of higher ranks is considered.

  2. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C., E-mail: hansec@uw.edu [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Columbia University, New York, New York 10027 (United States); Marklin, G. [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Victor, B. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); Akcay, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jarboe, T. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); PSI-Center, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-β Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  3. Magnetosphere-Ionosphere Coupling and Field-Aligned Currents

    CERN Document Server

    Oliveira, D M

    2015-01-01

    It is presented in this paper a review of one of several interactions between the magnetosphere and the ionosphere through the field-aligned currents (FACs). Some characteristics and physical implications of the currents flowing in a plane perpendicular to the magnetic field at high latitudes are discussed. The behavior of this system as an electric circuit is explained, where momentum and energy are transferred via Poynting flux from the magnetosphere into the ionosphere.

  4. Spectral confinement and current for atoms in strong magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren

    2007-01-01

    e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B<3......e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B

  5. Training compensatory viewing strategies : feasiblity and effect on practical fitness to drive in subjects with visual field defects

    NARCIS (Netherlands)

    Coeckelbergh, Tanja R.M.; Brouwer, Wiebo H.; Cornelissen, Frans W.; Kooijman, Aart C.

    2002-01-01

    Fifty-one subjects with visual field defects were trained to use compensatory viewing strategies.The subjects were referred to the training program by an official driving examiner of the Dutch Central Bureau of Driving Licenses. Three training programs were compared: laboratory training, mobility tr

  6. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  7. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  8. Streaming current magnetic fields in a charged nanopore.

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  9. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    Science.gov (United States)

    Prater, R.; Moeller, C. P.; Pinsker, R. I.; Porkolab, M.; Meneghini, O.; Vdovin, V. L.

    2014-08-01

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called 'helicons' or ‘whistlers’) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behaviour of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly towards the plasma centre. The high frequency also contributes to strong damping. Modelling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta is above about 1.8%. Detailed analysis of ray behaviour shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behaviour in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n‖, so wave accessibility issues can be reduced. Use of a travelling wave antenna provides a very narrow n‖spectrum, which also helps avoid accessibility problems.

  10. The pattern of the electromagnetic field emitted by mobile phones in motor vehicle driving simulators

    Directory of Open Access Journals (Sweden)

    Piotr Politański

    2013-06-01

    Full Text Available Introduction: The paper reports the results of the determinations of UMTS EMF distributions in the driver's cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Materials and Methods: Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. Results: When the power was set for the maximum (49 mW, a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the motor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. Conclusions: This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.

  11. Three-dimensional structure of ionospheric currents produced by field-aligned currents

    Science.gov (United States)

    Takeda, M.

    1982-08-01

    Ionospheric currents caused by field-aligned currents are calculated three-dimensionally under quiet conditions at the equinox, using a magnetic field line coordinate system and with the assumption of infinite parallel conductivity. Input field-aligned currents are assumed to be distributed only in the daytime and the whole system is assumed to be symmetric about the equator. Calculated currents are comparable with those of the ionospheric dynamo in higher latitudes, but much weaker in lower latitudes including the equatorial electrojet region. Hence, if the model is valid these currents may have a considerable effect on the day-to-day variation of Sq currents in higher latitudes, but little effect on those in lower latitudes such as the counter-electrojet.

  12. Study of lower hybrid current drive efficiency and its correlation with photon temperatures in the HT-7 tokamak

    Science.gov (United States)

    Younis, J.; Wan, B. N.; Lin, S. Y.; Shi, Y. J.; Ding, B. J.; Gong, X.; HT-7 Team

    2009-07-01

    Lower hybrid current drive (LHCD) efficiency is a very important parameter. The experimental current drive efficiency is defined as η = IrfneR/PLH, where Irf is the current driven by the lower hybrid waves (LHWs), ne is the central line-average density, R is the major radius of the plasma and PLH is the injected LH wave power absorbed by the plasma through Landau damping. A study of current drive efficiency of LHWs in the HT-7 tokamak has been carried out in the parameter ranges: ne = (1.2-2.5) × 1019 m-3, Ip = (80-200) kA, Bt = 1.8 T, PLH = (188-532) kW in the limiter configuration. Current drive efficiency is investigated through a simple correlation with photon temperature and normalized intensity of fast electron bremstrahlung emission, which is, in the first approximation, proportional to the averaged velocity and population of the fast electrons. The plasma current scanning experiment shows that CD efficiency increase is due to the increase in both the photon temperature and the population of the fast electrons generated by LHWs. The density scanning experiment shows that as the plasma density is increased, an increment in CD efficiency along with the increase in the population of fast electrons is observed. The slowing down through the collisions with bulk electrons is mainly responsible for the decreased photon temperature during the plasma density scan. These experiments strongly suggest the dominant role of the population of fast electrons generated by LHCD and the generation of the current carried by fast electrons.

  13. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  14. When do we think it is Safe to Drive after Hand Surgery? – Current Practice and Legal Perspective

    LENUS (Irish Health Repository)

    Murphy, SF

    2016-11-01

    Patients recovering from hand surgery frequently ask when it is safe to drive and it is unclear where the responsibility lies; the surgeon, the patient or the insurance company. An eight-question survey looking at various aspects of clinical practice was circulated to consultant and trainee plastic and orthopaedic surgeons in Ireland and the UK. Of the 89 surgeons who replied, (53%) felt the decision when to drive was the patient’s compared with the insurance company (40%) and the surgeon (7%). 80% advised patients to contact their insurance company. 87% were unaware of current regulations or guidelines. National guidelines were vague and left the decision with the treating doctor. Similarly, major insurers advise patients to contact their doctor for advice. From a legal standpoint, the patient has a duty of care to other road users to be in full control of his vehicle prior to driving, regardless of any advice received.

  15. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  16. Magnetic guide field generation in collisionless current sheets

    Directory of Open Access Journals (Sweden)

    W. Baumjohann

    2010-03-01

    Full Text Available In thin (Δ< few λi collisionless current sheets in a space plasma like the magnetospheric tail or magnetopause current layer, magnetic fields can grow from thermal fluctuation level by the action of the non-magnetic Weibel instability (Weibel, 1959. The instability is driven by the counter-streaming electron inflow from the "ion diffusion" (ion inertial Hall region into the inner current (electron inertial region after thermalisation by the two-stream instability. Under magnetospheric tail conditions it takes ~50 e-folding times (~100 s for the Weibel field to reach observable amplitudes |bW|~1 nT. In counter-streaming inflows these fields are of guide field type.

  17. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  18. 3-D Magnetospheric Field and Plasma Containing Thin Current Sheets

    Science.gov (United States)

    Zaharia, S.; Cheng, C. Z.; Maezawa, K.; Wing, S.

    2002-05-01

    In this study we present fully-3D self-consistent solutions of the magnetosphere by using observation-based plasma pressure distributions and computational boundary conditions based on the T96 magnetospheric field model. The pressure profiles we use are either taken directly from observations (GEOTAIL pressure data in the plasma sheet and DMSP ionospheric pressure) or empirical (Spence-Kivelson formula for pressure on the midnight equatorial line). The 3-D solutions involve solving 2 coupled elliptic equations in a flux coordinate systems, with the magnetic field expressed by two Euler potentials and using appropriate boundary conditions for both the closed- and open-field regions derived from the empirical field model. We look into how the self-consistent magnetic field and current structures change under different external conditions, and we discuss the appearance of thin cross-tail current sheets during disturbed magnetospheric times.

  19. Effective variable switching point predictive current control for ac low-voltage drives

    Science.gov (United States)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  20. Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX

    Science.gov (United States)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott

    2010-11-01

    The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).

  1. Observation of Lower Hybrid Current Drive Improved Confinement with a Graphite Probe at the Last Closed Flux Surface of the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    徐国盛; 万宝年; 宋梅; 凌必利; 匡光力; 丁伯江

    2002-01-01

    High time resolution measurements of the electrostatic fluctuations, radial electric field Er and turbulence-induced electron flux Гe have been performed across the transition of lower hybrid current drive improved confinement with a graphite Langmuir probe array at the last closed flux surface of the HT-7 tokamak. The decrease of Гe is dominated by the suppression of fluctuation levels, which follows the change of Er. A reversal of the poloidal propagation direction of turbulence demonstrates that the poloidal propagation is dominated by Eт× Bφ drift. The enhancement of poloidal coherence accompanies the fluctuation suppression, which suggests the subtle variation of turbulence features.

  2. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz;

    2017-01-01

    Electronic Inductor (EI)-based front-end rectifiers have a large potential to become the prominent next generation of Active Front End (AFE) topology used in many applications including Adjustable Speed Drives (ASDs) for systems having unidirectional power flow. The EI-based ASD is mostly attract...

  3. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; James, Aaron W; Huang, Zubin; Prinz, Fritz B; Longaker, Michael T

    2010-03-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fields in concert with and without osteogenic factors, we demonstrated increased early osteoblast-specific markers. We were also able to establish that commonly reported artifacts of electric field stimulation are not the primary mediators of the observed effects. The electric fields caused marked changes in the cytoskeleton. We used atomic force microscopy-based force spectroscopy to record an increase in the cytoskeletal tension after treatment with electric fields. We abolished the increased cytoskeletal stresses with the rho-associated protein kinase inhibitor, Y27632, and did not see any decrease in osteogenic gene expression, suggesting that the pro-osteogenic effects of the electric fields are not transduced via cytoskeletal tension. Electric fields may show promise as candidate enhancers of osteogenesis of ASCs and may be incorporated into cell-based strategies for skeletal regeneration.

  4. Dynamics of non-Markovianity in the presence of a driving field

    Indian Academy of Sciences (India)

    Mandani Somayeh; Sarbishaei Mohsen; Javidan Kurosh

    2016-03-01

    We investigate a two-level system in a cavity QED by considering the effects ofamplitude damping, phase damping and driving field. We have studied the non-Markovianity in resonance and non-resonance limits in the presence of these effects using Breuer–Laine–Piilo (BLP) non-Markovianity measure ($N_{\\rm BLP}$). The evolution of the system is derived using the time convolutionless (TCL) master equation. In some conditions, it is shown that in the presence of a driving field, the $N_{\\rm BLP} increases in the resonance and non-resonance limits. We have also found the exact solution of the master equation in order to investigate the effect of temperature- and environment excited states. We have shown that the behaviour of non-Markovianity is very different from what one can see from the TCL approach. We have also presented some explanation about the behaviour of non-Markovianity in the exact solution using quantum discord (QD).

  5. Driving with Central Visual Field Loss II: How Scotomas above or below the Preferred Retinal Locus (PRL) Affect Hazard Detection in a Driving Simulator.

    Science.gov (United States)

    Bronstad, P Matthew; Albu, Amanda; Bowers, Alex R; Goldstein, Robert; Peli, Eli

    2015-01-01

    We determined whether binocular central scotomas above or below the preferred retinal locus affect detection of hazards (pedestrians) approaching from the side. Seven participants with central field loss (CFL), and seven age-and sex-matched controls with normal vision (NV), each completed two sessions of 5 test drives (each approximately 10 minutes long) in a driving simulator. Participants pressed the horn when detecting pedestrians that appeared at one of four eccentricities (-14°, -4°, left, 4°, or 14°, right, relative to car heading). Pedestrians walked or ran towards the travel lane on a collision course with the participant's vehicle, thus remaining in the same area of the visual field, assuming participant's steady forward gaze down the travel lane. Detection rates were nearly 100% for all participants. CFL participant reaction times were longer (median 2.27s, 95% CI 2.13 to 2.47) than NVs (median 1.17s, 95%CI 1.10 to 2.13; difference pretinal locus delay reaction times to a greater extent; however, taken together, the results of our studies suggest that any binocular CFL might negatively impact timely hazard detection while driving and should be a consideration when evaluating vision for driving.

  6. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    Science.gov (United States)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  7. Modeling the current distribution in HTS tapes with transport current and applied magnetic field

    NARCIS (Netherlands)

    Yazawa, Takashi; Rabbers, Jan-Jaap; Shevchenko, Oleg A.; Haken, ten Bennie; Kate, ten Herman H.J.; Maeda, Hideaki

    1999-01-01

    A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in te

  8. Reconfiguring photonic metamaterials with currents and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Valente, João, E-mail: jpv1f11@orc.soton.ac.uk; Ou, Jun-Yu; Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton SO17 1BJ (United Kingdom); Youngs, Ian J. [Physical Sciences Department, DSTL, Salisbury SP4 0JQ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-03-16

    We demonstrate that spatial arrangement and optical properties of metamaterial nanostructures can be controlled dynamically using currents and magnetic fields. Mechanical deformation of metamaterial arrays is driven by both resistive heating of bimorph nanostructures and the Lorentz force that acts on charges moving in a magnetic field. With electrically controlled transmission changes of up to 50% at sub-mW power levels, our approaches offer high contrast solutions for dynamic control of metamaterial functionalities in optoelectronic devices.

  9. Electromagnetic Fields Radiated by a Circular Loop with Arbitrary Current

    CERN Document Server

    Salem, Mohamed A

    2014-01-01

    We present a rigorous approach to compute the electromagnetic fields radiated by a thin circular loop with arbitrary current. We employ a polar transmission representation along with a Kontorovich-Lebedev transform to derive integral representations of the field in the interior and exterior regions of a sphere circumscribing the loop. The convergence of the obtained expressions is discussed and comparison with full-wave simulation and other methods are shown.

  10. Lower Hybrid Current Drive and Heating for the National Transport Code Collaboration

    Science.gov (United States)

    Ignat, D. W.; Jardin, S. C.; McCune, D. C.; Valeo, E. J.

    2000-10-01

    The Lower hybrid Simulation Code LSC was originally written as a subroutine to the Toroidal Simulation Code TSC (Jardin, Pomphrey, Kessel, et al) and subsequently ported to a subroutine of TRANSP. Modifications to simplify the use of the LSC both as a callable module, and also independently of larger transport codes, and improve the documentation have been undertaken with the goal of installing LSC in the NTCC library. The physical model, which includes ray tracing from a Brambilla spectrum, 1D Fokker-Planck development of the electron distribution, the Karney-Fisch treatment of the electric field, heuristic diffusion of current and power and wall scattering, has not been changed. The computational approach is to suppress or remove from the control of the user numerical parameters such as step size and number of iterations while changing some code to be extremely stable in varied conditions. Essential graphics are now output as gnuplot commands and data for off-line post processing, but the original outputs to sglib are retained as an option. Examples of output are shown.

  11. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  12. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  13. Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.; Wan

    2017-02-01

    Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.

  14. Formation of current filaments and magnetic field generation in a quantum current-carrying plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Taghadosi, M. R.; Majedi, S.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)

    2013-09-15

    The nonlinear dynamics of filamentation instability and magnetic field in a current-carrying plasma is investigated in the presence of quantum effects using the quantum hydrodynamic model. A new nonlinear partial differential equation is obtained for the spatiotemporal evolution of the magnetic field in the diffusion regime. This equation is solved by applying the Adomian decomposition method, and then the profiles of magnetic field and electron density are plotted. It is shown that the saturation time of filamentation instability increases and, consequently, the instability growth rate and the magnetic field amplitude decrease in the presence of quantum effects.

  15. Enhanced oil recovery - nitrogen. Large fractures, water drive make Andector field a prime target

    Energy Technology Data Exchange (ETDEWEB)

    Wash, R.

    1982-03-01

    An immiscible nitrogen displacement project is expected to recover 973,928 bbl of tertiary oil from the Andector (Ellenburger) field in NW Ector County, Texas. Operated by Phillips Petroleum Co., the project began November 30, 1981, on the 1293-acre Embar lease in the south fault block of the Andector field, the highest of all Ellenburger fields in W. Texas in terms of cumulative production. (Total production as of January 1, 1981 was 151.2 million bbl). The nitrogen technique was chosen by Phillips due to the type of rock and the active water drive in this area. The aquifer is shared by several other Ellenburger fields in a 3-county area. The formation of interest is a highly fractured, vulgar, medium-to-fine-grained crystalline dolomite, fairly typical for the Ellenburger in W. Texas. It occurs between 7782 ft and 8835 ft. Overall porosity is 3.8%. Permeability is in the 2000-md range. At least 40% of the porosity is in solution cavities or vugs. The way in which nitrogen is used in the Ellenburger is discussed, along with the advantages and disadvantages of its use.

