WorldWideScience

Sample records for fields current drive

  1. Oscillating field current drive for reversed field pinch discharges

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Baker, D.A.

    1984-06-01

    Oscillating Field Current Drive (OFCD), also known as F-THETA pumping, is a steady-state current-drive technique proposed for the Reversed Field Pinch (RFP). Unlike other current-drive techniques, which employ high-technology, invasive, and power intensive schemes using radio frequency or neutral particle injection, F-THETA pumping entails driving the toroidal and poloidal magnetic field circuits with low-frequency (audio) oscillating voltage sources. Current drive by this technique is a consequence of the strong nonlinear plasma coupling in the RFP. Because of its low frequency and efficient plasma coupling, F-THETA pumping shows excellent promise as a reactor-relevant current-drive technique. A conceptual and computational study of this concept, including its experimental and reactor relevance, is explored in this paper

  2. Rotating field current drive in spherical plasmas

    International Nuclear Information System (INIS)

    Brotherton-Ratcliffe, D.; Storer, R.G.

    1988-01-01

    The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)

  3. Rotating magnetic field current drive-theory and experiment

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  4. Alfven-wave current drive and magnetic field stochasticity

    International Nuclear Information System (INIS)

    Litwin, C.; Hegna, C.C.

    1993-01-01

    Propagating Alfven waves can generate parallel current through an alpha effect. In resistive MHD however, the dynamo field is proportional to resistivity and as such cannot drive significant currents for realistic parameters. In the search for an enhancement of this effect the authors investigate the role of magnetic field stochasticity. They show that the presence of a stochastic magnetic field, either spontaneously generated by instabilities or induced externally, can enhance the alpha effect of the wave. This enhancement is caused by an increased wave dissipation due to both current diffusion and filamentation. For the range of parameters of current drive experiments at Phaedrus-T tokamak, a moderate field stochasticity leads to significant modifications in the loop voltage

  5. Power and momentum relations in rotating magnetic field current drive

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1984-01-01

    The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.

  6. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    Science.gov (United States)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  7. High Field Side Lower Hybrid Current Drive Simulations for Off- axis Current Drive in DIII-D

    Directory of Open Access Journals (Sweden)

    Wukitch S.J.

    2017-01-01

    Full Text Available Efficient off-axis current drive scalable to reactors is a key enabling technology for developing economical, steady state tokamak. Previous studies have focussed on high field side (HFS launch of lower hybrid current drive (LHCD in double null configurations in reactor grade plasmas and found improved wave penetration and high current drive efficiency with driven current profile peaked near a normalized radius, ρ, of 0.6-0.8, consistent with advanced tokamak scenarios. Further, HFS launch potentially mitigates plasma material interaction and coupling issues. For this work, we sought credible HFS LHCD scenario for DIII-D advanced tokamak discharges through utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D constrained by experimental considerations. For a model and existing discharge, HFS LHCD scenarios with excellent wave penetration and current drive were identified. The LHCD is peaked off axis, ρ∼0.6-0.8, with FWHM Δρ=0.2 and driven current up to 0.37 MA/MW coupled. For HFS near mid plane launch, wave penetration is excellent and have access to single pass absorption scenarios for variety of plasmas for n||=2.6-3.4. These DIII-D discharge simulations indicate that HFS LHCD has potential to demonstrate efficient off axis current drive and current profile control in DIII-D existing and model discharge.

  8. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-01-01

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size

  9. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.

    2003-01-01

    The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)

  10. Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field

    Science.gov (United States)

    Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.

    2009-05-01

    This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.

  11. Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field

    International Nuclear Information System (INIS)

    Rosa, P.R. da S; Mourao, R.; Ziebell, L.F.

    2009-01-01

    This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.

  12. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  13. Alpha effect of Alfven waves and current drive in reversed field pinches

    International Nuclear Information System (INIS)

    Litwin, C.; Prager, S.C.

    1997-10-01

    Circularly polarized Alfven waves give rise to an α-dynamo effect that can be exploited to drive parallel current. In a open-quotes laminarclose quotes magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the α-effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors

  14. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  15. Neoclassical effects on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Yoshioka, K.; Antonsen, T.M. Jr.

    1986-01-01

    Neoclassical effects on RF current drive which arise because of the inhomogeneity of the magnetic field in tokamak devices are analysed. A bounce averaged 2-D Fokker-Planck equation is derived from the drift kinetic equation and is solved numerically. The model features current drive due to a strong RF wave field. The efficiency of current drive by electron cyclotron waves is significantly reduced when the waves are absorbed at the low magnetic field side of a given flux surface, whereas the efficiency remains at the same level as in the homogeneous ideal plasma when the waves are absorbed at the high field side. The efficiency of current drive by fast waves (compressional Alfven waves) with low phase velocity (vsub(parallel)/vsub(th)<1) is significantly degraded by neoclassical effects, no matter where the wave is absorbed, and the applicability of this wave seems, therefore, to be doubtful. (author)

  16. Transport simulations of the oscillating field current drive experiment in the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Scardovelli, R.A.; Nebel, R.A.; Werley, K.A.; Miley, G.H.

    1987-01-01

    Oscillating Field Current Drive (OFCD) is based on the premise that in order to sustain a relaxing Reversed Field Pinch (RFP) plasma, one needs only to supply magnetic helicity at the same rate it is consumed. The purpose of this work is to try to better understand the possible mechanisms underlying these relaxations within the context of different kinds of resistive MHD instabilities

  17. Lower hybrid current drive in the presence of electric field

    Directory of Open Access Journals (Sweden)

    Saveliev Alexander

    2017-01-01

    Full Text Available A new one-dimensional approach to the lower hybrid current drive (LHCD modelling in the presence of an inductive electric field is suggested in this paper. The approach is based on using time-dependent solutions of a well-known Fokker-Planck equation for the distribution function of fast electrons calculated concurrently with solving plasma transport equation in the Automated System for TRansport Analysis (ASTRA [1]. A good agreement between experimental and modelling results is demonstrated for an FT-2 [2] plasma shot. Also new formulae for the steady-state solution of this kinetic equation are found.

  18. Lower hybrid current drive in the presence of electric field

    Science.gov (United States)

    Saveliev, Alexander; Zakharov, Vladimir

    2017-10-01

    A new one-dimensional approach to the lower hybrid current drive (LHCD) modelling in the presence of an inductive electric field is suggested in this paper. The approach is based on using time-dependent solutions of a well-known Fokker-Planck equation for the distribution function of fast electrons calculated concurrently with solving plasma transport equation in the Automated System for TRansport Analysis (ASTRA) [1]. A good agreement between experimental and modelling results is demonstrated for an FT-2 [2] plasma shot. Also new formulae for the steady-state solution of this kinetic equation are found.

  19. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Hellsten, T.; Johnson, T.

    2008-01-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  20. Current drive for rotamak plasmas

    Indian Academy of Sciences (India)

    Abstract. Experiments which have been undertaken over a number of years have shown that a rotating magnetic field can drive a significant non-linear Hall current in a plasma. Successful experiments of this concept have been made with a device called rotamak. In its original configuration this device was a field reversed ...

  1. A computational model for lower hybrid current drive

    International Nuclear Information System (INIS)

    Englade, R.C.; Bonoli, P.T.; Porkolab, M.

    1983-01-01

    A detailed simulation model for lower hybrid (LH) current drive in toroidal devices is discussed. This model accounts reasonably well for the magnitude of radio frequency (RF) current observed in the PLT and Alcator C devices. It also reproduces the experimental dependencies of RF current generation on toroidal magnetic field and has provided insights about mechanisms which may underlie the observed density limit of current drive. (author)

  2. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.

    2002-01-01

    A Monte-Carlo code is used to study neutral beam current drive in Spheromaks. The exact particle trajectories are followed in the self-consistent equilibria calculated including the beam current. Reducing Z(eff) does not increase the current drive efficiency because the reduction of the stopping cross section is compensated by an increase in the electron canceling current. Significant changes in the safety factor profile can be produced with relatively low beam currents. Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found; one has a central core of open flux surrounded by a toroidal region of closed flux surfaces and the other has the open flux wrapped around the closed flux surfaces. Non-uniform resistivity effects can be very important due to the changes they produce in the safety factor profile. A hybrid, fluid electrons particle ions, code is employed to study ion dynamics in FRCs sustained by rotating magnetic fields. (author)

  3. The effect of non-inductive current drive on tokamak transport

    International Nuclear Information System (INIS)

    Helander, P; Akers, R J; Valovic, M; Peysson, Y

    2005-01-01

    Non-inductive current drive causes cross-field neoclassical transport in a tokamak, in much the same way that the toroidal electric field used to drive the plasma current produces the so-called Ware pinch. This transport can be either inwards or outwards, depending on the current drive mechanism, and can be either larger or smaller than the analogous Ware pinch. A Green's function formalism is used to calculate the transport produced by wave-driven currents, which is found to be inwards for electron-cyclotron and lower-hybrid current drive. Its magnitude is proportional to the collisionality of the current-carrying electrons and therefore smaller than the Ware pinch when the resonant electrons are suprathermal. In contrast, neutral-beam current drive produces outward particle transport when the beams are injected in the same toroidal direction as the plasma current, and inward particle transport otherwise. This transport is somewhat larger than the corresponding Ware pinch. Together, they may explain an observation made on several tokamaks over the years, most recently on MAST, that density profiles tend to be more peaked during counter-injection

  4. Relativistic theory of current drive by radio frequency waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Khan, T.P.

    1992-01-01

    A relativistic kinetic theory of rf current drive in a magnetized plasma is developed. Analytical expressions are obtained for the rf generated currents, the dissipated power, and the current drive efficiency in the presence of a magnetic field. The relativistic transport coefficients in both parallel and perpendicular directions of the magnetic field are exhibited to have important contributions to the efficiency of rf-generated current drive. The consideration of perpendicular particle and heat fluxes make it more attractive for fusion problems. The effect of collisions in the presence of a magnetic field on the transport of the rf-generated current drive is discussed

  5. Analysis on Θ pumping for tokamak current drive

    International Nuclear Information System (INIS)

    Miyamoto, Kenro; Naito, Osamu

    1986-01-01

    Analytical results of Θ pumping for the tokamak current drive are presented. Diffusion of externally applied oscillating electric field into the tokamak plasma is examined when the plasma is normal. When the oscillating electric field is parallel to the stationary toroidal plasma current and the induced current density by the applied electric field becomes larger than the average density of the toroidal plasma current over the plasma cross section, the radial profile of the safety factor has the extremum near the plasma boundary region and MHD instabilities are excited. It is assumed that anomalous diffusion of the induced current localized in the plasma boundary region takes place, so that the extreme value in the radial profile of the safety factor disappears. The anomalously diffused electric field due to this relaxation process has net d. c component and its non-zero value of the time average is estimated. Then the condition of the tokamak current drive by Θ pumping is derived. Some numerical results are presented for an example of a fusion grade plasma. (author)

  6. Noninductive current drive in tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1985-01-01

    Various current drive mechanisms may be grouped into four classes: (1) injection of energetic particle beams; (2) launching of rf waves; (3) hybrid schemes, which are combinations of various rf schemes (rf plus beams, rf and/or beam plus ohmic heating, etc.); and (4) other schemes, some of which are specific to reactor plasma conditions requiring the presence of alpha particle or intense synchrotron radiation. Particle injection schemes include current drive by neutral beams and relativistic electron beams. The rf schemes include current drive by the lower hybrid (LH) waves, the electron waves, the waves in the ion cyclotron range of frequencies, etc. Only a few of these approaches, however, have been tested experimentally, with the broadest data base available for LH waves. Included in this report are (1) efficiency criteria for current drive, (2) current drive by neutral beam injection, (3) LH current drive, (4) electron cyclotron current drive, (5) current drive by ion cyclotron waves - minority species heating, and (6) current drive by other schemes (such as hybrids and low frequency waves)

  7. Low-frequency current drive and helicity injection

    International Nuclear Information System (INIS)

    Chan, V.S.; Miller, R.L.; Ohkawa, T.

    1990-01-01

    For ω much-lt Ω i , where Ω i is the ion cyclotron frequency, circularly polarized waves can drive current far exceeding the current resulting from linearly polarized waves. Further, the efficiency can be independent of plasma density. In some cases, this circular polarization may be interpreted in terms of helicity injection. For tokamak applications, where the wavenumber in the toroidal direction is a real quantity, wave helicity is injected only with finite E z waves, where z is the direction of the static magnetic field. The Alfven waves are possible current drive candidates but, in the cylindrical model considered, the compressional wave is weakly damped because E z =0, while the shear Alfven wave is totally absorbed at the surface because of finite E z . A mixture of the two modes is shown to drive an oscillatory surface current even though the efficiency is high and independent of density. A more promising current drive candidate is a fast wave that propagates to the plasma interior and is damped by the minority cyclotron resonance. Near the minority mode conversion region, the fast wave is left-handed circularly polarized and it has a small but finite E z component at high electron temperatures. The current drive efficiency, although not as high as that of the Alfven wave, is still good and independent of density, making it attractive for fusion reactors

  8. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  9. Neutral beam current drive with balanced injection

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1990-01-01

    Current drive with fast ions has proved its capability to sustain a tokamak plasma free of externally induced electric fields in a stationary state. The suprathermal ion population within the toroidal plasma was created by quasi-tangential and uni-directional injection of high-energy neutral atoms, their ionisation and subsequent deceleration by collisions with the background plasma particles. In future large tokamaks of the NET/INTER-type, with reactor-relevant values of plasma density and temperature, this current drive scheme is expected to maintain the toroidal current at the plasma centre, as current drive by lower hybrid waves will be restricted to the outer plasma regions owing to strong wave damping. Adequate penetration of the neutral atoms through the dense plasma requires particle energies of several hundred kilovolts per nucleon since beam absorption scales roughly with the ratio beam energy over density. The realisation of such high-energy high-power neutral beams, based on negative ion technology, is now under study. (author) 7 refs., 2 figs

  10. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  11. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  12. Current ramp-up experiments in full current drive plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Nakamura, K.; Hasegawa, M.; Itoh, S.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Yoshida, N.; Tokunaga, K.; Fujiwara, T.; Kulkarni, S.V.; Mitarai, O.

    2004-01-01

    Four types of plasma current ramp-up experiments in full non-inductively lower hybrid current driven (LHCD) plasmas were executed in TRIAM-1M: (1) current start-up by a combination of electron cyclotron resonance heating (ECRH) and LHCD, (2) tail heating by additional LHCD, (3) bulk heating by ECRH and (4) spontaneous ramp-up by a transition to enhanced current drive (ECD) mode. The time evolutions of plasma current during four types of ramp-up phase were adjusted by a simple model with two different time constants, which are a time defined by the total current diffusion time and a time constant for improving the current drive efficiency. In the case of (1) and (4), the latter time constant is significant during the current ramp-up phase. The improvement in the current drive efficiency in the ECD mode is likely to be caused by the increase in the effective refractive index along the magnetic field of the lower hybrid wave. (author)

  13. Modulational instability development and current drive

    International Nuclear Information System (INIS)

    Popel, S.I.; Vladimirov, S.V.; Tsytovich, V.N.

    1992-01-01

    Recently many investigations on current driven by lower-hybrid (LH) waves in a plasma of toroidal nuclear fusion installations are carried out. Usually a theoretical approach taking into account quasilinear and binary collisions effects is used to describe current drive. However a problem of comparison of the results obtained with the aid of the above theoretical approach and experimental data takes place. Namely the experimentally observed currents driven by LH waves is two-three orders of magnitude larger than those calculated. The above discrepancy between theory and experiment is related with the existence of the so-called ''spectral gap'', that is the gap between the parallel phase velocities of LH waves ω/k || (where ω, k || are LH wave frequency and a component of wavenumber k parallel to the external magnetic field) which are necessary for effective Landau damping of LH waves (i.e. velocities as high as several electron thermal velocities) and the lowest parallel phase velocity in the injected LH wave spectrum. Experimentally observed current drive may be explained if one accounts for filling of the ''spectral gap'' by LH waves. Some nonlinear effects have been drawn in current drive description to explain the ''spectral gap'' filling by LH waves. However the LH wave modulational instability (MI) effect has not been considered yet in application to current drive description. The aim of this paper is to investigate this MI influence. We shall show that for sufficiently intensive pump level of LH wave the MI can lead to ''spectral gap'' filling. (author) 4 refs

  14. Fokker-Planck modeling of current penetration during electron cyclotron current drive

    International Nuclear Information System (INIS)

    Merkulov, A.; Westerhof, E.; Schueller, F. C.

    2007-01-01

    The current penetration during electron cyclotron current drive (ECCD) on the resistive time scale is studied with a Fokker-Planck simulation, which includes a model for the magnetic diffusion that determines the parallel electric field evolution. The existence of the synergy between the inductive electric field and EC driven current complicates the process of the current penetration and invalidates the standard method of calculation in which Ohm's law is simply approximated by j-j cd =σE. Here it is proposed to obtain at every time step a self-consistent approximation to the plasma resistivity from the Fokker-Planck code, which is then used in a concurrent calculation of the magnetic diffusion equation in order to obtain the inductive electric field at the next time step. A series of Fokker-Planck calculations including a self-consistent evolution of the inductive electric field has been performed. Both the ECCD power and the electron density have been varied, thus varying the well known nonlinearity parameter for ECCD P rf [MW/m -3 ]/n e 2 [10 19 m -3 ] [R. W. Harvey et al., Phys. Rev. Lett 62, 426 (1989)]. This parameter turns out also to be a good predictor of the synergetic effects. The results are then compared with the standard method of calculations of the current penetration using a transport code. At low values of the Harvey parameter, the standard method is in quantitative agreement with Fokker-Planck calculations. However, at high values of the Harvey parameter, synergy between ECCD and E parallel is found. In the case of cocurrent drive, this synergy leads to the generation of large amounts of nonthermal electrons and a concomitant increase of the electrical conductivity and current penetration time. In the case of countercurrent drive, the ECCD efficiency is suppressed by the synergy with E parallel while only a small amount of nonthermal electrons is produced

  15. Assessment of Electron-Cyclotron-Current-Drive-Assisted Operation in DEMO

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2012-09-01

    Full Text Available The achievable efficiency for external current drive through electron-cyclotron (EC waves in a demonstration tokamak reactor is discussed. Two possible reactor designs, one for steady state and one for pulsed operation, are considered. It is found that for midplane injection the achievable current drive efficiency is limited by secondharmonic absorption at levels consistent with previous studies. Propagation through the second-harmonic region can be reduced by moving the launch position to the high-field side (this can be obtained by injecting the beam from an upper port in the vacuum vessel. In this case, beam tracing calculations deliver values for the EC current drive efficiency approaching those usually reported for neutral beam current drive.

  16. Current challenges in autonomous driving

    Science.gov (United States)

    Barabás, I.; Todoruţ, A.; Cordoş, N.; Molea, A.

    2017-10-01

    Nowadays the automotive industry makes a quantum shift to a future, where the driver will have smaller and smaller role in driving his or her vehicle ending up being totally excluded. In this paper, we have investigated the different levels of driving automatization, the prospective effects of these new technologies on the environment and traffic safety, the importance of regulations and their current state, the moral aspects of introducing these technologies and the possible scenarios of deploying the autonomous vehicles. We have found that the self-driving technologies are facing many challenges: a) They must make decisions faster in very diverse conditions which can include many moral dilemmas as well; b) They have an important potential in reducing the environmental pollution by optimizing their routes, driving styles by communicating with other vehicles, infrastructures and their environment; c) There is a considerable gap between the self-drive technology level and the current regulations; fortunately, this gap shows a continuously decreasing trend; d) In case of many types of imminent accidents management there are many concerns about the ability of making the right decision. Considering that this field has an extraordinary speed of development, our study is up to date at the submission deadline. Self-driving technologies become increasingly sophisticated and technically accessible, and in some cases, they can be deployed for commercial vehicles as well. According to the current stage of research and development, it is still unclear how the self-driving technologies will be able to handle extreme and unexpected events including their moral aspects. Since most of the traffic accidents are caused by human error or omission, it is expected that the emergence of the autonomous technologies will reduce these accidents in their number and gravity, but the very few currently available test results have not been able to scientifically underpin this issue yet. The

  17. Kinetic theory of rf current drive and helicity injection

    International Nuclear Information System (INIS)

    Mett, R.R.

    1992-01-01

    Current drive and helicity injection by plasma waves are examined with the use of kinetic theory. The Vlasov equation yields a general current drive formula that contains resonant and nonresonant (ponderomotivelike) contributions. Standard quasilinear current drive is described by the former, while helicity current drive may be contained in the latter. Since direct analytical comparison of the sizes of the two terms is, in general, difficult, a new approach is taken. Solution of the drift-kinetic equation shows that the standard Landau damping/transit time magnetic pumping quasilinear diffusion coefficient is the only contribution to steady-state current drive to leading order in ε=ρ L /l, where ρ L is the Larmor radius and l is the inhomogeneity scale length. All nonresonant contributions, including the helicity, appear at higher order, after averages are taken over a flux surface, over azimuth, and over time. Consequently, at wave frequencies well below the electron cyclotron frequency, a wave helicity flux perpendicular to the magnetic field does not influence the parallel motion of electrons to leading order and therefore will not drive a significant current. Any current associated with a wave helicity flux is then either ion current (and thus inefficient) or electron current stemming from effects not included in the drift-kinetic treatment, such as cyclotron, collisional, or nonlinear (i.e., not quasilinear)

  18. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  19. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  20. Impact of electron trapping on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Engelmann, F.

    1987-01-01

    The impact of the presence of trapped electrons on noninductive current drive by RF waves in tokamak plasmas is investigated. The appropriate response function, allowing to express the current drive efficiency J/P by a simple analytical formula, has been derived. The approach displays the reasons for the degradation of the current drive efficiency away from the plasma axis in the case of methods relying on the diffusion of electrons in the velocity component perpendicular to the confining magnetic field. It is shown that this degradation is appreciable even for large resonant parallel velocities. (author) [pt

  1. Experiments of full non-inductive current drive on HT-7

    International Nuclear Information System (INIS)

    Zhang, X.D.; Wu, Z.W.; Chen, Z.Y.; Gong, X.Z.; Wang, H.; Xu, D.; Huang, Y.; Luo, J.; Gao, X.; Hu, L.; Zhao, J.; Wan, B.N.; Li, J.

    2005-01-01

    Some experimental results of steady-state operation and full non-inductive current drive have been obtained on HT-7. Three types of experiment are used to study long pulse discharge, quasi-steady-state operation and full non-inductive current drive. The experiments show that the plasma current in the full non-inductive drive case is instable due to no adjusting effect of OH heating field, when the waveguide tube discharge lead to the LHW power injecting tokamak plasma decrease. This instability of plasma current will increase the interaction of plasma with limiter and first surface and bring impurity. All discharges of full non-inductive current drive are terminated because of impurity spurting. To adjust the LHW injection power for control the loop voltage during long pulse discharge is the most effective method for steady-state operation on HT-7. (author)

  2. Combined RF current drive and bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    Schultz, S. D.; Bers, A.; Ram, A. K.

    1999-01-01

    By calculating radio frequency current drive (RFCD) and the bootstrap current in a consistent kinetic manner, we find synergistic effects in the total noninductive current density in tokamaks [1]. We include quasilinear diffusion in the Drift Kinetic Equation (DKE) in order to generalize neoclassical theory to highly non-Maxwellian electron distributions due to RFCD. The parallel plasma current is evaluated numerically with the help of the FASTEP Fokker-Planck code [2]. Current drive efficiency is found to be significantly affected by neoclassical effects, even in cases where only circulating electrons interact with the waves. Predictions of the current drive efficiency are made for lower hybrid and electron cyclotron wave current drive scenarios in the presence of bootstrap current

  3. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  4. Current drive by Alfven waves in elongated cross section tokamak

    International Nuclear Information System (INIS)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A.; Assis, A.S. de

    1997-01-01

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves 9GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  5. Current drive by Alfven waves in elongated cross section tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Assis, A.S. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves (GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  6. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  7. Modulated Current Drive Measurements

    International Nuclear Information System (INIS)

    Petty, C.C.; Lohr, J.; Luce, T.C.; Prater, R.; Cox, W.A.; Forest, C.B.; Jayakumar, R.J.; Makowski, M.A.

    2005-01-01

    A new measurement approach is presented which directly determines the noninductive current profile from the periodic response of the motional Stark effect (MSE) signals to the slow modulation of the external current drive source. A Fourier transform of the poloidal magnetic flux diffusion equation is used to analyze the MSE data. An example of this measurement technique is shown using modulated electron cyclotron current drive (ECCD) discharges from the DIII-D tokamak

  8. Critical power for lower hybrid current drive

    International Nuclear Information System (INIS)

    Assis, A.S. de; Sakanaka, P.H.; Azevedo, C.A. de; Busnardo-Neto, J.

    1995-11-01

    We have solved numerically the quasilinear Fokker-Planck equation which models the critical power for lower hybrid wave current drive. An exact value for the critical power necessary for current saturation, for tokamak current drive experiments, has been obtained. The nonlinear treatment presented here leads to a final profile for the parallel distribution function which is a plateau only in a part of the resonance region. This form of the distribution function is intermediate between two well known results: a plateau throughout the resonance region for the linear strong-source regime, D wave >> D coll and no plateau at all in the resonance region the linear weak-source regimen, D wave coll . The strength of the external power source and the value of the dc electric field are treated as given parameters in the integration scheme. (author). 24 refs, 6 figs

  9. RF current drive in a toroidal plasna in the banana regime

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Plotnik, I.S.

    1982-01-01

    The use of travelling waves for the steady-state current drive in an axisymmetric toroidal plasma in the banana regime is studied. The treatment is based on a quasi-linear equation for the electron distribution function averaged over the period of the particle motion along the small azimuth of the torus. It is show that the trapped electrons do not absorb the energy of the monochromatic (over frequency) RF field and thus only the circulating electrons contribute to the driving current and to the absorbed RF power. The current and the absorbed power are calculated by using the electron distribution function obtained for the case of narrow wave packet, both the toroidal magnetic field and the distortion of the electron distribution over transverse velocities being taken into consideration. The significant role of the barely carculating electrons is revealed. It is pointed out that the toroidal satellite resonances can affect the RF current drive by spreading and splitting the region of the wave-marticle interaction

  10. Electron cyclotron current drive experiments on DIII-D

    International Nuclear Information System (INIS)

    James, R.A.; Giruzzi, G.; Gentile, B. de; Rodriguez, L.; Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V.; Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R.; Janz, S.

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and τ E much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T e , η e and Z eff are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs

  11. Electron cyclotron current drive experiments on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    James, R.A. (Lawrence Livermore National Lab., CA (USA)); Giruzzi, G.; Gentile, B. de; Rodriguez, L. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 - Saint-Paul-les-Durance (France)); Fyaretdinov, A.; Gorelov, Yu.; Trukhin, V. (Kurchatov Inst. of Atomic Energy, Moscow (USSR)); Harvey, R.; Lohr, J.; Luce, T.C.; Matsuda, K.; Politzer, P.; Prater, R.; Snider, R. (General Atomics, San Di

    1990-05-01

    Electron Cyclotron Current Drive (ECCD) experiments on the DIII-D tokamak have been performed using 60 GHz waves launched from the high field side of the torus. Preliminary analysis indicates rf driven currents between 50 and 100 kA in discharges with total plasma currents between 200 and 500 kA. These are the first ECCD experiments with strong first pass absorption, localized deposition of the rf power, and {tau}{sub E} much longer than the slowing-down time of the rf generated current carriers. The experimentally measured profiles for T{sub e}, {eta}{sub e} and Z{sub eff} are used as input for a 1D transport code and a multiply-ray, 3D ray tracing code. Comparisons with theory and assessment of the influence of the residual electric field, using a Fokker-Planck code, are in progress. The ECH power levels were between 1 and 1.5 MW with pulse lengths of about 500 msec. ECCD experiments worldwide are motivated by issues relating to the physics and technical advantages of the use of high frequency rf waves to drive localized currents. ECCD is accomplished by preferentially heating electrons moving in one toroidal direction, reducing their collisionality and thereby producing a non-inductively driven toroidal current. 6 refs., 4 figs.

  12. Electron cyclotron current drive at ω approx. = ωc with X-mode launched from the low field side

    International Nuclear Information System (INIS)

    Leuterer, F.; Kubo, S.

    2000-02-01

    The electron cyclotron resonance layer in a tokamak, ω=ω c (r), is not accessible by the extraordinary wave from the low field side, because it is shielded by a cutoff layer. However, a X-mode launched with a nonzero toroidal angle propagates at the cutoff parallel to the magnetic field and has a circular polarization. Therefore it can already at the cutoff layer interact efficiency with electrons via the Doppler shifted resonance. The driven current can be substantially higher than that driven by the second harmonic X-mode. The applicability of this current drive scheme is limited to rather low values of ω p 2 /ω c 2 , but may be of interest for high magnetic field devices. (author)

  13. Synergy in RF Current Drive

    International Nuclear Information System (INIS)

    Dumont, R.J.; Giruzzi, G.

    2005-01-01

    Auxiliary methods for efficient non-inductive current drive in tokamaks generally involve the interaction of externally driven waves with superthermal electrons. Among the possible schemes, Lower Hybrid (LH) and Electron Cyclotron (EC) current drive have been so far the most successful. An interesting aspect of their combined use is the fact that since they involve possibly overlapping domains in velocity and configuration spaces, a synergy between them is expected for appropriate parameters. The signature of this effect, significant improvement of the EC current drive efficiency, results from a favorable interplay of the quasilinear diffusions induced by both waves. Recently, improvements of the EC current drive efficiency in the range of 2-4 have been measured in fully non-inductive discharges in the Tore Supra tokamak, providing the first clear evidence of this effect in steady-state conditions. We present here the experimental aspects of these discharges. The associated kinetic modeling and current state of understanding of the LH-EC synergy phenomenon are also discussed. (authors)

  14. Synergy in RF Current Drive

    International Nuclear Information System (INIS)

    Dumont, R.J.; Giruzzi, G.

    2005-01-01

    Auxiliary methods for efficient non-inductive current drive in tokamaks generally involve the interaction of externally driven waves with superthermal electrons. Among the possible schemes, Lower Hybrid (LH) and Electron Cyclotron (EC) current drive have been so far the most successful. An interesting aspect of their combined use is the fact that since they involve possibly overlapping domains in velocity and configuration spaces, a synergy between them is expected for appropriate parameters. The signature of this effect, significant improvement of the EC current drive efficiency, results from a favorable interplay of the quasilinear diffusions induced by both waves. Recently, improvements of the EC current drive efficiency in the range of 2-4 have been measured in fully non-inductive discharges in the Tore Supra tokamak, providing the first clear evidence of this effect in steady-state conditions. We present here the experimental aspects of these discharges. The associated kinetic modeling and current state of understanding of the LH-EC synergy phenomenon are also discussed

  15. FWCD (fast wave current drive) and ECCD (electron cyclotron current drive) experiments on DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.