  16. Retrieving hydrological signals from current and future gravity field missions

    Science.gov (United States)

    Pail, Roland; Horvath, Alexander

    2017-04-01

    The Global Geodetic Observing System is formed by three pillars: Changes in Earth's shape, gravity field and rotation. Dedicated satellite missions are crucial in the determination and monitoring of the Earth's gravity field. Monitoring the gravity field and studying mass transport phenomena, responsible for the temporal variability of the gravity field, are of high interest. Especially the hydrology is of importance since the mechanisms of water redistribution and unexpected events like floods and droughts can have significant socio-economic impact. The presented study investigates in the possibilities and limits of current space geodetic missions like GRACE to observe such effects. The main target of the study is to determine the potential gain in accuracy as well as spatial and temporal resolution of target signals like hydrological events, whilst operating future mission scenarios. The results from a series of comprehensive simulation runs are presented to demonstrate the benefits to society operating dedicated future space geodetic gravity field missions.

  17. Vertical coupling between troposphere and lower ionosphere by electric currents and fields at equatorial latitudes

    Science.gov (United States)

    Tonev, P. T.; Velinov, P. I. Y.

    2016-04-01

    Thunderstorms play significant role in the upward electrical coupling between the troposphere and lower ionosphere by quasi-static (QS) electric fields generated by quiet conditions (by slow variations of electric charges), as well as during lightning discharges when they can be strong enough to produce in the nighttime lower ionosphere sprites. Changes are caused in lower ionosphere by the QS electric fields before a sprite-producing lightning discharge which can play role in formation of the stronger sprite-driving transient QS electric fields due to lightning. These changes include electron heating, modifications of conductivity and electron density, etc. We demonstrate that such changes depend on the geomagnetic latitude determining the magnetic field lines inclination, and thus, the anisotropic conductivity. Our previous results show that the QS electric fields in the lower ionosphere above equatorial thunderstorms are much bigger and have larger horizontal extension than those generated at high and middle altitudes by otherwise same conditions. Now we estimate by modeling the electric currents and fields generated in lower ionosphere above equatorial thunderstorms of different horizontal dimensions during quiet periods and of their self-consistent effects to conductivity whose modifications can play role in formation of post-lightning sprite-producing electric fields. Specific electric currents configurations and distributions of related electric fields are estimated first by ambient conductivity. Then, these are evaluated self-consistently with conductivity modification. The electric currents are re-oriented above ~85 km and flow in a narrow horizontal layer where they dense. Respectively, the electric fields and their effect on conductivity have much larger horizontal scale than at middle latitudes (few hundred of kilometers). Horizontally large sources, such as mesoscale convective structures, cause enhancements of electric fields and their effects. These

  18. Field-aligned currents during northward interplanetary magnetic field: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2005-01-01

    [1] We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF By component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents....... However, the idea that the NBZ currents rotate to form the two sheets of FACs sandwiching the ionospheric DPY current is only partly confirmed by the simulation....

  19. Simultaneous field-aligned currents at Swarm and Cluster satellites

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, J. Y.; Yang, Y. Y.

    2015-01-01

    We show for the first time, with direct, multispacecraft calculations of electric current density, and other methods, matched signatures of field-aligned currents (FACs) sampled simultaneously near the ionosphere at low (∼500km altitude) orbit and in the magnetosphere at medium (similar to 2.5 RE...... find clear evidence of both small-scale and large-scale FACs and clear matching of the behavior and structure of the large-scale currents at both Cluster and Swarm. The methodology is made possible through the joint operations of Cluster and Swarm, which contain, in the first several months of Swarm...... operations, a number of close three-spacecraft configurations....

  20. Birkeland current effects on high-latitude groundmagnetic field perturbations

    CERN Document Server

    Laundal, K M; Lehtinen, N; Gjerloev, J W; Østgaard, N; Tenfjord, P; Reistad, J P; Snekvik, K; Milan, S E; Ohtani, S; Anderson, B J

    2016-01-01

    Magnetic perturbations on ground at high latitudes are directly associated only with the divergence-free component of the height-integrated horizontal ionospheric current, $\\textbf{J}_{\\perp,df}$. Here we show how $\\textbf{J}_{\\perp,df}$ can be expressed as the total horizontal current $\\textbf{J}_\\perp$ minus its curl-free component, the latter being completely determined by the global Birkeland current pattern. Thus in regions where $\\textbf{J}_\\perp = 0$, the global Birkeland current distribution alone determines the local magnetic perturbation. We show with observations from ground and space that in the polar cap, the ground magnetic field perturbations tend to align with the Birkeland current contribution in darkness but not in sunlight. We also show that in sunlight, the magnetic perturbations are typically such that the equivalent overhead current is anti-parallel to the convection, indicating that the Hall current system dominates. Thus the ground magnetic field in the polar cap relates to different c...

  1. Characteristics of electron cyclotron resonance plasma formed by lower hybrid current drive grill antenna

    Indian Academy of Sciences (India)

    P K Sharma; S L Rao; K Mishra; R G Trivedi; D Bora

    2008-03-01

    A 3.7 GHz system, which is meant for LHCD experiments on ADITYA tokamak, is used for producing ECR discharge. The ECR discharge is produced by setting the appropriate resonance magnetic field of 0.13 T, with hydrogen at a fill pressure of about 5 × 10-5 Torr. The RF powe r, up to 10 kW (of which ∼ 50% is reflected back), with a typical pulse length of 50 ms, is injected into the vacuum chamber of the ADITYA tokamak by a LHCD grill antenna and is used for plasma formation. The average coupled RF power density (the RF power/a typical volume of the plasma) is estimated to be ∼ 5 kW/m3. When the ECR appears inside the tokamak chamber for the given pumping frequency ( = 3.7 GHz) a plasma with a density () ∼ 4 × 1016 m-3 and electron temperature ∼ 8 eV is produced. The density and temperature during the RF pulse are measured by sets of Langmuir probes, located toroidally, on either side of the antenna. signals are also monitored to detect ionization. An estimate of density and temperature based on simple theoretical calculation agrees well with our experimental measurements. The plasma produced by the above mechanism is further used to characterize the ECR-assisted low voltage Ohmic start-up discharges. During this part of the experiments, Ohmic plasma is formed using capacitor banks. The plasma loop voltage is gradually decreased, till the discharge ceases to form. The same is repeated in the presence of ECR-formed plasma (RF pre-ionization), formed 10 ms prior to the loop voltage. We have observed that (with LHCD-induced) ECR-assisted Ohmic start-up discharges is reliably and repeatedly obtained with reduced loop voltage requirement and breakdown time decreases substantially. The current ramp-up rates also decrease with reduced loop voltage operation. These studies established that ECR plasma formed with LHCD system exhibits similar characteristics as reported earlier by dedicated ECR systems. This experiment also addresses the issue of whether ECR plasma

  2. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... dayside field lines. The existence of a small nonzero IMF B y component, however, effectively acts to open up the magnetosphere. When ∣B y ∣ position of the polar cap is strongly asymmetric with respect to the noon-midnight meridian, depending on the sign of B y . In the northern hemisphere for B...... y positive(negative) the polar cap is then located mainly in the dawnside (duskside), in close accordance with what have been observed using particle precipitation data or auroral observations. The simulated NBZ currents map to major portions of the magnetopause: the flanks and the mantle. They can...

  3. THEORY OF ELECTROMAGNETIC DRIVE WITH ELEMENTARY PARTICLES CURRENT AND VACUUM POLARIZATION

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2016-01-01

    Full Text Available The article discusses a model of rocket motor of electromagnetic type, consisting of a source of electromagnetic radio frequency oscillations and the conical cavity, in which electromagnetic waves are excited. We have created a multi-dimensional transient numerical model describing the process of establishing electromagnetic oscillations in the resonator, taking into account the finite conductivity of the walls. Separately, the standing waves in the cavity with conducting walls have been simulated. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in a case of steady and unsteady waves. We have built a dynamic model taking into account the thermal conductivity and electrical conductivity of the walls, waves and particles emission and vacuum polarization. We have also developed a dynamic model enables to optimize a thrust force on a considerable number of parameters without the involvement of the hypotheses about the physics of the phenomenon. We run the optimization of the operating parameters of the device, namely by the excitation frequency, the frequency of the modulating signal, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of forced heat transfer and the temperature dependence of the resistance of the material of the cavity walls. It is found that the pulse modulation greatly improves the efficiency of conversion of electromagnetic energy into thrust. The mechanism of formation of traction, adjusting the metrics of space-time, the current contribution of elementary particles, the Yang-Mills and electromagnetic fields is proposed. It is shown that the contribution of the elementary particles in the thrust force is proportional to the electrical conductivity of the system multiplied by Abraham force

  4. Electric field profiling by current transients in silicon diodes

    CERN Document Server

    Menichelli, D; Borchi, E; Toci, G

    2002-01-01

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 mu m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  5. Electric field profiling by current transients in silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, D. E-mail: menichelli@ingfil.ing.unifi.it; Serafini, D.; Borchi, E.; Toci, G

    2002-01-11

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 {mu}m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  6. Predicting Motor Vehicle Collisions in a Driving Simulator in Young Adults Using the Useful Field of View Assessment

    Science.gov (United States)

    McManus, Benjamin; Cox, Molly K.; Vance, David E.; Stavrinos, Despina

    2015-01-01

    Objective Being involved in motor vehicle collisions is the leading cause of death in 1 to 34 year olds, and risk is particularly high in young adults. The Useful Field of View (UFOV) task, a cognitive measure of processing speed, divided attention, and selective attention, has been shown to be predictive of motor vehicle collisions in older adults, but its use as a predictor of driving performance in a young adult population has not been investigated. The present study examined whether UFOV was a predictive measure of motor vehicle collisions in a driving simulator in a young adult population. Method The 3-subtest version of UFOV (lower scores measured in milliseconds indicate better performance) was administered to 60 college students. Participants also completed an 11-mile simulated drive to provide driving performance metrics. Results Findings suggested that subtests 1 and 2 suffered from a ceiling effect. UFOV subtest 3 significantly predicted collisions in the simulated drive. Each 30 milliseconds slower on the subtest was associated with nearly a 10% increase in the risk of a simulated collision. Post-hoc analyses revealed a small partially mediating effect of subtest 3 on the relationship between driving experience and collisions. Conclusion The selective attention component of UFOV subtest 3 may be a predictive measure of crash involvement in a young adult population. Improvements in selective attention may be the underlying mechanism in how driving experience improves driving performance. PMID:25794266

  7. Digitally Controlled Current Source Amplifiers for Power Converter Gate Drive Units

    OpenAIRE

    Scheele, Mathias

    2013-01-01

    Within this project, performance differences of 3.3 kV / 1500 A IGBT modules of the same type, but of different production batches are being investigated while the modules are being driven by the gate drive units of Bombardier Transportation. The results will be compared to measurements of a reference module. Devices of two different manufacturers were used. Results show that the deviations in terms of dI/dt, dV/dt and losses are generally very small. However, the IGBTs react differently if a...

  8. REACTIVE CURRENT OF AN INDUCTION ELECTRIC DRIVES WITH THYRISTOR VOLTAGE REGULATOR

    Directory of Open Access Journals (Sweden)

    J.V. Kovalova

    2014-12-01

    Full Text Available A model for a separation of reactive constituent from current of idling of an induction motor at its feed from a thyristor voltage regulator in the dependences on the control angle of thyristors is developed. As a result of modeling, dependence of relative reactive current which is approximated by formula for calculation of effective current of reactive constituent of nonsinusoidal current is obtained.

  9. Driving with central visual field loss I: Impact of central scotoma on response to hazards

    Science.gov (United States)

    Bronstad, P. Matthew; Bowers, Alex R.; Albu, Amanda; Goldstein, Robert; Peli, Eli

    2012-01-01

    Objective To determine how central field loss (CFL) affects reaction time to pedestrians and test the hypothesis that scotomas lateral to the preferred retinal locus will delay detection of hazards approaching from that side. Methods Eleven participants with binocular CFL (scotoma diameter 7°-25°; VA 0.3-1.0 logMAR) using lateral preferred retinal fixation loci and eleven matched controls with normal vision drove in a simulator for about an hour and a half per session, for two sessions a week apart. Participants responded to frequent virtual pedestrians that appeared on either the left or right sides, and approached the participants’ lane on a collision trajectory that, therefore, caused them to remain in approximately the same area of the visual field. Results CFL participants reacted more slowly to pedestrians that appeared in the area of visual field loss than in non-scotomatous areas (4.3 vs. 2.4 seconds, phazard detection even though small eye movements could potentially compensate for the loss. Responses in non-scotomatous areas were also delayed, though to a lesser extent, possibly due to the eccentricity of fixation. Our findings will help practitioners in advising patients with CFL about specific difficulties they may face when driving. PMID:23329309

  10. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... find that the existence and geometry of the polar cap is closely connected to the IMF B y component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... dayside field lines. The existence of a small nonzero IMF B y component, however, effectively acts to open up the magnetosphere. When ∣B y ∣

  11. How the Strength and Thickness of Field-aligned Currents Depend on Solar Wind and Ionospheric Parameters

    Science.gov (United States)

    Johnson, J.; Wing, S.

    2012-12-01

    Recently, Wing et al. [2011] examined the dependence of field-aligned currents, peak electron energy, and electron energy flux on solar wind parameters. We provide an analytical analysis of how velocity shear layers couple to the ionosphere via field-aligned currents. In the model, we use the Knight relation to express the field-aligned current in terms of the potential drop between the magnetosphere and ionosphere and solve for the ionospheric potential using current continuity. We obtain an analytic expression for the dependence of the current, the current maximum, and the current thickness on the magnetosheath velocity, magnetopause shear layer thickness, magnetospheric density and temperature, and ionospheric conductivity. We compare the analytical results for the current profiles using the magnetic field instruments on board the DMSP satellites. Estimates for FAC strength and thickness allow us to constrain the model to estimate the thickness of the magnetopause velocity shear layer, which is consistent with in situ observations and kinetic simulations. Finally, we discuss how the presence of waves could affect the field-aligned currents. Wing, S., S. Ohtani, J. R. Johnson, M. Echim, P. T. Newell, T. Higuchi, G. Ueno, and G. R. Wilson (2011), Solar wind driving of dayside field-aligned currents, J. Geophys. Res., 116, A08208, doi:10.1029/2011JA016579.

  12. Determinants of the electric field during transcranial direct current stimulation.

    Science.gov (United States)

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Depolarization of a piezoelectric film under an alternating current field

    Science.gov (United States)

    Kwok, K. W.; Cheung, M. K.; Chan, H. L. W.; Choy, C. L.

    2007-03-01

    In this article, we demonstrate that a sol-gel-derived niobium-doped lead zirconate titanate film can be depolarized by the application of alternating current (ac) fields of diminishing amplitude and we explain the phenomenon based on the concept of the Preisach model. The amplitude of the ac fields is decreased from 20 to 2 MV/m in ten steps. The observed piezoelectric coefficient of the film decreases after each ac field step. Depending on the initial polarization and the direction of the ac fields, the piezoelectric coefficient can decrease to a very small value indicating the complete depolarization of the film. Our results reveal the existence of a distribution of the switching fields in the microdomains (Preisach dipolar units), and that because of mutual interactions the magnitudes of the switch-up and switch-down fields for each microdomain are not necessarily the same. Our results also suggest that the sputter deposition of the top electrode can induce more "down-state" microdomains, thus giving rise to an initial polarization in the film. Because of interactions with other microdomains or other effects, part of these microdomains exhibit very high switching fields.

  14. Driving with Central Visual Field Loss II: How Scotomas above or below the Preferred Retinal Locus (PRL Affect Hazard Detection in a Driving Simulator.

    Directory of Open Access Journals (Sweden)

    P Matthew Bronstad

    Full Text Available We determined whether binocular central scotomas above or below the preferred retinal locus affect detection of hazards (pedestrians approaching from the side. Seven participants with central field loss (CFL, and seven age-and sex-matched controls with normal vision (NV, each completed two sessions of 5 test drives (each approximately 10 minutes long in a driving simulator. Participants pressed the horn when detecting pedestrians that appeared at one of four eccentricities (-14°, -4°, left, 4°, or 14°, right, relative to car heading. Pedestrians walked or ran towards the travel lane on a collision course with the participant's vehicle, thus remaining in the same area of the visual field, assuming participant's steady forward gaze down the travel lane. Detection rates were nearly 100% for all participants. CFL participant reaction times were longer (median 2.27s, 95% CI 2.13 to 2.47 than NVs (median 1.17s, 95%CI 1.10 to 2.13; difference p<0.01, and CFL participants would have been unable to stop for 21% of pedestrians, compared with 3% for NV, p<0.001. Although the scotomas were not expected to obscure pedestrian hazards, gaze tracking revealed that scotomas did sometimes interfere with detection; late reactions usually occurred when pedestrians were entirely or partially obscured by the scotoma (time obscured correlated with reaction times, r = 0.57, p<0.001. We previously showed that scotomas lateral to the preferred retinal locus delay reaction times to a greater extent; however, taken together, the results of our studies suggest that any binocular CFL might negatively impact timely hazard detection while driving and should be a consideration when evaluating vision for driving.

  15. Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2013-09-18

    Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current-voltage curve was dominated by inward TTX-sensitive persistent sodium current (I(NaP)) that activated near -75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near -70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near -70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of I(NaP), which then depolarizes the cell from -70 mV to spike threshold. We quantified the relative contributions of I(NaP), hyperpolarization-activated cation current (I(h)), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of I(NaP) in a positive feedback loop starting near -70 mV and providing increasing inward current to threshold. These results show that the pacemaking "engine" from I(NaP) is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near -70 mV, as by muscarinic stimulation.

  16. Normalized velocity profiles of field-measured turbidity currents

    Science.gov (United States)

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  17. Superconducting toroidal field coil current densities for the TFCX

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  18. Nanoseconds field emitted current pulses from ZrC needles and field emitter arrays

    CERN Document Server

    Ganter, R; Betemps, R; Dehler, M; Gerber, T; Gobrecht, J; Gough, C; Johnson, M; Kirk, E; Knopp, G; Le Pimpec, F; Li, K; Paraliev, M; Pedrozzi, M; Rivkin, L; Schulz, L; Sehr, H; Wrulich, A F

    2006-01-01

    The properties of the electron source define the ultimate limit of the beam quality in linear accelerators like Free Electron Lasers (FEL). The goal is to develop an electron gun delivering beam emittance lower than current state of the art. Such a gun should reduce the cost and size of an X-ray Free Electron Laser (XFEL). In this paper we present two concepts of field emitter cathodes which could potentially produce low emittance beam. The first challenging parameter for such cathode is to emit peak current as high as 5 A. This is the minimum current requirement for the XFEL concept from Paul Scherrer Institut.1 Maximum current of 0.12 A and 0.58 A have been reached respectively with field emitter arrays (FEA) and single needle cathodes. Laser assisted field emission gave encouraging results to reach even higher peak current and to pre-bunch the beam.

  19. Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

    Directory of Open Access Journals (Sweden)

    A. MILOUDI

    2005-01-01

    Full Text Available The use of PI controllers for speed control of induction machine drives is characterized by an overshoot during tracking mode and a poor load disturbance rejection. This is mainly caused by the fact that the complexity of the system does not allow the gains of the PI controller to exceed a certain low value. At starting mode the high value of the error is amplified across the PI controller provoking high variations in the command torque. If the gains of the controller exceed a certain value, the variations in the command torque become too high and will destabilize the system.To overcome this problem we propose the use of a limiter ahead of the PI controller. This limiter causes the speed error to be maintained within the saturation limits provoking, when appropriately chosen, smooth variations in the command torque even when the PI controller gains are very high.In this paper, a new approach to control the speed of an indirect field oriented induction machine drive using a classical PI controller is proposed. Its simulated input – output non linear relationship is then learned off – line using a feed – forward linear network with one hidden layer.The simulation of the system using either the modified PI controller or the learned neural network controller shows promising results. The motor reaches the reference speed rapidly and without overshoot, step commands are tracked with almost zero steady state error and no overshoot, load disturbances are rapidly rejected and variations of some of the motor parameters are fairly well dealt with.

  20. Research on Field Emission and Dark Current in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  1. Optimal state feedback control of brushless direct-current motor drive systems based on Lyapunov stability criterion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived.This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions.Simulated responses are presented to highlight the effectiveness of the proposed control strategy.

  2. Berry{close_quote}s phase and a possible new topological current drive in certain weak link superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, F.; Shenoy, S.R. [International Center for Theoretical Physics, P. O. Box 586, Miramare, 34100 Trieste (Italy)

    1996-06-01

    We examine the consequences of Berry{close_quote}s phase for the dynamics of Josephson junctions and junction arrays in which moving vortices are present. For both a large annular Josephson junction and a 2D junction array, Berry{close_quote}s phase produces a new current drive in the superconducting phase dynamics of these weak link systems. This Berry phase effect is shown to be physically inequivalent to a known effect in junction arrays associated with the Aharonov-Casher phase. {copyright} {ital 1996 The American Physical Society.}

  3. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    , extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...

  4. Gandhi and the Environmental Consequences of the Current Drive to Industrialization and Modernization.

    Science.gov (United States)

    Sinha, Rajiv K.

    1993-01-01

    Discusses Gandhi's developmental philosophy that small is beautiful in relation to current issues in ecological conservation. Issues include environmental education, economic development, rural development, natural farming, and Gandhi's philosophy among Western nations. (MDH)

  5. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  6. Current-Sensing and Voltage-Feedback Driving Method for Large-Area High-Resolution Active Matrix Organic Light Emitting Diodes

    Science.gov (United States)

    In, Hai‑Jung; Choi, Byong‑Deok; Chung, Ho‑Kyoon; Kwon, Oh‑Kyong

    2006-05-01

    There is the problem of picture quality nonuniformity due to thin film transistor (TFT) characteristic variations throughout a panel of large-area high-resolution active matrix organic light emitting diodes. The current programming method could solve this issue, but it also requires very long charging time of a data line at low gray shades. Therefore, we propose a new driving method and a pixel circuit with emission-current sensing and feedback operation in order to resolve these problems. The proposed driving method and pixel circuit successfully compensate threshold voltage and mobility variations of TFTs and overcome the data line charging problem. Simulation results show that emission current deviations of the proposed driving method are less than 1.7% with ± 10.0% mobility and ± 0.3 V threshold voltage variations of pixel-driving TFTs, which means the proposed driving method is applicable to large-area high-resolution applications.

  7. A Review of Voltage and Current Signature Diagnosis in Industrial Drives

    Directory of Open Access Journals (Sweden)

    K. Vinoth Kumar

    2011-09-01

    Full Text Available This paper presents the review of identify the different types of faults in the induction motor during online condition by using current and voltage signature analysis. Special attention is focused on the effect of both space distribution of rotor breakage and rotor dis-symmetry on the mechanism of generation of diagnosis signatures with the consideration of voltage supply unbalance and speed ripples. A comparison is made between the voltage signature analysis and current signature analysis. Keywords: Fault diagnosis, Induction motor, rotor breakage, MCSA, Motor voltage signature analysis (MVSA.

  8. Full-Color LCD Microdisplay System Based on OLED Backlight Unit and Field-Sequential Color Driving Method

    Directory of Open Access Journals (Sweden)

    Sungho Woo

    2011-01-01

    Full Text Available We developed a single-panel LCD microdisplay system using a field-sequential color (FSC driving method and an organic light-emitting diode (OLED as a backlight unit (BLU. The 0.76′′ OLED BLU with red, green, and blue (RGB colors was fabricated by a conventional UV photolithography patterning process and by vacuum deposition of small molecule organic layers. The field-sequential driving frequency was set to 255 Hz to allow each of the RGB colors to be generated without color mixing at the given display frame rate. A prototype FSC LCD microdisplay system consisting of a 0.7′′ LCD microdisplay panel and the 0.76′′ OLED BLU successfully exhibited color display and moving picture images using the FSC driving method.

  9. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz;

    2017-01-01

    attractive due to its improved harmonic performance compared to a conventional ASD. In this digest, the input currents of the EI-based ASD are investigated and compared with the conventional ASDs with respect to interharmonics, which is an emerging power quality topic. First, the main causes...

  10. On the merits of heating and current drive for tearing mode stabilization

    NARCIS (Netherlands)

    De Lazzari, D.; Westerhof, E.

    2009-01-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high beta discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flatteni

  11. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  12. The simulation of hard x-ray images obtained during lower hybrid current drive on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    Goeler, S. von; Fishman, H.; Ignat, D. [and others

    1994-10-01

    During lower hybrid current drive on PBX-M suprathermal electrons in the 30 to 150 keV range are generated. These electrons emit hard X-ray bremsstrahlung in collisions with plasma ions; the radiation creates images in a hard X-ray pinhole camera. In order to interpret the hard X-ray images, a computer simulation code has been written, the PBXRAY code. It represents an extension of the STEVENS code that calculates the free-free and free-bound radiation for non-Maxwellian relativistic electron tail distributions. The PBXRAY code provides the chord integration in the bean-shaped plasma geometry on PBX-M and integrates over photon energy. The simulations show that the location of the suprathermal electrons can be determined with an accuracy of approximately two centimeters in the plasma. In particular, the authors analyzed discharges whose characteristic ``hollow`` images indicate off-axis LH current drive. A comparison of images taken with different absorber foils reveals that the suprathermal electrons have less than 150 keV parallel energy for the hollow discharges.

  13. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  14. Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework

    Directory of Open Access Journals (Sweden)

    Peysson Y.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  15. Minimization and identification of conducted emission bearing current in variable speed induction motor drives using PWM inverter

    Indian Academy of Sciences (India)

    A Ramachandran; M Channa Reddy; Ranjan Moodithaya

    2008-10-01

    The recent increase in the use of speed control of ac induction motor for variable speed drive using pulse width modulation (PWM) inverter is due to the advent of modern power electronic devices and introduction of microprocessors. There are many advantages of using ac induction motor for speed control applicatons in process and aerospace industries, but due to fast switching of the modern power electronic devices, the parasitic coupling produces undesirable effects. The undesirable effects include radiated and conducted electromagnetic interference (EMI) which adversely affect nearby computers, electronic/electrical instruments and give rise to the flow of bearing current in the induction motor. Due to the flow of bearing current in the induction motor, electrical discharge machining takes place in the inner race of the bearing which reduces the life of the bearing. In high power converters and inverters, the conducted and radiated emissions become a major concern. In this paper, identification of bearing current due to conducted emission, the measurement of bearing current in a modified induction motor and to minimize the bearing current are discussed. The standard current probe, the standard line impedance stabilization network (LISN)), the electronics interface circuits are used to measure high frequency common mode current, bearing current and to minimize the conducted noise from the system. The LISN will prevent the EMI noise entering the system from the supply source by conductive methods, at the same time prevents the EMI generated if any due to PWM, fast switching in the system, will not be allowed to enter the supply line. For comparing the results with Federal Communications Commission (FCC) and Special Committee on Radio Interference (CISPR) standards, the graphs are plotted with frequency Vs, line voltage in $dB{_\\mu} V$, common mode voltage in $dB{_\\mu} V$ and the bearing current in $dB_{\\mu} A$ with out and with minimizing circuits.

  16. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  17. Driving and controlling molecular surface rotors with a terahertz electric field.

    Science.gov (United States)

    Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean

    2012-06-26

    Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.

  18. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

    Science.gov (United States)

    Tabor, Kathryn M.; Bergeron, Sadie A.; Horstick, Eric J.; Jordan, Diana C.; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal

    2014-01-01

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  19. One-Step Generation of Cluster States Assisted by a Strong Driving Classical Field in Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    SHAO Xiao-Qiang; ZHANG Shou

    2008-01-01

    We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.

  20. The experimental setup of a large field operational test for cooperative driving vehicles at the A270

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Netten, B.D.; Hoedemaeker, M.; Ploeg, J.

    2010-01-01

    In this paper, a large field operational test (FOT) for cooperative driving systems, which take place on a public highway, is discussed. The experimental setup consist of a specific driver support system, which is closely related to cooperative adaptive cruise control (CACC) systems. Instead of auto

  1. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    behaviour. It compensates the load torque influence on the speed control setting a feed forward torque value, i.e. current reference value. The benefits are twice. The speed controller reaches immediately the speed reference value avoiding offsets which must be compensated by the weak integrator. Moreover......, a better response to load torque variations which are detected and compensated leading to small speed variations is obtained....

  2. Dirac Field in FRW Spacetime: Current and Energy Momentum

    CERN Document Server

    Dhungel, P R

    2011-01-01

    The behaviour of the Dirac field in FRW space-time is investigated. The relevant equations are solved to determine the particle and energy distribution. The angular and radial parts are solved in terms of Jacobi polynomials. The time dependence of the massive field is solved in terms of known function only for the radiation filled flat space. WKB method is used for approximate solution in general Friedmann-Le Maitre space. The negative energy solution is found decay in time as the Universe expands, while the positive energy solution grows. This could be the source of the local particle current. The behaviour of the particle number and energy density are also investigated. It is found that the particles arrange themselves in a number and density distribution pattern that produces a constant Newtonian potential as required for the flat rotation curves of galaxies. Further, density contrast is found to grow with the expansion.

  3. Controlled Levitation of Colloids through Direct Current Electric Fields.

    Science.gov (United States)

    Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J

    2017-07-07

    We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.

  4. Modified pulsar current analysis: probing magnetic field evolution

    CERN Document Server

    Igoshev, A P

    2014-01-01

    We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach we analyse the flow, not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, $\\tau=P/(2\\dot P)$. We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay timescale is not possible at present. The estimated timescale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances $<10$ kpc in the range of characteristi...

  5. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  6. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    La Haye, R. J., E-mail: lahaye@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  7. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    Science.gov (United States)

    La Haye, R. J.

    2015-12-01

    ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of

  8. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    Science.gov (United States)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  9. Vortex Properties of Nanosized Superconducting Strips with One Central Weak Link Under an Applied Current Drive

    Science.gov (United States)

    Peng, Lin; Cai, Chuanbing

    2016-06-01

    The static and dynamic properties of vortices in a nanosized superconducting strip with one central weak link (weakly superconducting region or normal metal) are investigated in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau equations are used to describe the electronic transport and have been solved numerically by a finite element analysis. Anisotropy is included through the spatially dependent anisotropy coefficient ζ in different layers of the sample. Our results show that the energy barrier for vortices to enter a weak link is smaller than that for vortices to enter the superconducting layers. The magnetization shows periodic oscillations. With the introduction of the weak link, the period of oscillations decreases.

  10. Asymmetric field-aligned currents in the conjugate hemispheres

    Science.gov (United States)

    Reistad, J. P.; Ostgaard, N.; Oksavik, K.; Laundal, K. M.

    2012-12-01

    Earlier studies using simultaneous imaging from space of the Aurora Borealis (Northern Hemisphere) and Aurora Australis (Southern Hemisphere) have revealed that the aurora can experience a high degree of asymmetry between the two hemispheres. Using 19 hours of simultaneous global imaging from both hemispheres (IMAGE satellite in north and Polar satellite in south) in conjunction with the entire IMAGE WIC database, we investigate the importance of various mechanisms thought to generate the asymmetries seen in global imaging. In terms of asymmetric or interhemispheric field-aligned currents, three candidate mechanisms have been suggested: 1) Hemispheric differences in solar wind dynamo efficiency mainly controlled by IMF Bx leading to asymmetric region 1 currents; 2) conductivity differences in conjugate areas; and 3) penetration of IMF By into the closed magnetosphere possibly generating a pair of oppositely directed interhemispheric currents. From the 19 hour conjugate dataset we find that the solar wind dynamo is likely to be the most important controlling mechanism for asymmetric bright aurora in the polar part of the nightside oval. Here we present statistical analyses of candidates 1) and 3). Using the entire IMAGE WIC database, a statistical analysis of the auroral brightness distribution along and across the Northern Hemisphere oval is carried out. For each candidate, two extreme cases (+/- IMF Bx for 1) and +/- IMF By for 3)) are compared during times non-favorable for the other two mechanisms. Our results indicate that solar wind dynamo induced currents play an important role for the nightside auroral brightness in an average sense. Also, signatures of interhemispheric currents due to IMF By penetration are seen in our statistics, although this effect is somehow weaker.

  11. Heating, current drive and confinement regimes with the JET ICRH and LHCD systems

    DEFF Research Database (Denmark)

    Jacquinot, J.; Adams, J.M.; Altmann, H.;

    1991-01-01

    During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H......-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained....... Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current...