    1994-01-01

    Fast wave current drive and electron cyclotron current drive experiments have been performed on the DIII-D tokamak as part of the advanced tokamak program. The goal of this program is to develop techniques for controlling the profile of the current density in order to access regimes of improved confinement and stability. The experiments on fast wave current drive used a four strap antenna with 90deg phasing between straps. A decoupler was used to help maintain the phasing, and feedback control of the plasma position was used to keep the resistive loading constant. RF pickup loops demonstrate that the directivity of the antenna is as expected. Plasma currents up to 0.18 MA were driven by 1.5 MW of fast wave power. Electron cyclotron current drive experiments at 60 GHz have shown 0.1 MA of plasma current driven by 1 MW of power. New fast wave and electron cyclotron heating systems are in development for DIII-D, so that the goals of the advanced tokamak program can be carried out. (author)

  16. Heating and current drive on NSTX

    Science.gov (United States)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  17. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Schwartz, J.; Cohn, D.R.; Bromberg, L.; Williams, J.E.C.

    1987-06-01

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  18. Heating and current drive on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.

    1997-01-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (∼45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation. copyright 1997 American Institute of Physics

  19. Mechanisms of the negative synergy effect between electron cyclotron current drive and lower hybrid current drive in tokamak

    International Nuclear Information System (INIS)

    Chen Shaoyong; Hong Binbin; Tang Changjian; Yang Wen; Zhang Xinjun

    2013-01-01

    The synergy current drive by combining electron cyclotron wave (ECW) with lower hybrid wave (LHW) can be used to either increase the noninductive current drive efficiency or shape the plasma current profile. In this paper, the synergy current drive by ECW and LHW is studied with numerical simulation. The nonlinear relationship between the wave powers and the synergy current of ECW and LHW is revealed. When the LHW power is small, the synergy current reduces as the ECW power increases, and the synergy current is even reduced to lower than zero, which is referred as negative synergy in the this context. Research shows that the mechanism of the negative synergy is the peaking effect of LHW power profile and the trapped electrons effect. The present research is helpful for understanding the physics of synergy between electron cyclotron current drive and lower hybrid current drive, it can also instruct the design of experiments. (authors)

  20. An investigation of r.f. travelling wave current drive using the model

    International Nuclear Information System (INIS)

    Bertram, W.K.

    1988-01-01

    Previous experimental investigations in the use of travelling r.f. waves to drive steady toroidal currents in a toroidal plasma have shown that I t , the amount of current driven, is strongly dependent on the ratio of the static toroidal magnetic field B z , to the strength of the r.f. magnetic field B ω . This dependence is characterised by an initial increase and subsequent decrease of I t when B t /B ω increases. It is shown that this observed behaviour is entirely consistent with the behaviour predicted by the current drive model. Results from numerical computations using the model show good quantitative agreement with the published experimental results

  1. Lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi

    1999-03-01

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bar e - 10 20 m -3 , ALCATOR-C) and the highest current drive efficiency (η CD = 3.5x10 19 m -2 A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  2. Control of neoclassical tearing mode by electron cyclotron current drive and non-resonant helical field application in ITER

    International Nuclear Information System (INIS)

    Taniguchi, Satoshi; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2010-01-01

    On tokamak plasmas like ITER, it is necessary to stabilize neoclassical tearing mode (NTM) because the NTM reduces plasma temperature and fusion power output. For the analysis of stabilizing NTM in fusion plasmas, the electron cyclotron current drive (ECCD) and the non-resonant external helical field (NRHF) application are simulated using the 1.5-dimensional equilibrium/transport simulation code (TOTAL code). The 3/2 NTM is stabilized by only external helical field, but the 2/1 mode is not stabilized by only external helical field in the present model. The stabilization time becomes shorter by the combination of ECCD and NRHF than that by ECCD alone. (author)

  3. Lower hybrid current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-03-01

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bar{sub e} - 10{sup 20}m{sup -3}, ALCATOR-C) and the highest current drive efficiency ({eta}{sub CD} = 3.5x10{sup 19} m{sup -2}A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  4. Review of current drive theory: selected topics

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1993-01-01

    Two themes in current drive theory in tokamaks are reviewed, both relevant to the progression of tokamak experiments toward the reactor regime. First, the physics of the tail electrons is reviewed. These electrons are capable of carrying enormous rf-driven electric current, and, in the course of current-drive experiments worldwide not only has the current drive effect been demonstrated, but the underlying physical description of these tail electrons has been established. Second, anticipating the presence of the energetic alpha particles that result from D-T reactions in a reactor, certain mechanisms through which these alpha particles can be used to facilitate current-drive are reviewed. (Author)

  5. Studies of non-inductive current drive in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1993-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges, dc-helicity injection and internally-generated pressure-driven currents, have been developed on the CDX-U tokamak. To study the equilibrium and transport of these plasmas, a full set of magnetic diagnostics was installed. By applying a finite element method and a least squares error fitting technique, internal plasma current distributions are reconstructed from the measurements. Electron density distributions were obtained from 2 mm interferometer measurements by a similar least squares error technique utilizing magnetic flux configurations obtained by the magnetic analysis. Neoclassical pressure-driven currents in ECH plasmas are modeled with the reconstructed magnetic structure, using the electron density distribution and the electron temperature profile measured by a Langmuir probe. In the dc-helicity injection scheme, the need to increase injection current and maintain plasma equilibrium restricts possible arrangements. Several injection configurations were investigated, with the best found to be outside injection with a single divertor configuration, where the cathode is placed at the low field side of the x-point. Both pressure-driven and dc-helicity injected tokamaks show the importance of plasma equilibrium in obtaining high plasma current. Programmed vertical field operation has proven to be very important in achieving high plasma current. These non-inductive current drive techniques show great potential as efficient current drive methods for future steady-state and/or long-pulse fusion reactors

  6. Fast wave current drive in reactor scale tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.

    1992-01-01

    The IAEA Technical Committee Meeting on Fast Wave Current Drive in Reactor Scale Tokamaks, hosted by the Commissariat a l'Energie Atomique (CEA), Departement de Recherches sur la Fusion Controlee (Centres d'Etudes de Cadarache, under the Euratom-CEA Association for fusion) aimed at discussing the physics and the efficiency of non-inductive current drive by fast waves. Relevance to reactor size tokamaks and comparison between theory and experiment were emphasized. The following topics are described in the summary report: (i) theory and modelling of radiofrequency current drive (theory, full wave modelling, ray tracing and Fokker-Planck calculations, helicity injection and ponderomotive effects, and alternative radio-frequency current drive effects), (ii) present experiments, (iii) reactor applications (reactor scenarios including fast wave current drive; and fast wave current drive antennas); (iv) discussion and summary. 32 refs

  7. Modeling of finite aspect ratio effects on current drive

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.

    1996-01-01

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, η, is judged by a comparison with a direct calculation: where χ is the adjoint function, ε is the kinetic energy, and rvec Γ is the quasilinear flux. It is shown that for large aspect ratio devices (ε → 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear

  8. Fast wave and electron cyclotron current drive in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Pinsker, R.I.; Austin, M.E.

    1995-01-01

    The non-inductive current drive from directional fast Alfven and electron cyclotron waves was measured in the DIII-D tokamak in order to demonstrate these forms of radiofrequency (RF) current drive and to compare the measured efficiencies with theoretical expectations. The fast wave frequency was 8 times the deuterium cyclotron frequency at the plasma centre, while the electron cyclotron wave was at twice the electron cyclotron frequency. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For steady current discharges, an analysis of the loop voltage revealed up to 195 kA of a non-inductive current (out of 310 kA) during combined electron cyclotron and fast wave injection, with a maximum of 110 kA of FWCD and 80 kA of ECCD achieved (not simultaneously). The peakedness of the current profile increased with RF current drive, indicating that the driven current was centrally localized. The FWCD efficiency increased linearly with the central electron temperature as expected; however, the FWCD was severely degraded in low current discharges owing to incomplete fast wave absorption. The measured FWCD agreed with the predictions of a ray tracing code only when a parasitic loss of 4% per pass was included in the modelling along with multiple pass absorption. Enhancement of the second harmonic ECCD efficiency by the toroidal electric field was observed experimentally. The measured ECCD was in good agreement with Fokker-Planck code predictions. (author). 41 refs, 13 figs, 1 tab

  9. Existence of non-unique steady state solutions to the RMF current drive equations

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1985-05-04

    It is shown that the value of the d.c. current driven in a plasma cylinder by means of a rotating magnetic field (RMF) is not unique for R/delta >= 6 and eBsub(..omega..)/..nu..sub(ei)m approx.R/delta, where R is the radius of the plasma cylinder, delta is the classical skin depth, ..nu..sub(ei) is the electron-ion momentum transfer collision frequency, Bsub(..omega..) is the magnitude of the rotating magnetic field, e is the electron charge and m is the electron mass. This effect is predicted using three distinct approaches: (i) a steady state anaysis which ignores the second and higher harmonics of the fields and currents; (ii) a qualitative model which utilizes the analogy between the RMF current drive technique and the operation of the induction motor; (iii) a solution of the initial boundary value equations describing the RMF current drive in cylindrical plasmas.

  10. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  11. Direct calculation of current drive efficiency in FISIC code

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1996-01-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. copyright 1996 American Institute of Physics

  12. Passive cyclotron current drive for fusion plasmas

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1995-01-01

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2 nd -kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  13. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device

  14. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1987-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500-700 keV are needed for this device

  15. Modification of the Current Profile in DIII-D by Off-Axis Electron Cyclotron Current Drive

    International Nuclear Information System (INIS)

    Luce, T.C.; Lin-Liu, Y.R.; Harvey, R.W.; Giruzzi, G.; Lohr, J.M.; Petty, C.C.; Politzer, P.A.; Prater; Rice, B.W.

    1999-01-01

    Localized non-inductive currents due to electron cyclotron wave absorption have been measured on the DIII-D tokamak. Clear evidence of the non-inductive currents is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. The magnitude and location of the non-inductive current is evaluated by comparing the total and Ohmic current profiles of discharges with and without electron cyclotron wave power. The measured current agrees with Fokker-Planck calculations near the magnetic axis, but exceeds the predicted value as the location of the current drive is moved to the half radius

  16. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1997-01-01

    Current profile control is employed in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric-field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch. copyright 1997 American Institute of Physics

  17. Current drive by spheromak injection into a tokamak

    International Nuclear Information System (INIS)

    Brown, M.R.; Bellan, P.M.

    1990-01-01

    The authors report the first observation of current drive by spheromak injection into a tokamak due to the process of helicity injection. Current drive is observed in Caltech's ENCORE tokamak (30% increase, ΔI > 1 kA) only when both the tokamak and injected spheromak have the same sign of helicity (where helicity is defined as positive if current flows parallel to magnetic field lines and negative if anti-parallel). The initial increase (decrease) in current is accompanied by a sharp decrease (increase) in loop voltage and the increase in tokamak helicity is consistent with the helicity content of the injected spheromak. In addition, the injection of the spheromak raises the tokamak central density by a factor of six. The introduction of cold spheromak plasma causes sudden cooling of the tokamak discharge from 12 eV to 4 eV which results in a gradual decline in tokamak plasma current by a factor of three. In a second experiment, the authors inject spheromaks into the magnetized toroidal vacuum vessel (with no tokamak plasma). An m = 1 magnetic structure forms in the vessel after the spheromak undergoes a double tilt; once in the cylindrical entrance between gun and tokamak, then again in the tokamak vessel. A horizontal shift of the spheromak equilibrium is observed in the direction opposite that of the static toroidal field. In the absence of net toroidal flux, the structure develops a helical pitch as predicted by theory. Experiments with a number of refractory metal coatings have shown that tungsten and chrome coatings provide some improvement in spheromak parameters. They have also designed and will soon construct a larger, higher current spheromak gun with a new accelerator section for injection experiments on the Phaedrus-T tokamak

  18. Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2005-01-01

    FRCs have been formed and sustained for up to 50 normal flux decay times by Rotating Magnetic Fields (RMF) in the TCS experiment. For these longer pulse times a new phenomenon has been observed: switching to a higher performance mode delineated by shallower RMF penetration, higher ratios of generated poloidal to RMF drive field, and lower overall plasma resistivity. This global data is not explainable by previous RMF theory based on uniform electron rotational velocities or by numerical calculations based on uniform plasma resistivity, but agrees in many respects with new calculations made using strongly varying resistivity profiles. In order to more realistically model RMF driven FRCs with such non-uniform resistivity profiles, a double rigid rotor model has been developed with separate inner and outer electron rotational velocities and resistivities. The results of this modeling suggest that the RMF drive results in very high resistivity in a narrow edge layer, and that the higher performance mode is characterized by a sharp reduction in resistivity over the bulk of the FRC. (author)

  19. Enhanced lower hybrid current drive experiments on HT-7 tokamak

    International Nuclear Information System (INIS)

    Shen Weici; Kuang Guangli; Liu Yuexiu; Ding Bojiang; Shi Yaojiang

    2003-01-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement experiments in higher plasma parameters (I p >200 kA, n e >2 x 10 13 cm -3 , T e ≥1 keV) have been curried out in optimized LH wave spectrum and plasma parameters in HT-7 superconducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasma density (anti n e ) and toroidal magnetic field B T has been obtained under optimal conditions. A good CD efficiency was obtained at higher plasma current and higher electron density. The improvement of the energy confinement time is accompanied with the increase in line averaged electron density, and in ion and electron temperatures. The highest current driving efficiency reached η CD =I p (anti n e )R/P RF ≅1.05 x 10 19 Am -2 /W. Wave-plasma coupling was sustained in a good state and the reflective coefficient was less than 5%. The experiments have also demonstrated the ability of LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporal distribution of plasma parameter shows that lower hybrid leads to a broader profile in plasma parameter. The LH power deposition profile and the plasma current density profile were modeled with a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detector array

  20. Current drive by electron cyclotron waves in NET

    International Nuclear Information System (INIS)

    Giruzzi, G.; Schep, T.J.; Westerhof, E.

    1989-01-01

    A potentially attractive scenario for steady-state operations in the Next European Torus relies on the use of lower-hybrid (LH) waves for non-inductive current drive in the plasma periphery and of electron cyclotron (EC) waves in the aim of determining the best options for the ECN current drive system and of evaluating the expected current drive efficiency. (author). 7 refs.; 6 figs.; 1 tab

  1. Plasma auxiliary heating and current drive

    International Nuclear Information System (INIS)

    1999-01-01

    Heating and current drive systems must fulfil several roles in ITER operating scenarios: heating through the H-mode transition and to ignition; plasma burn control; current drive and current profile control in steady state scenarios; and control of MHD instabilities. They must also perform ancillary functions, such as assisting plasma start-up and wall conditioning. It is recognized that no one system can satisfy all of these requirements with the degree of flexibility that ITER will require. Four heating and current drive systems are therefore under consideration for ITER: electron cyclotron waves at a principal frequency of 170 GHz; fast waves operating in the range 40-70 MHz (ion cyclotron waves); lower hybrid waves at 5 GHz; and neutral beam injection using negative ion beam technology for operation at 1 MeV energy. It is likely that several of these systems will be employed in parallel. The systems have been chosen on the basis of the maturity of physics understanding and operating experience in current experiments and on the feasibility of applying the relevant technology to ITER. Here, the fundamental physics describing the interaction of these heating systems with the plasma is reviewed, the relevant experimental results in the exploitation of the heating and current drive capabilities of each system are discussed, key aspects of their application to ITER are outlined, and the major technological developments required in each area are summarized. (author)

  2. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  3. Fast wave current drive in DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.

    1995-02-01

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping

  4. Magnetohydrodynamic effects of current profile control in reversed field pinches

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1999-01-01

    Linear and non-linear MHD computations are used to investigate reversed field pinch configurations with magnetic fluctuations reduced through current profile control. Simulations with reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are orders of magnitude smaller than those in simulations without profile control. The core of the improved configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear simulations. (author)

  5. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  6. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  7. Current ramp-up experiments in full current drive plasmas on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Nakamura, K.; Hasegawa, M.

    2003-01-01

    Four types of plasma current ramp-up experiments were executed on TRIAM-1M in full lower hybrid current drive plasmas (LHCD: 8.2GHz, up to 0.4 MW, 8 x 2 grill antenna); 1) the current start up by the combination between electron cyclotron resonance heating (ECH: 170GHz, up to 0.2 MW, O-mode launching) and LHCD at the density of ∼2x10 19 m -3 at B t =6.7T, 2) the tail heating by the additional LHCD, 3) the bulk heating by ECH, 4) the spontaneous ramp up by the transition to enhanced current drive (ECD) mode. The time evolutions of plasma current during four types of ramp-up phase were investigated and an exponential type and a tangent-hyperbolic one were observed. The time evolutions of plasma current during the tail and the bulk heating show the exponential type except the tail heating with high n parallel and it has a tangent-hyperbolic one during the ECD mode and the current start-up. A simple model with two different time constants, which are a time defined by L/R, τ L/R , and a time caused by change of the effective refractive index along the magnetic field, τ, is proposed to explain two types of the time evolution of the plasma current. The estimated τ L/R is consistent with the calculated one from the plasma parameter. It is found that τ are less than τ L/R in the cases of the tail and the bulk heating, and comparable in the cases of the ECD mode, and more than τ L/R in the cases of the plasma start-up. This indicates that the value of the effective refractive index along the magnetic field, parallel >, develops during the ECD mode and the current start-up. The value of τ depends on the RF power. The estimated is close to the expected up-shifted n parallel due to the toroidal effect and the magnetic shear. (author)

  8. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    1996-01-01

    A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)

  10. Current Drive in a Ponderomotive Potential with Sign Reversal

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; J.M. Rax; I.Y. Dodin

    2003-07-30

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  11. Current Drive in a Ponderomotive Potential with Sign Reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.; Dodin, I.Y.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play

  12. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  13. Drive Current Enhancement in TFET by Dual Source Region

    Directory of Open Access Journals (Sweden)

    Zhi Jiang

    2015-01-01

    Full Text Available This paper presents tunneling field-effect transistor (TFET with dual source regions. It explores the physics of drive current enhancement. The novel approach of dual source provides an effective technique for enhancing the drive current. It is found that this structure can offer four tunneling junctions by increasing a source region. Meanwhile, the dual source structure does not influence the excellent features of threshold slope (SS of TFET. The number of the electrons and holes would be doubled by going through the tunneling junctions on the original basis. The overlap length of gate-source is also studied. The dependence of gate-drain capacitance Cgd and gate-source capacitance Cgs on gate-to-source voltage Vgs and drain-to-source voltage Vds was further investigated. There are simulation setups and methodology used for the dual source TFET (DS-TFET assessment, including delay time, total energy per operation, and energy-delay product. It is confirmed that the proposed TFET has strong potentials for VLSI.

  14. Two-dimensional and relativistic effects in lower-hybrid current drive

    International Nuclear Information System (INIS)

    Hewett, D.; Hizanidis, K.; Krapchev, V.; Bers, A.

    1983-06-01

    We present new numerical and analytic solutions of the two-dimensional Fokker-Planck equation supplemented by a parallel quasilinear diffusion term. The results show a large enhancement of the perpendicular temperature of both the electrons resonant with the applied RF fields and the more energetic electrons in the tail. Both the RF-generated current and power dissipated are substantially increased by the perpendicular energy broadening in the resonant region. In the presence of a small DC electric field the RF current generated is very much enhanced, much more than in a simple additive fashion. In addition, we present a relativistic formulation of the two-dimensional Fokker-Planck quasilinear equation. From conservation equations, based upon this formulation, we derive the characteristics of RF current drive with energetic electrons. These show how the RF-driven current and its figure of merit (I/P/sub d/) increase with the energy of the current-carrying electrons, and that their perpendicular, random momentum must also increase

  15. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    Science.gov (United States)

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  16. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2010-01-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  17. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  18. Electron - cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Fidone, I.; Castejon, F.

    1992-01-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs

  19. Electron-cyclotron resonance heating and current drive

    International Nuclear Information System (INIS)

    Filone, I.

    1992-01-01

    A brief summary of the theory and experiments on electron-cyclotron heating and current drive is presented. the general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D-III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (author) 8 fig. 13 ref

  20. Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1996-08-01

    A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).

  1. Neutral beam current drive scaling in DIII-D

    International Nuclear Information System (INIS)

    Porter, G.D.; Bhadra, D.K.; Burrell, K.H.

    1989-03-01

    Neutral beam current drive scaling experiments have been carried out on the DIII-D tokamak at General Atomics. These experiments were performed using up to 10 MW of 80 keV hydrogen beams. Previous current drive experiments on DIII-D have demonstrated beam driven currents up to 340 kA. In the experiments reported here we achieved beam driven currents of at least 500 kA, and have obtained operation with record values of poloidal beta (εβ/sub p/ = 1.4). The beam driven current reported here is obtained from the total plasma current by subtracting an estimate of the residual Ohmic current determined from the measured loop voltage. In this report we discuss the scaling of the current drive efficiency with plasma conditions. Using hydrogen neutral beams, we find the current drive efficiency is similar in Deuterium and Helium target plasmas. Experiments have been performed with plasma electron temperatures up to T/sub e/ = 3 keV, and densities in the range 2 /times/ 10 19 m/sup /minus/3/ 19 m/sup /minus/3/. The current drive efficiency (nIR/P) is observed to scale linearly with the energy confinement time on DIII-D to a maximum of 0.05 /times/ 10 20 m/sup /minus/2/ A/W. The measured efficiency is consistent with a 0-D theoretical model. In addition to comparison with this simple model, detailed analysis of several shots using the time dependent transport code ONETWO is discussed. This analysis indicates that bootstrap current contributes approximately 10--20% of the the total current. Our estimates of this effect are somewhat uncertain due to limited measurements of the radial profile of the density and temperatures. 4 refs., 1 fig., 1 tab

  2. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O

    1999-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  3. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  4. Fast wave current drive on DIII-D

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Forest, C.B.; Ikezi, H.; Prater, R.; Baity, F.W.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Doyle, E.J.; Ferguson, S.W.; Hoffman, D.J.; Jaeger, E.F.; Kim, K.W.; Lee, J.H.; Lin-Liu, Y.R.; Murakami, M.; ONeill, R.C.; Porkolab, M.; Rhodes, T.L.; Swain, D.W.

    1996-01-01

    The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ=0.4x10 18 T e0 (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with clear evidence for a toroidally directed wave with antenna phasing set for current drive. copyright 1996 American Institute of Physics

  5. Comparison between voltage by turn measured on different tokamaks operating in hybrid wave current drive regime

    International Nuclear Information System (INIS)

    Briffod, G.; Hoang, G.T.

    1987-06-01

    On a tokamak in a current drive operation with a hybrid wave, the R.F. current is estimated from the voltage drop by plasma turn generated by R.F. power application. This estimated current is not proportional to the injected power. There still exists in the plasma an electric field corresponding to the current part produced by induction. The role evaluation of this parameter on the current drive efficiency is important. In this report the relation voltage-R.F. current is studied on Petula and results on the voltage evolution by turn on different machines are compared [fr

  6. Behavior of impurity ion velocities during the pulsed poloidal current drive in the Madison symmetric torus reversed-field pinch

    International Nuclear Information System (INIS)

    Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.

    2003-01-01

    We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)

  7. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  8. Current drive in a ponderomotive potential with sign reversal

    International Nuclear Information System (INIS)

    Fisch, N.J.; Dodin, I.Y.; Rax, J.M.

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect, which operates somewhat like a Maxwell demon, can be practiced upon both ions and electrons. The current-drive efficiencies, in principle, might be higher than those possible with conventional rf current-drive techniques. It remains, however, for us to identify how the effect might be implemented in a magnetic fusion device in a practical manner

  9. Fast wave current drive on DIII-D

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.

    1995-01-01

    The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ = 0.4 x 10 18 T eo (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances

  10. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  11. Numerical analysis on the synergy between electron cyclotron current drive and lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Chen, S Y; Hong, B B; Liu, Y; Lu, W; Huang, J; Tang, C J; Ding, X T; Zhang, X J; Hu, Y J

    2012-01-01

    The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small. (paper)

  12. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    Science.gov (United States)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  13. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    International Nuclear Information System (INIS)

    Wei Wei; Ding Bo-Jiang; Li Miao-Hui; Zhang Xin-Jun; Wang Xiao-Jie; Peysson, Y; Decker, J; Zhang Lei

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N ∥ ) are presented and discussed. (paper)

  14. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  15. MHD simulations of DC helicity injection for current drive in tokamaks

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1994-12-01

    MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ''loop voltage'' in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 x 10 3 to 4 x 10 4 indicates that both the fluctuation level and relaxation increase with S

  16. The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.

    Science.gov (United States)

    Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan

    2015-09-01

    Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. © 2015 American Academy of Forensic Sciences.

  17. Lower-hybrid heating and current drive on PLT

    International Nuclear Information System (INIS)

    Hooke, W.; Bernabei, S.; Boyd, D.

    1983-02-01

    Steady currents up to 165 kA for 3.5 seconds and 420 kA for 0.3 seconds have been maintained by 800 MHz lower hybrid waves. For line-averaged densities up to 7 x 10 12 cm - 3 the current is maintained with no input power from the ohmic heating transformer. The waves are launched with an array of six waveguides. Measurements of X rays and electron cyclotron radiation show that the rf power produces and maintains a suprathermal tail of electrons apparently independent of the number of fast electrons in the plasma prior to turning on the rf power. Measurements of current-drive efficiency and the electron tail provide direct evidence for a resonant wave-particle interaction. The radial profile of the rf-sustained current inferred from x-ray measurements is peaked in the center of the plasma and appears to obey the same q-value restraints as the inductively driven ohmic heating current. Current drive is observed to be accompanied always by radiation at frequencies greater than or equal to #betta#/sub ce/ and less than or equal to #betta#/sub pe/. The connection between this radiation and the current-drive mechanism is under study

  18. Considerations on ECFH current drive and bootstrap current for W VII-X

    International Nuclear Information System (INIS)

    Gasparino, U.; Maassberg, H.

    1988-01-01

    Low shear is the characteristic of all proposed Wendelstein VII-X configurations. To avoid low harmonic rational numbers within the rotational transform profile, the current contribution to the rotational transform, Δt a α I/B, should be typically less than 10%. This leads to an upper limit of 50 kA (at B = 2.5 T) for the tolerable net toroidal current. A considerable net toroidal current (bootstrap current) is expected by neoclassical theory in the plateau and the low-collisionality regimes. Both radial transport as well as the bootstrap current densities depend sensitively on the magnetic configuration (see A. Montvai, this workshop). In case of an axisymmetric configuration with dimension and plasma parameters as predicted for the high- regime of WVII-X ( ∼ 5%), this current (∼ 0.5/1 MA) would dominate the rotational transform profile. This requires a reduction of magnitude of the bootstrap current to some % of the value of an equivalent tokamak. This reduction must act on the current profile itself and should not be merely obtained by having two channels of currents of different sign at different radii. Due to the possibility of controlling absorbed power and driven current profiles, electron cyclotron waves are a natural candidate for current profile control. Linear calculations show the possibility to drive a counteracting current with a profile similar to the bootstrap one. For ∼ 5% conditions, however, the optimium current drive efficiency (η ∼ 10 kA per MW) is far too low to make ECF-current drive suitable

  19. ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY

    International Nuclear Information System (INIS)

    PRATER, R; PETTY, CC; LUCE, TC; HARVEY, RW; CHOI, M; LAHAYE, RJ; LIN-LIU, Y-R; LOHR, J; MURAKAMI, M; WADE, MR; WONG, K-L

    2003-01-01

    A271 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY. Experiments on the DIII-D tokamak in which the measured off-axis electron cyclotron current drive has been compared systematically to theory over a broad range of parameters have shown that the Fokker-Planck code CQL3D provides an excellent model of the relevant current drive physics. This physics understanding has been critical in optimizing the application of ECCD to high performance discharges, supporting such applications as suppression of neoclassical tearing modes and control and sustainment of the current profile

  20. Field and current amplification in the SSPX spheromak

    International Nuclear Information System (INIS)

    Hill, D.N. . hilld@llnl.gov; Bulmer, R.H.; Cohen, B.I.

    2003-01-01

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, e >∼4% and core χ e ∼30m 2 /s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification. (author)

  1. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  2. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  3. Combined kinetic and transport modeling of radiofrequency current drive

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.; Barbato, E.

    2000-07-01

    A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)

  4. Non-inductive current drive experiments on DIII-D, and future plans

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.; Callis, R.W.; Chiu, S.C.; DeGrassie, J.S.; Freeman, R.L.; Forest, C.B.; Goulding, R.H.; Harvey, R.W.; Hoffman, D.J.; Ikezi, H.; Lohr, J.; James, R.A.; Kupfer, K.; Lin-Liu, Y.R.; Luce, T.C.; Moeller, C.P.; Petty, C.C.; Pinsker, R.I.; Porkolab, M.; Squire, J.; Trukhin, V.

    1995-01-01

    Experiments on DIII-D (and other tokamaks) have shown that improved performance can follow from optimization of the current density profile. Increased confinement of energy and a higher limit on β have both been found in discharges in which the current density profile is modified through transient means, such as ramping of current or elongation. Peaking of the current distribution to obtain discharges with high internal inductance l i has been found to be beneficial. Alternatively, discharges with broader profiles, as in the VH mode or with high β poloidal, have shown improved performance. Non-inductive current drive is a means to access these modes of improved confinement on a steady state basis. Accordingly, experiments on non-inductive current drive are underway on the DIII-D tokamak using fast waves and electron cyclotron waves. Recent experiments on fast wave current drive have demonstrated the ability to drive up to 180kA of non-inductive current using 1.5MW of power at 60MHz, including the contribution from 1MW of ECCD and the bootstrap current. Higher power r.f. current drive systems are needed to affect strongly the current profile on DIII-D. An upgrade to the fast wave current drive system is underway to increase the total power to 6MW, using two additional antennas and two new 30-120MHz transmitters. Additionally, a 1MW prototype ECH system at 110GHz is being developed (with eventual upgrade to 10MW). With these systems, non-inductive current drive at the 1MA level will be available for experiments on profile control in DIII-D. ((orig.))

  5. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  6. Fast-wave current drive modelling for large non-circular tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Goldfinger, R.C.; Jaeger, E.F.; Carter, M.D.; Swain, D.W.; Ehst, D.; Karney, C.F.F.