  12. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    Science.gov (United States)

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  13. Electron Drift Speed And Current-Induced Drive Torques On A Domain Wall

    Science.gov (United States)

    Berger, Luc

    2009-03-01

    It has become fashionable to describe [1] current-induced torques on a DW in terms of an electron drift speed u = - P*j*muB/e*M where muB is the Bohr magneton and M the saturation magnetization. While appropriate for adiabatic torques, this quantity u is misleading and not the best choice in the case of non-adiabatic torques. For example, it leads [2] to beta not equal to alpha, where beta represents the intensity of the non-adiabatic torque, and alpha is the damping parameter. By writing equations of motion for conduction- electron spins in a moving frame where the electron gas is at rest, we find [3] a direct relation between damping and non- adiabatic torques. The correct electron drift speed turns out to be the speed of the frame, and is v = P*j/(n*q) where n and q are the carrier density and charge. It is related to the ordinary Hall constant R0 by v P*R0*j. After substituting v for u in the expression of the non-adiabatic torque, we find that beta = alpha holds now. Because v is larger than u in Permalloy, it can explain better the large current-induced DW speeds found [4] experimentally. In materials where R0> 0 and the carriers are dominantly hole-like, v and u have opposite signs, leading to different predictions for the sense of DW motion. We discuss examples of such materials. 1. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004). 2. H. Kohno et al., J. Phys. Soc. Japan, 75, 113706 (2006). 3. L. Berger, Phys. Rev. B 75, 174401 (2007). 4. M. Hayashi et al., Phys. Rev. Lett. 98, 037204 (2007).

  14. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  15. Hysteresis losses in MgB2 superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    DEFF Research Database (Denmark)

    Magnusson, N.; Abrahamsen, Asger Bech; Liu, Dawei

    2014-01-01

    a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting...... equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB2 DC coils in the 1–4T range with low AC magnetic field and current ripples....

  16. Amplification of perpendicular and parallel magnetic fields by cosmic ray currents

    Science.gov (United States)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2017-08-01

    Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.

  17. An Insight into the Time Domain Phenomenon during the Transition Zone from Induction Motor to Synchronous Motor Mode for a Current Source Inverter Fed Synchronous Motor Drive System

    Directory of Open Access Journals (Sweden)

    A.B. Chattopadhyay

    2014-10-01

    Full Text Available Modeling of synchronous motor plays a dominant role in designing complicated drive system for different applications, especially large blower fans etc., for steel industries. As synchronous motor has no inherent starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into synchronism under certain conditions. The present study exactly concentrates on this particular zone of transition from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That is why firstly the modeling is presented in complex frequency domain and then the time domain modeling is obtained by applying inverse Laplace transform technique. Apparently it seems to be a straight forward mathematical treatment but involvement of Convolution Integral for converting the formulation from s-domain to time domain becomes a matter of interest and it may draw the attention of various researchers working in this area. Furthermore the time domain response of the disturbance function may help a designer to fix up the time instant when the pull in phenomenon will be imposed by throwing the field winding to a DC supply.

  18. Transient and steady-state velocity of domain walls for a complete range of drive fields. [in magnetic material

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain-wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value of the velocity which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by others from a computer solution of the torque equation and those obtained by others with the assumption of a very large anisotropy field.

  19. Optimization of RF power absorption by optimization techniques using the lower hybrid current drive of FTU

    Energy Technology Data Exchange (ETDEWEB)

    Centioli, C. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Iannone, F. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Mazza, G. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Panella, M. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Pangione, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)]. E-mail: pangione@frascati.enea.it; Podda, S. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Tuccillo, A. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Vitale, V. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Zaccarian, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)

    2005-11-15

    In this paper, we will report on the experimental results arising from the implementation of optimization techniques to maximize the RF power coupling versus the plasma conditions in the FTU experimental facility. These experiments are carried out by employing the open-source Linux-RTAI control system currently running on the FTU digital feedback loop. The RF power source under consideration is a lower hybrid system (LH) based on six gyrotrons with a nominal power output capability of 1.1 MW each. The optimization of the coupling level between the plasma and the emitting antenna reduces the reflected power, thus maximizing the heating effects in addition to avoiding danger to the emitter (equivalently, annoying safety shutdowns of the system). To this aim, the plasma displacement is modified by suitably adjusting the reference input to the stabilizing feedback, according to a steepest descent algorithm. It will be shown in the paper how this algorithm achieves a satisfactory level of robustness with respect to measurement errors and well performs both in simulation and in experimental tests, thus leading to an improved effectiveness of the RF heating system.

  20. Current panorama of temporomandibular disorders' field in Brazil

    Directory of Open Access Journals (Sweden)

    Naila Aparecida de Godoi MACHADO

    2014-06-01

    Full Text Available In 2012, the recognition of the specialty of Temporomandibular Disorders and Orofacial Pain completed ten years. Given this scenario, it is extremely important to track the current situation of this field of knowledge in Brazil, specifically in the area of research and training. We hope to discuss the importance of the recognition of this specialty and the inclusion of these subjects in undergraduate programs in Dentistry. Objective: The objective of this study is to perform a bibliometric survey of researches regarding Temporomandibular Disorders and Orofacial Pain conducted in the country, determine the number of specialization courses in Orofacial Pain and the number of specialists in the field. Methods: The bibliometric survey was conducted based on the Dissertations Portal of Coordination for the Improvement of Higher education Personnel (CAPES and on PubMed. The panorama of the field of Orofacial Pain and Temporomandibular disorders in Brazil was determined by searching on the website of the Brazilian Council of Dentistry. Results: We found 731 theses and dissertations with Temporomandibular Disorders and Orofacial Pain as the main subjects; 81 accredited/recognized Courses on Orofacial Pain and Temporomandibular Dysfunction completed; 8 accredited/recognized Specialization Courses on Orofacial Pain and Temporomandibular Dysfunction still in progress, and 1,064 registered specialists in Orofacial Pain and Temporomandibular Dysfunction in the Brazilian Council of Dentistry. Search in the PUBMED database yielded 576 articles published with the participation of Brazilian researchers as first authors and/or co-authors in the period from 2000 to 2013. From this amount, only 5 were published in Portuguese, while all the others were published in english. We can also notice that the number of published articles increases over time. Conclusion: The number of researches related to temporomandibular disorders has increased over the last ten years, as

  1. Technological and physics assessments on heating and current drive systems for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Thomas, E-mail: thomas.franke@efda.org [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Barbato, E. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bosia, G. [Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin (Italy); Cardinali, A.; Ceccuzzi, S.; Cesario, R. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Van Eester, D. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Federici, G. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Gantenbein, G. [Karlsruhe Institute of Technology (KIT), Association EURATOM-KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany); Helou, W.; Hillairet, J. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Jenkins, I. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Kazakov, Ye.O. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Kemp, R. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Lerche, E. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Mirizzi, F. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Noterdaeme, J.-M.; Poli, E. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Porte, L. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 13, CH-1015 Lausanne (Switzerland); Ravera, G.L. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); and others

    2015-10-15

    Highlights: • Basic physics requirements of H&CD systems in DEMO have been captured. • The four H&CD systems NBI, EC, IC and LH were analysed to optimize performance. • Novel solutions were studied to overcome the limitations of the present H&CD systems. • RAMI as well as efficiency and optimized design of H&CD systems have been assessed. • Further constraints by remote maintenance or breeding blanket interactions were considered. - Abstract: The physics requirements of the heating and current (H&CD) systems in a Demonstration Fusion Power Plant (DEMO) are often beyond the actual level of design maturity and technology readiness required. The recent EU fusion roadmap advocates a pragmatic approach and favours, for the initial design integration studies, systems to be as much as possible, extrapolated from the ITER experience. To reach the goal of demonstrating the production of electricity in DEMO with a closed fuel cycle by 2050, one must ensure reliability, availability, maintainability, inspectability (RAMI) as well as performance, efficiency and optimized design for the H&CD systems. In the recent Power Plant Physics & Technology (PPP&T) Work Programme, a number of H&CD studies were performed. The four H&CD systems Neutral Beam (NB) Injection, Electron Cyclotron (EC), Ion Cyclotron (IC) and Lower Hybrid (LH) were considered. First, a physics optimization study was made assuming all technologies are available and identifying which parameters are needed to optimize the performance for given plasma parameters. Separately, the (i) technological maturity was considered (e.g. 240 GHz gyrotrons for EC) and (ii) technologies were adapted (e.g. multi-stage depressed collector for EC) or (iii) novel solutions (e.g. photo-neutralization for NB or new antennae concepts for IC) were studied to overcome the limitations of the present H&CD systems with respect to DEMO requirements. Further constraints imposed by remote maintenance or breeding blanket interactions

  2. Impact of superior and inferior visual field loss on hazard detection in a computer-based driving test.

    Science.gov (United States)

    Glen, Fiona C; Smith, Nicholas D; Crabb, David P

    2015-05-01

    Binocular visual field (VF) loss is linked to driving impairment, guiding authorities to implement fitness to drive requirements for VFs. Yet, evidence is limited regarding the specific types of VF defect that impede driving. This study used a novel gaze-contingent display to test the hypothesis that superior VF loss impacts detection of driving hazards more than inferior loss. The Hazard Perception Test (HPT) is a computer-based component of the UK examination for learner drivers. It measures the response rate for detecting hazards in a series of real-life driving films, yielding a score out of 75, calculated based on the efficiency of detecting 15 hazards. Thirty UK drivers with healthy vision completed three versions of the HPT in a random order. In two versions, a computer set-up incorporating an eye-tracker modified a simulated VF defect in the superior and inferior VFs, respectively, according to the users' real-time gaze as they completed the HPT. The other version was unmodified to measure the baseline performance. Participants' mean score at baseline was 49/75 (SD=9). Mean (SD) performance fell by 18% (40(11)) when viewing films with a superior defect and 12% with an inferior defect (43(10)). These average differences were statistically significant (p<0.001; 95% CI for mean difference=1-7) CONCLUSIONS: In this study, simulated VF defects impaired the ability to detect driving hazards relative to participants' normal performances, with superior defects having more impact than inferior defects. These results could help inform the design of fairer tests of the VF component for fitness to drive. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Sawtooth control using electron cyclotron current drive in the presence of energetic particles in high performance ASDEX Upgrade plasmas

    CERN Document Server

    Chapman, I T; Maraschek, M; McCarthy, P J; Tardini, G

    2013-01-01

    Sawtooth control using steerable electron cyclotron current drive (ECCD) has been demonstrated in ASDEX Upgrade plasmas with a significant population of energetic ions in the plasma core and long uncontrolled sawtooth periods. The sawtooth period is found to be minimised when the ECCD resonance is swept to just inside the q = 1 surface. By utilising ECCD inside q = 1 for sawtooth control, it is possible to avoid the triggering of neoclassical tearing modes, even at significnatly higher pressure than anticipated in the ITER baseline scenario. Operation at 25% higher normalised pressure has been achieved when only modest ECCD power is used for sawtooth control compared to identical discharges without sawtooth control when neo-classical tearing modes are triggered by the sawteeth. Modelling suggests that the destabilisation arising from the change in the local magnetic shear caused by the ECCD is able to compete with the stabilising influence of the energetic particles inside the q = 1 surface.

  4. Non-inductive current built-up by local electron cyclotron heating and current drive with a 28 GHz focused beam on QUEST

    Science.gov (United States)

    Onchi, Takumi; Idei, Hiroshi; Hasegawa, Makoto; Ohwada, Hiroaki; Zushi, Hideki; Hanada, Kazuaki; Kariya, Tsuyoshi; Mishra, Kishore; Shikama, Taichi; Quest Team

    2016-10-01

    The plasma current can be driven solely by injecting electron cyclotron waves (ECWs) in spherical tokamak (ST) configuration. A system of 28 GHz gyrotron (maximum power: 270 kW) is renewed and reinstalled on QUEST. A focused ECW beam, whose diameter is about 5 cm at the second harmonic resonance, is injected for local ECW heating and current drive. The local power density at resonance exceeds 75 MW/m2 at an injection power of 150 kW. The incident ECW polarization can be adjusted employing the phase shifter consisting of two corrugated plates. During 1.25 second pulse of ECH, plasma current is built up to Ip = 70 kA fully non-inductively with a core electron density of ne > 1018 m-3. The closed flux in such ST plasma is determined at the inboard limiter on the center stack. Energetic electrons are also responsible for the pressure and equilibrium. This work is supported by JSPS KAKENHI (15H04231, 15K17800), NIFS Collaboration Research program (NIFS13KUTR085, NIFS11KUTR069, NIFS16KUTR114).

  5. A current filamentation mechanism for breaking magnetic field lines during reconnection.

    Science.gov (United States)

    Che, H; Drake, J F; Swisdak, M

    2011-06-01

    During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.

  6. Subjective responses of mental workload during real time driving: A pilot field study

    Science.gov (United States)

    Rahman, N. I. A.; Dawal, S. Z. M.; Yusoff, N.

    2017-06-01

    This study evaluated drivers’ mental workload in real time driving to identify the driving situation’s complexity influences in an attempt to further design on a complete experimental study. Three driving settings were prepared: Session A (simple situation); Session B (moderately complex situation); Session C (very complex situation). To determine the mental workload, the NASA-Task Load Index (TLX) was administered to four drivers after each experimental driving session. The results showed that the Own Performance (OP) was the highest for session A (highway), while Physical Demand (PD) recorded the highest mean workload score across the session B (rural road) and C (city road). Based on the overall results of the study, it can be concluded that the highway is less demanding compared to rural and city road. It can be highlighted in this study that in the rural and city road driving situation, the timing must be set correctly to assure the relevant traffic density. Thus, the sensitivity of the timing must be considered in the future experiment. A larger number of experience drivers must be used in evaluating the driving situations to provide results that can be used to draw more realistic experiments and conclusions.

  7. High Field Emission Current Density from Patterned Carbon Nanotube Field Emitter Arrays with Random Growth.

    Science.gov (United States)

    Khaneja, Mamta; Ghosh, Santanu; Gautam, Seema; Kumar, Prashant; Rawat, J S; Chaudhury, P K; Vankar, V D; Kumar, Vikram

    2015-05-01

    High field emission (FE) current density from carbon nanotube (CNT) arrays grown on lithographically patterned silicon substrates is reported. A typical patterned field emitter array consists of bundles of nanotubes separated by a fixed gap and spread over the entire emission area. Emission performance from such an array having randomly oriented nanotube growth within each bundle is reported for different bundle sizes and separations. One typical sample with aligned CNTs within the bundle is also examined for comparison. It is seen that the current density from an array having random nanotube growth within the bundles is appreciably higher as compared to its aligned counterpart. The influence of structure on FE current densities as revealed by Raman spectroscopy is also seen. It is also observed that current density depends on edge length and increases with the same for all samples under study. Highest current density of -100 mA cm(-2) at an applied field of 5 V/μm is achieved from the random growth patterned sample with a bundle size of 2 μm and spacing of 4 μm between the bundles.

  8. Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropy.

    Science.gov (United States)

    Emori, Satoru; Beach, Geoffrey S D

    2012-01-18

    We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating.

  9. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago.

    Science.gov (United States)

    Hernawan, Udhi E; van Dijk, Kor-Jent; Kendrick, Gary A; Feng, Ming; Biffin, Edward; Lavery, Paul S; McMahon, Kathryn

    2017-02-01

    Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo-Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.

  10. Cortical current source connectivity by means of partial coherence fields

    CERN Document Server

    Pascual-Marqui, Roberto D; Valdes-Sosa, Pedro A; Bosch-Bayard, Jorge; Riera-Diaz, Jorge J

    2011-01-01

    An important field of research in functional neuroimaging is the discovery of integrated, distributed brain systems and networks, whose different regions need to work in unison for normal functioning. The EEG is a non-invasive technique that can provide information for massive connectivity analyses. Cortical signals of time varying electric neuronal activity can be estimated from the EEG. Although such techniques have very high time resolution, two cortical signals even at distant locations will appear to be highly similar due to the low spatial resolution nature of the EEG. In this study a method for eliminating the effect of common sources due to low spatial resolution is presented. It is based on an efficient estimation of the whole-cortex partial coherence matrix. Using as a starting point any linear EEG tomography that satisfies the EEG forward equation, it is shown that the generalized partial coherences for the cortical grey matter current density time series are invariant to the selected tomography. I...

  11. Electromagnetic fields and electrical currents in deep turbulent convective clouds

    Science.gov (United States)

    Benmoshe, Nir; Khain, Alexander

    2013-04-01

    Charge separation and lightning formation in a thunderstorm is explicitly simulated using spectral bin microphysics the Hebrew University Cloud Model (HUCM) with resolution of 50 m. The model microphysics is based on solving equations for eight size distribution functions for aerosols, drops, three types of ice crystals, aggregates, graupel and hail. Each size distribution is defined on a mass grid containing 43 bins. The model describes the processes of nucleation of cloud particles, diffusion growth, collisions between all types of hydrometeors, differential sedimentation, freezing, melting, breakup of droplets and aggregates, etc' using the equations basing on the first principles, without any parameterization assumptions. Turbulence effects on droplet collisions are taken into account. Charge separation is calculated by collisions between graupel, hail and ice crystals in the presence of liquid water. The charge obtained by particles as a result of collisions depends on the particle size, the temperature, the presence of liquid water, following laboratory results by Takahashi. These charges are transported by convective motions and differential sedimentation depending on mass and type of particles air density. The charges are redistributed between different hydrometeors in course of particle collisions, as well as during freezing, melting and breakup. These charge transformations create time dependent electricity field. The field of electrical potential is determined by solving the Poisson equation. The recursive procedure similar to that developed by Mansell (2002) is used to calculate the lightning path with connects zones where the potential gradients exceeded the breakdown threshold. The electric currents in the clouds are being calculated. The magnetic field near and inside the clouds are shown. The relationship between lightning intensity and cloud microstructure is investigated. It is shown, for instance, that increase in aerosol concentration leads to

  12. Lidar Data Analysis for Time to Headway Determination in the DriveSafe Project Field Tests

    Directory of Open Access Journals (Sweden)

    İlker Altay

    2013-01-01

    Full Text Available The DriveSafe project was carried out by a consortium of university research centers and automotive OEMs in Turkey to reduce accidents caused by driver behavior. A huge amount of driving data was collected from 108 drivers who drove the instrumented DriveSafe vehicle in the same route of 25 km of urban and highway traffic in Istanbul. One of the sensors used in the DriveSafe vehicle was a forward-looking LIDAR. The data from the LIDAR is used here to determine and record the headway time characteristics of different drivers. This paper concentrates on the analysis of LIDAR data from the DriveSafe vehicle. A simple algorithm that only looks at the forward direction along a straight line is used first. Headway times based on this simple approach are presented for an example driver. A more accurate detection and tracking algorithm taken from the literature are presented later in the paper. Grid-based and point distance-based methods are presented first. Then, a detection and tracking algorithm based on the Kalman filter is presented. The results are demonstrated using experimental data.

  13. Energy Optimization of Field Oriented Six-Phase Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    KABOLI, S.

    2011-05-01

    Full Text Available This paper deals with the efficiency optimization of Field Oriented Control (FOC of a six-Phase Induction Motor (6PIM by adaptive flux search control. The six-phase induction motor is supplied by Space Vector PWM (SVPWM and voltage source inverter. Adaptive flux search controller is fast than ordinary search control technique and easy to implement. Adaptive flux Search Control (SC technique decreases the convergence time by proper change of flux variation steps and increases accuracy of the SC technique. A proper loss model of 6PIM in conjunction with the proposed method is used. The six-phase induction machine has large zero sequence harmonic currents that can be reduced by SVPWM technique. Simulation and experimental results are carried out and they verify the effectiveness of the proposed approach.

  14. Investigation of Line Current Harmonics in Cascaded Multi-level Inverter Based Induction Motor Drive and an Adaptive On-line Selective Current Harmonic Elimination Algorithm

    Directory of Open Access Journals (Sweden)

    P. Avirajamanjula

    2015-03-01

    Full Text Available Multilevel Inverters (MLIs have drawn increasing attention in numerous applications, especially in drives, distributed energy resources area, utility etc. MLIs have the ability to synthesize a near sinusoidal output voltage wave with minimal Total Harmonic Distortion (THD in low frequency switching. Even though they offer lower THD, the presence of lower order harmonics is objectionable and harmonics elimination in Multilevel Inverters (MLIs has been receiving immense attention for the past few decades. Existing Selective Harmonic Elimination (SHE techniques can eliminate the objectionable lower order voltage harmonics with low switching frequency by solving the Fourier non-linear transcendental equations of the output voltage. The line current harmonics has a direct role to play on the magneto-motive force and results in increase of mismatching of air-gap permeance, vibrations, acoustic noise etc. This study proposes Normalized Least Mean Squares (NLMS algorithm based scheme to eliminate the selected dominant harmonics in load current using only the knowledge of the frequencies to be eliminated. The algorithm is simulated using MATLAB/SIMULINK tool for a three-phase VSI to eliminate the fifth and seventh harmonics. The informative simulation results verify the validity and effectiveness of the proposed algorithm. The system performance is analyzed based on the simulation results considering Total Harmonic Distortion (THD, magnitude of eliminated harmonics and frequency spectrum.

  15. Mild cognitive impairment: safe to drive?

    Science.gov (United States)

    Olsen, Kirsty; Taylor, John-Paul; Thomas, Alan

    2014-06-01

    Driving is an important aspect of daily living and for many older people provides autonomy and psycho-social benefits. Cognitive impairment has been found to impact driving skills at the level of dementia, however, uncertainty remains around the impact of a diagnosis of the pre-dementia condition mild cognitive impairment. Current official guidelines are unclear, and assessment of fitness to drive can be problematical. This editorial examines current official guidance available to the clinician and problems with existing assessment as well as the current position of research specifically into MCI and driving, and considers future direction for research in this field.

  16. Design of Current Controller in Servo Drive%伺服驱动电流调节器的设计

    Institute of Scientific and Technical Information of China (English)

    游帅; 马钧华

    2012-01-01

    This paper presented a design method of current controller in servo drive. On hardware design, three current sensors, LTS25-NP, ACS7xx, HCPL-7840 and their interface circuit with DSP's AD input were introduced, and these three current sensors can perform well to meet the demands of accuracy and speed in current sampling circuit. On software design, according to simulation, the principles of adjusting PI controller parameters were discussed. The results of the simulations show that good initial PI parameters can he calculated through the motor parameters, thus lay the foundation for experiment tuning. [Ch,8 fig. 1 tab. 10 ref. ]%介绍了伺服驱动中电流调节器的设计方法.在硬件上给出LTS25-NP,ACS7xx,HCPL-7840 3种电流采样器件的工作原理、性能指标和DSP的接口设计,可知3种器件可以满足不同的电流采样精度与速度的要求.在软件上,利用仿真得到电流调节器PI参数计算方法,并介绍实验整定方法.仿真结果表明,通过电机的参数可以计算得到PI电流调节器良好的初始参数,为实验整定做基础.

  17. Direct Drive and Eddy Current Septa Magnet Designs for CERN’s PSB Extraction at 2 GeV

    CERN Multimedia

    Szoke, Zsolt; Balhan, Bruno; Baud, Cedric; Borburgh, Jan; Hourican, Michael; Masson, Thierry; Prost, Antoine

    2015-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN’s PS Booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 GeV to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS, the eddy current PS injection septum together with a bumper at injection have been investigated using finite element software. For the recombination magnets an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modelling of the devices, the comparison of the ...

  18. submitter Direct Drive and Eddy Current Septa Magnet Designs for CERN's PSB Extraction at 2 GeV

    CERN Document Server

    Szoke, Z; Balhan, B; Baud, C; Borburgh, J; Hourican, M; Masson, T; Prost, A

    2016-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN's PS booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS and the eddy current PS injection septum together with a bumper at injection have been investigated using finite-element software. For the recombination magnets, an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements, a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper, and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modeling of the devices, the comparison of the p...

  19. Changes in glance behaviour when using a visual eco-driving system - A field study.

    Science.gov (United States)

    Ahlstrom, Christer; Kircher, Katja

    2017-01-01

    While in-vehicle eco-driving support systems have the potential to reduce greenhouse gas emissions and save fuel, they may also distract drivers, especially if the system makes use of a visual interface. The objective of this study is to investigate the visual behaviour of drivers interacting with such a system, implemented on a five-inch screen mounted above the middle console. Ten drivers participated in a real-world, on-road driving study where they drove a route nine times (2 pre-baseline drives, 5 treatment drives, 2 post-baseline drives). The route was 96 km long and consisted of rural roads, urban roads and a dual-lane motorway. The results show that drivers look at the system for 5-8% of the time, depending on road type, with a glance duration of about 0.6 s, and with 0.05% long glances (>2s) per kilometre. These figures are comparable to what was found for glances to the speedometer in this study. Glance behaviour away from the windscreen is slightly increased in treatment as compared to pre- and post-baseline, mirror glances decreased in treatment and post-baseline compared to pre-baseline, and speedometer glances increased compared to pre-baseline. The eco-driving support system provided continuous information interspersed with additional advice pop-ups (announced by a beep) and feedback pop-ups (no auditory cue). About 20% of sound initiated advice pop-ups were disregarded, and the remaining cases were usually looked at within the first two seconds. About 40% of the feedback pop-ups were disregarded. The amount of glances to the system immediately before the onset of a pop-up was clearly higher for feedback than for advice. All in all, the eco-driving support system under investigation is not likely to have a strong negative impact on glance behaviour. However, there is room for improvements. We recommend that eco-driving information is integrated with the speedometer, that optional activation of sound alerts for intermittent information is made

  20. The field line topology of a uniform magnetic field superposed on the field of a distributed ring current

    Energy Technology Data Exchange (ETDEWEB)

    Chance, M.S. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Greene, J.M.; Jensen, T.H. (General Atomics, San Diego, CA (USA))

    1991-07-01

    A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. A convenient mapping is defined which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the application to a model of plasmoid formations in the earth's magnetotail. 7 refs., 19 figs.

  1. The Underwater Sound Field from Impact Pile Driving and Its Potential Effects on Marine Life

    NARCIS (Netherlands)

    Dahl, P.H.; Jong, C.A.F. de; Popper, A.N.

    2015-01-01

    Impact pile driving is a method used to install piles for marine and inland water construction projects using high-energy impact hammers. The installation of hollow steel piles in this manner can produce extremely high sound levels in the surrounding waters (as well as in the air). Given the large-

  2. The effect of competition on heart rate during kart driving: A field study

    Directory of Open Access Journals (Sweden)

    Yamakoshi Takehiro

    2011-09-01

    Full Text Available Abstract Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min were significantly higher than those during solo driving (140.9 beats/min and rest (75.1 beats/min. Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.

  3. The gyrokinetic resonant theory of circular polarized high frequency wave driving charged particle in strong magnetic field

    CERN Document Server

    Zhang, Shuangxi; Kishimoto, Yasuaki

    2016-01-01

    This paper studies about circular polarized high frequency wave driving charged particle in strong magnetic field, and a new gyro resonant Lie perturbed transformation theory is given by adding a new total differential term to the original first order 1-form to remove the secularity of relevant infinitesimal generators. The time consumption of numerical simulation based on this resonant theory has an advantage over real orbit simulation if the magnetic field has almost a constant amplitude in the simulation spatial region, while the advantage disappears when the amplitude changes obviously in the simulation spatial region. A simple numerical experiment is given to test the new resonant theory and its time consumption property.

  4. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Ali Saghafinia

    2013-12-01

    Full Text Available Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM drive. This paper presents a novel boundary layer fuzzy controller (NBLFC based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC of an induction motor (IM drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  5. Current and Future Constraints on Primordial Magnetic Fields

    Science.gov (United States)

    Sutton, Dylan R.; Feng, Chang; Reichardt, Christian L.

    2017-09-01

    We present new limits on the amplitude of potential primordial magnetic fields (PMFs) using temperature and polarization measurements of the cosmic microwave background (CMB) from Planck, the BICEP2/Keck Array, Polarbear, and SPTpol. We reduce twofold the 95% confidence upper limit on the CMB anisotropy power due to a nearly scale-invariant PMF, with an allowed B-mode power at ℓ = 1500 of {D}{\\ell =1500}{BB}< 0.071 μ {K}2 for Planck versus {D}{\\ell =1500}{BB}< 0.034 μ {K}2 for the combined data set. We also forecast the expected limits from soon-to-deploy CMB experiments (like SPT-3G, Adv. ACTpol, or the Simons Array) and the proposed CMB-S4 experiment. Future CMB experiments should dramatically reduce the current uncertainties by one order of magnitude for the near-term experiments and two orders of magnitude for the CMB-S4 experiment. The constraints from CMB-S4 have the potential to rule out much of the parameter space for PMFs.

  6. Meditative analgesia: the current state of the field.

    Science.gov (United States)

    Grant, Joshua A

    2014-01-01

    Since the first demonstrations that mindfulness-based therapies could have a positive influence on chronic pain patients, numerous studies have been conducted with healthy individuals in an attempt to understand meditative analgesia. This review focuses explicitly on experimental pain studies of meditation and attempts to draw preliminary conclusions based on the work completed in this new field over the past 6 years. Dividing meditative practices into the broad categories of focused attention (FA) and open monitoring (OM) techniques allowed several patterns to emerge. The majority of evidence for FA practices suggests they are not particularly effective in reducing pain. OM, on the other hand, seems to influence both sensory and affective pain ratings depending on the tradition or on whether the practitioners were meditating. The neural pattern underlying pain modulation during OM suggests meditators actively focus on the noxious stimulation while inhibiting other mental processes, consistent with descriptions of mindfulness. A preliminary model is presented for explaining the influence of mindfulness practice on pain. Finally, the potential analgesic effect of the currently unexplored technique of compassion meditation is discussed.

  7. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovic, V.; Vukosavic, S. (Electrical Engineering Inst. Nikola Tesla, Viktora Igoa 3, Belgrade, 11000 (Yugoslavia))

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  8. Cotton fields drive elephant habitat fragmentation in the Mid Zambezi Valley, Zimbabwe

    Science.gov (United States)

    Sibanda, Mbulisi; Murwira, Amon

    2012-10-01

    In this study we tested whether cotton fields contribute more than cereal fields to African elephant (Loxodonta africana) habitat loss through its effects on woodland fragmentation in the Mid-Zambezi Valley, Zimbabwe. In order to test this hypothesis, we first mapped cotton and cereal fields using MODIS remotely sensed data. Secondly, we analysed the effect of the area of cotton and cereal fields on woodland fragmentation using regression analysis. We then related the fragmentation indices, particularly edge density with elephant distribution data to test whether elephant distribution was significantly related with woodland fragmentation resulting from cotton fields. Our results showed that cotton fields contributed more to woodland fragmentation than cereal fields. In addition, results showed that the frequency of the African elephant increased where cotton fields were many and small relative to cereal fields. We concluded that cotton fields are the main driver of woodland fragmentation and therefore elephant habitat in the Mid-Zambezi Valley compared with cereal fields.

  9. Impurity heterogeneity in natural pyrite and its relation to internal electric fields mapped using remote laser beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Laird, Jamie S., E-mail: csirojamie@gmail.com [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Large, Ross [Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); Ryan, Chris G. [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia)

    2013-07-01

    Regions of band-bending in naturally occurring semiconducting sulfides are thought to drive electrochemical reactions with passing fluids. Metal bearing fluids within the right pH range interact with the electric fields at the surface resulting in precious metal ore genesis, even in under-saturated solutions. Metal reduction at the surface occurs via field assisted electron transfer from the semiconductor bulk to the ion in solution via surface states. Better understanding the role these regions and their texturing play on nucleating ore growth requires imaging of electric field distributions near the sulfide surface and correlation with underlying elemental heterogeneity. In this paper we discuss PIXE measurements made on the CSIRO Nuclear Microprobe and correlate elemental maps with laser beam induced current maps of the electric field distribution.