    1990-01-01

    It is widely recognized that a key element in the development of an attractive tokamak reactor, and in the successful achievement of the mission of ITER, is the development of an efficient steady-state current drive technique. Fast waves in the ion cyclotron range of frequencies hold the promise to drive steady-state currents with the required efficiency and to effectively heat the plasma to ignition. Advantages over other heating and current drive techniques include low cost per watt and the ability to penetrate to the center of high-density plasmas. The primary issues that must be resolved are: can an antenna array be designed to radiate the required spectrum of waves and have adequate coupling properties? Will the rf power be efficiently absorbed by electrons in the desired velocity range without unacceptable parasitic damping by fuel ions or α particles? What will the efficiency of current drive be when toroidal effects such as trapped particles are included? Can a practical rf system be designed and integrated into the device? We have addressed these issues by performing extensive calculations with ORION, a 2-D code, and the ray tracing code RAYS, which calculate wave propagation, absorption and current drive in tokamak geometry, and with RIP, a 2-D code that self-consistently calculates current drive with MHD equilibrium. An important figure of merit in this context is the integrated, normalized current drive efficiency. The calculations that we present here emphasize the ITER device. We consider a low-frequency scenario such that no ion resonances appear in the machine, and a high-frequency scenario such that the deuterium second harmonic resonance is just outside the plasma and the tritium second harmonic is in the plasma, midway between the magnetic axis and the inside edge. In both cases electron currents are driven by combined TTMP and Landau damping of the fast waves

  7. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  8. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  9. Subwavelength position measurements with running-wave driving fields

    Energy Technology Data Exchange (ETDEWEB)

    Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Qamar, Sajid [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-08-15

    Subwavelength position measurement of quantum particles is discussed. Our setup is based on a closed-loop driving-field configuration, which enforces a sensitivity of the particle dynamics to the phases of the applied fields. Thus, running wave fields are sufficient, avoiding limitations associated with standing-wave-based localization schemes. Reversing the directions of the driving laser fields switches between different magnification levels for the position determination. This allows us to optimize the localization, and at the same time eliminates the need for additional classical measurements common to all previous localization schemes based on spatial periodicity.

  10. Electron-cyclotron current drive in the tokamak physics experiment

    International Nuclear Information System (INIS)

    Smith, G.R.; Kritz, A.H.; Radin, S.H.

    1992-01-01

    Ray-tracking calculations provide estimates of the electron-cyclotron heating (ECH) power required to suppress tearing modes near the q=2 surface in the Tokamak Physics Experiment. Effects of finite beam width and divergence are included, as are the effects of scattering of the ECH power by drift-wave turbulence. A frequency of about 120 GHz allows current drive on the small-R (high-B) portion of q=2, while 80 GHz drives current on the large-R (low-B) portion. The higher frequency has the advantages of less sensitivity to wave and plasma parameters and of no trapped-electron degradation of current-drive efficiency. Less than 1 MW suffices to suppress tearing modes even with high turbulence levels

  11. Characterization of Input Current Interharmonics in Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz

    2017-01-01

    This paper investigates the interharmonic generation process in the input current of double-stage Adjustable Speed Drives (ASDs) based on voltage source inverters and front-end diode rectifiers. The effects of the inverter output-side low order harmonics, caused by implementing the double......-edge symmetrical regularly sampled Space Vector Modulation (SVM) technique, on the input current interharmonic components are presented and discussed. Particular attention is also given to the influence of the asymmetrical regularly sampled modulation technique on the drive input current interharmonics....... The developed theoretical analysis predicts the drive interharmonic frequency locations with respect to the selected sampling strategies. Simulation and experimental results on a 2.5 kW ASD system verify the effectiveness of the theoretical analysis....

  12. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  13. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  14. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    Directory of Open Access Journals (Sweden)

    Kim Sun Ho

    2017-01-01

    Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  15. Bootstrap and fast wave current drive for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power ( o = 18 MA needs P FW = 15 MW, P LH = 75 MW). A computational survey of bootstrap fraction and current drive efficiency is presented. 11 refs., 8 figs

  16. Current-drive theory II: the lower-hybrid wave

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1986-01-01

    The theory of current-drive seeks to predict the efficiency with which an external power source can produce current in a plasma torus. The theory, which is now well supported by experimental data, becomes especially simple in the important limit of lower-hybrid or electron-cyclotron waves interacting with superthermal electrons. The solution of an equation adjoint to the linearized Fokker-Planck equation gives both the steady-state and ramp-up current-drive efficiencies. Other phenomena, such as rf-induced runaway rates, rf-induced radiation, etc., may be calculated by this method, and analytical solutions have been obtained in several limiting cases. 12 refs

  17. Current drive experiments in the HIT-II spherical tokamak

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Gu, P.; Isso, V.A.; Jewell, P.E.; McCollam, K.J.; Nelson, B.A.; Ramon, R.; Redd, A.J.; Sieck, P.E.; Smith, R.J.; Nagata, M.; Uyama, T.

    2001-01-01

    The Helicity Injected Torus (Hit) program has made progress in understanding relaxation and helicity injection current drive. Helicity-conserving MHD activity during the inductive (Ohmic) current ramp demonstrates the profile flattening needed for coaxial helicity injection (CHI). Results from cathode and anode central column (CC) CHI pulses are consistent with the electron locking model of current drive from a pure n=1 mode. Finally, low density CHI, compatible with Ohmic operation, has been achieved. Some enhancement of CHI discharges with the application of Ohmic is shown. (author)

  18. Non-inductive current drive and RF heating in SST-1 tokamak

    International Nuclear Information System (INIS)

    2000-01-01

    Steady state superconducting tokamak (SST-1) machine is being developed for 1000 sec operation at different operating parameters. Radio Frequency (RF) and neutral beam injection (NBI) methods are planned in SST-1 for noninductive current drive and heating. In this paper, we describe the non-inductive current drive and RF heating methods that are being developed for this purpose. SST-1 is a large aspect ratio tokamak configured to run double-null divertor plasmas with significant elongation (κ = 1.7-1.9) and triangularity (δ = 0.4-0.7). SST-1 has a major radius of 1.1 in and minor radius of 0.2 m. Circular and shaped plasma experiments would be conducted at 1.5 and 3 T toroidal magnetic field in three different phases with I p = 110 kA and 220 kA. Two main factors have been considered during the development of auxiliary systems, namely, high heat flux (1 MW/m 2 ) incident on the plasma facing antennae components and fast feedback for constant power input due to small energy confinement time (∼ 10 ms). (author)

  19. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  20. Review of experiments on current drive in tokamaks by means of RF waves

    International Nuclear Information System (INIS)

    Hooke, W.

    1984-01-01

    Experimental results on lower hybrid current drive in tokamak plasmas are reviewed. Pulse lengths of 3.5 seconds and currents above 400 kA have been generated at plasma densities such that the wave frequency is greater than about twice the lower hybrid frequency. Current drive ceases above a critical density, nsub(c). However, nsub(c) increases with wave frequency. So that for f = 4.6 GHz current drive has been seen at n-barsub(e) approx.= 10 14 cm -3 and a density limit has yet to be established. Evidence for a collisional scaling law for current-drive efficiency is summarized. Detailed measurements of bremsstrahlung x-rays show a distribution which is qualitatively similar to that predicted by quasilinear theory. Microwave emission at frequencies less than the plasma frequency may shed light on the current-drive mechanism. Applications of current drive including plasma and current start-up and transformer recharging are discussed. (author)

  1. On Ion Cyclotron Current Drive for sawtooth control

    International Nuclear Information System (INIS)

    Eriksson, L.-G.; Johnson, T.; Hellsten, T.; Mayoral, M.-L.; McDonald, D.; Santala, M.; Vries, P. de; Coda, S.; Sauter, O.; Mueck, A.; Buttery, R.J.; Mantsinen, M.J.; Noterdaeme, J.-M.; Westerhof, E.

    2006-01-01

    Experiments using Ion Cyclotron Current Drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in [L.-G. Eriksson et al., Physical Review Letters 92, 235004 (2004)] by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase of the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations. (author)

  2. Joint Czechoslovak-Soviet workshop on current drive in tokamaks

    International Nuclear Information System (INIS)

    1985-10-01

    At the Joint Czechoslovak-Soviet Workshop on Current Drive in Tokamaks, five papers dealing with issues of general interest were presented. In a theoretical paper by Klima and Pavlo a one-dimensional model of the lower-hybrid current drive is described and the results of its analysis are used in a numerical simulation using T-7 tokamak parameters. In the second theoretical paper by Vojtsekhovich, Parail and Pereverzev the influence of the LH wave spectrum on the efficiency of the current drive is studied. Two papers deal with a new microwave system designed for experiments on LHCD in the T-7 tokamak. In particular, the power spectra of new four-waveguide grills are computed. In the last paper the non-inductive start-up of the discharge in the T-7 tokamak by means of electron cyclotron waves is investigated. (J.U.)

  3. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K.; Cuperman, S.; Bruma, C. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1997-04-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-{beta} MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3{<=} m {<=} 3 and toroidal wavenumbers -20{<=} n {<=}20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the `net` current drive is positive (i.e. flows in the direction of the equilibrium current j{sub 0z} for m = -1, -2, -3 and -20 {<=} n {<=} -1 as well as for m +1, +2, +3 and n > 10); (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author).

  4. Spectral dependence, efficiency and localization of non-inductive current drive via helicity injection by global Alfven waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1997-01-01

    A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-β MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3≤ m ≤ 3 and toroidal wavenumbers -20≤ n ≤20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the 'net' current drive is positive (i.e. flows in the direction of the equilibrium current j 0z for m = -1, -2, -3 and -20 ≤ n ≤ -1 as well as for m +1, +2, +3 and n > 10; (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author)

  5. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  6. Numerical modeling of lower hybrid heating and current drive

    International Nuclear Information System (INIS)

    Valeo, E.J.; Eder, D.C.

    1986-03-01

    The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached

  7. Tearing modes in tokamaks with lower hybrid current drive

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    In this paper, the effect of current drive on the tearing modes in the semi-collisional regime is analyzed using the drift-kinetic equation. A collisional operator is developed to model electron parallel conductivity. For the pure tearing modes the linear and quasilinear growth rates in the Rutherford regimes have been found to have roughly the same forms with a modified resistivity as without current drive. One interesting result is the prediction of a new instability. This instability, driven by the current gradient inside the tearing mode layer, is possibly related to MHD behavior observed in these experiments. 9 refs

  8. Comments on ICRH current drive in JET

    International Nuclear Information System (INIS)

    Fried, B.; Hellsten, T.; Moreau, D.

    1989-01-01

    To study current drive via the mode-converted slow wave during ICRH an assessment for which plasma compositions and wave number mode conversion from the magnetosonic wave to the slow wave can dominate is made. A simple slab model is used to investigate the competition between mode conversion and minority cyclotron absorption for a deuterium plasma with H + and 3 He 2+ minority species in JET. A 3 He 2+ minority should be more appropriate for mode conversion current drive than H + because the 3 He 2+ concentration can be chosen near its optimum for the ''Budden absorption'' without bringing the ion hybrid resonance and the cyclotron resonance so close that the minority absorption dominates. 3 He 2+ minority also allows operation at toroidal numbers which are characteristic of present JET antennae. (author)

  9. Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

    Directory of Open Access Journals (Sweden)

    J. S. de Villiers

    2014-10-01

    Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.

  10. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  11. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-01-01

    An approach to obtaining efficient single pass mode conversion at high parallel wave number from the fast magnetosonic wave to the slow ion Bernstein wave, in a two-ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modeling for the case of deuterium-tritium plasmas in TFTR is presented

  12. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-08-01

    An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented

  13. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  14. Comparison between the electron cyclotron current drive experiments on DIII-D and predictions for T-10

    International Nuclear Information System (INIS)

    Lohr, J.; Harvey, R.W.; Luce, T.C.; Matsuda, Kyoko; Moeller, C.P.; Petty, C.C.; Prater, R.; James, R.A.; Giruzzi, G.; Gorelov, Y.; DeHaas, J.

    1990-11-01

    Electron cyclotron current drive has been demonstrated on the DIII-D tokamak in an experiment in which ∼1 MW of microwave power generated ∼50 kA of non-inductive current. The rf-generated portion was about 15% of the total current. On the T-10 tokamak, more than 3 MW of microwave power will be available for current generation, providing the possibility that all the plasma current could be maintained by this method. Fokker-Planck calculations using the code CQL3D and ray tracing calculations using TORAY have been performed to model both experiments. For DIII-D the agreement between the calculations and measurements is good, producing confidence in the validity of the computational models. The same calculations using the T-10 geometry predict that for n e (0) ∼ 1.8 x 10 13 cm -3 , and T e (0) ∼ 7 keV, 1.2 MW, that is, the power available from only three gyrotrons, could generate as much as 150 kA of non-inductive current. Parameter space scans in which temperature, density and resonance location were varied have been performed to indicate the current drive expected under different experimental conditions. The residual dc electric field was considered in the DIII-D analysis because of its nonlinear effect on the electron distribution, which complicates the interpretation of the results. A 110 GHz ECH system is being installed on DIII-D. Initial operations, planned for late 1991, will use four gyrotrons with 500 kW each and 10 second output pulses. Injection will be from the low field side from launchers which can be steered to heat at the desired location. These launchers, two of which are presently installed, are set at 20 degrees to the radial and rf current drive studies are planned for the initial operation. 8 refs., 10 figs

  15. Fast wave current drive experiment on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Lohr, J.; Luce, T.C.; Mayberry, M.J.; Prater, R.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffman, J.D.; James, R.A.; Kawashima, H.

    1992-06-01

    One method of radio-frequency heating which shows theoretical promise for both heating and current drive in tokamak plasmas is the direct absorption by electrons of the fast Alfven wave (FW). Electrons can directly absorb fast waves via electron Landau damping and transit-time magnetic pumping when the resonance condition ω - κ parallele υ parallele = O is satisfied. Since the FW accelerates electrons traveling the same toroidal direction as the wave, plasma current can be generated non-inductively by launching FW which propagate in one toroidal direction. Fast wave current drive (FWCD) is considered an attractive means of sustaining the plasma current in reactor-grade tokamaks due to teh potentially high current drive efficiency achievable and excellent penetration of the wave power to the high temperature plasma core. Ongoing experiments on the DIII-D tokamak are aimed at a demonstration of FWCD in the ion cyclotron range of frequencies (ICRF). Using frequencies in the ICRF avoids the possibility of mode conversion between the fast and slow wave branches which characterized early tokamak FWCD experiments in the lower hybrid range of frequencies. Previously on DIII-D, efficient direct electron heating by FW was found using symmetric (non-current drive) antenna phasing. However, high FWCD efficiencies are not expected due to the relatively low electron temperatures (compared to a reactor) in DIII-D

  16. Beat wave current drive experiment on the Davis Diverted Tokamak (DDT)

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Rogers, J.H.

    1993-01-01

    The beatwave current drive experiment is summarized. The first phase of the experiment was the construction of the microwave sources and the diagnostics needed to demonstrate the beat wave effects, i.e. the measurement of the electrostatic plasma wave produced by the beating of two high intensity electromagnetic waves. In order to keep the cost of the experiments to a minimum, a low density filament plasma source (10 8 ) to (10 10 particles cm -3 ) was employed and the magnetic field in the toroidal plasma was produced by a dc power supply

  17. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  18. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    International Nuclear Information System (INIS)

    LIN-LUI, Y.R; CHAN, V.S; PRATER, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  19. Electron cyclotron heating and current drive: Present experiments to ITER. Revision 1

    International Nuclear Information System (INIS)

    Harvey, R.W.; Nevins, W.M.; Smith, G.R.; Lloyd, B.; O'Brien, M.R.; Warrick, C.D.

    1995-08-01

    Electron cyclotron (EC) power has technological and physics advantages for heating and current drive in a tokamak reactor, and advances in source development make it credible for applications in ITER. Strong single pass absorption makes heating to ignition particularly simple. The optimized EC current drive (ECCD) efficiency (left-angle n right-angle IR/P) shows a linear temperature scaling at temperatures up to ∼ 15 keV. For temperatures above 30 keV, the efficiency saturates at approximately 0.3·10 20 A/(m 2 W) for a frequency of 220 GHz in an ITER target plasma with toroidal field of 6 T, due primarily to harmonic overlap [G.R. Smith et al., Phys. Fluids 30 3633 (1987)] and to a lesser extent due to limitations arising from relativistic effects [N.J. Fisch, Phys. Rev. A 24 3245 (1981)]. The same efficiency can also be obtained at 170 GHz for the same plasma equilibrium except that the magnetic field is reduced to (170/220) x 6 T = 4.6 T. The ECCD efficiencies are obtained with the comprehensive 3D, bounce-averaged Fokker-Planck CQL3D codes [R.W. Harvey and M.G. McCoy, Proc. IAEA TCM/Advances in Simulation and Modeling in Thermonuclear Plasmas 1992, Montreal], and BANDIT3D [M.R. O'Brien, M. Cox, C.D. Warrick, and F. S. Zaitsev, ibid.

  20. Research on the influence of driving harmonic on electromagnetic field and temperature field of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-06-01

    Full Text Available At present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM. A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM, the motor temperature distribution with different harmonics was obtained.

  1. High-efficiency toroidal current drive using low-phase-velocity kinetic Alfven waves

    International Nuclear Information System (INIS)

    Puri, S.

    1991-09-01

    A method for obtaining efficient current drive in Tokamaks using low-phase-velocity (v ρ = ω/K parallel ∝ 0.1v te ) kinetic Alfen wave is proposed. The wave momentum, imparted primarily to the trapped electrons by Landau damping, is stored as the canonical angular momentum via the Ware pinch. In steady state, collisions restore the pinched electrons to their original phase-space configuration, in the process releasing the stored canonical angular momentum to the background ions and electrons in proportion to the respective collision frequencies. Despite the loss of a part of the original impulse to the plasma ions, well over half the wave momentum is ultimately delivered to the bulk-plasma electrons, resulting in an efficient current drive. A normalized current-drive efficiency γ = R 0 20 > I/P ∝ 2 would be feasible using the subthermal kinetic-Alfen-wave current drive in a Tokamak of reactor parameters. Optimum antenna loading conditions are described. The problem of accessibility is discussed. In an elongated, high-β plasma with a density dependence n e ∝ (1-ρ 2 ) Χn , accessibility is restricted to ρ > or approx. 3/(4A Χn ), where A is the aspect ratio. For current drive at still lower values of ρ, operation in conjunction with fast-wave current drive is suggested. (orig.)

  2. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  3. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  4. Monte Carlo simulation of lower hybrid current drive in tokamaks

    International Nuclear Information System (INIS)

    Sipilae, S.K.; Heikkinen, J.A.

    1994-01-01

    In the report a method for noninductive current drive studies based on three-dimensional simulation of test particle orbits is presented. A Monte Carlo momentum diffusion operator is developed to model the wave-particle interaction. The scheme can be utilised in studies of current drive efficiency as well as in examining the current density profiles caused by waves with a finite parallel wave number spectrum and a nonuniform power deposition profile in a toroidal configuration space of arbitrary shape. Calculations performed with a uniform poorer deposition profile of lower hybrid waves for axisymmetric magnetic configurations having different aspect ratios and poloidal cross-section shape confirm the semianalytic estimates for the current drive efficiency based on the solutions of the flux surface averaged Fokker-Planck equation for configurations with circular poloidal cross section. The consequences of the combined effect of radial diffusion, magnetic trapping and radially nonhomogeneous power deposition and background plasma parameter profiles are investigated

  5. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  6. Recent progress in lower hybrid current drive theory and experiments

    International Nuclear Information System (INIS)

    Barbato, E.

    1998-01-01

    In this paper lower hybrid current drive (LHCD) experimental milestones paving the way for future experiments are briefly summarized. The current drive efficiency scaling with the electron temperature is discussed. The role of wave propagation in determining the power deposition profile is stressed and methods are discussed to control the current density profile. Modelling of negative central shear configurations, experimentally obtained by LHCD, are reported. A good agreement is found between the modelling results and the experimental findings, thus showing that a good degree of understanding has been achieved in LHCD theory. (author)

  7. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  8. On the merits of heating and current drive for tearing mode stabilization

    International Nuclear Information System (INIS)

    De Lazzari, D.; Westerhof, E.

    2009-01-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high β discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flattening across a magnetic island. Control and suppression of this mode can be achieved by means of electron cyclotron waves (ECWs) which allow the deposition of highly localized power at the island location. The ECW power replenishes the missing bootstrap current by generating a current perturbation either inductively, through a temperature perturbation (electron cyclotron resonance heating), or non-inductively by direct current drive (electron cyclotron current drive). Although both methods have been applied successfully to experiments showing a predominance of ECRH for medium-sized limiter tokamaks (TEXTOR, T-10) and of ECCD for mid-to-large-sized divertor tokamaks (AUG, DIII-D, JT-60), conditions determining their relative importance are still unclear. We address this problem with a numerical study focused on the contributions of heating and current drive to the temporal evolution of NTMs as described by the modified Rutherford equation. For the effects of both heating as well as current drive, simple analytical expressions have been found in terms of an efficiency fore-factor times a 'geometrical' term depending on the power deposition width w dep , location and modulation. When the magnetic island width w equals the width of the deposition profile, w ∼ w dep , both geometric terms are practically identical. Whereas for current drive the geometric term approaches a constant for small island widths and is inversely proportional to (w/w dep ) 2 for large island widths, the heating term approaches a constant for large island widths and is proportional to (w/w dep ) for small island widths. For medium-sized tokamaks (TEXTOR, AUG) the heating and current drive efficiencies are of the

  9. Noninductive current drive for INTOR: A comparison of four driver options

    International Nuclear Information System (INIS)

    Ehst, D.A.; Evans, K. Jr.; Mikkelsen, D.R.; Ignat, D.W.; Mau, T.K.

    1987-01-01

    The current drive power and normalized efficiency are calculated for the INTOR tokamak, including spatial profiles of the plasma and current density. Current drive requirements are computed for purely steady state operation with no electromotive force and also in the presence of a reversed emf typical of start-up or transformer recharging. Results are obtained for lower-hybrid-waves, high frequency fast waves, low frequency fast waves and neutral beam injection

  10. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  11. Analytical calculation of current drive synergy between LH and EC waves

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.

    2001-01-01

    An analytical model for the evaluation of electron cyclotron current drive efficiency improvement in lower hybrid current drive regimes is presented. The adjoint equation is written and solved by a perturbation treatment, allowing to derive a response function including both collisional and lower hybrid effects, in the limit where the former still dominate. This allows an analytical demonstration of the current drive synergy effects, previously found by numerical solutions of the kinetic equation. The model is especially useful for the determination of appropriate wave parameters optimizing this synergy effect, such as the EC launching angles suitable for a given LH target plasma. Under these conditions, it is shown that a significant improvement of the ECCD efficiency can be obtained

  12. [Effect of air-electric fields on driving and reaction patterns. Test subjects in the car driving simulator (author's transl)].

    Science.gov (United States)

    Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W

    1977-06-10

    In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.

  13. Full-wave calculation of fast-wave current drive in tokamaks including kparallel upshifts

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.

    1991-01-01

    Numerical calculations of fast-wave current drive (FWCD) efficiency have generally been of two types: ray tracing or global wave calculations. Ray tracing shows that the projection of the wave number (k parallel) along the magnetic field can vary greatly over a ray trajectory, particularly when the launch point is above or below the equatorial plane. As the wave penetrates toward the center of the plasma, k parallel increases, causing a decrease in the parallel phase speed and a corresponding decrease in the current drive efficiency, γ. But the assumptions of geometrical optics, namely short wavelength and strong single-pass absorption, are not greatly applicable in FWCD scenarios. Eigenmode structure, which is ignored in ray tracing, can play an important role in determining electric field strength and Landau damping rates. In such cases, a full-wave or global solution for the wave fields is desirable. In full-wave calculations such as ORION k parallel appear as a differential operator (rvec B·∇) in the argument of the plasma dispersion function. Since this leads to a differential system of infinite order, such codes of necessity assume k parallel ∼ k var-phi = const, where k var-phi is the toroidal wave number. Thus, it is not possible to correctly include effects of the poloidal magnetic field on k parallel. The problem can be alleviated by expressing the electric field as a superposition of poloidal modes, in which case k parallel is purely algebraic. This paper describes a new full-wave calculation, Poloidal Ion Cyclotron Expansion Solution, which uses poloidal and toroidal mode expansions to solve the wave equation in general flux coordinates. The calculation includes a full solution for E parallel and uses a reduced-order form of the plasma conductivity tensor to eliminate numerical problems associated with resolution of the very short wavelength ion Bernstein wave

  14. Current drive and sustain experiments with the bootstrap current in JT-60

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Azumi, Masafumi; Tani, Keiji; Tsuji, Shunji; Kubo, Hirotaka

    1989-11-01

    The current drive and sustain experiments with the neoclassical bootstrap current are performed in the JT-60 tokamak. It is shown that up to 80% of total plasma current is driven by the bootstrap current in extremely high β p regime (β p = 3.2) and the current drive product I p (bootstrap) n-bar e R p up to 4.4 x 10 19 MAm -2 has been attained with the bootstrap current. The experimental resistive loop voltages are compared with the calculations using the neoclassical resistivity with and without the bootstrap current and the Spitzer resistivity for a wide range of the plasma current (I p = 0.5 -2 MA) and the poloidal beta (β p = 0.1 - 3.2). The calculated resistive loop voltage is consistent with the neoclassical prediction including the bootstrap current. Current sustain with the bootstrap current is tested by terminating the I p feedback control during the high power neutral beam heating. An enhancement of the L/R decay time than those expected from the plasma resistivity with measured T e and Zeff has been confirmed experimentally supporting the large non-inductive current in the plasma and is consistent with the neoclassical prediction. A new technique to calculate the bootstrap current in multi-collisionality regime for finite aspect ratio tokamak has bee developed. The neoclassical bootstrap current is calculated directly through the force balance equations between viscous and friction forces according to the Hirshman-Sigmar theory. The bootstrap current driven by the fast ion component is also included. Ballooning stability of the high β p plasma are analyzed using the current profiles including the bootstrap current. The plasma pressure is close to the ballooning limit in high β p discharges. (author)

  15. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    International Nuclear Information System (INIS)

    Lu, H W; Zha, X J; Zhong, F C; Hu, L Q; Zhou, R J

    2013-01-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (I p ) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including H α line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n e , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD. (paper)

  16. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Maassberg, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Rome, M [I.N.F.N., I.N.F.M., Dipartimento di Fisica, Universita degli Studi, I-20133 Milan (Italy); Erckmann, V [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Geiger, J [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Laqua, H P [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Marushchenko, N B [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2005-08-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' {iota}-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities.

  17. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    International Nuclear Information System (INIS)

    Maassberg, H; Rome, M; Erckmann, V; Geiger, J; Laqua, H P; Marushchenko, N B

    2005-01-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' ι-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities

  18. Neoclassical Physics for Current Drive in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Duthoit, F.X.

    2012-03-01

    The Lie transform formalism is applied to charged particle dynamics in tokamak magnetic topologies, in order to build a Fokker-Planck type operator for Coulomb collisions usable for current drive. This approach makes it possible to reduce the problem to three dimensions (two in velocity space, one in real space) while keeping the wealth of phase-space cross-term coupling effects resulting from conservation of the toroidal canonical momentum (axisymmetry). This kinetic approach makes it possible to describe physical phenomena related to the presence of strong pressure gradients in plasmas of an unspecified form, like the bootstrap current which role will be paramount for the future ITER machine. The choice of coordinates and the method used are particularly adapted to the numerical resolution of the drift kinetic equation making it possible to calculate the particle distributions, which may present a strong variation with respect to the Maxwellian under the effect of an electric field (static or produced by a radio-frequency wave). This work, mainly dedicated to plasma physics of tokamaks, was extended to those of space plasmas with a magnetic dipole configuration. (author)

  19. Current drive studies for the ARIES steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Ehst, D.A.; Mandrekas, J.

    1994-01-01

    Steady-state plasma operating scenarios are designed for three versions of the ARIES reactor, using non-inductive current drive techniques that have an established database. R.f. waves, including fast and lower hybrid waves, are the reference drivers for the D-T burning ARIES-I and ARIES-II/IV, while neutral beam injection is employed for ARIES-III which burns D- 3 He. Plasma equilibria with a high bootstrap-current component have been used, in order to minimize the recirculating power fraction and cost of electricity. To maintain plasma stability, the driven current profile has been aligned with that of equilibrium by proper choices of the plasma profiles and power launch parameters. Except for ARIES-III, the current-drive power requirements and the relevant technology developments are found to be quite reasonable. The wave-power spectrum and launch requirements are also considered achievable with a modest development effort. Issues such as an improved database for fast-wave current drive, lower-hybrid power coupling to the plasma edge, profile control in the plasma core, and access to the design point of operation remain to be addressed. ((orig.))

  20. Summary and viewgraphs from the Q-121 US/Japan advanced current drive concepts workshop

    International Nuclear Information System (INIS)

    Bonoli, P.; Porkolab, M.; Chan, V.; Pinsker, R.; Politzer, P.; Darrow, D.; Fukuyama, Atsushi; Imai, Tsuyoshi; Watari, Tetsuo; Itoh, Satoshi; Nakamura, Yukio; James, R.; Logan, G.; Porter, G.; Thomassen, K.; Lyon, J.; Mau, Tak; Tanaka, Hitoshi; Tanaka, Shigetoshi

    1990-01-01

    With the emphasis placed on current drive by ITER, which requires steady state operation in its engineering phase, it is important to bring theory and experiment in agreement for each of the schemes that could be used in that design. Both neutral beam and lower hybrid (LH) schemes are in excellent shape in that regard. Since the projected efficiency of all schemes is marginal it is also important to continue our search for more efficient processes. This workshop featured experimental and theoretical work in each processes. This workshop featured experimental and theoretical work in each of these areas, that is, validation of theory and the search for better ideas. There were a number of notable results to report, the most striking again (as with last year) the long pulse operation of TRIAM-1M. A low current was sustained for over 1 hour with LH waves, using new hall-effect sensors in the equilibrium field circuit to maintain position control. In JT-60, by sharpening the wave spectrum the current drive efficiency was improved to 0.34 x 10 20 m -2 A/W and 1.5 MA of current was driven entirely by the lower hybrid system. Also in that machine, using two different LH frequencies, the H-mode was entered. Finally, by using the LH system for startup they saved 2.5 resistive volt-sec of flux, which if extrapolated to ITER would save 40 volt-sec there. For the first time, and experiment on ECH current drive showed reasonable agreement with theory. Those experiments are reported here by James (LLNL) on the D3-D machine. Substantially lower ECH current drive than expected theoretically was observed on WT-3, but if differed by being in a low absorption regime. Nonetheless, excellent physics results were achieved in the WT-3 experiments, notably in having careful measurements of the parallel velocity distributions

  1. Full-wave simulations of current profiles for fast magnetosonic wave current drive

    International Nuclear Information System (INIS)

    Dmitrieva, M.V.; Eriksson, L.-G.; Gambier, D.J.