  10. Field-induced inversion of resonant tunneling currents through single molecule junctions and the directional photo-electric effect

    Science.gov (United States)

    Kuperman, Maayan; Peskin, Uri

    2017-03-01

    It has been known for several decades that the electric current through tunneling junctions is affected by irradiation. In particular, photon-assisted currents by asymmetric irradiation of the two leads was demonstrated and studied extensively in tunneling junctions of different compositions and for different radiation wavelengths. In this work, this phenomenon is revisited in the context of single molecule junctions. Restricting the theoretical discussion to adiabatic periodic driving of one lead with respect to the other within a non-interacting electron formulation, the main features of specific molecules are encoded in the discrete electronic energy levels. The detailed level structure of the molecule is shown to yield new effects in the presence of asymmetric driving of the leads. In particular, when the field-free tunneling process is dominated by a single electronic level, the electric current can be suppressed to zero or flow against the direction of an applied static bias. In the presence of a second electronic level, a directional photo-electric effect is predicted, where not only the magnitude but also the direction of the steady state electric current through the tunneling junction can be changed by a monotonous increase of the field intensity. These effects are analyzed and explained by outlying the relevant theory, using analytic expressions in the wide-band limit, as well as numerical simulations beyond this limit.

  11. Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking.

    Directory of Open Access Journals (Sweden)

    Enkelejda Kasneci

    Full Text Available Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs that may critically interfere with quality of life and driving licensure. The aims of this study were (i to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed of ten patients with homonymous visual field defects (HP, including four patients with right (HR and six patients with left homonymous visual field defects (HL, ten glaucoma patients (GP, and twenty age and gender-related ophthalmologically healthy control subjects (C during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on

  12. Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking.

    Science.gov (United States)

    Kasneci, Enkelejda; Sippel, Katrin; Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs) that may critically interfere with quality of life and driving licensure. The aims of this study were (i) to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii) to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed) of ten patients with homonymous visual field defects (HP), including four patients with right (HR) and six patients with left homonymous visual field defects (HL), ten glaucoma patients (GP), and twenty age and gender-related ophthalmologically healthy control subjects (C) during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD) critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL) due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on the

  13. Development of a high power wideband polarizer for electron cyclotron current drive system in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2015-10-15

    Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.

  14. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    CERN Document Server

    Ayten, B

    2013-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al, Phys. Rev. Lett. 62 (1989) 426. We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in case of...

  15. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    CERN Document Server

    Chapman, I T; Sauter, O; Zucca, C; Asunta, O; Buttery, R J; Coda, S; Goodman, T; Igochine, V; Johnson, T; Jucker, M; La Haye, R J; Lennholm, M; Contributors, JET-EFDA

    2013-01-01

    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes sig...

  16. STARLITE figures of merit for tokamak current drive -- Economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A. [Argonne National Lab., IL (United States); Jardin, S.; Kessel, C. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1995-10-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub 0} R{sub 0}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  17. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub o} R{sub o}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  18. Anomalous Effects of Driving Field Linewidth on a One-Atom Dressed-State Laser

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-Jin; Hu Xiang-Ming

    2007-01-01

    We examine the effects of driving Geld linewidth on a one-atom dressed state laser. Unexpectedly, the linewidth leads to anomalous effects on the cavity Geld. The mean photon number of the cavity Geld is raised or the normalized variance is reduced to a certain degree as the linewidth increases for an appropriate range of parameters. The responsible mechanism is attributed to the fluctuation-induced modification of the electromagnetic reservoir where the atom stays.

  19. Eccentricity Compensation Mechanism for Improving Reliability of Removable Performance in Near-Field Optical Disc Drive System

    Science.gov (United States)

    Kim, Sunmin; Ishimoto, Tsutomu; Nakaoki, Ariyoshi; Kawakubo, Osamu

    2008-07-01

    In this paper, we propose the eccentricity-compensating actuator mechanism for near-field (NF) optical disc drives. In this proposed dual-stage compensating actuator mechanism, the disc-spindle unit is actuated instead of the solid immersion lens (SIL) along the tracking axis to cancel out an eccentricity less than 20 µmpp (pp: peak to peak), which is the required criterion for NF discs of 160 nm track pitch. As a result, the proposed method enables the decrease in the required residual tracking error to lower than the criteria of 4.5 nm in NF optical disc drive (ODD) even when using the tracking servo of moderate performance. The proposed active eccentricity compensation method can be effective and applicable to dealing with the eccentricity problem in NF ODD, which we verified experimentally.

  20. A Loop Current experiment: Field and remote measurements

    Science.gov (United States)

    Hamilton, Peter; Lugo-Fernández, Alexis; Sheinbaum, Julio

    2016-12-01

    An overview of a new comprehensive observational study of the Loop Current (LC) in the eastern Gulf of Mexico that encompassed full-depth and near-bottom moorings, pressure-equipped inverted echo sounders (PIES) and remote sensing is presented. The study array was designed to encompass the LC from the Campeche Bank to the west Florida escarpment. This overview centers about principal findings as they pertain to mesoscale dynamics. Two companion papers provide in-depth analyses. Three LC anticyclonic eddy separation events were observed with good 3D spatial coverage over the 2½ year extent of the field study; the three separations exhibited similar processes after the LC had extended into the eastern Gulf. Large scale (∼300 km wavelength, 40-60 day periods) southward propagating meanders developed on the eastern side of the LC over deep (∼3000 m) water that were the result of baroclinic instability between the upper layer meandering jet and lower layer cyclones and anticyclones. The lower layer was only highly energetic during relatively short (∼2-3 months) intervals just prior to or during eddy detachments because of baroclinic instability. The steepening of the meanders lead to a pinch-off of LC eddies. The deep lower-layer eddies, constrained by the closed topography of the southeastern Gulf, propagated westward across the detachment zone and appear to assist in achieving separation. Small scale (∼50-100 km, periods ∼10 days) frontal eddies, observed on the western side of the LC along the Campeche Bank slope, decay over the deep water of the northern part of an extended LC, and have little influence on lower layer eddies, the east side meanders and the eddy detachment processes.

  1. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.

    Science.gov (United States)

    Hamel, Johanna; Kraft, Antje; Ohl, Sven; De Beukelaer, Sophie; Audebert, Heinrich J; Brandt, Stephan A

    2012-09-18

    Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy(1), not only in natural search tasks but also in mastering daily life activities(2). Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition(3). Martin et al.(4) and Hayhoe et al.(5) showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are

  2. Magnetar Giant Flares in Multipolar Magnetic Fields --- II. Flux Rope Eruptions With Current Sheets

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. Especially, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. The released magnetic energy is sufficient to drive giant flares. The flux rope would go away from the magnetar quasi-statically, which is ...

  3. Effect of Electric Field on Spin Polarized Current in Ferromagnetic/ Organic Semiconductor Systems

    Institute of Scientific and Technical Information of China (English)

    MA Yan-Ni; REN Jun-Feng; ZHANG Yu-Bin; LIU De-Sheng; XIE Shi-Jie

    2007-01-01

    Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization.

  4. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    Science.gov (United States)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  5. Impact of current on static and kinetic depinning fields of domain wall in ferromagnetic nanostrip

    Indian Academy of Sciences (India)

    R Arun; P Sabareesan; M Daniel

    2015-11-01

    The impact of current on static and kinetic depinning fields of a domain wall in a onedimensional ferromagnetic nanostrip is investigated analytically and numerically by solving the Landau–Lifshitz–Gilbert equation with adiabatic and non-adiabatic spin-transfer torques. The results show that in the absence of current, the static depinning field is greater than the kinetic depinning field. Both the depinning fields decrease by increasing the current applied in a direction opposite to the direction of the applied field. Both the depinning fields can also be tuned by the current to make them equal.

  6. Brushless direct-current motor with stationary armature and field

    Science.gov (United States)

    Studer, P. A.

    1970-01-01

    Electronically commutated dc motor has an active fixed field winding, and active fixed armature winding, and passive rotor. By use of brushless dc motor switching technique, motor provides continuous controllable and reversible torque without use of sliding contacts.

  7. The effect of visual field defects on eye movements and practical fitness to drive

    NARCIS (Netherlands)

    Coeckelbergh, TRM; Cornelissen, FW; Brouwer, WH; Kooijman, AC

    Eye movements Of Subjects with visual field defects due to ocular pathology were monitored while performing a dot counting task and a visual search task. Subjects with peripheral field defects required more fixations, longer search times, made more errors. and had shorter fixation durations than

  8. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    Science.gov (United States)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  9. Dark current measurements at field gradients above 1 GV/m

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan-Rao, T.; Smedley, J.; Schill, J. [Brookhaven National Lab., Upton, NY (United States); Batchelor, K.; Farrell, J.P. [Brookhaven Technology Group Inc., Stony Brook, NY (United States)

    1998-07-01

    In this paper, the authors report the results of dark current studies on copper cathodes and stainless steel anodes held at a field gradient > 1 GV/m. The field emission current is , 1 A for fields less than 1 GV/m. As the field is increased, the dark current increases rapidly to 150 A for applied fields of {approximately} 1.7 GV/m. Fowler-Nordheim plots in this range of applied fields indicate a field enhancement factor of 10--20 for a copper cathode with a work function of 4.6 eV.

  10. A field study on the effects of digital billboards on glance behavior during highway driving.

    Science.gov (United States)

    Belyusar, Daniel; Reimer, Bryan; Mehler, Bruce; Coughlin, Joseph F

    2016-03-01

    Developments in lighting technologies have allowed more dynamic digital billboards in locations visible from the roadway. Decades of laboratory research have shown that rapidly changing or moving stimuli presented in peripheral vision tends to 'capture' covert attention. We report naturalistic glance and driving behavior of a large sample of drivers who were exposed to two digital billboards on a segment of highway largely free from extraneous signage. Results show a significant shift in the number and length of glances toward the billboards and an increased percentage of time glancing off road in their presence. Findings were particularly evident at the time the billboards transitioned between advertisements. Since rapidly changing stimuli are difficult to ignore, the planned increase in episodically changing digital displays near the roadway may be argued to be a potential safety concern. The impact of digital billboards on driver safety and the need for continued research are discussed.

  11. Comparison of Final Drive Gear Lubricant Field Results to Laboratory Tests

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To meet the increasing needs to move goods and materials, transportation vehicles are logging an increasing number of kilometers each year. With increasing use of these vehicles comes the need to conserve fuel to save money and to conserve resources. New engines, transmissions and axles are being developed to further conserve fuel and to provide more efficient power sources. Southwest Research Institute, a leader in global automotive research, regularly performs tests to evaluate the power and fuel economy improvement of drive train hardware and lubricants. The Institute has recently provided services to design, develop, and perform test verification of a dynamometer stand that is capable of evaluating the efficiency of axle lubricants in heavy- duty use.

  12. Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    A new two-stage multi-drive direct power conversion (DPC) topology suited for multi-drive application is proposed, having an input port for a three-phase power supply and several output ports to connect three-phase loads, which are independently controlled and allow for sine wave in-sine wave out...... patterns of the inversion stages, which have to form two groups, allowing for size reduction of the input current filter. This is validated by experiments on a realistic laboratory prototype, while its limitations are determined by simulations....

  13. A field guide to current advances in paediatric movement disorders.

    Science.gov (United States)

    Silveira-Moriyama, Laura; Lin, Jean-Pierre

    2015-08-01

    Recent advances in neurogenetics, neuroimmunology and nonpharmacological treatments have reshaped the field of paediatric movement disorders. In this review, we put recent findings into context providing a framework to enable navigation of the expanding literature in this field. Anti-NMDA receptor encephalitis has proven to be a significant cause of treatable movement disorder in children and to present a multifaceted link with herpes simplex encephalitis. The growing use of next-generation sequencing in both research and clinical practice has unravelled an expanding number of genes related to paediatric movement disorders as well as expanding spectrums of variable expressivity and phenotypic pleiotropy for various genes. Behavioural therapies have been proven efficacious in Tourette's syndrome and are likely to be helpful in complex motor stereotypies. Management of dystonia remains a clinical priority and challenge. The rapid advance of translational medicine has had major impacts on the field of paediatric movement disorders including diagnosis and treatment of these conditions.

  14. Current issues in libraries, information science and related fields

    CERN Document Server

    Woodsworth, Anne

    2015-01-01

    This volume is unusual in that the theme is quite broad in scope yet focused on a specific topic; innovations and boundary-pushing studies in areas not usually found in library literature. It examines the periphery of the field surveyed in previous volumes. The chapters are grouped in two categories: professional issues and transforming services.

  15. Anomalous current transients in organic field-effect transistors

    Science.gov (United States)

    Sharma, A.; Mathijssen, S. G. J.; Cramer, T.; Kemerink, M.; de Leeuw, D. M.; Bobbert, P. A.

    2010-03-01

    Here we study the origin of the gate bias-stress effect in organic p-type transistors. Based on water-mediated exchange between holes in the semiconductor and protons in the gate dielectric, we predict anomalous current transients for a non-constant gate bias, while ensuring accumulation. When applying a strongly negative gate bias followed by a less negative bias a back-transfer of protons to holes and an increase of the current is expected. We verify this counterintuitive behavior experimentally and can quantitatively model the transients with the same parameters as used to describe the threshold voltage shift.

  16. Nonlinear response of superconductors to alternating fields and currents

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jason [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  17. Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    S. DuttaGupta

    2017-05-01

    Full Text Available Creep motion of magnetic domain wall (DW, thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials.

  18. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  19. Wavelet-Fuzzy Speed Indirect Field Oriented Controller for Three-Phase AC Motor Drive

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Daya, Febin; Blaabjerg, Frede

    2016-01-01

    Three-phase voltage source inverter driven induction motor are used in many medium- and high-power applications. Precision in speed of the motor play vital role, i.e. popular methods of direct/indirect field-oriented control (FOC) are applied. FOC is employed with proportional-integral (P-I) or p...

  20. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  1. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  2. Mean field approaches for $\\Xi^-$ hypernuclei and current experimental data

    CERN Document Server

    Sun, T T; Sagawa, H; Schulze, H -J; Meng, J

    2016-01-01

    Motivated by the recently observed hypernucleus (Kiso event) $^{15}_{\\Xi}$C ($^{14}$N$+\\Xi^-$), we identify the state of this system theoretically within the framework of the relativistic-mean-field and Skyrme-Hartree-Fock models. The $\\Xi N$ interactions are constructed to reproduce the two possibly observed $\\Xi^-$ removal energies, $4.38\\pm 0.25$ MeV or $1.11\\pm 0.25$ MeV. The present result is preferable to be $^{14}{\\rm N}({\\rm g.s.})+\\Xi^-(1p)$, corresponding to the latter value.

  3. Electrochemical cells: linking fields and currents with products and reactants

    Science.gov (United States)

    Hutchison, Douglas

    2016-11-01

    The interplay between the electromagnetism and chemistry within an electrochemical cell (a ‘battery’) is modelled in such a way so as to describe both open and closed circuit conditions. It is found that a classical field theory coupled with a generic model of the chemistry can consistently explain the behaviour of the cell and reproduce standard results. But this model also reveals an interesting interplay between time scales (field and chemical) that leads to a capacitive impedance within the cell. The assumption that the stasis associated with the emf results from the inability of ions to overcome the potential barriers near each electrode is abandoned. Rather, the equilibrium is viewed as dynamic and results from a balance between forward and reverse chemical reactions. Ions are able borrow enough energy to overcome the barriers as predicted by quantum theory to fuel the forward reactions. The probability of transmission (i.e. ‘tunnelling’) is calculated using a method based on the energy-time uncertainty principle.

  4. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2017-05-01

    Full Text Available The heating performance of magnetic nanoparticles (MNPs under an alternating magnetic field (AMF is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  5. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models.

  6. Foamy oil flow : a laboratory curiosity or a real drive mechanism in field operations?

    Energy Technology Data Exchange (ETDEWEB)

    Maini, B.B. [Calgary Univ., AB (Canada)

    2006-07-01

    The exceptional performance of primary depletion in many Canadian and Venezuelan heavy oil reservoirs can be attributed to the mechanism of foamy oil flow. It is has been speculated that the solution gas released during depletion remains dispersed in the oil and flows towards the production well in the form of gas-in-oil dispersion. However, most laboratory studies of foamy-oil-flow reveal that the depletion rates required for generating dispersed flow are completely unrealistic in field operations. This study examined whether foamy oil flow is merely a laboratory aberration. The paper defines foamy oil flow and explains how it evolved. A brief review of Canadian field practices was presented along with observations from cold production of heavy oil. The pore-scale mechanisms involved and the interplay between capillary and viscous forces were also discussed along with the conditions under which dispersed flow is generated in field operations. The strengths and weaknesses of several mathematical models proposed for numerical simulation of foamy oil flow were described.