    1992-12-01

    Numerical simulations of current drive in tokamaks by fast waves (FWCD) have been performed in the range of the ion cyclotron and at lower frequencies via 3-Dimensional numerical code ICTOR. Trapped particles effects were taken into account in the calculation of the fast wave current drive efficiency and the bootstrap current generation. The global efficiency of FWCD if found to be γ∼ 0.1 x 10 20 AW -1 m -2 for the Joint European Torus tokamak (JET) parameters at a central electron temperature of ∼ 10 kev. The efficiency of FWCD for reactor-like plasmas is found to be γ∼0.3 x 10 20 AW -1 m -2 for ∼ 100% of FWCD and γ∼ 1 x 10 20 AW -1 m -2 for FWCD and ∼ 65% of bootstrap in a total current of ∼ 25MA at a 25kev central temperature with a density of ∼10 20 m -3 and major radius R ∼ 8m. Non-inductive current density profiles are studied. Broad FWCD current profiles are obtained for flat reactor temperature and density profiles with bootstrap current concentrated at the plasma edge. The possibility of a steady-state reactor on full wave (FW) with a large fraction of bootstrap current is discussed. It appears to be impractical to rely on such an external current driven (CD) scheme for a reactor as long a γ is less than 2 x 10 20 AW -1 m -2 . (Author)

  2. Light-field-driven currents in graphene

    Science.gov (United States)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  3. Synergy between electron cyclotron and lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Giruzzi, G.; Artaud, J.F.; Dumont, R.J.; Imbeaux, F.; Bibet, P.; Berger-By, G.; Bouquey, F.; Clary, J.; Darbos, C.; Ekedahl, A.; Hoang, G.T.; Lennholm, M.; Maget, P.; Magne, R.; Segui, J.L.; Bruschi, A.; Granucci, G.

    2005-01-01

    Improvement (up to a factor ∼ 4) of the electron cyclotron (EC) current drive efficiency in plasmas sustained by lower hybrid (LH) current drive has been demonstrated in stationary conditions on the Tore Supra tokamak. This was made possible by feedback controlled discharges at zero loop voltage, constant plasma current and density. This effect, predicted by kinetic theory, results from a favorable interplay of the velocity space diffusions induced by the two waves: the EC wave pulling low-energy electrons out of the Maxwellian bulk, and the LH wave driving them to high parallel velocities. (author)

  4. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  5. Self-generated magnetic fields in direct-drive implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Zylstra, A. B.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-15

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ∼10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ∼10{sup 15} W/cm{sup 2}. Proton radiographs show multiple ring-like structures produced by electric fields ∼10{sup 7} V/cm and fine structures from surface defects, indicating self-generated fields up to ∼3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇T{sub e} × ∇n{sub e} source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  6. Low frequency RF current drive. Final report, January 1, 1988 - May 31, 1997

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1999-01-01

    This report starts with a summary of research done on the Phaedrus Tandom Mirror concept and how this research led to the design and construction of the Phaedrus-T Tokamak. Next it gives a more detailed description of the results from the last four years of research, which include the following areas: (1) first experimental demonstration of AWCD (Alfven Wave Current Drive); (2) current drive location and loop voltage response; (3) trapping and current drive efficiency; and (4) reflectometry

  7. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  8. RF Current Drive in Internal Transport Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Basiuk, V.; Huysmans, G. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Decker, J.; Bers, A.; Ram, A.K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2005-07-01

    The current drive problem in regimes with internal transport barrier is addressed using a fast solver of the electron drift kinetic equation which may be used for arbitrary tokamak plasma magnetic equilibrium and any type of electron radio-frequency wave. Parametric studies are performed for the Lower Hybrid and Electron Cyclotron waves. (authors)

  9. Two-motor single-inverter field-oriented induction machine drive ...

    Indian Academy of Sciences (India)

    Multi-machine, single-inverter induction motor drives are attractive in situations in which all machines are of similar ratings, and operate at approximately the same load torques. The advantages include small size compared to multi-inverter system, lower weight and overall cost. However, field oriented control of such drives ...

  10. Inside launch electron cyclotron heating and current drive on DITE

    International Nuclear Information System (INIS)

    Ashraf, M.; Deliyanakis, N.

    1989-01-01

    Electron cyclotron resonance heating at 60 GHz has been carried out on DITE (R = 1.2 m, a = 0.24 m) to investigate heating and current drive using the extraordinary mode launched with finite k parallel from the high field side. The first clear evidence of Doppler shifted resonance absorption in a near-thermal plasma is obtained. The heating efficiency is observed to fall sharply at densities above cut-off for the wave. At lower densities the increment in power to the limiter is measured during ECRH and is compared with that expected from the global power balance. The degradation in particle confinement often associated with ECRH is observed as an increased particle flux at the boundary driven by local electrostatic fluctuations. Initial experiments on the electron cyclotron wave driven current at the second harmonic show effects that are consistent with the low efficiency expected from theory including trapped particle effects. (author). 9 refs, 4 figs

  11. Study of fast wave current drive in a KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Hong, B.G.; Hamamatsu, Kiyotaka

    1996-02-01

    Global analysis of fast wave current drive in a KT-2 tokamak plasma is performed by using the code, TASKW1, developed by JAERI and Okayama University (Dr. Fukuyama), which solves the kinetic wave equation in a one dimensional slab geometry. A phase-shifted antenna array is used to inject toroidal momentum to electrons. To find guidelines of optimum antenna design for efficient current drive, accessibility conditions are derived. The dependence of the current drive efficiency on launching conditions such as the total number of antennas, phase and spacing is investigated for two cases of wave frequency; f=30 MHz ( cH ) and f=225 MHz (=5f cH ). (author)

  12. First results on fast wave current drive in advanced tokamak discharges in DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Cary, W.P.; Baity, F.W.

    1995-07-01

    Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m 2

  13. Current drive in a tokamak reactor during the heating of fast α particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Soboleva, T.K.

    1987-01-01

    Expressions are derived for the efficiency of the current drive in the approximation of a straight magnetic field through a solution of the kinetic equation for the distribution function of α particles as they are heated by rf waves. Three mechanisms for the absorption of the rf power in plasma are examined: cyclotron absorption at the fundamental frequency, Landau damping, and magnetic Landau damping. The efficiency of this method is shown to be at worst no lower than the efficiencies of methods involving electron heating

  14. Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT

    International Nuclear Information System (INIS)

    von Goeler, S.; Stevens, J.; Bernabei, S.

    1985-06-01

    The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves

  15. A thermodynamical analysis of rf current drive with fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bizarro, João P. S., E-mail: bizarro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-08-15

    The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it

  16. Particle transport analysis in lower hybrid current drive discharges of JT-60U

    International Nuclear Information System (INIS)

    Nagashima, K.; Ide, S.; Naito, O.

    1996-01-01

    Particle transport is modified in lower hybrid current drive discharges of JT-60U. The density profile becomes broad during the lower hybrid wave injection and the profile change depends on the injected wave spectrum. Particle transport coefficients (diffusion coefficient and profile peaking factor) were evaluated using gas-puff modulation experiments. The diffusion coefficient in the current drive discharges is about three times larger than in the ohmic discharges. The profile peaking factor decreases in the current drive discharges and the evaluated values are consistent with the measured density profiles. (author)

  17. Efficiency of LH current drive in tokamaks featuring an internal transport barrier

    International Nuclear Information System (INIS)

    Oliveira, C I de; Ziebell, L F; Rosa, P R da S

    2005-01-01

    In this paper, we study the effects of the occurrence of radial transport of particles in a tokamak on the efficiency of the current drive by lower hybrid (LH) waves, in the presence of an internal transport barrier. The results are obtained by numerical solution of the Fokker-Planck equation which rules the evolution of the electron distribution function. We assume that the radial transport of particles can be due to magnetic or electrostatic fluctuations. In both cases the efficiency of the current drive is shown to increase with the increase of the fluctuations that originate the transport. The dependence of the current drive efficiency on the depth and position of the barrier is also investigated

  18. Nonlinear response of a neoclassical four-field magnetic reconnection model to localized current drive

    International Nuclear Information System (INIS)

    Lazzaro, E.; Comisso, L.; Valdettaro, L.

    2010-01-01

    In tokamaks magnetic islands arise from an unstable process of tearing and reconnecting of helical field lines across rational surfaces. After a linear stage the magnetic instability develops through three characteristic nonlinear stages where increasingly complex topological alterations occur in the form of the magnetic islands. The problem of response of reconnection process to the injection of an external current suitably localized is addressed using a four-field model in a plane slab plasma, with a novel extension to account consistently of the relevant neoclassical effects, such as bootstrap current and pressure anisotropy. The results found have implications on the interpretation of the possible mechanism of present day experimental results on neoclassical tearing modes as well as on the concepts for their control or avoidance.

  19. Optimum launching of electron-cyclotron power for localized current drive in a hot tokamak

    International Nuclear Information System (INIS)

    Smith, G.R.

    1989-05-01

    Optimum launch parameters are determined for localized electron-cyclotron current drive near the magnetic axis and the q=2 surface by solving several minimization problems. For central current drive, equatorial and bottom launch are compared. Localized current drive near q=2 is studied for equatorial launch and for an alternative outside launch geometry that may be better for suppressing tearing modes and controlling disruptions. 6 refs., 2 figs

  20. Off-axis current drive and real-time control of current profile in JT-60U

    International Nuclear Information System (INIS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.

    2008-01-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (q min ) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control q min . The real-time control of q min is demonstrated in a high-β plasma, where q min follows the temporally changing reference q min,ref from 1.3 to 1.7. Applying the control to another high-β discharge (β N = 1.7, β p = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), q min was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement

  1. HEATING AND CURRENT DRIVE BY ELECTRON CYCLOTRON WAVES

    International Nuclear Information System (INIS)

    Prater, R.

    2003-01-01

    OAK-B135 The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. This work has shown that ECH and ECCD can be highly localized and robustly controlled in toroidal plasma confinement systems, leading to applications including stabilization of magnetohydrodynamic (MHD) instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport in laboratory plasmas. The experimental work was supported by a broad base of theory based on first principles which is now well encapsulated in linear ray tracing codes describing wave propagation, absorption, and current drive and in fully relativistic quasilinear Fokker-Planck codes describing in detail the response of the electrons to the energy transferred from the wave. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well. Strong quasilinear effects and radial transport of electrons, which may broaden the driven current profile, have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. The agreement of theory and experiment, the wide range of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators

  2. Two dimensional code for modeling of high ione cyclotron harmonic fast wave heating and current drive

    International Nuclear Information System (INIS)

    Grekov, D.; Kasilov, S.; Kernbichler, W.

    2016-01-01

    A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.

  3. PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    International Nuclear Information System (INIS)

    PETTY, C.C.; PRATER, R.; LUCE, T.C.; ELLIS, R.A.; HARVEY, R.W.; KINSEY, J.E.; LAO, L.L.; LOHR, J.; MAKOWSKI, M.A.

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage

  4. Lower hybrid heating and current drive in ignitor shear reversal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, E; Pinaccione, L [Italian Agengy for New Technologies, Energy and the Environment, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1996-05-01

    Injection of Lower Hybrid (LH) Wave power at 8 GHz is considered into IGNITOR shear reversal scenarios, characterized by a reduced plasma current and density. Power deposition calculation are performed to establish whether LH waves can be used both as central heating and off axis current drive tool. It turns out that LH waves can be used (a) for central plasma heating purpose during the current vamp phase, to freeze the shear reversed configuration, at the power level of {approx}10 MW. (b) to drive a current in the outer part of the plasma at the power level of 20 MW. In this way around 1/3-1/6 of the total current in the proper plasma position (i.e. where q is minimum) is driven.

  5. ENHANCING THE OPERATIONAL EFFICIENCY OF DIRECT CURRENT DRIVE BASED ON USE OF SUPERCONDENSER POWER STORAGE UNITS

    Directory of Open Access Journals (Sweden)

    А. M. Mukha

    2017-10-01

    Full Text Available Purpose.The scientific work is intended to analyse the expansion of the load range and the implementation of regeneration braking (RB of the direct current drive by using the supercondenser power storage units. Methodology.To solve the problem, we use the methods of the electric drive theory, impulse electronics and the method of calculation of transient electromagnetic processes in linear electric circuits in the presence of super-condensers therein. Findings.The stiffness of the mechanical and electromechanical characteristics of a series motor is significantly increased, which makes it possible to use a DC drive under load, much smaller than 15…20% of the nominal one. Numerical calculations of the operation process of the supercondenser power storage unit were fulfilled with a sharp decrease in the load of a traction electric motor of a direct current electric locomotive. The possibility of RB of the direct current drive with the series motor is substantiated. The equations of the process of charging and discharging of super-condenser storage unit in RB mode are solved. The authors examined the effect of capacitance on the nature of maintaining the excitation current of an electric motor in the mode of small loads.Originality.The paper developed theoretical approaches for the transformation of soft (mechanical and electromechanical characteristics into hard ones of DC series motors. For the first time a new, combined method of the series motor RB is proposed and substantiated. Further development obtained the methods for evaluating the storage unit parameters, taking into account the criteria for reliable parallel operation of super-condensers with an electric motor field. Practical value.The proposed and substantiated transformation of soft characteristics into stiff ones allows us to use general-purpose electric drives with series motors and at low loads, and in traction electric drives - to reduce the intensity of electric stockwheel

  6. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  7. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    Science.gov (United States)

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  8. Cumulative meta-analysis of the relationship between useful field of view and driving performance in older adults: current and future implications.

    Science.gov (United States)

    Clay, Olivio J; Wadley, Virginia G; Edwards, Jerri D; Roth, David L; Roenker, Daniel L; Ball, Karlene K

    2005-08-01

    Driving is a complex behavior that requires the utilization of a wide range of individual abilities. Identifying assessments that not only capture individual differences, but also are related to older adults' driving performance would be beneficial. This investigation examines the relationship between the Useful Field of View (UFOV) assessment and objective measures of retrospective or concurrent driving performance, including state-recorded accidents, on-road driving, and driving simulator performance. The PubMed and PsycINFO databases were searched to retrieve eight studies that reported bivariate relationships between UFOV and these objective driving measures. Cumulative meta-analysis techniques were used to combine the effect sizes in an attempt to determine whether the strength of the relationship was stable across studies and to assess whether a sufficient number of studies have been conducted to validate the relationship between UFOV and driving performance. A within-group homogeneity of effect sizes test revealed that the samples could be thought of as being drawn from the same population, Q [7] = 11.29, p (one-tailed) = 0.13. Therefore, the effect sizes of eight studies were combined for the present cumulative meta-analysis. The weighted mean effect size across the studies revealed a large effect (Cohen's d = 0.945), with poorer UFOV performance associated with negative driving outcomes. This relationship was robust across multiple indices of driving performance and several research laboratories. This convergence of evidence across numerous studies using different methodologies confirms the importance of the UFOV assessment as a valid and reliable index of driving performance and safety. Recent prospective studies have confirmed a relationship between UFOV performance and future crashes, further supporting the use of this instrument as a potential screening measure for at-risk older drivers.

  9. Research activities and plan of electron cyclotron wave startup and Alfven wave current drive at SUNIST

    International Nuclear Information System (INIS)

    Gao Zhe; He Yexi; Tan Yi

    2009-01-01

    Using electromagnetic waves to startup and sustain plasma current takes a important role in the research program of the SUNIST spherical tokamak. Electron cyclotron ware (ECW) current startup have been investigated and revealed two totally different regimes. In the regime of very low working pressure, a plasma current of about 2 kA is obtained with a steadily applied vertical field of 12 Gauss and 40 kW/2.45 GHz microwave injection. In addition, the physics of the transient process during ECW startup in the relatively high working pressure regime is analyzed. The hardware preparation for the experimental research of Alfven wave current drive is being performed. The Alfven wave antenna system consists of four models in toroidal direction and two antenna straps in poloidal direction for each module and the rf generator has been designed as a four-phase oscillator (4x100 kW, 0.5 - 1 Mhz).The impedance spectrum of the antenna system is roughly evaluated by 1-D cylindrical magneto-hydrodynamic calculation. To investigate the wave-plasma interaction in ECW startup and Alfven wave current drive, upgrade of the device, especially in equilibrium control and diagnostics, is ongoing. (author)

  10. Current-drive theory I: survey of methods

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1986-01-01

    A variety of methods may be employed to drive toroidal electric current in a plasma torus. The most promising scheme is the injection of radiofrequency waves into the torus to push electrons or ions. The pushing mechanism can be either the direct conversion of wave to particle momentum, or a more subtle effect involving the alteration by waves of interparticle collisions. Alternatively, current can be produced through the injection of neutral beams, the reflection of plasma radiation, or the injection of frozen pellets. The efficacy of these schemes, in a variety of regimes, will be assessed. 9 refs

  11. Development of high-power inverter supply for current drive of FRC plasma

    International Nuclear Information System (INIS)

    Kitano, Katsuhisa; Higashikozono, Takamitsu; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    High-Power RF supply is developed for the current drive of FRC (Field Reversed Configuration) plasma. The rotating magnetic field is produced by the four antennas set in the parallel direction to the geometrical axis of the FRC and faced each other. The sinusoidal currents with shifted phases by 90 degree each other should be supplied to the antennas. The two power supplies are necessary if a pair of the antennas faced oppositely are connected. Considering the plasma parameters, the rotating field of 50-100kHz and 50G at the center axis is expected to be required. We develop the adequate RF power supply for the purpose. The power supply consists of the inverter circuit, the step-up transformer and the LC tank ciruit. For the switching device of the inverter circuit, the IGBT (Insulated Gate Bipolar Transistor) is adopted. The inverter circuit is full bridge type. To operate it at high voltages, its arm consists of the 3 IGBTs arranged series. The output of the inverter is connected to the tank circuit by way of the step-up transformer with air core. The tank circuit is the parallel circuit of the antenna and the capacitor. By the adjustment of the frequency of the inverter output to the resonance frequency of the tank circuit, the large sinusoidal waveform current is obtained. The developed power supply can produce the current of 5kA at 10kV to the dummy antenna with almost the same inductance of the antenna. (author)

  12. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    Science.gov (United States)

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  13. Intervening to decrease the probability of alcohol-impaired driving: Impact of novel field sobriety tests.

    Science.gov (United States)

    Smith, Ryan C; Robinson, Zechariah; Bazdar, Alexandra; Geller, E Scott

    2016-01-01

    The efficacy of novel field sobriety tests to predict breath alcohol content (BAC) and perceptions of driving risk was evaluated. Participants (N = 210) were passersby at two downtown locations near local bars and one on-campus location near a late-night dining facility between the hours of 10:00 p.m. and 2:00 a.m. Participants gave ratings of their perceived risk to drive at their current level of intoxication, then completed three sobriety tests (a hand-pat, tracing test, and Romberg test), and finally provided new ratings of their perceived risk to drive. After completing the final set of questions, participants were administered a Lifeloc FC20 breath alcohol test (±.005 g/dL). Each of the sobriety tests performed better than chance at predicting participant intoxication, but the performance feedback did not enhance awareness of one's risk to drive at a given BAC. Actually, after the sobriety tests, Greek-life females perceived themselves to be less at-risk to drive.

  14. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    International Nuclear Information System (INIS)

    Li Miao-Hui; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range. These H-mode discharges are characterized by a sudden drop in D α emission and a spontaneous rise in main plasma density. Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D 2 gas from a pipe near the grill mouse. The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode, and current drive (CD) efficiency decreases due to the increase in density. Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported. (physics of gases, plasmas, and electric discharges)

  15. Structure and parameters dependences of Alfven wave current drive generated in the low-field side of simulated spherical tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    1999-01-01

    Theoretical results on the wave-plasma interactions in simulated toroidal configurations are presented. The study covers the cases of large to low aspect ratio tokamaks, in the pre-heated stage. Fast waves emitted from an external antenna with different wave numbers and frequencies are considered. The non-inductive Alfven wave current drive is evaluated and discussed. (author)

  16. Structure and parameters dependences of Alfven wave current drive generated in the low-field side of simulated spherical tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2001-01-01

    Theoretical results on the wave-plasma interactions in simulated toroidal configurations are presented. The study covers the cases of large to low aspect ratio tokamaks, in the pre-heated stage. Fast waves emitted from an external antenna with different wave numbers and frequencies are considered. The non-inductive Alfven wave current drive is evaluated and discussed. (author)

  17. Study of non-inductive current drive using high energy neutral beam injection on JT-60U

    International Nuclear Information System (INIS)

    Oikawa, Toshihiro

    2004-01-01

    The negative ion based neutral beam (N-NB) current drive was experimentally studied. The N-NB driven current density was determined over a wide range of electron temperatures by using the motional Stark effect spectroscopy. Theoretical prediction of the NB current drive increasing with beam energy and electron temperature was validated. A record value of NB current drive efficiency 1.55 x 10 19 Am -2 W -1 was achieved simultaneously with high confinement and high beta at at a plasma current of 1.5 MA under a fully non-inductively current driven condition. The experimental validation of NB current drive theory for MHD quiescent plasmas gives greater confidence in predicting the NB current drive in future reactors. However, it was also found that MHD instabilities caused a degradation of NB current drive. A beam-driven instability expelled N-NB fast ions carrying non-inductive current from the central region. The lost N-NB driven current was estimated to be 7% of the total N-NB driven current. For the neoclassical tearing mode (NTM), comparisons of the measured neutron yield and fast ion pressure profile with transport code calculations revealed that the loss of fast ions increases with the NTM activity and that fast ions at higher energies suffer larger transport than at lower energies. (author)

  18. Heating, current drive and energetic particles studies on JET in preparation of ITER operation

    International Nuclear Information System (INIS)

    Noterdaeme, J.-M.; Budny, R.; Cardinali, A.

    2003-01-01

    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated far off axis with little or no refueling or momentum input are hollow with only small differences on whether the power deposition is located on the low field side or on the high field side. With LH current drive the magnetic shear was varied from slightly positive to negative. The improved coupling (through the use of plasma shaping and CD 4 ) allowed up to 3.4 MW of P LH in ITB plasmas with more than 15MW of combined NBI and ICRF heating. The q profile with negative magnetic shear and the ITB could be maintained for the duration of the high heating pulse (8s). Fast ions have been produced in JET with ICRF to simulate alpha particles: by using third harmonic 4 He heating, beam injected 4 He at 120 kV were accelerated to energies above 2 MeV, taking advantage of the unique capability of JET to use NBI with 4 He and to confine MeV class ions. ICRF heating was used to replicate the dynamics of alpha heating and the control of an equivalent Q=10 'burn' was simulated. (author)

  19. Steady-state dynamo and current drive in a nonuniform bounded plasma

    International Nuclear Information System (INIS)

    Mett, R.R.; Taylor, J.B.

    1991-03-01

    Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs

  20. Recent Research Results in the Field of Electric Drives and Mechatronics

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2003-01-01

    Full Text Available The paper presents an overview of research results achieved in the field of Electrical Drives and Mechatronics for the period of three years. The achieved outputs are formed into three individual parts. In the field of Electric Drives the most significant outputs have been achieved in the development of a new control algorithms for a.c. drives under general name 'Forced Dynamics Control' , in improvement of shaft sensorless control methods and in implementation of developed algorithms via digital signal processors. In the field of Electric Traction the most important results have been gained in optimization of power of traction vehicles andat development of diagnostic systems for evaluation of technical conditions of traction devices. In the field of Electric Machines the most important outputs have been achieved in the research of modern electronically commutated electrical machines, their performances in steady and transient states, new design method for their configuration and new methods for automatic parameters identification. In the end the list of the most important publications for all three parts is enclosed.

  1. Progress with helicity injection current drive

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.

    2003-01-01

    Coaxial Helicity Injection (CHI) experiments in the NSTX and HIT-II devices are reported. NSTX has produced toroidal currents of 0.4 MA and pulse lengths of up to 0.33 s. These discharges nearly fill the NSTX main chamber, and show the n=1 rotating distortion characteristic of high-performance CHI plasmas. CHI has been used in HIT-II to provide a closed flux startup plasma for inductive drive. The CHI startup method saves transformer volt-seconds and greatly improves reproducibility and reliability of inductively driven discharges, even in the presence of diminishing wall conditions. (author)

  2. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  3. Technology of fast-wave current drive antennas

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Taylor, D.J.; Swain, D.W.; Mayberry, M.J.; Yugo, J.J.

    1989-01-01

    The design of fast-wave current drive (FWCD) antennas combines the usual antenna considerations (e.g., the plasma/antenna interface, disruptions, high currents and voltages, and thermal loads) with new requirements for spectral shaping and phase control. The internal configuration of the antenna array has a profound effect on the spectrum and the ability to control phasing. This paper elaborates on these considerations, as epitomized by a proof-of-principle (POP) experiment designed for the DIII-D tokamak. The extension of FWCD for machines such as the International Thermonuclear Engineering Reactor (ITER) will require combining ideas implemented in the POP experiment with reactor-relevant antenna concepts, such as the folded waveguide. 6 refs., 8 figs

  4. Stability, current drive and heating, energetic particles

    International Nuclear Information System (INIS)

    Razumova, K.

    2001-01-01

    The paper summarizes the results presented at the conference Fusion Energy 2000 (FEC 2000) in relation to the following subjects: 1. The possibility of realizing plasma parameters for ITER needs, advanced regimes in tokamaks and stellarators. 2. Stability of plasmas with an appreciable component of fast particles. 3. Low aspect ratio tokamaks. 4. New results with auxiliary heating and current drive methods. 5. β limit and neoclassical tearing mode (NTM) stabilization. 6. Internal transport barriers. (author)

  5. Experimental demonstration of synergy between electron cyclotron and lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Artaud, J.F.; Giruzzi, G.; Dumont, R.J.; Imbeaux, F.; Bibet, P.; Bouquey, F.; Clary, J.; Ekedahl, A.; Hoang, G.T.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Non-inductive current drive (CD) has two main applications in tokamaks: sustainment of a substantial fraction of the toroidal plasma current necessary for the plasma confinement and control of the plasma stability and transport properties by appropriate shaping of the current density profile. For the first kind of applications, lower hybrid (LH) waves are known to provide the highest efficiency (defined as the ratio of the driven current to the injected wave power), although with limited control capability. Conversely, electron cyclotron (EC) waves drive highly localized currents, and are therefore particularly suited for control purposes, but their CD efficiency is much lower than that of LH waves (typically, an order of magnitude in present day experiments). Various calculations have demonstrated an interesting property: the current driven by the simultaneous use of the two waves, I(LH+EC), can be significantly larger than the sum I(LH)+I(EC) of the currents separately driven by the two waves in the same plasma conditions. This property, called synergy effect. The peculiar experimental conditions attainable on the Tore Supra tokamak have allowed the first experimental demonstration of the synergy between EC and LH current drive. The significant improvement of the electron cyclotron current drive (ECCD) efficiency in the presence of low hybrid current drive (LHCD), predicted by kinetic theory and confirmed by stationary experiments on Tore Supra, opens up the possibility of using ECCD as an efficient current profile control tool in LHCD plasmas

  6. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  7. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  8. Simulations of ICRF-fast wave current drive on DIIID

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1990-06-01

    Self-consistent calculations of MHD equilibria, generated by fast wave current drive and including the bootstrap effect, were done to guide and anticipate the results of upcoming experiments on the DIIID tokamak. The simulations predict that 2 MW of ICRF power is more than adequate to create several hundred kiloamperes in steady state; the total current increases with the temperature and density of the target plasma. 12 refs., 12 figs., 1 tab

  9. Electron Energy Confinement for HHFW Heating and Current Drive Phasing on NSTX

    International Nuclear Information System (INIS)

    Hosea, J.C.; Bernabei, S.; Biewer, T.; LeBlanc, B.; Phillips, C.K.; Wilson, J.R.; Stutman, D.; Ryan, P.; Swain, D.W.

    2005-01-01

    Thomson scattering laser pulses are synchronized relative to modulated HHFW power to permit evaluation of the electron energy confinement time during and following HHFW pulses for both heating and current drive antenna phasing. Profile changes resulting from instabilities require that the total electron stored energy, evaluated by integrating the midplane electron pressure P(sub)e(R) over the magnetic surfaces prescribed by EFIT analysis, be used to derive the electron energy confinement time. Core confinement is reduced during a sawtooth instability but, although the electron energy is distributed outward by the sawtooth, the bulk electron energy confinement time is essentially unaffected. The radial deposition of energy into the electrons is noticeably more peaked for current drive phasing (longer wavelength excitation) relative to that for heating phasing (shorter wavelength excitation) as is expected theoretically. However, the power delivered to the core plasma is reduced consider ably for the current drive phasing, indicating that surface/peripheral damping processes play a more important role for this case

  10. Lower-hybrid counter current drive for edge current density modification in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1994-01-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown

  11. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  12. Fast wave current drive on ITER in the presence of energetic alphas

    International Nuclear Information System (INIS)

    Mau, T.K.

    1989-01-01

    The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs

  13. Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes

    Science.gov (United States)

    Isliker, Heinz; Chatziantonaki, Ioanna; Tsironis, Christos; Vlahos, Loukas

    2012-09-01

    We analyze the propagation of electron-cyclotron waves, their absorption and current drive when neoclassical tearing modes (NTMs), in the form of magnetic islands, are present in a tokamak plasma. So far, the analysis of the wave propagation and power deposition in the presence of NTMs has been performed mainly in the frame of an axisymmetric magnetic field, ignoring any effects from the island topology. Our analysis starts from an axisymmetric magnetic equilibrium, which is perturbed such as to exhibit magnetic islands. In this geometry, we compute the wave evolution with a ray-tracing code, focusing on the effect of the island topology on the efficiency of the absorption and current drive. To increase the precision in the calculation of the power deposition, the standard analytical flux-surface labeling for the island region has been adjusted from the usual cylindrical to toroidal geometry. The propagation up to the O-point is found to be little affected by the island topology, whereas the power absorbed and the driven current are significantly enhanced, because the resonant particles are bound to the small volumes in between the flux surfaces of the island. The consequences of these effects on the NTM evolution are investigated in terms of the modified Rutherford equation.

  14. Electron-cyclotron wave propagation, absorption and current drive in the presence of neoclassical tearing modes

    International Nuclear Information System (INIS)

    Isliker, Heinz; Chatziantonaki, Ioanna; Tsironis, Christos; Vlahos, Loukas

    2012-01-01

    We analyze the propagation of electron-cyclotron waves, their absorption and current drive when neoclassical tearing modes (NTMs), in the form of magnetic islands, are present in a tokamak plasma. So far, the analysis of the wave propagation and power deposition in the presence of NTMs has been performed mainly in the frame of an axisymmetric magnetic field, ignoring any effects from the island topology. Our analysis starts from an axisymmetric magnetic equilibrium, which is perturbed such as to exhibit magnetic islands. In this geometry, we compute the wave evolution with a ray-tracing code, focusing on the effect of the island topology on the efficiency of the absorption and current drive. To increase the precision in the calculation of the power deposition, the standard analytical flux-surface labeling for the island region has been adjusted from the usual cylindrical to toroidal geometry. The propagation up to the O-point is found to be little affected by the island topology, whereas the power absorbed and the driven current are significantly enhanced, because the resonant particles are bound to the small volumes in between the flux surfaces of the island. The consequences of these effects on the NTM evolution are investigated in terms of the modified Rutherford equation. (paper)

  15. Current profile evolution during fast wave current drive on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Baity, F.W.

    1995-06-01

    The effect of co and counter fast wave current drive (FWCD) on the plasma current profile has been measured for neutral beam heated plasmas with reversed magnetic shear on the DIII-D tokamak. Although the response of the loop voltage profile was consistent with the application of co and counter FWCD, little difference was observed between the current profiles for the opposite directions of FWCD. The evolution of the current profile was successfully modeled using the ONETWO transport code. The simulation showed that the small difference between the current profiles for co and counter FWCD was mainly due to an offsetting change in the o at sign c current proffie. In addition, the time scale for the loop voltage to reach equilibrium (i.e., flatten) was found to be much longer than the FWCD pulse, which limited the ability of the current profile to fully respond to co or counter FWCD

  16. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....

  17. Phased-array antenna system for electron Bernstein wave heating and current drive experiments in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.

    2010-11-01

    The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)

  18. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.; Lazarus, E.A.

    1994-02-01

    This paper describes recent DIII-D high power heating and current drive experiments. Describes are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal beta

  19. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Lazarus, E.A.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal β. ((orig.))

  20. Recent DIII-D high power heating and current drive experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C. [General Atomics, San Diego, CA (United States); Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Politzer, P.A. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); DIII-D Team

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal {beta}. ((orig.)).

  1. Burn stability of tokamak fusion plasmas with synergetic current drive

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.; Kolesnichenko, Ya.

    1991-01-01

    The stability of thermonuclear burn in Tokamak-reactors with non-inductive current generated with the simultaneous application of various methods is investigated. Particular emphasis is given to the ITER synergetic current drive scenario involving LH waves, neoclassical effects and NB injection. For ITER-like confinement laws, it is shown that this scenario may be unstable on the plasma skin time scale. Figs

  2. U.S.-Japan workshop on 'RF heating and current drive in confinement systems tokamaks'

    International Nuclear Information System (INIS)

    1992-01-01

    The workshop was attended by 8 US scientists and 30 Japanese scientists. The agenda was divided into 2 1/2 days of presentation, 1/2 day group discussions and 1/2 day summary session. There were 10 papers on rf physics, technologies and applications; 6 papers on new concepts, helicity injection and transport; and 6 papers on heating/current drive and scrape-off-layer/divertor conditions. The wide range of topics discussed is an indication of the impressive growth, both in depth and breadth, of the US-Japan workshop in RF Heating and Current Drive. It also benefitted by being combined with the new current drive concepts workshops and the active participation of JAERI scientists. (J.P.N.)

  3. Numerical calculation of high frequency fast wave current drive in a reactor grade tokamak

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Hamamatsu, Kiyotaka

    1988-02-01

    A fast wave current drive with a high frequency is estimated for a reactor grade tokamak by the ray tracing and the quasi-linear Fokker-Planck calculations with an assumption of single path absorption. The fast wave can drive RF current with the drive efficiency of η CD = n-bar e (10 19 m -3 )I RC (A)R(m)/P RF (W) ∼ 3.0 when the wave frequency is selected to be f/f ci > 7. A sharp wave spectrum and a ph|| >/υ Te ∼ 3.0 are required to obtain a good efficiency. A center peaked RF current profile can be formed with an appropriate wave spectrum even in the high temperature plasma. (author)

  4. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  5. COMPLETE SUPPRESSION OF THE m=2/n-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    International Nuclear Information System (INIS)

    PETTY, CC; LAHAYE, LA; LUCE, TC; HUMPHREYS, DA; HYATT, AW; PRATER, R; STRAIT, EJ; WADE, MR

    2003-01-01

    A271 COMPLETE SUPPRESSION OF THE M=2/N-1 NEOCLASSICAL TEARING MODE USING ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. The first suppression of the important and deleterious m=2/n=1 neoclassical tearing mode (NTM) is reported using electron cyclotron current drive (ECCD) to replace the ''missing'' bootstrap current in the island O-point. Experiments on the DIII-D tokamak verify the maximum shrinkage of the m=2/n=1 island occurs when the ECCD location coincides with the q = 2 surface. The DIII-D plasma control system is put into search and suppress mode to make small changes in the toroidal field to find and lock onto the optimum position, based on real time measurements of dB θ /dt, for complete m=2/n=1 NTM suppression by ECCD. The requirements on the ECCD for complete island suppression are well modeled by the modified Rutherford equation for the DIII-D plasma conditions

  6. Low drive field amplitude for improved image resolution in magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Konkle, Justin J; Arami, Hamed; Price, Daniel A; Li, Ada X; Saritas, Emine U; Conolly, Steven M

    2016-01-01

    Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with

  7. A Lower Hybrid Current Drive System for Alcator C-Mod

    International Nuclear Information System (INIS)

    Bernabei, S.; Hosea, J.C.; Loesser, D.; Rushinski, J.; Wilson, J.R.; Bonoli, P.; Grimes, M.; Parker, R.; Porkolab, M.; Terry, D.; Woskov, P.

    2001-01-01

    A Lower Hybrid Current Drive system is being constructed jointly by Plasma Science and Fusion Center (PSFC) and Princeton Plasma Physics Laboratory (PPPL) for installation on the Alcator C-Mod tokamak, with the primary goal of driving plasma current in the outer region of the plasma. The Lower Hybrid (LH) system consists of 3 MW power at 4.6 GHz with a maximum pulse length of 5 seconds. Twelve klystrons will feed an array of 4-vertical and 24-horizontal waveguides mounted in one equatorial port. The coupler will incorporate some compact characteristics of the multijunction power splitting while retaining full control of the toroidal phase. In addition a dynamic phase control system will allow feedback stabilization of MHD modes. The desire to avoid possible waveguide breakdown and the need for compactness have resulted in some innovative technical solution which will be presented

  8. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge

    International Nuclear Information System (INIS)

    Montes, A.; Ludwig, G.O.

    1986-04-01

    Current drive by electron Bernstein waves in the start-up phase of tokamak discharges is studied. A general analytical expression is derived for the figure of merit J/Pd associated with these waves. This is coupled with a ray tracing code, allowing the calculation of the total current generated per unit of incident power in realistic tokamak conditions. The resuts show that the electron Bernstein waves can drive substantial currents even at very low electron temperatures. (Author) [pt

  9. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  10. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  11. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2010-07-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Feridoon-kenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year. This system performs the forcing in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, dominates the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  12. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  13. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...... of unequal loading among the parallel drives, and a scheme to enhance the performance is introduced to improve the quality of the total grid current, where partial loading operation should be enabled. Simulation and experimental case studies on multidrive systems have demonstrated that the enhanced phase...

  14. Lower hybrid heating and current drive in Iter operation scenarios and outline system design

    International Nuclear Information System (INIS)

    1994-11-01

    Lower Hybrid Waves (LHW) are considered a valid method of plasma heating and the best demonstrated current drive method. Current drive by LHW possesses the unique feature, as compared to the other methods, to retain a good current drive efficiency in plasma regions of low to medium temperature, or in low-β phases of the discharges. This makes them an essential element to realize the so called 'advanced steady-state Tokamak scenarios' in which a hollow current density profile (deep shear reversal) - established during the ramp-up of the plasma current - offers the prospects of improved confinement and an MHD-stable route to continuous burn. This report contains both modelling and design studies of an LHW system for ITER. It aims primarily at the definition of concepts and parameters for steady-state operation using LHW combined with Fast Waves (FW), or other methods of generating a central seed current for high bootstrap current operation. However simulations addressing the use of LHW for current profile control in the high current pulsed operation scenario are also presented. The outline design of a LHW system which covers the needs for both pulsed and steady-state operation is described in detail. (author). 28 refs., 49 figs

  15. Effects of passive components on the input current interharmonics of adjustable-speed drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Blaabjerg, Frede; Zare, Firuz

    2016-01-01

    Current and voltage source Adjustable Speed Drives (ASDs) exert distortion current into the grid, which may produce some interharmonic components other than the characteristic harmonic components. This paper studies the effects of passive components on the input current interharmonics of adjustable...

  16. Fast wave current drive technology development at ORNL

    International Nuclear Information System (INIS)

    Baity, F.W.; Batchelor, D.B.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Prater, R.

    1993-01-01

    The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER

  17. Fast wave current drive technology development at ORNL

    International Nuclear Information System (INIS)

    Baity, F.W.; Batchelor, D.B.; Goulding, R.H.

    1994-01-01

    The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER. (author)

  18. Implications of rf current drive theory for next step steady-state tokamak design

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1985-06-01

    Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor

  19. Theory of current-drive in plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1986-12-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide

  20. Cross effects on electron-cyclotron and lower-hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Krivenski, V.; Mazzucato, E.; Ziebell, L.F.

    1986-11-01

    Electron cyclotron resonance current drive in a tokamak plasma in the presence of a lower hybrid tail is investigated using a 2D Fokker-Planck code. For an extraordinary mode at oblique propagation and down-shifted frequency it is shown that the efficiency of electron cyclotron current drive becomes, i) substantially greater than the corresponding efficiency of a Maxwellian plasma at the same bulk temperature, ii) equal or greater than that of the lower hybrid waves, iii) comparable with the efficiency of a Maxwellian plasma at much higher temperature. This enhancement results from a beneficial cross-effect of the two waves on the formation of the current carrying electron tail. (5 fig; 17 refs)

  1. Simulations of enhanced reversed shear TFTR discharges with lower hybrid current drive

    International Nuclear Information System (INIS)

    Kesner, J.; Bateman, G.

    1996-01-01

    The BALDUR based BBK code permits predictive simulations of time-dependent tokamak discharges and has the capability to include neutral beam heating, pellet injection, bootstrap currents and lower hybrid current drive. BALDUR contains a theory based multi-regime transport model and previous work has shown excellent agreement with both L-mode and supershot TFTR discharges. These simulations reveal that core transport is dominated by η i and trapped electron modes and the outer region by resistive ballooning. We simulate enhanced reverse shear discharges by beginning with a supershot simulation with a reversed shear profile. Similarly to the TFTR experiments the reversed shear profile is obtained through the programming of the current during startup and the freezing in of these profiles by subsequent heating. At the time of transition into the enhanced confinement regime we turn off the η i and trapped-electron mode transport. We examine the further modification of the plasma current profile that can be obtained with the application of lower hybrid current drive. The results of these simulations will be discussed

  2. A study on the fusion reactor - A study on wave physics of fast wave heating and the current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Su Won; Yeom, Hyun Ju [Kyonggi University, Suwon (Korea, Republic of); Hong, Sang Hee; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of)

    1996-09-01

    A full 3-dimensional code for fast wave heating and the current drive has been developed ant its results are compared with those of FASTWA for Phaedrus-T tokamak. The finite Larmour radius expansion and the order reduction method have been used to derive the wave equation in the toroidal coordinate from the Maxwell-Vlasov equations. By expanding the fields in poloidal Fourier series, the wave equations are reduced to the system of ordinary differential equations in the radial axis, which are then numerically integrated via the shooting method. In addition, the convergence of the solutions and energy conservation are discussed. Finally, and example calculation of the current drive is presented for the advanced superconducting tokamak which is in its conceptual design phase. 17 refs., 10 tabs., 31 figs. (author)

  3. Lower hybrid current drive: an overview of simulation models, benchmarking with experiment, and predictions for future devices

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Barbato, E.; Imbeaux, F.

    2003-01-01

    This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)

  4. 60 MHz fast wave current drive experiment for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R. (General Atomics, San Diego, CA (USA))

    1989-07-01

    The DIII-D facility provides an opportunity to test fast wave current drive appoach. Efficient FWCD is achieved by direct electron absorption due to Landa damping and transit time magnetic pumping. To avoid competing damping mechamisms we seek to maximize the single-pass asorption of the fast waves by electrons. (AIP)

  5. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Lin-Liu Y.R.

    2012-09-01

    Full Text Available A fully relativistic model of electron cyclotron current drive (ECCD efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed has generalized that of Marushchenko’s (N.B . Marushchenko, et al. Fusion Sci. & Tech., 2009, which is extended for arbitrary temperatures and covers exactly the asymptotic for u ≫ 1 when Z → ∞, and suitable for ray-tracing calculations.

  6. Towards fully non-inductive current drive operation in JET

    International Nuclear Information System (INIS)

    Litaudon, X.; Crisanti, F.; Alper, B.

    2002-01-01

    Quasi-steady operation has been achieved at JET in the high-confinement regime with internal transport barriers (ITBs). The ITB has been maintained up to 11 s. This duration, much larger than the energy confinement time, is already approaching a current resistive time. The high-performance phase is limited only by plant constraints. The radial profiles of the thermal electron and ion pressures have steep gradients typically at mid-plasma radius. A large fraction of non-inductive current (above 80%) is sustained throughout the high-performance phase with a poloidal beta exceeding unity. The safety factor profile plays an important role in sustaining the ITB characteristics. In this regime where the self-generated bootstrap current (up to 1.0 MA) represents 50% of the total current, the resistive evolution of the non-monotonic q-profile is slowed down by using off-axis lower-hybrid current drive. (author)

  7. Towards fully non-inductive current drive operation in JET

    International Nuclear Information System (INIS)

    Litaudon, X.; Crisanti, F.; Alper, B.

    2002-01-01

    Quasi steady operation has been achieved at JET in the high confinement regime with Internal Transport Barriers, ITBs. The ITBs' performances are maintained up to 11 s. This duration, much larger than the energy confinement time, is already approaching a current resistive time. The high performance phase is limited only by plant constraints. The radial profiles of the thermal electron and ion pressures have steep gradients typically at mid-plasma radius. A large fraction of non-inductive current (above 80%) is sustained throughout the high performance phase with a poloidal beta exceeding unity. The safety factor profile plays an important role in sustaining the ITB characteristics. In this regime where the self-generated bootstrap current (up to LOMA) represents 50% of the total current, the resistive evolution of the non-monotonic q-profile is slowed down by using off-axis lower hybrid current drive. (authors)

  8. Towards fully non-inductive current drive operation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X. [Association Euratom-CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Crisanti, F. [Association Euratom-ENEA sulla Fusione, Centro Ricerche Frascati (Italy); Alper, B. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)] [and others

    2002-01-01

    Quasi steady operation has been achieved at JET in the high confinement regime with Internal Transport Barriers, ITBs. The ITBs' performances are maintained up to 11 s. This duration, much larger than the energy confinement time, is already approaching a current resistive time. The high performance phase is limited only by plant constraints. The radial profiles of the thermal electron and ion pressures have steep gradients typically at mid-plasma radius. A large fraction of non-inductive current (above 80%) is sustained throughout the high performance phase with a poloidal beta exceeding unity. The safety factor profile plays an important role in sustaining the ITB characteristics. In this regime where the self-generated bootstrap current (up to LOMA) represents 50% of the total current, the resistive evolution of the non-monotonic q-profile is slowed down by using off-axis lower hybrid current drive. (authors)

  9. Path-sum calculations for rf current drive

    International Nuclear Information System (INIS)

    Belo, Jorge H.; Bizarro, Joao P.S.; Rodrigues, Paulo

    2001-01-01

    Path sums and Gaussian short-time propagators are used to solve two-dimensional Fokker-Planck models of lower-hybrid (LH) and electron-cyclotron (EC) current drive (CD), and are shown to be well suited to the two limiting situations where the rf quasilinear diffusion coefficient is either relatively small, D rf ≅0.1, or very large, D rf →∞, the latter case enabling a special treatment. Results are given for both LHCD and ECCD in the small D rf case, whereas the limiting situation is illustrated only for ECCD. To check the accuracy of path-sum calculations, comparisons with finite difference solutions are provided

  10. Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios

    Science.gov (United States)

    Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.

    2017-07-01

    The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.

  11. Heating and current drive requirements towards steady state operation in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Batchelor, D. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Harvey, B.; Petrov, Y. [CompX, Box 2672, Del Mar, CA 92014 (United States)

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  12. Heating and current drive requirements towards steady state operation in ITER

    Science.gov (United States)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  13. Speed Regulated Continuous DTC Induction Motor Drive in Field Weakening

    Directory of Open Access Journals (Sweden)

    MATIC, P.

    2011-02-01

    Full Text Available The paper describes sensorless speed controlled continuous Direct Torque Control (DTC Induction Motor (IM drive in the field weakening regime. Drive comprises an inner torque loop and an outer speed loop. Torque control is based on Proportional - Integral (PI controller with adaptive Gain Scheduling (GS parameters. The GS PI control provides full DC link voltage utilization and a robust disturbance rejection along with a fast torque response. Outer speed loop has a PI regulator with the gains selected so as to obtain a fast and strictly aperiodic response. Proposed drive fully utilizes the available DC bus voltage. The paper comprises analytical considerations, simulation results, and detailed description of the implementation steps. Experimental verification of the proposed solution is conducted on a fixed point Digital Signal Processor (DSP platform.

  14. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  15. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  16. Application of Electron Bernstein Wave heating and current drive to high beta plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.

    2002-01-01

    Electron Bernstein Waves (EBW) can potentially heat and drive current in high-beta plasmas. Electromagnetic waves can convert to EBW via two paths. O-mode heating, demonstrated on W-7AS, requires waves be launched within a narrow k-parallel range. Alternately, in high-beta plasmas, the X-mode cutoff and EBW conversion layers are millimeters apart, so the fast X-mode can tunnel to the EBW branch. We are studying the conversion of EBW to the X-mode by measuring the radiation temperature of the cyclotron emission and comparing it to the electron temperature. In addition, mode conversion has been studied with an approximate kinetic full-wave code. We have enhanced EBW mode conversion to ∼ 100% by encircling the antenna with a limiter that shortens the density scale length at the conversion layer in the scrape off of the CDX-U spherical torus (ST) plasma. Consequently, a limiter in front of a launch antenna achieves efficient X-mode coupling to EBW. Ray tracing and Fokker-Planck codes have been used to develop current drive scenarios in NSTX high-beta (∼ 40%) ST plasmas and a relativistic code will examine the potential synergy of EBW current drive with the bootstrap current. (author)

  17. Studies on fast wave current drive in the JAERI tokamaks

    International Nuclear Information System (INIS)

    Kimura, H.; Yamamoto, T.; Fujii, T.; Kawashima, H.; Tamai, H.; Saigusa, M.; Imai, T.; Hamamatsu, K.; Fukuyama, A.

    1991-01-01

    Fast wave electron heating experiment (FWEH) on JFT-2M and JT-60 and analysis of fast wave current drive (FWCD) ability on JT-60U are presented. In the JFT-2M, absorption of fast waves have been investigated by using a phased four-loop antenna array. The absorption of the fast waves has been studied for various plasma parameters by using combination of other additional heating methods such as electron cyclotron heating (ECH) and ion cyclotron heating. It is shown that the absorption efficiency estimated from various methods well correlates with one calculated theoretically in single pass damping. Interaction of the fast waves with fast electrons in combination with ECH has been examined through the measurement of non-thermal electron cyclotron emission (ECE). The observed ECE during FWEH is well explained by the theoretical model, which indicates generation of the appreciable energetic fast electrons by the fast waves. New four-loop array antennas have been employed to improve the absorption of unidirectionally-propagating waves. Characteristics of antenna loading resistance can be reproduced by a coupling calculation code. In JT-60, FWEH experiment in combination with lower hybrid current drive was performed. Power absorption efficiency of fast wave is substantially improved in combination with LHCD of relatively low power for both phasing modes. Bulk electron heating is observed with high-k // mode and coupling with fast electron is confirmed in hard X-ray emission with low-k // mode. The results are consistent with theoretical prediction based on 1.D full wave code. Synergetic effects between FWEH and LHCD are found. Coupling calculation indicates that eight-loop antenna is favourable for keeping high directivity in the required N // -range. Current drive efficiency is calculated with 1-D full wave code including trapped particle effects and higher harmonic ion cyclotron damping

  18. Real time control of EC heating & current drive systems on TCV

    NARCIS (Netherlands)

    Paley, J.I.; Felici, F.; Curchod, L.; Coda, S.; Goodman, T.P.

    2009-01-01

    The ability to control, in real time, the electron cyclotron heating & current drive systems for the control of MHD instabilities is particularly important for large tokamaks operating at high performance. Several algorithms have been developed and tested on TCV to explore possible control

  19. Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER

    International Nuclear Information System (INIS)

    La Haye, R.J.; Ferron, J.R.; Humphreys, D.A.; Luce, T.C.; Petty, C.C.; Prater, R.; Strait, E.J.; Welander, A.S.

    2008-01-01

    ITER will rely on electron cyclotron stabilization of neoclassical tearing mode islands. The large size and low torque applied in ITER imply slow plasma rotation and susceptibility to island locking by the resistive wall; locking is likely to lead to a loss of the high confinement H-mode, a beta collapse and possibly disruption. 'Front' steering of the launcher, with narrower electron cyclotron current drive (ECCD), has resolved the issue in 'remote' steering of the driven current being too broad and relatively ineffective. However, narrower current drive places demands on alignment of the current drive on the rational surface that is being stabilized. DIII-D alignment techniques with and without (preemptive) an island are reviewed. The results are used to check models for the effect of misalignment and are then applied to ITER. Criteria for accuracy of alignment as a function of injected power and for the necessary time response of the controller are presented

  20. Electron Bernstein wave heating and current drive effects in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Watanabe, H.; Yoshida, N.; Tokunaga, K.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Kalinnikova, E.; Sakaguchi, M.; Itado, T.; Tashima, S.; Fukuyama, A.; Ejiri, A.; Takase, Y.; Igami, H.; Kubo, S.; Toi, K.; Isobe, M.; Nagaoka, K.; Nakanishi, H.; Nishino, N.; Ueda, Y.; Kikuchi, Mitsuru; Fujita, Takaaki; Mitarai, O.; Maekawa, T.

    2012-11-01

    Electron Bernstein Wave Heating and Current Drive (EBWH/CD) effects have been first observed in over dense plasmas using the developed phased-array antenna (PAA) system in QUEST. Good focusing and steering properties tested in the low power facilities were confirmed with a high power level in the QUEST device. The new operational window to sustain the plasma current was observed in the RF-sustained high-density plasmas at the higher incident RF power. Increment and decrement of the plasma current and the loop voltage were observed in the over dense ohmic plasma by the RF injection respectively, indicating the EBWH/CD effects. (author)

  1. A Review on Fatigue Driving Detection

    Directory of Open Access Journals (Sweden)

    Shi Sheng-Yang

    2017-01-01

    Full Text Available The socialization of automobile development has brought great convenience to people’s travel. However, the rapid increase in the number of vehicles has also caused a series of problems. The increase in traffic accidents has brought great social casualties and economic losses. Fatigue driving, which is an important factor in the traffic accident, has aroused people’s attention. This paper reviews all kinds of fatigue driving detection methods at present; compares various fatigue driving detection methods in terms of accuracy, real-time and cost; analyses the advantages and disadvantages of various methods; introduces the application of fatigue detection system in automobile; summarizes the current deficiencies and future development trends in the field of fatigue driving detection. The future research of this field will be more to the data fusion, computer vision and deep learning.

  2. Hysteresis losses in MgB2 superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    DEFF Research Database (Denmark)

    Magnusson, N.; Abrahamsen, Asger Bech; Liu, Dawei

    2014-01-01

    MgB2 superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must...... a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting...

  3. Study on the Electronic Magnetic Field Oriented Control Based on D-axis Current

    Directory of Open Access Journals (Sweden)

    Hongyu Feng

    2014-07-01

    Full Text Available In order to improve the magnetic field orientation accuracy and system performance, the electronic field oriented control has been a hot research field of the induction motor speed control. Although the vector control of AC machines has many excellent properties, the researchers have been attempting to simplify the calculating steps and the structure of the control system to improve the accuracy of filed-oriented and the performance of AC machine drives. Based on the analysis of the conventional induction motor magnetic field oriented control, this paper puts forward a novel method of stator magnetic field orientation control. By analytical methods, the given current of d-axis can be calculated directly, and the stator flux can be controlled precisely. This method has a fast flux and torque response, and the control performance is unaffected by the rotor parameters.

  4. First lower hybrid current drive experiments at 3.7 GHz in Tore Supra

    International Nuclear Information System (INIS)

    Tonon, G.; Goniche, M.; Moreau, D.

    1989-01-01

    The results of electromagnetic waves injection in the Tore Supra plasma, at a frequency of 3.7 GHz, are reported. The process is applied for current generation and plasma heating, through Landau damping on the electron population. The experimental set-up is described. The lower hybrid current drive experiments in Tore Supra are carried out under the following conditions: major and minor radii of the plasma are respectively 2.37 m and 0.77 m and the toroidal magnetic field is 1.8 Teslas. A multijunction-grill composed of 128 waveguides is applied. Up to 1.25 MW of rf power is injected in Tore Supra, after less than 30 plasma shots. The results lead to the conclusion that the coupling, not yet optimized, is good enough for safe klystron operation with no circulator. The measured value RIp P RF -1 (δV L /V L ) obtained on Tore Supra (Bt = 1.8 T) is closed to one observed on PETULA-B (Bt = 2.75 T) at the same frequency and density

  5. Current drive by Alfvacute en waves in elongated cross-section tokamak

    International Nuclear Information System (INIS)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; de Azevedo, C.A.; de Assis, A.S.

    1997-01-01

    The general approach to the Alfvacute en wave current drive problem in tokamaks with elongated transverse cross-sections was considered in this paper. Model approximations are used to describe circulating and trapped particle dynamics. This approach gives the accuracy of some percents. The expressions for the time-averaged longitudinal current and the radio-frequency currents have been obtained. They are supposed to be useful for a further analytical and computational solution of this problem. As an example, kinetic Alfvacute en waves are considered in this paper. copyright 1997 American Institute of Physics

  6. Fast-wave ion cyclotron current drive for ITER and prospects for near-term proof-of-principle experiments

    International Nuclear Information System (INIS)

    Swain, D.W.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Ryan, P.M.; Hoffman, D.J.

    1989-01-01

    Low-frequency fast-wave current drive (FWCD) with frequencies in the range from 30 to 100 MHz looks promising for current drive in ITER. Its theoretical efficiencies are comparable to other current-drive techniques, and it could be significantly cheaper than other proposed current drive methods because of the ready availability of inexpensive (<$1/W), efficient, multi-megawatt rf power sources. The most critical issues for FWCD are concerns about the acceptability and survivability of an appropriate antenna launching system and the lack of an experimental demonstration of FWCD in a large tokamak. We describe an antenna array that is flush with the first wall of ITER and should be able to survive in the plasma environment, present theoretical calculations of FWCD in ITER, and show results from a brief survey of some present-day tokamaks in which it might be possible to carry out FWCD proof-of-principle experiments. 4 refs., 5 figs., 1 tab

  7. A method for measuring the inductive electric field profile and noninductive current profiles on DIII-D

    International Nuclear Information System (INIS)

    Forest, C.B.; Luce, T.C.; Politzer, P.A.; Lao, L.L.; Kupfer, K.; Wroblewski, D.

    1994-07-01

    A new technique for determining the parallel electric field profile and noninductive current profile in tokamak plasmas has been developed and applied to two DIII-D tokamak discharges. Central to this technique is the determination of the current density profile, J(ρ), and poloidal flux, ψ(ρ), from equilibrium reconstructions. From time sequences of the reconstructions, the flux surface averaged, parallel electric field can be estimated from appropriate derivatives of the poloidal flux. With a model for the conductivity and measurements of T e and Z eff , the noninductive fraction of the current can be determined. Such a technique gives the possibility of measuring directly the bootstrap current profile and the noninductively driven current from auxiliary heating such as neutral beam injection or fast wave current drive. Furthermore, if the noninductively driven current is small or if the noninductive current profile is assumed to be known, this measurement provides a local test of the conductivity model under various conditions

  8. Lower hybrid current drive and heating experiments at the 1 MW rf power level on Alcator C

    International Nuclear Information System (INIS)

    Porkolab, M.; Lloyd, B.; Schuss, J.J.

    1983-07-01

    Lower hybrid current drive experiments were carried out in the density range 1.0 x 10 13 less than or equal to anti n(cm -3 ) less than or equal to 1.0 x 10 14 , at magnetic fields 6.0 less than or equal to B(T) less than or equal to 10. Using one 16 waveguide array, plasma currents of 150 to 200 kA have been driven by rf powers up to 600 kW for times greater than 100 msec at anti n/sub e/ up to 5 x 10 13 cm -3 . With two arrays at anti n/sub e/ approx. = 4.3 x 10 13 cm -3 at B/sub T/ = 10 T, plasma currents of 160 kA have been maintained by the rf power for 300 msec with zero loop voltage and constant internal inductance

  9. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  10. Structure and relative importance of ponderomotive forces and current drive generated by converted fast waves in pre-heated low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K

    2003-05-12

    The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.

  11. The jet 10-MW lower hybrid current drive system

    International Nuclear Information System (INIS)

    Gormezano, C.; Bosia, G.; Brinkschulte, H.; David, C.; Dobbing, J.A.; Kaye, A.S.; Jacquinot, J.; Lloyd, B.; Knowlton, S.; Moreau, D.