  7. Current Status Of Velocity Field Surveys: A Consistency Check

    CERN Document Server

    Sarkar, D; Watkins, R; Sarkar, Devdeep; Feldman, Hume A.

    2006-01-01

    We present a statistical analysis comparing the bulk--flow measurements for six recent peculiar velocity surveys, namely, ENEAR, SFI, RFGC, SBF and the Mark III singles and group catalogs. We study whether the bulk--flow estimates are consistent with each other and construct the full three dimensional bulk--flow vectors. The method we discuss could be used to test the consistency of all velocity field surveys. We show that although these surveys differ in their geometry and measurement errors, their bulk flow vectors are expected to be highly correlated and in fact show impressive agreement in all cases. Our results suggest that even though the surveys we study target galaxies of different morphology and use different distance measures, they all reliably reflect the same underlying large-scale flow.

  8. Non-invasively measured cardiac magnetic field maps improve the estimation of the current distribution

    OpenAIRE

    Kosch, Olaf; Steinhoff, Uwe; Trahms, Lutz; Trontelj, Zvonko; Jazbinšek, Vojko

    2015-01-01

    Comprehensive body surface potential mapping (BSPM) and magnetic field mapping (MFM) measurements have been carried out in order to improve the estimation of the current distribution generated by the human heart. Electric and magnetic fields and also the planar gradient of the magnetic field during the QRS complex were imaged as a time series of field maps. A model of the current distribution should explain the features of both BSPM and MFM. Simulated maps generated by a single dipole or a st...

  9. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    Science.gov (United States)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.

  10. Hall current effects in mean-field dynamo theory

    CERN Document Server

    Lingam, Manasvi

    2016-01-01

    The role of the Hall term on large scale dynamo action is investigated by means of the First Order Smoothing Approximation. It is shown that the standard $\\alpha$ coefficient is altered, and is zero when a specific double Beltrami state is attained, in contrast to the Alfv\\'enic state for MHD dynamos. The $\\beta$ coefficient is no longer positive definite, and thereby enables dynamo action even if $\\alpha$-quenching were to operate. The similarities and differences with the (magnetic) shear-current effect are pointed out, and a mechanism that may be potentially responsible for $\\beta < 0$ is advanced. The results are compared against previous studies, and their astrophysical relevance is also highlighted.

  11. Behavior of magnetic field and eddy current in a magnetostriction based bi-layered composite

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2016-12-01

    Full Text Available In this paper, we presented a theoretical method for studying the behavior of magnetic field intensity and eddy current inside a magnetostriction based bi-layered composite. Firstly, the mathematical model for the electromagnetic field in the composite was established. Then, the governing equation for determining the magnetic field intensity and eddy current was solved. Furthermore, the effect of the composite’s conductivity on the magnetic field intensity and eddy current were discussed. Lastly, by comparing with the well known R.L. Stoll’s equation, the magnetic field intensity calculated based on our equation showed a less than 0.5% error.

  12. Behavior of magnetic field and eddy current in a magnetostriction based bi-layered composite

    Science.gov (United States)

    Zhang, Kewei; Zhang, Kehao; Liu, Huifeng; Li, Junlin

    2016-12-01

    In this paper, we presented a theoretical method for studying the behavior of magnetic field intensity and eddy current inside a magnetostriction based bi-layered composite. Firstly, the mathematical model for the electromagnetic field in the composite was established. Then, the governing equation for determining the magnetic field intensity and eddy current was solved. Furthermore, the effect of the composite's conductivity on the magnetic field intensity and eddy current were discussed. Lastly, by comparing with the well known R.L. Stoll's equation, the magnetic field intensity calculated based on our equation showed a less than 0.5% error.

  13. Eddy current heating of irregularly shaped plates by slow ramped fields

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1979-09-01

    Eddy current heating of thin conducting plates of various shapes by a perpendicular field is studied, assuming that the magnetic field created by the eddy currents is negligible in comparison with the external field. The method is to introduce the stream function of the eddy currents, which is shown to satisfy Poisson's equation, and then employ a pair of complementary variational principles (i.e., a minimum principle and a maximum principle), the extrema of which equal the eddy current heating. Two such complementary principles give not only an estimate of the eddy current heating, but a bound on the error of the estimate as well.

  14. GALAXY MERGERS DRIVE SHOCKS: AN INTEGRAL FIELD STUDY OF GOALS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rich, J. A. [IPAC, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kewley, L. J.; Dopita, M. A., E-mail: jrich@ipac.caltech.edu [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia)

    2015-12-15

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample.

  15. Galaxy Mergers Drive Shocks: an Integral Field Study of GOALS galaxies

    CERN Document Server

    Rich, J A; Dopita, M A

    2015-01-01

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph (WiFeS) focuses on determining the detailed properties of the emission line gas, including a careful treatment of multi- component emission line profiles. The resulting information obtained from the spectral fits are used to map the kinematics of the gas, sources of ionizing radiation and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the...

  16. Driving Sodium/Potassium Pumps with an Oscillating Electric field: Effects on Muscle Fatigue

    Science.gov (United States)

    Lanes, Olivia; Bovyn, Matthew; Chen, Wei

    2013-03-01

    Dr. Chen has developed a technique called Synchronization Modulation, which has already been proven to be an effective tool in synchronizing and speeding up the sodium/potassium pumps in cell membranes. When synchronized, it is thought that these pumps are more efficient because they require less ATP. We hypothesized that if this was correct, this technique may be used to reduce muscle fatigue. To test our hypothesis, we had multiple test subjects hold a 15 lb weight for as long as they could while isolating the bicep muscle and applying an oscillating electric field. We compared the EMG data we took during these trials to the control, which was done the same way but without applying the electric field. To compare how fatigued subjects were, we did a Fast Fourier Transform on the first and last 10 seconds of each trial to measure the Fatigue Index. Our preliminary results suggest that the Fatigue Index decreased at a slower rate in the trials where the subject held the weight with Synchronization Modulation.

  17. Magnetic Field Due to a Finite Length Current-Carrying Wire Using the Concept of Displacement Current

    Science.gov (United States)

    Buschauer, Robert

    2014-01-01

    In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1

  18. A novel hybrid FEM-BEM method for 3D eddy current field calculation using current density J

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhizhen(刘志珍); WANG; Yanzhang(王衍章); JIA; Zhiping(贾智平); SUN; Yingming(孙英明)

    2003-01-01

    This paper introduces a novel hybrid FEM-BEM method for calculating 3D eddy current field. In the eddy current region, the eddy current density J is solved by the finite element method (FEM) which is discretized by brick finite element mesh, while in the eddy current free region, the magnetic field intensity H is solved by the boundary element method (BEM) which is discretized by rectangular boundary element mesh. Under the boundary conditions, an algebraic equation group is obtained that only includes J by eliminating H. This method has many advantages over traditional ones, such as fewer variables, more convenient coupling between the FEM and the BEM and wider application to multiply-connected regions. The calculated values of two models are in good agreement with experimental results. This shows the validity of our method.

  19. Inverse problem of pulsed eddy current field of ferromagnetic plates

    Science.gov (United States)

    Chen, Xing-Le; Lei, Yin-Zhao

    2015-03-01

    To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters, it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. Project supported by the National Defense Basic Technology Research Program of China (Grant No. Z132013T001).

  20. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    CERN Document Server

    Petrie, G J D

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For ex...

  1. Obtaining Photospheric Electric Field Maps and Poynting Fluxes from vector magnetograms and Doppler data: Tests and Data Driving Applications

    Science.gov (United States)

    Kazachenko, Maria; Fisher, George; Welsch, Brian

    Quantitative studies of the flow of magnetic energy through the solar photosphere require a knowledge of the magnetic field vector B - and knowledge of the electric field E as well. We have modified and improved the technique Fisher et al. developed in 2012, which combines a poloidal-toroidal decomposition (PTD) to determine contributions to E from Faraday's law, with additional non-inductive contributions arising from flux emergence near polarity inversion lines, determined from Doppler measurements. The new technique, which we call the ``PTD Doppler FLCT Ideal'' (or PDFI) technique, incorporates Doppler information from non-normal viewing angles, and adopts the faster and more robust FISHPACK software for solutions of the two-dimensional Poisson equations. We demonstrate the performance using synthetic data from the anelastic pseudo-spectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques (Welsch et al. 2007) and the PTD inversion (Fisher et al. 2012). We find that the PDFI method has roughly 10% reconstruction errors (it predicts roughly 100% of the photospheric Poynting flux and 110% of the helicity flux rate at normal viewing angles, consistent with Fisher et al. (2012) results, and 90% of Poynting flux and 110% helicity flux at theta=30 degrees). We conclude that the PDFI method can be routinely applied to observed magnetic field data and, as an example, apply it to the 6-day HMI/SDO vector magnetogram sequence centered at AR11158, where an X2.2 flare occurred. We discuss how our electric field maps are used to drive coronal magnetic field with a global evolutionary model, or CGEM, a collaborative effort from the UC Berkeley Space Sciences Laboratory (SSL), Stanford University, and Lockheed-Martin.

  2. Sensorless Stator Field-Oriented Controlled IM Drive at Low Speed with Rr Estimator

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Pu

    2014-01-01

    Full Text Available This paper pertains to a technique of a sensorless indirect stator field-oriented induction motor control, which prevents the accumulative errors incurred by the integrator and the problem relating to the stability of the control system caused by the stator resistance susceptible to temperature variations while conducting the flux estimation directly and computing the synchronous rotary speed. The research adds an adaptive flux observer to estimate the speed of the rotor and uses the fixed trace algorithm (FTA to execute an online estimation of the slip difference, thereby improving the system of stability under the low rotary speed at regenerating mode and the influence of the rotor resistance on the slip angle. Finally, the paper conducts simulations by Simulink of MATLAB and practices to verify the correctness of the result the paper presents.

  3. Hysteresis losses in MgB{sub 2} superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, N., E-mail: niklas.magnusson@sintef.no [SINTEF Energy Research, NO-7465 Trondheim (Norway); Abrahamsen, A.B. [DTU Wind Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, D. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands); Runde, M. [SINTEF Energy Research, NO-7465 Trondheim (Norway); Polinder, H. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands)

    2014-11-15

    Highlights: • A method for calculating hysteresis losses in the low AC – high DC magnetic field and transport current range has been shown. • The method can be used in the design of wind turbine generators for calculating the losses in the generator DC rotor. • First estimates indicate tolerable current ripple in the 0.1% range for a 4 T DC MgB{sub 2} generator rotor coil. - Abstract: MgB{sub 2} superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC – low AC current and magnetic field region experimental results still lack for MgB{sub 2} conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB{sub 2} DC coils in the 1–4 T range with low AC magnetic field and current ripples.

  4. Relation between electric field and field-aligned currents data from the satellite Interkosmos-Bolgariya-1600

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, N.S.; Dubinin, E.M.; Izrailevich, P.L.; Podgornyi, I.M.

    1988-11-01

    We present the results of measuring the electric and magnetic field sin the auroral region. The measurements were made by independent instruments on Interkosmos-Bolgariya-1300. We show that in regions where field-aligned currents are flowing, the profiles of electric and magnetic fields are similar. This is apparently one of the phenomena of ionosphere-magnetosphere connections, where closure of the field-aligned currents occurs via meridional Pedersen currents, and the Hall current is divergenceless. In regions where E/sub x/ and /triangle/B/sub y/ are proportional, we have estimated the Pedersen conductivity. The results of these calculations are in agreement with the values of conductivity obtained from electron spectra which were measured simultaneously by the same satellite.

  5. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment.

    Science.gov (United States)

    Siefert, Andrew; Ritchie, Mark E

    2016-05-01

    Environmental changes are expected to shift the distribution of functional trait values in plant communities through a combination of species turnover and intraspecific variation. The strength of these shifts may depend on the availability of individuals with trait values adapted to new environmental conditions, represented by the functional diversity (FD) of existing community residents or dispersal from the regional species pool. We conducted a 3-year nutrient- and seed-addition experiment in old-field plant communities to examine the contributions of species turnover and intraspecific variation to community trait shifts, focusing on four key plant functional traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We further examined the influence of initial FD and seed availability on the strength of these shifts. Community mean height, leaf area, and SLA increased in response to fertilization, and these shifts were driven almost entirely by intraspecific variation. The strength of intraspecific shifts in height and leaf area was positively related to initial intraspecific FD in these traits. Intraspecific trait responses to fertilization varied among species, with species of short stature displaying stronger shifts in SLA and LDMC but weaker shifts in leaf area. Trait shifts due to species turnover were generally weak and opposed intraspecific responses. Seed addition altered community taxonomic composition but had little effect on community trait shifts. These results highlight the importance of intraspecific variation for short-term community functional responses and demonstrate that the strength of these responses may be mediated by community FD.

  6. Noether's theorems and conserved currents in gauge theories in the presence of fixed fields

    CERN Document Server

    Toth, Gabor Zsolt

    2016-01-01

    We extend the standard construction of conserved currents for matter fields in general relativity to general gauge theories. In the original construction the conserved current associated with a spacetime symmetry generated by a Killing field $h^\\mu$ is given by $\\sqrt{-g}\\,T^{\\mu\

  7. Numerical calculation of superheating magnetic fields and currents for superconducting slabs

    Science.gov (United States)

    Landau, I. L.; Rinderer, L.

    1995-08-01

    Numerical calculations of superheating magnetic fields and superheating currents for superconducting slabs for a wide range of the sample thickness are presented. The calculations were made for low values of Ginzburg-Landau parameter κ, i.e., for type-1 superconductors. We propose also experimental procedures to measure superheating fields and currents in films and bulk samples.

  8. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  9. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.

    Science.gov (United States)

    Miura, Hidekazu; Yamada, Akihiro; Shiraishi, Yasuyuki; Yambe, Tomoyuki

    2015-08-01

    We have been developing transcutaneous energy transmission system (TETS) for a ventricular assist device, shape memory alloy (SMA) fibered artificial organs and so on, the system has high efficiency and a compact size. In this paper, we summarize the development, design method and characteristics of the TETS. New control methods for stabilizing output voltage or current of the TETS are proposed. These methods are primary side, are outside of the body, not depending on a communication system from the inside the body. Basically, the TETS operates at the fixed frequency with a suitable compensation capacitor so that the internal impedance is minimalized and a flat load characteristic is obtained. However, when the coil shifted from the optimal position, the coupling factor changes and the output is fluctuated. TETS has a resonant property; its output can be controlled by changing the driving frequency. The continuous current to continuous voltage driving method was implemented by changing driving frequency and setting of limitation of low side frequency. This method is useful for battery charging system for electrically driven artificial hearts and also useful for SMA fibered artificial organs which need intermittent high peak power comsumption. In this system, the internal storage capacitor is charged slowly while the fibers are turned off and discharge the energy when the fibers are turned on. We examined the effect of the system. It was found that the size and maximum output of the TETS would able to be reduced.

  10. A veterinary and behavioral analysis of dolphin killing methods currently used in the "drive hunt" in Taiji, Japan.

    Science.gov (United States)

    Butterworth, Andrew; Brakes, Philippa; Vail, Courtney S; Reiss, Diana

    2013-01-01

    Annually in Japanese waters, small cetaceans are killed in "drive hunts" with quotas set by the government of Japan. The Taiji Fishing Cooperative in Japan has published the details of a new killing method that involves cutting (transecting) the spinal cord and purports to reduce time to death. The method involves the repeated insertion of a metal rod followed by the plugging of the wound to prevent blood loss into the water. To date, a paucity of data exists regarding these methods utilized in the drive hunts. Our veterinary and behavioral analysis of video documentation of this method indicates that it does not immediately lead to death and that the time to death data provided in the description of the method, based on termination of breathing and movement, is not supported by the available video data. The method employed causes damage to the vertebral blood vessels and the vascular rete from insertion of the rod that will lead to significant hemorrhage, but this alone would not produce a rapid death in a large mammal of this type. The method induces paraplegia (paralysis of the body) and death through trauma and gradual blood loss. This killing method does not conform to the recognized requirement for "immediate insensibility" and would not be tolerated or permitted in any regulated slaughterhouse process in the developed world.

  11. Spontaneous current sheets in magnetic fields with applications to stellar X-rays

    CERN Document Server

    Parker, Eugene N

    1994-01-01

    Expanding upon the ideas first proposed in his seminal book Cosmical Magnetic Fields, Eugene N. Parker here offers the first in-depth treatment of the magnetohydrodynamic theory of spontaneous magnetic discontinuities. In detailing his theory of the spontaneous formation of tangential discontinuities (current sheets) in a magnetic field embedded in highly conducting plasma, Parker shows how it can be used to explain the activity of the external magnetic fields of planets, stars, interstellar gas clouds, and galaxies, as well as the magnetic fields in laboratory plasmas. Provocative and fascinating, Spontaneous Current Sheets in Magnetic Fields presents a bold new theory that will excite interest and discussion throughout the space physics community.

  12. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    CERN Document Server

    Lazar, Markus

    2013-01-01

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  13. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    DEFF Research Database (Denmark)

    Lühr, Hermann; Xiong, Chao; Olsen, Nils

    2017-01-01

    Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field...

  14. Measurement and interpretation of current transmission in a crossed-field diode below cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vanderberg, B.H.; Eninger, J.E. [Department of Industrial Electrotechnology, Royal Institute of Technology, S-100 44 Stockholm (Sweden)

    1997-02-01

    Measurements on the current-voltage-magnetic field characteristics of a space-charge-limited cylindrical cross-field diode below cutoff are presented. The measured current is found to be lower than predicted by simple cold-fluid theory. This reduction combined with observed oscillations in the current can be explained by secondary electron emission from the anode, leading to an increase of space charge in the diode. {copyright} {ital 1997 American Institute of Physics.}

  15. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    OpenAIRE

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the r...

  16. Effect of self-field on the current distribution in Roebel-assembled coated conductor cables

    Science.gov (United States)

    Vojenčiak, M.; Grilli, F.; Terzieva, S.; Goldacker, W.; Kováčová, M.; Kling, A.

    2011-09-01

    Roebel cables are a promising solution for high current, low AC loss cables made of high-temperature superconductors in the form of coated conductors. High current creates significant self-field, which influences the superconductor's current-carrying capability. In this paper, we investigate the influence of the self-field on the cable's critical current and the current repartition among the different strands. In order to investigate the cable's critical current, we analysed the influence of flux creep on the cable properties. Using the experimental material's properties derived from measurements on a single conductor as input for our calculations, we were able to predict the critical current of the cable in two limiting situations: good current sharing and complete electrical insulation among the strands. The results of our calculations show good agreement with the measured critical current of three Roebel cable samples.

  17. Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces

    Institute of Scientific and Technical Information of China (English)

    王涛; 李家春

    1997-01-01

    A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does so by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.

  18. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  19. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  20. Anomalous current pinch of a toroidal axisymmetric plasma with stochastic magnetic field perturbations

    Science.gov (United States)

    Wang, Shaojie

    2016-07-01

    Anomalous current pinch, in addition to the anomalous diffusion due to stochastic magnetic perturbations, is theoretically found, which may qualitatively explain the recent DIII-D experiment on resonant magnetic field perturbation. The anomalous current pinch, which may resolve the long-standing issue of seed current in a fully bootstrapped tokamak, is also discussed for the electrostatic turbulence.

  1. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Science.gov (United States)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-01

    We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  2. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    Cun Xue

    2013-12-01

    Full Text Available We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  3. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  4. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; Eckart, Megan E.; Busch, Sarah; Porst, Jan-Patrick

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  5. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    Science.gov (United States)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  6. Health effects of electromagnetic field generated by lightning current pulses near down conductors

    Science.gov (United States)

    Tamus, Z. Á.; Novák, B.; Szücs, L.; Kiss, I.

    2011-06-01

    The lightning current generates a time varying magnetic field near down conductors, when lightning strikes the connected Franklin-rod. The down conductors are mounted on the wall of buildings, where residential places can be situated. It is well known that the rapidly changing magnetic fields could generate dangerous eddy currents in the human body. If the duration and the gradient of the magnetic field were high enough, the peripheral nerves are excited. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near a down conductor with the human body. The interaction model has two parts: estimation of the magnetic fields surrounding the down conductor and evaluation of health effects of rapid changing magnetic fields on the human body.

  7. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Science.gov (United States)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  8. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  9. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  10. Photocurrent, rectification, and magnetic field symmetry of induced current through quantum dots.

    Science.gov (United States)

    DiCarlo, L; Marcus, C M; Harris, J S

    2003-12-12

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic rectification.

  11. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...

  12. Temperature field at time of pulse current discharge in metal structure with elliptical embedding crack

    Institute of Scientific and Technical Information of China (English)

    FU Yu-ming; TIAN Zhen-guo; ZHENG Li-juan; LI Wei

    2008-01-01

    Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.

  13. Naturalistic field study of the restart break in US commercial motor vehicle drivers: Truck driving, sleep, and fatigue.

    Science.gov (United States)

    Sparrow, Amy R; Mollicone, Daniel J; Kan, Kevin; Bartels, Rachel; Satterfield, Brieann C; Riedy, Samantha M; Unice, Aaron; Van Dongen, Hans P A

    2016-08-01

    Commercial motor vehicle (CMV) drivers in the US may start a new duty cycle after taking a 34-h restart break. A restart break provides an opportunity for sleep recuperation to help prevent the build-up of fatigue across duty cycles. However, the effectiveness of a restart break may depend on its timing, and on how many nighttime opportunities for sleep it contains. For daytime drivers, a 34-h restart break automatically includes two nighttime periods. For nighttime drivers, who are arguably at increased risk of fatigue, a 34-h restart break contains only one nighttime period. To what extent this is relevant for fatigue depends in part on whether nighttime drivers revert back to a nighttime-oriented sleep schedule during the restart break. We conducted a naturalistic field study with 106 CMV drivers working their normal schedules and performing their normal duties. These drivers were studied during two duty cycles and during the intervening restart break. They provided a total of 1260days of data and drove a total of 414,937 miles during the study. Their duty logs were used to identify the periods when they were on duty and when they were driving and to determine their duty cycles and restart breaks. Sleep/wake patterns were measured continuously by means of wrist actigraphy. Fatigue was assessed three times per day by means of a brief psychomotor vigilance test (PVT-B) and a subjective sleepiness scale. Data from a truck-based lane tracking and data acquisition system were used to compute lane deviation (variability in lateral lane position). Statistical analyses focused on 24-h patterns of duty, driving, sleep, PVT-B performance, subjective sleepiness, and lane deviation. Duty cycles preceded by a restart break containing only one nighttime period (defined as 01:00-05:00) were compared with duty cycles preceded by a restart break containing more than one nighttime period. During duty cycles preceded by a restart break with only one nighttime period, drivers

  14. Design and fabrication of nano-ring MRAM demo devices based on spin-polarized current driving

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nano-ring-type magnetic tunnel junctions(NR-MTJ)were nano-fabricated.The tunneling magnetoresistance(TMR)versus current(Ⅰ)loops of the NR-MTJs for a spin-polarized current switching were measured and the TMR ratio of around 20%~50% with a Al-O barrier at room temperature were observed.The critical value of switching current for the free Co_(60)Fe_(20)B_(20) layer between parallel and anti-parallel magnetization states is smaller than 650μA.The NR-MTJs arrays were also integrated above the transistors in ...

  15. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  16. The impact of interface states on the mobility and drive current of In0.53Ga0.47 As semiconductor n-MOSFETs

    Science.gov (United States)

    Osgnach, Patrik; Caruso, Enrico; Lizzit, Daniel; Palestri, Pierpaolo; Esseni, David; Selmi, Luca

    2015-06-01

    Accurate Schrödinger-Poisson and Multi-Subband Monte Carlo simulations are used to investigate the effect of interface states at the channel-insulator interface of In0.53Ga0.47 As MOSFETs. Acceptor states with energy inside the conduction band of the semiconductor can explain the dramatic Fermi level pinning observed in the experiments. Our results show that these states significantly impact the electrical mobility measurements but they appear to have a limited influence on the static current drive of short channel devices.

  17. The influence of an electromagnetic field on the wave-current interaction

    CERN Document Server

    Rousseaux, Germain

    2010-01-01

    We study the propagation of surface waves on a current in the presence of an electromagnetic field. A horizontal (vertical) field strengthens (weakens) the counter-current which blocks the waves. We compute the phase space diagrams (blocking velocities versus period of the waves) with and without surface tension. Three new dimensionless numbers are introduced to compare the relative strengths of gravity, surface tension and field effects. This work shows the importance of an electromagnetic field in order to design wave-breakers or in microfluidics applications.

  18. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.

  19. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    CERN Document Server

    Mandrà, Salvatore; Katzgraber, Helmut G

    2016-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground-state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians, which introduce transitions between all states with equal weights, are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  20. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,

  1. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields.

    Science.gov (United States)

    Gandhi, O P; Kang, G; Wu, D; Lazzi, G

    2001-02-01

    We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.

  2. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    Science.gov (United States)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  3. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    Science.gov (United States)

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  4. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  5. Enhancement of critical current in mesoscopic superconducting strips by external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ilin, Konstantin; Henrich, Dagmar; Luck, Yannick; Fuchs, Lea; Meckbach, Johannes Maximilian; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2013-07-01

    Current crowding in superconducting mesoscopic strips with bends results in decrease of critical current in these structures with respect to the strips without geometrical non-uniformities. Recently it has been shown that Meissner currents induced by externally applied magnetic field of appropriate direction allow to suppress this effect so that I{sub c}(B) can exceed I{sub c}(0). Experimental dependencies of critical current in mesoscopic bended strips made from ultra-thin superconducting films on externally applied magnetic field and their comparison to the theoretical predictions are presented and discussed.

  6. Finite-element simulations of field and current distributions in multifilamentary superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, Andrea [Laboratorium fuer Festkoerperphysik, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Grilli, Francesco [Ecole Polytechnique Montreal, Montreal (Canada); Luepke, Gunter [Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187-8795 (United States); Haugan, Timothy J; Barnes, Paul N [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7919 (United States)

    2009-10-15

    We present a finite-element model for computing current and field distributions in multifilamentary superconducting thin films subjected to simultaneous effects of a transport ac current and a perpendicularly applied dc field. The model is implemented in the finite-element software package COMSOL Multiphysics and this solves Maxwell equations using a highly nonlinear resistivity to describe electrical superconducting characteristics. The time-dependent magnetic flux, current distributions, and ac losses are studied for different distances between filaments. We find that increasing the interfilamentary distance affects the transport and screening current distributions, reducing both the magnetic coupling and ac losses.

  7. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  8. Development of hybrid frequency couplers for non-inductive current drive in a tokamak; Developpement de coupleurs a la frequence hybride pour la generation non inductive du courant dans un tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Berio, St.

    1996-11-04

    Used at its first time as an heating method in order to reach the temperature requisite for the fusion of a thermonuclear plasma, the hybrid waves has shown that they were the more efficient method for non-inductive current drive in a tokamak. The size and the objectives of a next machine such as ITER lead of the design of new antennae (in process of realisation on Tore Supra) made of oversized waveguides. This new concept of antenna will be more simple, more robust and will be able to transmit the same if not much power than the present antennae. This thesis contribute to the development of a new code called ALOHA (for `Advanced LOwer Hybrid Antenna`) which, at the end, will be able to give the characteristics and the behaviours of this new oversized antennae in front of a tokamak plasma. This thesis is also a first step in the interpretation of some experimental data concerning the measurement of coupling, absorption and current drive of the actual hybrid wave launched by a grill with rectangular waveguides. Moreover, this thesis lay some foundations of the study of these new antennae in front of a non-parallel confinement magnetic field and/or in front of poloidal inhomogeneities of plasma. (author). 53 refs.

  9. Effects of Pay-As-You-Drive vehicle insurance on young drivers' speed choice : Results of a Dutch field experiment

    NARCIS (Netherlands)

    Bolderdijk, J.W.; Knockaert, J.; Steg, L.; Verhoef, E.T.

    2011-01-01

    Speeding is an important cause for young drivers' involvement in traffic accidents. A reduction in driving speeds of this group could result in fewer accidents. One way of reducing driving speed is offering explicit financial incentives. In collaboration with five Dutch car insurance companies, we t

  10. Generation of longitudinal electric current by the transversal electromagnetic field in classical and quantum plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...

  11. Generation of longitudinal electric current by transversal electromagnetic field in Maxwellian plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with Maxwellian collisionless classical and quntum plasmas is carried out. Formulas for calculation electric current in Maxwellian collisionless classical and quntum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical Maxwellian plasmas and Fermi---Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum Maxwellian plasmas is carried out. Also comparison of dependence of density of electric current of quantum Maxwellian plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ou...

  12. Field-aligned current observed on ISEE-2 in the innermagnetosphere

    Institute of Scientific and Technical Information of China (English)

    徐荣栏; 王左丁; 谢榴香; 杨龙

    1995-01-01

    Field-aligned currents in the inner magnetosphere arc studied by using ISEE-2 magnetometer da-la, A method is proposed to calculate ×B with single-satellite data. From the morphology of ×B in time (or L). a lot of large fluctuations are found in ×B near L = 5.5RE corresponding to the field-aligned currents. Statistical study shows that the field-aligned current in the inner magnetosphere is a function of B, L, MLT and AL. The region of the projections of ×B along the magnetic field line onto the ionosphere is not symmetrical for the geomagnetic pole. The inner boundary is independent of the geomagnetic disturbance, but during substorms the outer boundary shifts equatorward. The spatial distribution of the in- and out-flowing currents is complicated. The region-1-and-2 system is hardly distinguishable.

  13. Contribution of the Magnetic Field of Eddy Currents to the Gilbert Damping Parameter

    Directory of Open Access Journals (Sweden)

    S.I. Denisov

    2014-06-01

    Full Text Available We study the role of the magnetic field of eddy currents, which are induced in conducting single-domain particles of spherical form, in the magnetization dynamics. To describe the dynamic behavior of magnetization and electromagnetic field generating by the time-dependent magnetization, we use the coupled system of the Landau-Lifshitz-Gilbert (LLG and Maxwell equations. Assuming that the magnetization direction depends on time in an arbitrary way, we find the solution of the Maxwell equations in the quasi-stationary approximation and calculate the averaged (over the particle volume magnetic field of eddy currents. Considering this field as an extra contribution to the effective magnetic field acting on the particle magnetic moment, we derive the LLG equation in which the influence of eddy currents is completely accounted for by introducing an additional Gilbert damping parameter of electrodynamic origin.

  14. A Study of Energy Conversion Efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    丁伯江; 匡光力; 刘岳修; 刘登成; 单家方; 刘甫坤; 沈慰慈; 石跃江; 吴振伟; 林建安; 俞家文; 徐汉东; 商连全; 张晓东; 刘小宁; 赵燕平; 李建刚

    2002-01-01

    Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.

  15. A Study of Energy Conversion Efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT—7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    丁伯江; 匡光力; 等

    2002-01-01

    Ramp-up experiments by means of lower hydrid wave on HT-7 superconducting tokamak have been performed and analyzed.A ramp-up rate of over 300kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phases.The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current,which is mainly dominated by the competition of impurity concentration with wave accessibility condition.In addition,the effect of current profile may play an important role in determining the conversion efficiency.

  16. The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo

    Science.gov (United States)

    Squire, J.; Bhattacharjee, A.

    2016-04-01

    > A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo - in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean field coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.

  17. Residual magnetic field profiles and their current density profiles of coated conductors for fast and slow cut-off current operations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.; Taillouli, M.; Hamabe, M.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S. [Chubu University, Kasugai, Aichi (Japan); Shyshkin, O. [V. N. Karazin Kharkiv National University, Kharkov (Ukraine)

    2015-03-15

    Coated conductor is an important candidate for power cable applications due to its high current density. Even for DC power cable transmission, we must study the transport properties of HTS tapes after slow and fast discharge. In order to evaluate relation of the magnetic field with applied current we developed a scanning magnetic field measurements system by employing a Hall probe. This work presents the measurements of the magnetic fields above a coated conductor by varying applied current pattern. In the work, a transport current of 100 A, less than the critical current, is applied to YBCO coated conductor. We measured the residual magnetic field distributions after cut off the transport current with slow and fast operations. The results show differences of the magnetic field profiles and the corresponding current profiles by an inverse solution from the magnetic field measurement between these two operations because of the hysteresis of coated conductor excited by the transport current.

  18. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  19. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  20. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...