    1987-01-01

    A Lower Hybrid system to control the plasma current profile is being prepared so that a higher central electron temperature can be obtained. The proposed system is designed to launch 10 MW of power at f = 3.7 GHz through a single port in JET, producing between 1 and 2 MA of RF driven current at an average density of 5 x 10 19 m -3 . Current drive efficiency is maximized by using a low value of the parallel wave number spectrum (N// - 1.3 - 2.3). The final launcher will be made of 48 multijunctions fed by 24 klystrons with the proper phasing. Dynamic matching of the launcher will be optimized by moving the launcher in real time during the pulse. A first stage (2 MW) is presently under construction. The full system is being designed to be in operation in 1990

  12. Measurement of current drive profile using electron cyclotron wave attenuation near the O-mode cutoff

    International Nuclear Information System (INIS)

    Fidone, I.; Meyer, R.L.; Caron, X.

    1992-01-01

    A method for determining the radial profile of the lower-hybrid current drive in tokamaks using electron cyclotron attenuation of the O mode for frequencies ω near the cutoff frequency is discussed. The basic idea is that, for a given wave frequency, the cutoff plays the role of a spatial filter selecting a variable portion of the noninductive current. It is shown that the incremental attenuation resulting from a small increase of ω displays specific features related to the current density near the cutoff point. Using the relation between the wave damping and the current density, it is possible to determine the radial profile of the current drive from the wave attenuation measurements. A numerical application is also presented for plasma parameters in the reactor regime

  13. Control of the current density profile with lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1

  14. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  15. Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking.

    Directory of Open Access Journals (Sweden)

    Enkelejda Kasneci

    Full Text Available Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs that may critically interfere with quality of life and driving licensure. The aims of this study were (i to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed of ten patients with homonymous visual field defects (HP, including four patients with right (HR and six patients with left homonymous visual field defects (HL, ten glaucoma patients (GP, and twenty age and gender-related ophthalmologically healthy control subjects (C during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on

  16. Effect of discrete RF spectrum on fast wave current drive

    International Nuclear Information System (INIS)

    Okazaki, Takashi; Yoshioka, Ken; Sugihara, Masayoshi

    1987-08-01

    Effect of discrete RF spectrum has been studied for the fast wave current drive with the ion cyclotron range of frequency. Driven current and power densities decrease in this spectrum than in the continuous spectrum. However, there is a possibility to have the mechanism which allows electrons outside the resonance region to interact with the fast wave, taking into account the electron trapping by discrete RF spectrum. In the case of neglecting the electron trapping effect, driven current and power densities decrease up to 0.6 - 0.8 of those which are obtained for the continuous spectrum for the FER (Fusion Experimental Reactor). However, their driven current and power densities can be almost doubled in their magnitude for the discrete spectrum by taking into account the trapping effect. (author)

  17. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    Science.gov (United States)

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Introduction to wave heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2001-01-01

    The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed

  19. Useful field of view predicts driving in the presence of distracters.

    Science.gov (United States)

    Wood, Joanne M; Chaparro, Alex; Lacherez, Philippe; Hickson, Louise

    2012-04-01

    The Useful Field of View (UFOV) test has been shown to be highly effective in predicting crash risk among older adults. An important question which we examined in this study is whether this association is due to the ability of the UFOV to predict difficulties in attention-demanding driving situations that involve either visual or auditory distracters. Participants included 92 community-living adults (mean age 73.6 ± 5.4 years; range 65-88 years) who completed all three subtests of the UFOV involving assessment of visual processing speed (subtest 1), divided attention (subtest 2), and selective attention (subtest 3); driving safety risk was also classified using the UFOV scoring system. Driving performance was assessed separately on a closed-road circuit while driving under three conditions: no distracters, visual distracters, and auditory distracters. Driving outcome measures included road sign recognition, hazard detection, gap perception, time to complete the course, and performance on the distracter tasks. Those rated as safe on the UFOV (safety rating categories 1 and 2), as well as those responding faster than the recommended cut-off on the selective attention subtest (350 msec), performed significantly better in terms of overall driving performance and also experienced less interference from distracters. Of the three UFOV subtests, the selective attention subtest best predicted overall driving performance in the presence of distracters. Older adults who were rated as higher risk on the UFOV, particularly on the selective attention subtest, demonstrated poorest driving performance in the presence of distracters. This finding suggests that the selective attention subtest of the UFOV may be differentially more effective in predicting driving difficulties in situations of divided attention which are commonly associated with crashes.

  20. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  1. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  2. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    International Nuclear Information System (INIS)

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, κ perpendicular, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the κ perpendicular upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 x 10 19 A m -2 W -1 if one considers only the effective power going to the electrons

  3. Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H.; Baranov, Y; Brusati, M; Ekedahl, A; Froissard, P; Gormezano, C; Jacquinot, J; Paquin, L; Rimini, F G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cox, M; Gardner, C; O` Brien, M R [UKAEA Culham Lab., Abingdon (United Kingdom); Di Vita, A [Ansaldo SpA, Genoa (Italy)

    1994-07-01

    The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs.

  4. Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory

    International Nuclear Information System (INIS)

    Start, D.F.H.; Baranov, Y.; Brusati, M.; Ekedahl, A.; Froissard, P.; Gormezano, C.; Jacquinot, J.; Paquin, L.; Rimini, F.G.; Di Vita, A.

    1994-01-01

    The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs

  5. COMPASS-D magnetic equilibria with LH and NBI current drive

    Czech Academy of Sciences Publication Activity Database

    Hronová-Bilyková, Olena; Fuchs, Vladimír; Pánek, Radomír; Urban, Jakub; Žáček, František; Stöckel, Jan; Voitsekhovitch, I.; Valovič, M.; Fitzgerald, M.

    2006-01-01

    Roč. 56, suppl.B (2006), B24-B30 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * COMPASS-D * magnetic equilibrium * ACCOME code * ASTRA code * Neutral Beam Injection * Low Hybrid Current Drive Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  6. Numerical studies on the stabilization of neoclassical tearing modes by radio frequency current drive

    International Nuclear Information System (INIS)

    Yu, Q.; Zhang, X.D.; Guenter, S.

    2004-01-01

    Numerical modeling on the stabilization of neoclassical tearing modes by localized radio frequency (rf) current drive has been carried out to study the effects of various wave and plasma parameters on the stabilization and the associated physics. The change of the rf current profile due to the magnetic island has been taken into account by modeling the two-dimensional transport of the fast electrons induced by the rf wave. It is found that, when the rf deposition width is much larger than the island width, the modulated rf current drive to deposit the rf current around the island's o point has a stronger stabilizing effect than a nonmodulated one. The slowing down time of the fast electrons and the initial island width when applying the rf wave are also found to be important in determining the stabilizing effect

  7. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    Science.gov (United States)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  8. Hysteresis losses in MgB{sub 2} superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, N., E-mail: niklas.magnusson@sintef.no [SINTEF Energy Research, NO-7465 Trondheim (Norway); Abrahamsen, A.B. [DTU Wind Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, D. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands); Runde, M. [SINTEF Energy Research, NO-7465 Trondheim (Norway); Polinder, H. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands)

    2014-11-15

    Highlights: • A method for calculating hysteresis losses in the low AC – high DC magnetic field and transport current range has been shown. • The method can be used in the design of wind turbine generators for calculating the losses in the generator DC rotor. • First estimates indicate tolerable current ripple in the 0.1% range for a 4 T DC MgB{sub 2} generator rotor coil. - Abstract: MgB{sub 2} superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC – low AC current and magnetic field region experimental results still lack for MgB{sub 2} conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB{sub 2} DC coils in the 1–4 T range with low AC magnetic field and current ripples.

  9. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  10. Optimization of a lower hybrid current drive launcher for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Jorge H.C.M., E-mail: jbelo@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Goniche, Marc; Hillairet, Julien [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bizarro, João P.S. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Reflection, directivity and E-fields of LHCD PAM launchers for ITER investigated. • Wide range of antenna parameters (junction lengths; phase-shifter heights) regarded. • Broad range of edge plasma considered: from the cut-off density to ELM activity. • Trade-offs between plasma density, reflection coefficient and E-field are necessary. • Additional margins for integration of the launcher in ITER may be achieved. - Abstract: An international R&D program for lower-hybrid current drive (LHCD) in ITER is being conducted to deliver 20 MW (CW) using 500 kW klystrons at 5 GHz, with N{sub ||peak} = 2.0 ± 0.2 for different plasma scenarios. The launcher is based on the passive-active mulitjunction (PAM), a concept more resilient to conditions expected at the plasma edge, notably densities close to cut-off (n{sub ec}) and ELM activity, which lead to significant and abrupt reflection of RF power from the plasma, but even under which it may still attain extremely low power reflection coefficients at the input (R ∼ 1%). It has also a robust and shielded structure; is suitable for long-pulse operation; and has been validated experimentally on FTU and Tore Supra. Here the focus is on the PAM section of the launcher, and the objective is to explore, under broad plasma loading – from n{sub ec} to 10 n{sub ec} – the impact that design parameters such as the junction lengths, phase-shifter heights, and output waveguide widths have on its performance, particularly on R and on the E-fields inside its waveguides; and to explore also a configuration with a different phase-shifter arrangement, the so-called alternative design.

  11. New conceptual antenna with spiral structure and back Faraday shield for FWCD (fast wave current drive)

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.

    1994-01-01

    A new conceptual antenna, which we call as a spiral antenna, is proposed as a traveling wave antenna for fast wave current drive in tokamaks. The features of the spiral antenna are a sharp N z spectrum, easy impedance matching, N z controllable and good coupling. A back Faraday shield is proposed for improving the cooling design of Faraday shield and better antenna-plasma coupling. A helical support which is a compact and wide band support is proposed as a kind of quarter wave length stub supports. The RF properties of the spiral antenna and the back Faraday shield have been investigated by using mock-up antennas. The VSWR of spiral antenna is low at the wide frequency band from 15 MHz to 201 MHz. The back Faraday shield is effective for suppressing the RF toroidal electric field between adjacent currents straps. (author)

  12. Amplification of perpendicular and parallel magnetic fields by cosmic ray currents

    Science.gov (United States)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2017-08-01

    Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.

  13. Simulation of enhanced tokamak performance on DIII-D using fast wave current drive

    International Nuclear Information System (INIS)

    Grassie, J.S. de; Lin-Liu, Y.R.; Petty, C.C.; Pinsker, R.I.; Chan, V.S.; Prater, R.; John, H. St.; Baity, F.W.; Goulding, R.H.; Hoffman, D.H.

    1993-01-01

    The fast magnetosonic wave is now recognized to be a leading candidate for noninductive current drive for the tokamak reactor due to the ability of the wave to penetrate to the hot dense core region. Fast wave current drive (FWCD) experiments on DIII-D have realized up to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively. The success of these experiments at 60 MHz with a 2 MW transmitter source capability has led to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 MHz, with a 2 MW source capability each, will be added together with two new four-strap antennas in early 1994. Another major thrust of the DIII-D program is to develop advanced tokamak modes of operation, simultaneously demonstrating improvements in confinement and stability in quasi-steady-state operation. In some of the initial advanced tokamak experiments on DIII-D with neutral beam heated (NBI) discharges it has been demonstrated that energy confinement time can be improved by rapidly elongating the plasma to force the current density profile to be more centrally peaked. However, this high-l i phase of the discharge with the commensurate improvement in confinement is transient as the current density profile relaxes. By applying FWCD to the core of such a κ-ramped discharge it may be possible to sustain the high internal inductance and elevated confinement. Using computational tools validated on the initial DIII-D FWCD experiments we find that such a high-l i advanced tokamak discharge should be capable of sustainment at the 1 MA level with the upgraded capability of the FWCD system. (author) 16 refs., 3 figs., 1 tab

  14. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  15. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  16. MSE measurements for sawtooth and non-inductive current drive studies in KSTAR

    Science.gov (United States)

    Ko, J.; Park, H.; Bea, Y. S.; Chung, J.; Jeon, Y. M.

    2016-10-01

    Two major topics where the measurement of the magnetic-field-line rotational transform profiles in toroidal plasma systems include the long-standing issue of complete versus incomplete reconnection model of the sawtooth instability and the issue with future reactor-relevant tokamak devices in which non-inductive steady state current sustainment is essential. The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach is one of the most reliable means to measure the internal magnetic pitch, and thus the rotational transform, or its reciprocal (q), profiles. The MSE system has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR) along with the development of various techniques to minimize systematic offset errors such as Faraday rotation and mis-alignment of the bandpass filters. The diagnostic has revealed the central q is well correlated with the sawtooth oscillation, maintaining its value above unity during the MHD quiescent period and that the response of the q profile to external current drive such as electron cyclotron wave injection not only involves the local change of the pitch angle gradient but also a significant shift of the magnetic topology due to the wave energy transport. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  17. Current generation by monochromatic electromagnetic waves

    International Nuclear Information System (INIS)

    Belikov, V.S.; Kolesnichenko, Ya.I.; Plotnik, I.S.

    1983-01-01

    The generation of longitudinal currents in a magnetically confined plasma with travelling monochromatic electromagnetic waves of finite amplitude propagating at some angle to the external magnetic field is considered. By averaging over the particle cyclotron gyration period, the kinetic equation for the distribution function of electrons interacting with an electromagnetic wave is derived. This equation is solved for the case of low-frequency waves, on the assumption that the bounce period of electrons trapped by the wave field is small compared to the typical times of Coulomb collisions (in which case, the driving current is largest). From the solution obtained, analytic expressions for the driving current and the absorbed power, which are valid for a wide range of wave phase velocities, are found. The current drive method considered and the method using the wave packet are compared. (author)

  18. RF heating and current drive on NSTX with high harmonic fast waves

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.; Rosenberg, A.L.

    2003-01-01

    NSTX is a small aspect ratio tokamak (R = 0.85 m, a = 0.65 m). The High Harmonic Fast Wave (HHFW) system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3 MW for 100-400 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with significant fractions (0.4) of bootstrap current. Differences in the loop voltage are observed depending on whether the array is phased to drive current in the co- or counter-current directions. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial rf power deposition and driven current profiles have been calculated with ray tracing and kinetic full-wave codes and compared with measurements. (author)

  19. Lower hybrid current drive in Tore Supra and JET

    International Nuclear Information System (INIS)

    Moreau, D.; Gormezano, C.

    1991-01-01

    Recent Lower Hybrid Current Drive (LHCD) experiments in TORE SUPRA and JET are reported. Large multijunction launchers have allowed the coupling of 5MW to the plasma for several seconds with a maximum of 3.8 kW/cm 2 . Measurements of the scattering matrices of the antennae show good agreement with theory. The current drive efficiency in TORE SUPRA is about 0.2 x 10 20 Am -2 /W with LH power alone and reaches 0.4 x 10 20 Am -2 /W in JET thanks to a high volume-averaged electron temperature (1.9 keV) and also to a synergy between Lower Hybrid and Fast Magnetosonic Waves. At n e = 1.5 x 10 19 m -3 in TORE SUPRA, sawteeth are suppressed and m = 1MHD oscillations the frequency of which clearly depends on the amount of LH power are observed on soft X-rays, and also on non-thermal ECE. In Jet ICRH produced sawtooth free periods are extended by the application of LHCD and current profile broadening has been clearly observed consistent with off-axis fast electron populations. LH power modulation experiments performed in TORE SUPRA at n e = 4 x 10 19 m -3 show a delayed central electron heating despite the off-axis creation of suprathermal electrons, thus ruling out the possibility of a direct heating through central wave absorption. A possible explanation in terms of anomalous fast electron transport and classical slowing down would yield a diffusion coefficient of the order of 10 m 2 /s for the fast electrons. Finally, successful pellet fuelling of a partially LH driven plasma was obtained in TORE SUPRA, 28 successive pellets allowing the density to rise to n e = 4 x 10 19 m -3 . This could be achieved by switching the LH power off for 90 ms before each pellet injection, i.e. without modifying significantly the current density profile

  20. Lower hybrid current drive in Tore Supra and jet

    International Nuclear Information System (INIS)

    Moreau, D.; Gormezano, C.

    1991-07-01

    Recent Lower Hybrid Current Drive (LHCD) experiments in TORE SUPRA and JET are reported. Large multijunction launchers have allowed the coupling of 5 MW to the plasma for several seconds with a maximum of 3.8 kW/cm 2 . Measurements of the scattering matrices of the antennae show good agreement with theory. The current drive efficiency in TORE SUPRA is about 0.2 x 10 20 Am -2 /W with LH power alone and reaches 0.4 x 10 20 Am -2 /W in JET thanks to a high volume-averaged electron temperature (1.9 keV) and also to a synergy between Lower Hybrid and Fast Magnetosonic Waves. At average n e = 1.5 x 10 19 m -3 in TORE SUPRA, sawteeth are suppressed and m = 1 MHD oscillations the frequency of which clearly depends on the amount of LH power are observed on soft X-rays, and also on non-thermal ECE. In JET ICRH produced sawtooth-free periods are extended by the application of LHCD (2.9 s. with 4 MW ICRH) and current profile broadening has been clearly observed consistent with off-axis fast electron populations. LH power modulation experiments performed in TORE SUPRA at average n e = 4 x 10 19 m -3 show a delayed central electron heating despite the off-axis creation of suprathermal electrons, thus ruling out the possibility of a direct heating through central wave absorption. A possible explanation in terms of anomalous fast electron transport and classical slowing down would yield a diffusion coefficient of the order of 10 m 2 /s for the fast electrons. Other interpretations such as an anomalous heat pinch or a central confinement enhancement cannot be excluded. Finally, successful pellet fuelling of a partially LH driven plasma was obtained in TORE SUPRA, 28 successive pellets allowing the density to rise to average n e = 4 x 10 19 m -3 . This could be achieved by switching the LH power off for 90 ms before each pellet injection, i.e. without modifying significantly the current density profile

  1. Local magnetic shear control in a tokamak via fast wave minority ion current drive: Theory and experiments in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Start, D.F.H.; Jacquinot, J.; Chaland, F.; Cherubini, A.; Porcelli, F.

    1994-01-01

    When an ion cyclotron resonance heating (ICRH) antenna array is phased (Δ Φ ≠ 0 or π), the excited asymmetric k parallel spectrum can drive non-inductive currents by interaction of fast waves both with electrons (transit time magnetic pumping (e-TTMP) and Landau damping (e-LD)) and with ions at minority (fundamental) or harmonic cyclotron resonances, depending upon the scenario. On the basis of earlier theories, a simplified description is presented that includes the minority ion and electron current drive effects simultaneously in a 3-D ray tracing calculation in the tokamak geometry. The experimental results of sawtooth stabilization or destabilization in JET using the minority ion current drive scheme are presented. This scheme allows a modification of the local current density gradient (or the magnetic shear) at the q = 1 surface resulting in a control of a sawteeth. The predictions of the above model of current drive and its effects on sawtooth period calculated in conjunction with a model of stability of internal resistive kink modes, that encompasses the effects of both the fast particle pressure and the local (q = 1) magnetic shear, are found to be qualitatively in good agreement with the experimental results. Further, the results are discussed of our model of fast wave current drive scenarios of magnetic shear reversal with a view to achieving long duration high confinement regimes in the forthcoming experimental campaign on JET. Finally, the results are presented of minority current drive for sawtooth control in next step devices such as the International Thermonuclear Experimental Reactor (ITER). (author). 44 refs, 23 figs, 3 tabs

  2. Compensation methods applied in current control schemes for large AC drive systems

    DEFF Research Database (Denmark)

    Rus, D. C.; Preda, N. S.; Teodorescu, Remus

    2012-01-01

    The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...

  3. The direct wave-drive thruster

    Science.gov (United States)

    Feldman, Matthew Solomon

    A propulsion concept relying on the direct, steady-state acceleration of a plasma by an inductive wave-launching antenna is presented. By operating inductively in steady state, a Direct Wave-Drive Thruster avoids drawbacks associated with electrode erosion and pulsed acceleration. The generalized relations for the scaling of thrust and efficiency with the antenna current are derived analytically; thrust is shown to scale with current squared, and efficiency is shown to increase with increasing current or power. Two specific configurations are modeled to determine nondimensional parameters governing the antenna-plasma coupling: an annular antenna pushing against a finite-conductivity plasma, and a linear antenna targeting the magnetosonic wave. Calculations from the model show that total thrust improves for increasing excitation frequencies, wavenumbers, plasma densities, and device sizes. To demonstrate the magnetosonic wave as an ideal candidate to drive a DWDT, it is shown to be capable of carrying substantial momentum and able to drive a variable specific impulse. The magnetosonic wave-driven mass flow is compared to mass transport due to thermal effects and cross-field diffusion in order to derive critical power requirements that ensure the thruster channel is dominated by wave dynamics. A proof-of-concept experiment is constructed that consists of a separate plasma source, a confining magnetic field, and a wave-launching antenna. The scaling of the increase of exhaust velocity is analytically modeled and is dependent on a nondimensional characteristic wavenumber that is proportional to the excitation frequency and plasma density and inversely proportional to the magnetic field strength. Experimental validation of the derived scaling behavior is carried out using a Mach probe to measure the flow velocity in the plume. Increases in exhaust velocity are measured as the antenna current increases for varying excitation frequencies and applied magnetic field

  4. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    International Nuclear Information System (INIS)

    Ai Baoquan; Xie Huizhang; Liu Lianggang

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  5. Potentiality of fast wave current drive in non-maxwellian plasmas

    International Nuclear Information System (INIS)

    Moreau, D.; O'Brien, M.R.; Cox, M.; Start, D.F.H.

    1987-06-01

    After a short analysis of the available experimental data on pure fast wave electron current drive we propose a theoretical scaling law for the wave absorption through combined electron Landau damping and transit time magnetic pumping. We then present the result of a fully relativistic calculation which we apply to a bi-Maxwellian electron distribution function and conclude on the requirements to be fulfilled by the energetic tail for obtaining significant damping in Tore-Supra

  6. Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive

    Directory of Open Access Journals (Sweden)

    BRANDSTETTER, P.

    2017-05-01

    Full Text Available The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.

  7. Effects of small magnetic fields on the critical current of thin films

    International Nuclear Information System (INIS)

    Passos, Wagner de Assis Cangussu; Lisboa-Filho, Paulo Noronha; Ortiz, Wilson Aires; Kang, W.N.; Choi, Eun-Mi; Hyeong-Jin, Kim; Lee, Sung-Ik Lee

    2002-01-01

    Full text: Magnetic fields applied perpendicularly to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist, as observed in Nb, YBaCuO and MgB 2 [1]. A temperature-dependent limiting-field, Hd(T), separates the dendritic mode from a critical-state-like penetration regime. Due to large demagnetizing factors in the perpendicular geometry, small fields may be enough to drive portions of the sample into the mixed state. Lack of symmetry and local defects might then permeate the dendritic mode. Hd(T) is related[2] to the bulk lower critical field, Hc1, which depends on the in-plane current density, J. Not surprisingly, Hd is depressed by J[3]. The dendritic mode can be detected by the AC-susceptibility: penetrated fingers act as intergranular material, and the imaginary component peaks at Tc-inter(J). Films of 0.2-0.4 microns, with millimeter lateral sizes, develop dendrites when submitted to Earth's field[2], what limits the critical current, J c . This contribution studies how J c is affected by field-induced granularity in thin films. 1. C. A. Duran et al., PRB 52 (1995) 75; P. Leiderer et al., PRL. 71 (1993) 2646; T.H. Johansen et al., Supercond. Sci. Technol. 14 (2001) 1. 2. W. A. Ortiz et al., Physica C 361 (2001) 267. 3. A. V. Bobyl et al., cond-mat/0201260, submitted to APL

  8. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Institute of Scientific and Technical Information of China (English)

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  9. Electric fields and field-aligned current generation in the magnetosphere

    International Nuclear Information System (INIS)

    Alexeev, I.I.; Belenkaya, E.S.; Kalegaev, V.V.; Lyutov, Yu.G.

    1993-01-01

    The authors present a calculation of the electric potential, field-aligned currents, and plasma convection caused by the penetration of the solar wind electric field into the magnetosphere. Ohm's law and the continuity equation of ionospheric currents are used. It is shown that the large-scale convection system is reversed in the plasma sheet flanks. In this region the plasma flow is antisunward earthward of the neutral line and sunward tailward of it. The interplanetary magnetic field (IMF) B z dependences on the dimension of the magnetopause open-quotes windowsclose quotes which are intersected by open field lines, on the potential drop across the polar cap, and on the distance to the neutral line are determined. Because of the IMF effect and the effect of seasonal or daily variations of the geomagnetic field which violate its symmetry relative to the equatorial plane, there may arise a potential drop along field lines which causes field-aligned currents. The values and directions of these currents, the field-aligned potential drop, and a self-consistent solution for the potential at the ionosphere level for high field-aligned conductivity have been determined. 41 refs., 7 figs

  10. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  11. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  12. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, V P; Eriksson, L; Gormezano, C; Jacquinot, J; Kaye, A; Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.

  13. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H.

    1994-01-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs

  14. Design of ITER-FEAT RF heating and current drive systems

    International Nuclear Information System (INIS)

    Bosia, G.; Kobayashi, N.; Ioki, K.; Bibet, P.; Koch, R.; Chavan, R.; Tran, M.Q.; Takahashi, K.; Kuzikov, S.; Vdovin, V.

    2001-01-01

    Three radio frequency (RF) heating and current drive (H and CD) systems are being designed for ITER-FEAT: an electron cyclotron (EC), an ion cyclotron (IC) and a lower hybrid (LH) System. The launchers of the RF systems use four ITER equatorial ports and are fully interchangeable. They feature equal power outputs (20 MW/port), similar neutron shielding performance, and identical interfaces with the other machine components. An outline of the design is given in the paper. (author)

  15. Measurement of current drive profile using electron cyclotron wave attenuation near the O-mode cut-off

    International Nuclear Information System (INIS)

    Fidone, I.

    1991-01-01

    A method for determining the radial profile of the lower-hybrid current drive in tokamaks uing electron-cyclotron attenuation of the O-mode for frequencies ω near the cut-off frequency is discussed. The basic idea is that for a given wave frequency, the cut-off plays the role of a spatial filter selecting a variable portion of the non-inductive current. It is shown that the incremental attenuation resulting from a small increase of ω displays specific features related to the current density near the cut-off point. Using the relation between the wave damping and the current density it is possible to determine the radial profile of the current drive from the wave attenuation measurements. A numerical application is also presented for plasma parameters in the reactor regime

  16. Review of lower hybrid wave heating and current drive

    International Nuclear Information System (INIS)

    Gormezano, C.

    1986-01-01

    Interaction of Lower Hybrid waves and plasmas is a very versatile method which has proven to be effective in a large range of applications: bulk ion heating, bulk electron heating, non inductive current drive. If the ratio between the mean velocity of HF induced fast particles and the thermal velocity of the bulk population is relatively small, effective bulk ion heating or bulk electron heating can occur via collisional transfer. If the above ratio is too large, fast ions, which have mainly a perpendicular energy, are poorly confined. Moreover they can be harmful for the discharge (impurities, etc...) since they are lost on the walls. In contrast, HF induced fast electrons gain essentially a parallel momentum from the wave. If unidirectional waves are launched, the dissymetry in electron distribution result in the obtention of an effective non inductive current

  17. Theory and experiments on RF plasma heating, current drive and profile control in TORE SUPRA

    International Nuclear Information System (INIS)

    Moreau, D.

    1994-01-01

    This paper reviews the main experimental and theoretical achievements related to the study of RF heating and non-inductive current drive and particularly phenomena related to the current density profile control and the potentiality of producing stationary enhanced performance regimes: description of the Lower Hybrid (LH) and Ion Cyclotron Resonant Frequency (ICRF) systems; long pulse coupling performance of the RF systems; observation of the transition to the so-called ''stationary LHEP regime'' in which the (flat) central current density and (peaked) electron temperature profiles are fully decoupled; experiments on ICRF sawtooth stabilization with the combined effect of LHCD modifying the current density profile; diffusion of fast electrons generated by LH waves; ramp-up experiments in which the LH power provided a significant part of the resistive poloidal flux and flux consumption scaling; theory of spectral wave diffusion and multipass absorption; fast wave current drive modelling with the Alcyon full wave code; a reflector LH antenna concept. 18 figs., 48 refs

  18. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Imbeaux, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France)

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride(CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/{gamma}-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  19. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Peysson, Y.; Imbeaux, F.

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride (CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/γ-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  20. Stable operating regimes in NET with respect to Alfven wave instabilities during neutral beam current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1989-01-01

    Supra-thermal ions can contribute to the steady-state current in future large tokamak machines like NET or ITER. The fast-ion population is generated by collisional slowing-down of high-energy ions which were injected as neutral atoms in quasi-tangential direction and ionized by plasma interactions. Depending on the initial beam shape these fast ions can excite microinstabilities of the Alfven-wave type which are driven by the gradients in velocity-space. The ensuring plasma turbulence is expected to slow down the fast ions very quickly. This effect reduces the current drive efficiency which otherwise is comparable to that of other current drive schemes like lower hybrid waves where the toroidal current is carried by high-energy resonant electrons. (author) 3 refs., 1 fig

  1. Simple model to explain the temperature dependence of the lower hybrid current drive efficiency

    International Nuclear Information System (INIS)

    Ushigusa, K.

    1996-01-01

    Dissipated power in the spectral gap is taken into account in deriving analytically the lower hybrid current drive efficiency. The efficiency is determined by a minimum down-shifted phase velocity υ L and the quasi-linear velocity diffusion coefficient at the spectral gap D' W in addition to the original wave spectrum. To explain present experimental results in both JT-60 and ASDEX, υ L must be close to the Landau damping limit (υ L ∼ 2.7υ te ) and D' W must be the same order of magnitude as the collisional friction at υ L . With the suggested values of these two parameters from experimental results, the driven current is mainly determined by the launched wave spectrum, while most of the wave power is dissipated at the spectral gap. This characteristic can explain both the temperature and the N || dependence of the current drive efficiency. (author)

  2. Spectral Effects on Fast Wave Core Heating and Current Drive

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, R.E.; Berry, L.A.; Bonoli, P.T.; Harvey, R.W.; Hosea, J.C.; Jaeger, E.F.; LeBlanc, B.P.; Ryan, P.M.; Taylor, G.; Valeo, E.J.; Wilson, J.R.; Wright, J.C.; Yuh, H. and the NSTX Team

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations

  3. Electromotor control rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Baker, S.M.

    1975-01-01

    The positioning of a control rod arranged in a pressure vessel takes place with a drive. This protrudes out of the pressure vessel through a support and is formed from a rotating field motor with energy source, e.g. alternating current connection. Its stator surrounds a section of a pressure casing which covers the length of the drive. The rotor is arranged in the pressure casing and interacts with a shaft lying in the rotation axis. Furthermore, segments are hinged on it, each of which forms two arms of a rocker. Each segment can be revolved against a storing force in a plane containing the rotation axis, through the stator field acting on one of the rocker arms. In order that the drive motor is automatically blocked should the electricity supply fail, the other rocker arm can be connected with a fixed cased component of the drive having the effect of a friction break or a form-locking mechanical catch. (DG/LH) [de

  4. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  5. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  6. Electron cyclotron current drive predictions for ITER: Comparison of different models

    International Nuclear Information System (INIS)

    Marushchenko, N.B.; Maassberg, H.; Beidler, C.D.; Turkin, Yu.

    2007-01-01

    Full text: Due to its high localization and operational flexibility, Electron Cyclotron Current Drive (ECCD) is envisaged for stabilizing the Neoclassical Tearing Mode (NTM) in tokamaks and correcting the rotational transform profile in stellarators. While the spatial location of the electron cyclotron resonant interaction is usually calculated by the ray-tracing technique, numerical tools for calculating the ECCD efficiency are not so common. Two different methods are often applied: i) direct calculation by Fokker-Planck modelling, and ii) by the adjoint approach technique. In the present report we analyze and compare different models used in the adjoint approach technique from the point of view of ITER applications. The numerical tools for calculating the ECCD efficiency developed to date do not completely cover the range of collisional regimes for the electrons involved in the current drive. Only two opposite limits are well developed, collisional and collisionless. Nevertheless, for the densities and temperatures expected for ECCD application in ITER, the collisionless limit model (with trapped particles taken into account) is quite suitable. We analyze the requisite ECCD scenarios with help of the new ray tracing code TRAVIS with the adjoint approach implemented. The (adjoint) Green's function applied for the current drive calculations is formulated with momentum conservation taken into account; this is especially important and even crucial for scenarios, in which mainly bulk electrons are responsible for absorption of the RF power. For comparison, the most common 'high speed limit' model in which the collision operator neglects the integral part and which is approximated by terms valid only for the tail electrons, produces an ECCD efficiency which is an underestimate for some cases by a factor of about 2. In order to select the appropriate model, a rough criterion of 'high speed limit' model applicability is formulated. The results are verified also by

  7. FED-A, an advanced performance FED based on low safety factor and current drive

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Rutherford, P.H.

    1983-08-01

    The FED-A study aims to quantify the potential improvement in cost-effectiveness of the Fusion Engineering Device (FED) by assuming low safety factor q (less than 2 as opposed to about 3) at the plasma edge and noninductive current drive (as opposed to only inductive current drive). The FED-A performance objectives are set to be : (1) ignition assuming International Tokamak Reactor (INTOR) plamsa confinement scaling, but still achieving a fusion power amplification Q greater than or equal to 5 when the confinement is degraded by a factor of 2; (2) neutron wall loading of about 1 MW/m 2 , with 0.5 MW/m 2 as a conservative lower bound; and (3) more clearly power-reactor-like operations, such as steady state

  8. Investigation of the LH wave energy conversion and current drive efficiency in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z.Y.; Wan, B.N.; Shi, Y.J.; Lin, S.Y.; Hu, L.Q.; Asif, M.

    2005-01-01

    Lower hybrid current drive (LHCD) plasmas in the presence of DC electric filed have been investigated based on Karney-Fisch theory in the HT-7 tokamak. The relatively small scatter in the experimental data with various values of waveguide phasing and lower hybrid power, when plotted in the Karney-Fisch diagram, confirms that a reasonable theoretical interpretation is possible for the HT-7 data. The full non-inductively current drive efficiencies are obtained by fitting the experimental data to the theoretical curve. The efficiency strongly depends on the lower hybrid wave phase velocity

  9. Implications of ITER requirements on R and D of RF heating and current drive systems

    International Nuclear Information System (INIS)

    Bosia, G.; Agarici, G.; Beaumont, B.

    2003-01-01

    Heating and Current Drive (H and CD) systems have an essential role in ITER-FEAT operation, as all phases of ITER operation are driven and controlled by the auxiliary power flow. The RF (Electron Cyclotron and Ion Cyclotron) systems, planned to contribute for ∼ 60% of the total auxiliary power (72 MW), with Lower Hybrid used for the specialised function of current drive in the extended performance phase (20 MW), are at different level of technology development. All systems, need a significant development in order to meet ITER operation requirements In this paper these requirements are reviewed and CEA proposals for the development of the Ion cyclotron system presented. (author)

  10. Current-drive on the Versator-II tokamak with a slotted-waveguide fast-wave coupler

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1987-11-01

    A slotted-waveguide fast-wave coupler has been constructed, without dielectric, and used to drive current on the Versator-II tokamak. Up to 35 kW of net microwave power at 2.45 GHz has been radiated into plasmas with 2 x 10 12 cm -3 ≤ mean of n/sub e/ ≤ 1.2 x 10 13 cm -3 and B/sub tor/ ≅ 1.0 T. The launched spectrum had a peak near N/sub parallel/ = -2.0 and a larger peak near N/sub parallel/ = 0.7. Radiating efficiency of the antenna was roughly independent of antenna position except when the antenna was at least 0.2 cm outside the limiter, in which case the radiating efficiency slightly improved as the antenna was moved farther outside. When the coupler was inside the limiter, radiating efficiency improved moderately with increased mean of n/sub e/. Current-drive efficiency was comparable to that of the slow wave and was not affected when the antenna spectrum was reversed; however, no current was driven for mean of n/sub e/ ≤ 2 x 10 12 cm -3 . These results indicate the fast wave was launched, but a substantial part of the power may have been mode-converted to the slow wave, possibly via a downshift in N/sub parallel/, and these slow waves may have been responsible for most of the driven current. Relevant theory for waves in plasma, current-drive efficiency, and coupling of the slotted-waveguide is discussed, the antenna design method is explained, and future work, including the construction of a much-improved probe-fed antenna, is described. 42 refs., 45 figs

  11. Electron Cyclotron Current Drive Compensation of the Bootstrap Current in Quasi-symmetric Reactor Devices

    International Nuclear Information System (INIS)

    Margalet, S. D.; Cooper, W. A.; Volpe, F.; Castejon, F.

    2005-01-01

    In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles within local magnetic wells. One of the consequences of the trapped particles is the generation of a current, known as the bootstrap current (BC), whose direction depends on the nature of the magnetic trapping. The BC provides an extra contribution to the poloidal component of the confining magnetic field. The variation of the poloidal component produces the alteration of the winding of the magnetic field lines around the flux surfaces quantified by the rotational transform. When reaches low rational values, it can trigger the generation of ideal MHD instabilities. Therefore, the BC may be responsible for the destabilisation of the configuration [1]. Having established the potentially dangerous implication of the BC, principally, in reactor prototypes, a method to compensate its harmful effects is proposed. It consists of the modelling of the current driven by externally launched ECWs within the plasma to compensate the effects of the BC. This method is flexible enough to allow the identification of the appropriate scenarios in which to generate the required CD depending on the nature of the confining magnetic field and the specific plasma parameters of the configuration. Both the BC and the CD calculations are included in a self-consistent scheme which leads to the computation of a stable BC+CD-consistent MHD equilibrium. This procedure is applied in this paper to simulate the required CD to stabilise a QAS and a QHS reactor prototypes. The estimation of the input power required and the effect of the driven current on the final equilibrium of the system is performed for several relevant scenarios and wave polarisations providing various options of stabilising driven currents. (Author)

  12. Glaucoma and Driving: On-Road Driving Characteristics

    Science.gov (United States)

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221

  13. Glaucoma and Driving: On-Road Driving Characteristics.

    Directory of Open Access Journals (Sweden)

    Joanne M Wood

    Full Text Available To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment.Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire.Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability.Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  14. Glaucoma and Driving: On-Road Driving Characteristics.

    Science.gov (United States)

    Wood, Joanne M; Black, Alex A; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  15. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Henney, Carl J.; Arge, C. Nick, E-mail: marion.weinzierl@durham.ac.uk [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States)

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surface flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.

  16. Computer simulation of transport driven current in tokamaks

    International Nuclear Information System (INIS)

    Nunan, W.J.; Dawson, J.M.

    1993-01-01

    Plasma transport phenomena can drive large currents parallel to an externally applied magnetic field. The Bootstrap Current Theory accounts for the effect of Banana diffusion on toroidal current, but the effect is not confined to that transport regime. The authors' 2 1/2-D, electromagnetic, particle simulations have demonstrated that Maxwellian plasmas in static toroidal and vertical fields spontaneously develop significant toroidal current, even in the absence of the open-quotes seed currentclose quotes which the Bootstrap Theory requires. Other simulations, in both toroidal and straight cylindrical geometries, and without any externally imposed electric field, show that if the plasma column is centrally fueled, and if the particle diffusion coefficient exceeds the magnetic diffusion coefficient (as is true in most tokamaks) then the toroidal current grows steadily. The simulations indicate that such fueling, coupled with central heating due to fusion reactions may drive all of the tokamak's toroidal current. The Bootstrap and dynamo mechanisms do not drive toroidal current where the poloidal magnetic field is zero. The simulations, as well as initial theoretical work, indicate that in tokamak plasmas, various processes naturally transport current from the outer regions of the plasma to the magnetic axis. The mechanisms which cause this effective electron viscosity include conventional binary collisions, wave emission and reabsorption, and also convection associated with rvec E x rvec B vortex motion. The simulations also exhibit preferential loss of particles carrying current opposing the bulk plasma current. This preferential loss generates current even at the magnetic axis. If these self-seeding mechanisms function in experiments as they do in the simulations, then transport driven current would eliminate the need for any external current drive in tokamaks, except simple ohmic heating for initial generation of the plasma

  17. Remote field eddy current testing

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M.

    2001-03-01

    The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included

  18. Active load current sharing in fuel cell and battery fed DC motor drive for electric vehicle application

    International Nuclear Information System (INIS)

    Pany, Premananda; Singh, R.K.; Tripathi, R.K.

    2016-01-01

    Highlights: • Load current sharing in FC and battery fed dc drive. • Active current sharing control using LabVIEW. • Detail hardware implementation. • Controller performance is verified through MATLAB simulation and experimental results. - Abstract: In order to reduce the stress on fuel cell based hybrid source fed electric drive system the controller design is made through active current sharing (ACS) technique. The effectiveness of the proposed ACS technique is tested on a dc drive system fed from fuel cell and battery energy sources which enables both load current sharing and source power management. High efficiency and reliability of the hybrid system can be achieved by proper energy conversion and management of power to meet the load demand in terms of required voltage and current. To overcome the slow dynamics feature of FC, a battery bank of adequate power capacity has to be incorporated as FC voltage drops heavily during fast load demand. The controller allows fuel cell to operate in normal load region and draw the excess power from battery. In order to demonstrate the performance of the drive using ACS control strategy different modes of operation of the hybrid source with the static and dynamic behavior of the control system is verified through simulation and experimental results. This control scheme is implemented digitally in LabVIEW with PCI 6251 DAQ I/O interface card. The efficacy of the controller performance is demonstrated in system changing condition supplemented by experimental validation.

  19. Current drive efficiency requirements for an attractive steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tonon, G

    1994-12-31

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.

  20. Current drive efficiency requirements for an attractive steady-state reactor

    International Nuclear Information System (INIS)

    Tonon, G.

    1994-01-01

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs

  1. Dynamics of non-Markovianity in the presence of a driving field

    Indian Academy of Sciences (India)

    In some conditions, it is shown that in the presence of a driving field, the $N_{\\rm BLP} increases in the resonance and non-resonance limits. We have also found the exact solution of the master equation in order to investigate the effect of temperature- and environment excited states. We have shown that the behaviour of ...

  2. Atom localization via phase and amplitude control of the driving field

    International Nuclear Information System (INIS)

    Ghafoor, Fazal; Qamar, Sajid; Zubairy, M. Suhail

    2002-01-01

    Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

  3. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  4. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  5. Beat-wave excitation and current driven in tokamak plasma. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B F [Plasma physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Wave heating current drive in tokamaks is a growing subject in the plasma physics literature. For current drive in tokamaks by electromagnetic waves, different methods have been proposed recently. One of the promising schemes for current drive remains the beat wave scheme. This technique employs two CO- or counterpropagating monochromatic laser beams (or microwaves) whose frequency difference matches the plasma frequency, while the wave number difference (or sum, in the case of counterpropagating) determine the wave number of the resulting plasma beat wave. In this work, the basic analysis of a beat wave current drive scheme in which collinear waves are used is discussed. by assuming a Gaussian profile for the amplitude of these pump waves, the amplitudes of the longitudinal and radial fields of the beat wave due to the nonlinear wave interactions have been calculated. Besides, the transfer of momentum flux that accompanies the transfer of wave action in beat-wave scattering will be used to drive the toroidal radial currents in tokamaks. self-generated magnetic fields due to those currents were also calculated. 1 fig.

  6. RF power diagnostics and control on the DIII-D, 4 MW 30--120 MHz fast wave current drive system (FWCD)

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.

    1995-10-01

    The Fast Wave Current Drive System uses three 2 MW transmitters to drive three antennas inside the DIII-D vacuum vessel. This paper describes the diagnostics for this system. The diagnostics associated with the General Atomics Fast Wave Current Drive System allow the system tuning to be analyzed and modified on a between shot basis. The transmitters can be exactly tuned to match the plasma with only one tuning shot into the plasma. This facilitates maximum rf power utilization

  7. The targeted heating and current drive applications for the ITER electron cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, G.; Gagliardi, M. [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Farina, D.; Figini, L. [Istituto di Fisica del Plasma CNR, 20125 Milano (Italy); Hanson, G. [US ITER Project Office, ORNL, 1055 Commerce Park, PO Box 2008, Oak Ridge, Tennessee 37831 (United States); Poli, E. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 311-0193 (Japan)

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  8. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  9. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  10. Full-Color LCD Microdisplay System Based on OLED Backlight Unit and Field-Sequential Color Driving Method

    Directory of Open Access Journals (Sweden)

    Sungho Woo

    2011-01-01

    Full Text Available We developed a single-panel LCD microdisplay system using a field-sequential color (FSC driving method and an organic light-emitting diode (OLED as a backlight unit (BLU. The 0.76′′ OLED BLU with red, green, and blue (RGB colors was fabricated by a conventional UV photolithography patterning process and by vacuum deposition of small molecule organic layers. The field-sequential driving frequency was set to 255 Hz to allow each of the RGB colors to be generated without color mixing at the given display frame rate. A prototype FSC LCD microdisplay system consisting of a 0.7′′ LCD microdisplay panel and the 0.76′′ OLED BLU successfully exhibited color display and moving picture images using the FSC driving method.

  11. Sawtooth control by on-axis electron cyclotron current drive on the WT-3 tokamak

    International Nuclear Information System (INIS)

    Asakawa, M.; Tanabe, K.; Nakayama, A.; Watanabe, M.; Nakamura, M.; Tanaka, H.; Maekawa, T.; Terumichi, Y.

    1999-01-01

    The experiments on control of sawtooth oscillations (STO) by electron cyclotron current drive (ECCD) have been performed on the WT-3 tokamak. Stabilization and excitation of STO are observed for counter-ECCD and co-ECCD, respectively, when the position of the power deposition is located inside the inversion radius. These results are due to the modification of the current profile near the magnetic axis. (author)

  12. Effects of polar field-aligned currents on the distribution of the electric field and current in the middle and low latitudes ionosphere

    International Nuclear Information System (INIS)

    Maekawa, Koichiro

    1978-01-01

    According to the analysis of the magnetic records from the Triad satellite, it has been found that there are two regions of the field-aligned current of magnetospheric origin along the auroral oval; Region 1 in higher latitude and Region 2 in lower latitude. These currents seem to have important effect on the distribution of electric field and current in the ionosphere, in addition to the Sq electric field and current of ionospheric origin. The global current systems generated by the field-aligned current were calculated, using some simplified ionospheric models. The effect of the field-aligned current on the distribution of electric field and current of the ionosphere at middle and low latitudes was investigated. (Yoshimori, M.)

  13. Self-rated Driving and Driving Safety in Older Adults

    OpenAIRE

    Ross, Lesley A.; Dodson, Joan; Edwards, Jerri D.; Ackerman, Michelle L.; Ball, Karlene

    2012-01-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults’ self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving...

  14. A formula for efficiency of fast wave current drive in fusion devices

    International Nuclear Information System (INIS)

    Chiu, S.C.; Harvey, R.W.; Karney, C.F.F.; Mau, T.K.

    1992-06-01

    Fast wave current drive (FWCD) is a principal candidate for non- inductive current drive schemes in reactors. Major experiments are in progress or planned on DIII-D, JET, and Tore-Supra. A theory for FWCD was presented by two of the authors and collaborators. To minimize computations required in transport simulations, and for analytical understanding, it is very useful to have a concise analytical efficiency formula. Fisch and Karney, and Ehst and Karney have obtained empirical formulae that fits numerical results for the Landau limit and Alfven limit; the latter fits results at 1 i ≤ 2. This paper extends a previous numerical study on FWCD at arbitrary frequencies and Z i . Analytical formulae for FWCD efficiency, valid for all frequencies and Z i , are derived using the adjoint technique in high and low phase velocity regions. A smooth patching between the two regions produces an analytical formula which is accurate for all frequencies, Z i , and phase velocities. Comparison with existing results will be discussed. A corollary of the present calculation is that a low phase velocities and in the Landau limit, the efficiency is the same as that calculated from the Lorentz model collision operator

  15. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  16. Recent results on electron cyclotron current drive and MHD activity in RTP

    NARCIS (Netherlands)

    Donne, A.J.H.; Schuller, F.C.; Oomens, A.A.M.; de Baar, M.R.; Barth, C.J.; Beurskens, M.N.A.; Box, F.M.A.; van Gelder, J.F.M.; Grobben, B.J.J.; Groot, de B.; Herranz, J.M.; Hogeweij, G.M.D.; Hokin, S.A.; Howard, J.; Hugenholtz, C.A.J.; Karelse, F.A.; de Kloe, J.; Kruijt, O.G.; Kuyvenhoven, S.; Lok, J.; Cardozo, N.J.L.; van der Meiden, H.J.; Meijer, F.G.; Montvai, A.; Oyevaar, T.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.; Salzedas, F.; Schokker, B.C.; Smeets, P.H.M.; Tanzi, C.P.; Tito, C.J.; Verhaag, G.C.H.M.; Westerhof, E.

    1997-01-01

    The RTP tokamak (R = 0.72 m, a = 0.164 m, B-phi < 2 5.T, I-p = < 150 kA) is equipped with three gyrotrons (2 x 60 GHz, 180 kW, 100 ms each; 1 x 110 GHz, 500 kW, 200 ms) for electron cyclotron heating (ECH) and current drive (ECCD). The power from one of the 60 GHz gyrotrons is launched via an

  17. Increased stable beta in DIII-D by suppression of a neoclassical tearing mode using electron cyclotron current drive and active feedback

    International Nuclear Information System (INIS)

    La Haye, R.J.

    2002-01-01

    In DIII-D, the first real-time active control of the electron cyclotron current drive stabilization of a neoclassical tearing mode (here m/n=3/2) is demonstrated. The plasma control system is put into a 'search and suppress' mode to make either small rigid radial position shifts (of order 1 cm) of the entire plasma (and thus the island) or small changes in toroidal field (of order 0.5%) which radially moves the second harmonic resonance location (and thus the rf current drive). The optimum position minimizes the real-time mode amplitude signal. Stabilization occurs despite changes in island location from discharge-to-discharge or from time-to-time. The neutral beam heating power is then programmed to rise after mode suppression by the ECCD. The plasma pressure increases higher than the peak at the onset of the neoclassical tearing mode until the magnetic island reappears. Real-time tracking of the change in location of q=3/2 due to the Shafranov shift with increasing beta is necessary to keep the ECCD at the optimum location in the absence of a mode. (author)

  18. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active har...

  19. [Magnetic helicity and current drive in fusion devices]. Final technical report

    International Nuclear Information System (INIS)

    1998-01-01

    The research program focused on two main themes: (i) magnetic helicity and (ii) current drive by low-frequency waves. At first these themes seemed unrelated, but as time progressed, they became interwoven, and ultimately closely connected. A sub-theme is that while the MHD model of a plasma stimulates many intriguing counter-intuitive ideas for creating and sustaining magnetic confinement configurations, usually the crux of these schemes involves some sort of breakdown of MHD, i.e., involves physics which transcends MHD

  20. A simultaneous description of fast wave e-TTMP and ion current drive effects on shear in a tokamak: theory and experiments in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Bosia, G.; Jacquinot, J.; Porcelli, F.

    1993-01-01

    A controlled local modification of the plasma-current profile, the safety factor q or shear (dq/dr) in a tokamak can lead to an improvement in its performance. For example, enhanced confinement in JET discharges with deep pellet injection is found to be associated with a reversal of the shear. Also, a significant control over the sawteeth behaviour in the JET tokamak has been found to occur when the shear at the q = 1 surface is modified by a dipolar-current driven by ICRF in the minority-ion heating regime. This could give a handle on the ejection of fast particles and hence on burn control in a reactor. The above sawtooth control may also be used to ease the ash removal in a reactor. When an ICRH antenna array is phased (Δφ ≠ 0 or π), the excited asymmetric k // -spectrum can drive non inductive currents by interaction of waves both with electrons (TTMP and e-Landau damping) and ions at minority (fundamental) or harmonic cyclotron resonances depending upon the scenario. Therefore, in any modeling of ICRF current drive, both (electron and ion) current drive mechanisms must be included simultaneously to correctly represent the non inductive current drive profile. To devise scenarios of shear control by minority current drive, that take advantage of the inherent electron current drive as well, we have developed a model based on earlier theories to calculate, for the first time, the two effects simultaneously. (author) 11 refs., 5 figs

  1. Temperature and driving field dependence of fatigue processes in PZT bulk ceramics

    International Nuclear Information System (INIS)

    Glaum, Julia; Granzow, Torsten; Schmitt, Ljubomira Ana; Kleebe, Hans-Joachim; Roedel, Juergen

    2011-01-01

    The temperature- and field-dependent degradation properties of bulk Pb(Zr,Ti)O 3 material (PZT) under a unipolar electric field were investigated. Unipolar cycling leads to the build-up of an internal bias field based on the agglomeration of charges at grain boundaries. A simple model was developed which describes the general dynamics of unipolar fatigue and its dependence on temperature and driving field. Comparing the large and small signal permittivity before and after fatigue led to the conclusion that domain walls became clamped by the agglomerated charges. This clamping effect could be visualized by transmission electron microscopy (TEM). Additionally, the TEM investigations revealed that unipolar fatigue leads to a weakening of the microstructure and to the development of microcracks.

  2. MHD phenomena in advanced scenarios on ASDEX upgrade and the influence of localised electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Peeters, A.G.; Pinches, S.D.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    MHD instabilities in advanced tokamak scenarios on the one hand are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers. In particular fishbone oscillations driven by fast particles arising from neutral beam injection (NBI) are shown to trigger internal transport barriers in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour is explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive is shown to significantly affect the MHD stability of this type of discharges. (author)

  3. MHD phenomena in advanced scenarios on ASDEX Upgrade and the influence of localized electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    On the one hand, MHD instabilities in advanced tokamak scenarios are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers (ITBs). In particular, fishbone oscillations driven by fast particles arising from NBI are shown to trigger ITBs in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour could be explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand, MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive are shown to significantly affect the MHD stability of this type of discharge. (author)

  4. Simple multijunction launcher with oversized waveguides for lower hybrid current drive on JT-60U

    International Nuclear Information System (INIS)

    Ikeda, Y.; Naito, O.; Seki, M.; Kondoh, T.; Ide, S.; Anno, K.; Fukuda, H.; Ikeda, Y.; Kitai, T.; Kiyono, K.; Sawahata, M.; Shinozaki, S.; Suganuma, K.; Suzuki, N.; Ushigusa, K.

    1994-01-01

    A multijunction technique with oversized waveguides has been developed for the lower hybrid current drive launcher on JT-60U. The launcher consists of 4 (toroidal)x4 (poloidal) multijunction modules. RF power in the module is divided toroidally into 12 sub-waveguides at a junction point through an oversized waveguide. This method simplifies the structure of the multijunction launcher with a large number of subwaveguides. A maximum power density up to 25 MW m -2 has been achieved with a low reflection coefficient of less than 2%. The coupling and current drive efficiency are well explained by the designed wave spectra without taking account of higher modes in the oversize waveguides. Thus, the simple multijunction launcher has been demonstrated to excite expected wave spectra with high power handling capability. ((orig.))

  5. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...

  6. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  7. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-01-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition. (paper)

  8. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    Science.gov (United States)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  9. Input current interharmonics in adjustable speed drives caused by fixed-frequency modulation techniques

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Loh, Poh Chiang

    2016-01-01

    Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt an approp......Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt...... an appropriate strategy for minimizing their effects. This paper investigates the ASD's input current interharmonic sources caused by applying symmetrical regularly sampled fixed-frequency modulation techniques on the inverter. The interharmonics generation process is precisely formulated and comparative results...

  10. A study on the NB heating and current drive in fusion plasmas

    International Nuclear Information System (INIS)

    Jeong, Seung Ho; In, S. R.; Lee, K. W.; Oh, B. H.; Jin, J. T.; Chang, D. H.; Chang, D. S.; Kim, T. S.; Song, W. S.

    2013-03-01

    Final destination of the project is to establish the research basis of heating and current drive for large tokamak, such as KSTAR, or next generation fusion reactor through the neutral beam injection (NBI). On the 1 st -stage to achieve the objectives: 1) Required capability of an ion source(with an output power of 2 MW neutral beam, a beam energy of 100 keV) which is a main component of KSTAR NBI-1 system was proven by the design, manufacturing, and performance test during the past three years. 2) Until the development of new ion source, the NB heating experiments were performed to achieve the NB heating of KSTAR plasma with more than 1.0 MW for the 2 nd -year and more than 1.5 MW for the 3 rd -year by using a prototype ion source upgraded for the 1 st -year. From these experiments, the heating power above the H-mode threshold was supplied to the H-mode operation of KSTAR plasma and contributed to the NB diagnostics, such as CES and MSE, by using the NB. Finally, the basis of NB heating and current drive for the KSTAR was prepared by the 1 st -stage research

  11. Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. II. Four-level system

    International Nuclear Information System (INIS)

    Wilson, E. A.; Manson, N. B.; Wei, C.

    2005-01-01

    The effect a perturbing field has on an electromagnetically induced transparency within a three-level Λ system is presented. The perturbing field is applied resonant between one of the lower levels of the Λ system and a fourth level. The electromagnetically induced transparency feature is split and this is measured experimentally for both single and bichromatic driving fields. In the single-driving-field case a density matrix treatment is shown to be in reasonable agreement with experiment and in both single and bichromatic cases the structure in the spectrum can be explained using a dressed-state analysis

  12. Preliminary oscillating fluxes current drive experiment in DIII-D tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Schaffer, M.; Kondoh, Y.

    1995-01-01

    A preliminary oscillating flux helicity injection experiment was done on DIII-D tokamak. The toroidal flux was modulated by programming the plasma elongation. Instead of programming the surface voltage directly, the plasma current was programmed with a periodic modulation at some phase shift. The theoretical basis of this modulation is discussed in terms of the helicity injection and also introduced by cross-field motion of the modulated plasma. Because the primary winding is well coupled with the plasma current and the power supply is strong, the plasma current behaves as programmed. However, as the plasma shape is not coupled strongly with the shaping and equilibrium coils, the elongation amplitude and phase are affected by the change of plasma current and do not behave as programmed. Because of this, the voltage induced by the helicity injection is low, and the experiment did not test the principle of helicity injection. The injection powers of helicity and energy, and the electric field intensity of the helicity injection model and the cross-field motion of plasma are compared with each other experimentally. The improvement necessary to do the experiment is also proposed. ((orig.))

  13. Electron cyclotron current drive experiments in LHCD plasmas using a remote steering antenna on the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Ohkubo, K.; Hasegawa, M.; Kubo, S.; Nishi, S.; Fukuyama, A.; Sato, K.N.; Nakamura, K.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Notake, T.; Shimozuma, T.; Ito, S.; Hoshika, H.; Maezono, N.; Nakashima, K.; Ogawa, M.

    2006-01-01

    A remote steering antenna was recently developed for electron cyclotron heating and current drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. This is the first application of the remote steering antenna concept for ECH/ECCD experiments, which have conditions relevant to the International Thermonuclear Experimental Reactor (ITER). Fundamental ECH and ECCD experiments were conducted in the ITER frequency from the low field using this antenna system. In addition to the angles near 0 0 , the launcher was a symmetric direction antenna with an extended steering-angle capability of ±(8 0 -19 0 ). The output beam from the antenna was a well-defined Gaussian with a proper steering angle. The Gaussian content and the steering-angle accuracy were 0.85 and -0.5 0 , respectively. The high power tests measured the antenna transmission efficiency at 0.90-0.94. The efficiencies obtained in the low and high power tests were consistent with the calculations using higher-order modes. In order to excite the pure O/X-modes in the oblique injection, two polarizers were used to control the elliptical polarization of the incident beam for the ECCD experiments. The fundamental O/X-mode ECH/ECCD was applied to lower hyrid current drive plasmas at the optimized incident polarization. In the X-mode experiment, at medium density (∼1 x 10 19 m -3 ), clear differences in the plasma current and the hard x-ray intensity were observed between the co- and counter-steering injections due to the ECCD effect on the coupling of forward fast electrons

  14. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  15. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  16. Current Behaviours and Attitudes Towards Texting While Driving in Australia

    DEFF Research Database (Denmark)

    Adamsen, Jannie Mia; Beasley, Keiran

    confined to people in this age bracket. Findings from an anonymous online survey show that the practice of texting and driving is widespread in Australia and not just confined to the younger demographic. Additionally, evidence suggests smart phone users are more likely to engage in texting while driving......This paper aims to understand the behaviour of texting and driving among the broader driving public in Australia and uncover whether attitudes are congruent with behaviours. Recent studies have generally been focussing on the behaviours of 18-24 year olds suggesting that the practice is mainly....... The paper also reveals that a majority of people continue to text and drive despite having strong views on the dangers associated with the practice....

  17. Power deposition profile during lower hybrid current drive in Tore Supra

    International Nuclear Information System (INIS)

    Pecquet, A.L.; Moreau, D.; Fall, T.; Lasalle, J.; Lecoustey, P.; Mattioli, M.; Peysson, Y.; Auge, N.; Rodriguez, L.; Talvard, M.; Hubbard, A.; Moret, J.M.

    1991-01-01

    Lower hybrid current drive (LHCD) experiments have been performed in Tore Supra in various density regimes. The total power coupled to the plasma reached 4MW and a strong electron heating has been observed. To investigate the power deposition mechanism on the electrons, r.f power modulation experiments have been performed. These experiments allow us to estimate the power deposition profiles on both thermal and non-thermal electrons and also to study their respective time responses. From these studies it is possible to deduce a thermal heating scenario which agrees with the experimental results

  18. The impact of capacitor bank inrush current on field emission current in vacuum

    NARCIS (Netherlands)

    Koochack-Zadeh, M.; Hinrichsen, V.; Smeets, R.P.P.; Lawall, A.

    2010-01-01

    Field emission current measurements during the recovery voltage are investigated to understand the origin of restrikes in vacuum interrupters in case of the interruption of capacitive loads. Measurement and analysis of very small field emission currents (0.01 - 1 mA) from the current zero crossing

  19. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  20. Propagation and scattering in Lower Hybrid Current Drive (LHCD)

    International Nuclear Information System (INIS)

    Horton, W.; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2015-01-01

    Full text of publication follows. The propagation and scattering of the 5 GHz RF waves planned for driving and controlling the plasma current in stage 2 of ITER is analyzed with theory, simulations and data from Tore Supra. The internal RF wavenumber spectrum is determined by a combination of elements including the (1) the azimuthal spectrum launched by the antenna, (2) coupling of the radial and azimuthal oscillations of the ray trajectories described the ray Hamiltonian with the radial and the poloidal variation of plasma and scattering from the drift wave turbulence (ref. 1, 2). The scattering of the RF waves from the drift wave turbulence in the plasma is described through a Fokker-Planck equation for the probability density of the rays. The new 4D ray kinetic equation has (1) an edge source from the antenna, (2) a core sink from the electron resonances, and (3) a global scattering rate tensor D ij (k,r,t) derived from the ambient plasma turbulence. The tensor reduces to a parallel and cross-field component with the cross-field component describing side-scatter of the RF waves. The solutions give a spectral distribution for the parallel index of refraction from the antenna to the region of three times the core electron thermal velocity. Strong absorption of the rays occurs where the plateau in the fast electron distribution joins the steeply increasing slope of the thermal electron phase space density (ref. 3). Solutions of the ray kinetic equation with the source, sink and scattering provide the filling of the spectral gap and the efficiency of the LHCD system. The ETG turbulence is modified by the temperature anisotropies and the sharp radial gradients of the LHCD electron distribution function (ref. 3). In the presence of the ETG turbulence projections of the partial differential equations to low-order transport models are derived with dynamical feed-forward/ feedback loops following L-H-ELM modeling (ref. 4). The low-order models may be used with feedback

  1. Impurity heterogeneity in natural pyrite and its relation to internal electric fields mapped using remote laser beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Laird, Jamie S., E-mail: csirojamie@gmail.com [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Large, Ross [Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); Ryan, Chris G. [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia)

    2013-07-01

    Regions of band-bending in naturally occurring semiconducting sulfides are thought to drive electrochemical reactions with passing fluids. Metal bearing fluids within the right pH range interact with the electric fields at the surface resulting in precious metal ore genesis, even in under-saturated solutions. Metal reduction at the surface occurs via field assisted electron transfer from the semiconductor bulk to the ion in solution via surface states. Better understanding the role these regions and their texturing play on nucleating ore growth requires imaging of electric field distributions near the sulfide surface and correlation with underlying elemental heterogeneity. In this paper we discuss PIXE measurements made on the CSIRO Nuclear Microprobe and correlate elemental maps with laser beam induced current maps of the electric field distribution.

  2. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high β, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E p arallel=0) MHD and non-ideal, resistive (E p arallel≠0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E p arallel≠0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  3. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)

    1998-08-01

    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high {beta}, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E{sub p}arallel=0) MHD and non-ideal, resistive (E{sub p}arallel{ne}0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E{sub p}arallel{ne}0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  4. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  5. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  6. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  7. EcoDesign 2.0 - Quantitative EcoDesign within Drives and Automation Technologies

    DEFF Research Database (Denmark)

    Auer, Johannes

    with single products, eco-design of industrial automation and drive technologies has to address the key issue of the solution’s usage stage in terms of system design corresponding to the application context, where several products work in conjunction with each other. Further, in response to the above...... engineering approaches. Research focus lies in areas where these fields overlap and complement each other in the development process of given applications, in particular the development and implementation of Drives and Automation Technologies. The evaluation of the research background, based on research...... and currently implemented state-of-the-art of ecodesign of drives and automation technologies in discreet and process industries was evaluated, putting it in context to the processes and portfolio of the Siemens AG, Process Industries & Drives Division (PD), as well as current sustainability challenges...

  8. Identifying Method of Drunk Driving Based on Driving Behavior

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhao

    2011-05-01

    Full Text Available Drunk driving is one of the leading causes contributing to traffic crashes. There are numerous issues that need to be resolved with the current method of identifying drunk driving. Driving behavior, with the characteristic of real-time, was extensively researched to identify impaired driving behaviors. In this paper, the drives with BACs above 0.05% were defined as drunk driving state. A detailed comparison was made between normal driving and drunk driving. The experiment in driving simulator was designed to collect the driving performance data of the groups. According to the characteristics analysis for the effect of alcohol on driving performance, seven significant indicators were extracted and the drunk driving was identified by the Fisher Discriminant Method. The discriminant function demonstrated a high accuracy of classification. The optimal critical score to differentiate normal from drinking state was found to be 0. The evaluation result verifies the accuracy of classification method.

  9. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  10. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  11. Effects of valerian on subjective sedation, field sobriety testing and driving simulator performance.

    Science.gov (United States)

    Thomas, Kelan; Canedo, Joanne; Perry, Paul J; Doroudgar, Shadi; Lopes, Ingrid; Chuang, Hannah Mae; Bohnert, Kimberly

    2016-07-01

    The availability of herbal medicines over-the-counter (OTC) has increased the use of natural products for self-treatment. Valerian has been used to effectively treat generalized anxiety disorder and insomnia. Studies suggest that valerenic acid may increase gamma-aminobutyric acid (GABA) modulation in the brain. Benzodiazepines have a similar mechanism of action and have been linked to an increased risk of hospitalizations due to traffic accidents. Despite the risk of somnolence, the safety of driving while under the influence of valerian remains unknown. The purpose of the study was to determine the effects of a one-time valerian 1600mg dose on subjective sedation effects, standardized field sobriety testing (SFST) and driving simulator performance parameters. The study design was a randomized, placebo-controlled, double-blind, cross-over trial. For each session, participants received either a dose of valerian or placebo. The outcome measures included a simple visual reaction test (SVRT), subjective sleepiness scales, SFST performance scores, and driving simulator performance parameters. There were no significant differences in the SVRT or sleepiness scales between placebo and valerian exposures, but the study may have been underpowered. SFST total and individual test failure rates were not significantly different between the two exposures. The driving simulator performance parameters were equivalent between the two exposure conditions. A one-time valerian 1600mg dose, often used to treat insomnia, does not appear to impair driving simulator performance after acute ingestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  13. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    Science.gov (United States)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  14. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  15. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    International Nuclear Information System (INIS)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed

  16. Field-aligned currents during northward interplanetary magnetic field: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2005-01-01

    [1] We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF By component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents....... We find that the existence and geometry of the polar cap is closely connected to the IMF By component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... both on open and closed field lines and are created by the shear of the newly reconnected field lines against the mantle field as they are convected tailward by the solar wind. When the IMF rotates from northward toward east, the magnetospheric mapping regions of the NBZ currents likewise rotates...

  17. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  18. Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions

    NARCIS (Netherlands)

    Prater, R.; Farina, D.; Gribov, Y.; Harvey, R. W.; Ram, A. K.; Lin-Liu, Y. R.; Poli, E.; Smirnov, A. P.; Volpe, F.; Westerhof, E.; Zvonkovo, A.

    2008-01-01

    Optimal design and use of electron cyclotron heating requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories

  19. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1984-01-01

    This paper describes present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of the surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, actually measured in the boundary region, confirm that the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents. 13 references

  20. Field-aligned currents near the magnetosphere boundary

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.

    1983-01-01

    This paper reviews present thinking about the structure of magnetospheric boundary layers and their roles in the generation of the field-aligned currents that are observed in the polar regions. A principal effect of the momentum loss by magnetosheath plasma to the magnetosphere boundary regions just within the magnetopause, whether it be by a diffusive process or by magnetic reconnection, is the tailward pulling of surface flux tubes relative to those deeper below the surface. The dayside region 1 currents at low altitudes flow along field lines in the resulting regions of magnetic shear. The direction of the shear and its magnitude, measured in the boundary region, confirm tht the polarities and intensities of the dayside region 1 currents can be accounted for by this process. The low latitude boundary layer, formerly thought to be threaded entirely by closed field lines, now appears to contain at least some open field lines, newly reconnected, that are in the process of being swept into the high latitude tail to form the plasma mantle. The open flux tubes of the flux transfer events, thought to be the product of patchy reconnection have a spiral magnetic structure whose helicity is such as to suggest currents having the polarities of the region 1 currents

  1. The effect of Birkeland currents on magnetic field topology

    Science.gov (United States)

    Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

    1996-01-01

    A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

  2. Zeeman ratchets: pure spin current generation in mesoscopic conductors with non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Scheid, Matthias; Bercioux, Dario; Richter, Klaus

    2007-01-01

    We consider the possibility to employ a quantum wire realized in a two-dimensional electron gas (2DEG) as a spin ratchet. We show that a net spin current without accompanying net charge transport can be induced in the nonlinear regime by an unbiased external driving via an ac voltage applied between the contacts at the ends of the quantum wire. To achieve this, we make use of the coupling of the electron spin to inhomogeneous magnetic fields created by ferromagnetic stripes patterned on the semiconductor heterostructure that harbors the 2DEG. Using recursive Green function techniques, we numerically study two different set-ups, consisting of one and two ferromagnetic stripes, respectively

  3. Combined operation of pellet injection and lower hybrid current drive on ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Mertens, V.; Bosch, H.S.; Kornherr, M.; Lang, R.; Leuterer, F.; Loch, R.; Sandmann, W.; Bartiromo, R.; Ushigusa, K.

    1990-10-01

    Simultaneous operation of Lower Hybrid-current drive and pellet injection could be successfully achieved. With peripheral ablation of the pellets by suprathermal electrons, the same net inward flux of particles is found as with deep penetration of pellets into ohmically heated plasmas. The density profile n e (r) peaks with the same increment of the peaking factor Q n = n eo / e > in both cases. The global energy confinement time rises with density, τ E ∝ anti n e , in the combined operation. (orig.)

  4. Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

    Directory of Open Access Journals (Sweden)

    Habibur Rehman

    2015-08-01

    Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

  5. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  6. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  7. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  8. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  9. High voltage power supplies for ITER RF heating and current drive systems

    International Nuclear Information System (INIS)

    Gassmann, T.; Arambhadiya, B.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Darbos, C.; Purohit, D.; Decamps, H.; Albajar, F.; Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T.; Parmar, D.; Patel, A.; Rathi, D.; Singh, N.P.

    2011-01-01

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  10. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  11. Globalisation and the foreignisation of space: The seven processes driving the current global land grab.

    NARCIS (Netherlands)

    Zoomers, E.B.

    2010-01-01

    The current global land grab is causing radical changes in the use and ownership of land. The main process driving the land grab, or ‘foreignisation of space’, as highlighted in the media and the emerging literature is the production of food and biofuel for export in the aftermath of recent food

  12. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  13. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  14. Finite Larmor radius effects on Alfven wave current drive in low-aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1998-01-01

    Alfven wave current drive (AWCD) in low-aspect ratio (A≡R/a=1/ε > or approx. 1) tokamaks (LARTs) is studied numerically. For this, the full-wave equation (E parallel ≠0) with a Vlasov-based dielectric tensor is solved by relaxation techniques, subject to appropriate boundary conditions at the plasma centre and at the plasma-vacuum interface, as well as the concentric antenna current sheet and at the external metallic wall. A systematic investigation of the physical characteristics of the AWCD generated in LARTs when kinetic effects are considered is carried out and illustrative results are presented and discussed. (author)

  15. Non-existence of Normal Tokamak Equilibria with Negative Central Current

    International Nuclear Information System (INIS)

    Hammett, G.W.; Jardin, S.C.; Stratton, B.C.

    2003-01-01

    Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current-drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated

  16. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  17. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  18. Traffic signs recognition for driving assistance

    Science.gov (United States)

    Sai Sangram Reddy, Yatham; Karthik, Devareddy; Rana, Nikunj; Jasmine Pemeena Priyadarsini, M.; Rajini, G. K.; Naseera, Shaik

    2017-11-01

    In the current circumstances with the innovative headway, we must be able to provide assistance to the driving in recognising the traffic signs on the roads. At present time, many reviews are being directed moving in the direction of the usage of a keen Traffic Systems. One field of this exploration is driving support systems, and many reviews are being directed to create frameworks which distinguish and perceive street signs in front of the vehicle, and afterward utilize the data to advise the driver or to even control the vehicle by implementing this system on self-driving vehicles. In this paper we propose a method to detect the traffic sign board in a frame using HAAR cascading and then identifying the sign on it. The output may be either given out in voice or can be displayed as per the driver’s convenience. Each of the Traffic Sign is recognised using a database of images of symbols used to train the KNN classifier using open CV libraries.

  19. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.

    2009-01-01

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  20. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  1. An analysis of current drive by travelling wave based on theory of intrinsic stochasticity

    International Nuclear Information System (INIS)

    Murakami, Akihiko; Midzuno, Yukio.

    1982-04-01

    The mechanism of the current generation in a collisionless plasma by a train of travelling mirrors with modulated phase velocity is studied based on the theory of intrinsic stochasticity. It is shown that, if the phase modulation is small, the main contribution to the current generation comes from the phase mixing of the trajectories of trapped electrons in each Fourier component of a driving wave. For the case of a moderate phase modulation, however, formation of a large stochastic region due to the overlapping of primary resonances is very effective for increasing the generated current. Large phase modulation has little advantage in the current generation because the stochastic regions are formed, so to speak, at random in the phase plane. The results of analytical evaluation based on the above theory agree quite well with results of numerical experiments. (author)

  2. The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas

    Science.gov (United States)

    Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team

    2018-01-01

    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.

  3. Massive Abelian gauge fields coupled with nonconserved currents

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi; Namiki, Mikio; Yamanaka, Yoshiya; Yokoyama, Kan-ichi.

    1985-04-01

    A massive Abelian gauge field coupled with a nonconserved mass-changing current is described within the framework of canonical quantum theory with indefinite metric. In addition to the conventional Lagrange multiplier fields, another ghost field is introduced to preserve gauge invariance and unitarity of a physical S-matrix in the case of the nonconserved current. The renormalizability of the theory is explicitly shown in the sense of superpropagator approach for nonpolynomial Lagrangian theories. (author)

  4. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    Science.gov (United States)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  5. Field-Aligned Current Response to Solar Indices

    DEFF Research Database (Denmark)

    R. Edwards, Thom; Weimer, D. R.; Tobiska, W. K.

    2017-01-01

    Magnetometer data from three satellite missions have been used to analyze and identify the effects of varying solar radiation on the magnitudes and locations of field-aligned currents in the Earth's upper atmosphere. Data from the CHAMP, Ørsted, and Swarm satellite missions have been bought...... together to provide a database spanning a 15 year period. The extensive time frame has been augmented by data from the ACE satellite, as well as a number of indices of solar radiation. This data set has been sorted by a number of solar wind, interplanetary magnetic field, and solar radiation indices...... to evaluate the effects of variations in four different solar indices on the total current in different regions of the polar cap. While the solar indices do not have major influence on the total current of the polar cap when compared to solar wind and interplanetary magnetic field parameters it does appear...

  6. Automated driving safer and more efficient future driving

    CERN Document Server

    Horn, Martin

    2017-01-01

    The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.

  7. Design of Jet lower hybrid current drive generator and operation of high power test bed

    International Nuclear Information System (INIS)

    Dobbing, J.A.; Bosia, G.; Brandon, M.; Gammelin, M.; Gormezano, C.; Jacquinot, J.; Jessop, G.; Lennholm, M.; Pain, M.; Sibley, A.

    1989-01-01

    The JET Lower Hybrid Current Drive (LHCD) generator consists of 24 klystrons each rated for 650 KW operating at 3.7 GHz, giving a nominal generator power of 15.6 MW for 10 seconds or 12 MW for 20 seconds. This power will be transmitted through 24 waveguides to a phased array launcher on one of the main ports of the JET machine. In addition, two klystrons are currently being operated on a high power test bed to establish reliable operation of the generators components and test high power microwave components prior to their installation

  8. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovic, V.; Vukosavic, S. (Electrical Engineering Inst. Nikola Tesla, Viktora Igoa 3, Belgrade, 11000 (Yugoslavia))

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  9. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet

    Science.gov (United States)

    Ma, S. C.; Ge, Q.; Hu, Y. F.; Wang, L.; Liu, K.; Jiang, Q. Z.; Wang, D. H.; Hu, C. C.; Huang, H. B.; Cao, G. P.; Zhong, Z. C.; Du, Y. W.

    2017-11-01

    The sharp metamagnetic martensitic transformation (MMT) triggered by a low critical field plays a pivotal role in magnetoresponsive effects for ferromagnetic shape memory alloys (FSMAs). Here, a sharper magnetic-field-induced metamagnetic martensitic transformation (MFIMMT) is realized in Mn1-xCo1+xGe systems with a giant magnetocaloric effect around room temperature, which represents the lowest magnetic driving and completion fields as well as the largest magnetization difference around MFIMMT reported heretofore in MnCoGe-based FSMAs. More interestingly, a reversible MFIMMT with field cycling is observed in the Mn0.965Co0.035Ge compound. These results indicate that the consensus would be broken that the magnetic field is difficult to trigger the MMT for MnCoGe-based systems. The origin of a higher degree of sensitivity of martensitic transformation to the magnetic field is discussed based on the X-ray absorption spectroscopic results.

  10. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G.; Ragona, R. [Department of Physics, Università di Torino (Italy); Helou, W.; Goniche, M.; Hillaret, J. [CEA/DSM/IRFM F-13 108 St Paul Les Durance (France)

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  11. Remote field eddy current testing of ferromagnetic tubes

    International Nuclear Information System (INIS)

    David, B.

    1990-01-01

    In order to test ferromagnetic tubes using internal probes, Intercontrole and the CEA have carried out theoretical and experimental works and developed a method to adapt the Remote Field Eddy Current technique which has been known and used for 30 years now. This document briefly recalls the basic principles of the Remote Field Eddy Current technique, the various steps of the works carried out and mainly describes examples of field inspection of ferromagnetic tubes and pipes [fr

  12. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    Science.gov (United States)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  13. On the evaluation of currents in a tokamak plasma during combined Ohmic and RF current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1986-09-01

    By taking into account the rf-generated enhancement of the plasma electric conductivity (as formulated by Fisch in the limit of weak dc electric fields) a relation is derived between the ratio of rf to Ohmically driven currents and other plasma parameters to be measured before and after the rf onset under the condition of constant net plasma current. (author)

  14. Light-cone gauge approach to arbitrary spin fields, currents and shadows

    International Nuclear Information System (INIS)

    Metsaev, R R

    2014-01-01

    Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone gauge formulations for such fields, currents and shadows are obtained. Use of the Poincaré parametrization of AdS space and ladder operators allows us to treat fields in flat and AdS spaces on an equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents and shadows is also obtained. The light-cone gauge formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of modified de Donder divergence, while the light-cone gauge formulation for currents and shadows is obtained by using the gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how the ladder operators entering the gauge invariant formulation of fields, currents and shadows manifest themselves in the light-cone gauge formulation for fields, currents and shadows. (paper)

  15. The pattern of the electromagnetic field emitted by mobile phones in motor vehicle driving simulators

    Directory of Open Access Journals (Sweden)

    Piotr Politański

    2013-06-01

    Full Text Available Introduction: The paper reports the results of the determinations of UMTS EMF distributions in the driver's cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Materials and Methods: Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. Results: When the power was set for the maximum (49 mW, a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the motor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. Conclusions: This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.

  16. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium.

    Science.gov (United States)

    Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P

    2017-04-27

    High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.

  17. Commissioning of the long-pulse fast wave current drive antennas for DIII-D

    International Nuclear Information System (INIS)

    Baity, F.W.; Barber, G.C.; Goulding, R.H.; Hoffman, D.J.; DeGrassie, J.S.; Pinsker, R.I.; Petty, C.C.; Cary, W.

    1995-01-01

    Two new four-element fast wave current drive antennas have been installed on DIII-D. These antennas are designed for 10-s pulses at 2 MW each in the frequency range of 30 to 120 MHz. Each element comprises two poloidal segments fed in parallel in order to optimize plasma coupling at the upper end of the frequency range. The antennas are mounted on opposite sides of the vacuum vessel, in ports designated 0 degrees and 180 degrees after their toroidal angle. Each antenna array is fed by a single transmitter. The power is first split two ways by means of a 3-dB hybrid coupler, then each of these lines feeds a resonant loop connecting a pair of array elements. The power transfer during asymmetric phasing is shunted between resonant loops by a decoupler. The resonant loops are fitted with line stretchers so that multiple frequencies of operation are possible without reconfiguring the transmission line. Commissioning of these antennas has been underway since June 1994. Several deficiencies in the transmission line system were uncovered during initial vacuum conditioning, including problems with the transmission line insulators and with the drive rods for the variable elements. The former was solved by replacing the original alumina insulators, and the latter has been avoided during operation to date by positioning the tuners to avoid high voltage appearing on the drive rods. A modified design for the drive rods will be implemented before RF operations resume operation June 1995. New transmitters were procured from ABB for the new antennas and were installed in parallel with the antenna installation. During initial vacuum conditioning of the antenna in the 180 degree port a fast digital oscilloscope was used to try to pinpoint the location of arcing by a time-of-flight technique and to develop an understanding of the typical arc signature in the system

  18. Effects of electron cyclotron current drive on the evolution of double tearing mode

    International Nuclear Information System (INIS)

    Sun, Guanglan; Dong, Chunying; Duan, Longfang

    2015-01-01

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode

  19. Effects of electron cyclotron current drive on the evolution of double tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guanglan, E-mail: sunguanglan@nciae.edu.cn; Dong, Chunying [Basic Science Section, North China Institute of Aerospace Engineering, Langfang 065000 (China); Duan, Longfang [School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000 (China)

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  20. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  1. The useful field of view assessment predicts simulated commercial motor vehicle driving safety.

    Science.gov (United States)

    McManus, Benjamin; Heaton, Karen; Vance, David E; Stavrinos, Despina

    2016-10-02

    The Useful Field of View (UFOV) assessment, a measure of visual speed of processing, has been shown to be a predictive measure of motor vehicle collision (MVC) involvement in an older adult population, but it remains unknown whether UFOV predicts commercial motor vehicle (CMV) driving safety during secondary task engagement. The purpose of this study is to determine whether the UFOV assessment predicts simulated MVCs in long-haul CMV drivers. Fifty licensed CMV drivers (Mage = 39.80, SD = 8.38, 98% male, 56% Caucasian) were administered the 3-subtest version of the UFOV assessment, where lower scores measured in milliseconds indicated better performance. CMV drivers completed 4 simulated drives, each spanning approximately a 22.50-mile distance. Four secondary tasks were presented to participants in a counterbalanced order during the drives: (a) no secondary task, (b) cell phone conversation, (c) text messaging interaction, and (d) e-mailing interaction with an on-board dispatch device. The selective attention subtest significantly predicted simulated MVCs regardless of secondary task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC in the simulated drive. The e-mail interaction secondary task significantly predicted simulated MVCs with a 4.14 times greater risk of an MVC compared to the no secondary task condition. Subtest 3, a measure of visual speed of processing, significantly predicted MVCs in the email interaction task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC during the email interaction task. The UFOV subtest 3 may be a promising measure to identify CMV drivers who may be at risk for MVCs or in need of cognitive training aimed at improving speed of processing. Subtest 3 may also identify CMV drivers who are particularly at risk when engaged in secondary tasks while driving.

  2. The origin of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Hibberd, F.H.

    1979-01-01

    A theory is developed and a model described for a homogeneous axi-symmetric generator of the geomagnetic field, based on the Nernst effect associated with a radially outward flow of heat from heat sources within the core region of the earth across an initial meridional magnetic field. The thermomagnetic e.m.f. drives a system of two azimuthal current shells in the core region, one nested inside the other, with the currents flowing in opposite directions. The current shells slowly expand radially. As the outer shell decays a new current shell develops inside the inner shell. The resultant magnetic field near and beyond the Earth's surface approximates to a dipole field that undergoes repeated reversals. A rough estimate of the required magnitude of the Nernst coefficient indicates that the effect could be large enough to drive the generator. The generator does not violate Cowling's theorem because the temperature gradient, which plays a part analogous to fluid velocity in conventional homogeneous fluid dynamo theory, has a non-zero divergence in regions where heat is being evolved. (author)

  3. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  4. Measurement of anisotropic soft X-ray emission during radio-frequency current drive in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Kawashima, Hisato; Matoba, Tohru; Hoshino, Katsumichi; Kawakami, Tomohide; Yamamoto, Takumi; Hasegawa, Mitsuru; Fuchs, Gerhard; Uesugi, Yoshihiko.

    1994-01-01

    A new vertical soft X-ray pulse height analyzer (PHA) system and a tangential PHA system were used to measure the anisotropy of soft X-ray emission during lower-hybrid current drive (LHCD) and also during current drive by the combination of LHCD and electron cyclotron resonance heating (ECRH) in the JFT-2M tokamak. The strong soft X-ray emission was measured in the parallel forward direction during LHCD. When ECRH was applied during LHCD, the perpendicular emission was enhanced. The high-energy electron velocity distribution was evaluated by comparing the measured and calculated X-ray spectra. The distribution form was consistent with the theoretical prediction based on the electron Landau damping of lower-hybrid waves and the electron cyclotron damping of electron cyclotron waves for reasonable energy ranges. (author)

  5. The Technique of Changing the Drive Method of Micro Step Drive and Sensorless Drive for Hybrid Stepping Motor

    Science.gov (United States)

    Yoneda, Makoto; Dohmeki, Hideo

    The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.

  6. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    Science.gov (United States)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  7. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    International Nuclear Information System (INIS)

    Wilson, J. R.; Bonoli, P.; Hubbard, A.; Parker, R.; Schmidt, A.; Wallace, G.; Wright, J.; Bernabei, S.

    2007-01-01

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n parallel ∼1.6-4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n 20 IR/P∼0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (T e0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects)

  8. EC + LH current drive efficiency in the presence of an internal transport barrier

    International Nuclear Information System (INIS)

    Rosa, P.R. da S; Ziebell, L.F.

    2002-01-01

    In this paper we study the effects of the presence of an internal transport barrier (ITB) on the current drive efficiency and power deposition profiles in the case of electron cyclotron waves interacting with an extended tail generated by lower hybrid (LH) waves. We study the subject by numerically solving the Fokker-Planck equation, with temperature and density profiles corrected along the time evolution at each collision time, based on the actual time-evolving electron distribution function. The results obtained show that the LH and electron cyclotron (EC) power absorption profiles and the current driven by the combined action of both types of waves are weakly dependent on the depth of the ITB, slightly more dependent on the level of magnetic turbulence and much more dependent on the level of EC wave power. (author)

  9. Lower hybrid waves for current drive and heating in reactors

    International Nuclear Information System (INIS)

    Yugo, J.; Bernabei, S.; Bonoli, P.; Devoto, R.S.; Fenstermacher, M.; Porkolab, M.; Stevens, J.

    1988-01-01

    Lower hybrid (LH) waves are projected to be an important ingredient for current drive and heating in steady-state operation of reactors, such as the International Thermonuclear Experimental Reactor (ITER) or later power producing tokamaks. We have examined the required frequency and spectrum for such applications and designed a system to meet the specifications. We found that, to avoid damping of LH waves on alpha particles the frequency should be at least 6--8 GHz. At a typical volume average temperature of 14 keV, the LH rays penetrate about 30% of the minor radius, or to about 15 KeV, when N/sub parallel/ is chosen to maximize penetration and the spectral width, ΔN/sub parallel/ is about 0.05 (full width at 0.5 of spectral peak). For use in low density current ramp-up and transformer recharging, N/sub parallel/ is dynamically controlled. We have designed an LH system that satisfies requirements similar to those expected for ITER. It provides a Brambilla array which can be tuned from N/sub parallel/ of 1.0--2.8. An analysis has been performed to evaluate nuclear (1--2 MW/m 2 ), plasma radiation, and rf heating of the LH launcher. 4 refs., 3 figs., 4 tabs

  10. Sequential Dependencies in Driving

    Science.gov (United States)

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  11. Current-current correlation function in presence of chemical potential and external magnetic field

    International Nuclear Information System (INIS)

    Apresyan, E.A.

    2017-01-01

    The (2+1)-dimensional electron system was observed, where relation between the Green functions and conductivity was used. The current-current correlation function Π_μ_ν(B) for the fermion system was calculated in presence of non-quantizing magnetic field B, chemical potential η and gap m. From this function it is possible to obtain the equation for polarization operator calculated without the magnetic field. The result is also applicable for graphene

  12. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    Czech Academy of Sciences Publication Activity Database

    Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-01-01

    Roč. 51, č. 8 (2011), 083050-083050 ISSN 0029-5515 R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : spherical tokamak * electron Bernstein wave (EBW) * heating * current drive * electron cyclotron wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/8/083050/pdf/0029-5515_51_8_083050.pdf

  13. Optimization of OH coil recharging scenario of quasi-steady operation in tokamak fusion reactor by lower hybrid wave current drive

    International Nuclear Information System (INIS)

    Sugihara, M.; Fujisawa, N.; Nishio, S.; Iida, H.

    1984-01-01

    Using simple physical model equations optimum plasma and rf parameters for an OH coil recharging scenario of quasi-steady operation in tokamak fusion reactors by lower hybrid wave current drive are studied. In this operation scenario, the minimization of the recharge time of OH coils or stored energy for it will be essential and can be realized by driving sufficient current without increasing the plasma temperature too much. Low density and broad spectrum are shown to be favorable for the minimization. In the case of FER (Fusion Experimental Reactor under design study in JAERI) baseline parameters, the minimum recharge time is 3-5 s/V s. (orig.)

  14. Analysis and Suppression of Zero Sequence Circulating Current in Open Winding PMSM Drives With Common DC Bus

    OpenAIRE

    Zhan, H.; Zhu, Z.Q.; Odavic, M.

    2017-01-01

    In this paper, the zero sequence circulating current in open winding permanent magnet synchronous machine (OW-PMSM) drives with common dc bus is systematically analyzed for the first time. It is revealed that the zero sequence circulating current is affected by zero sequence back-electromotive force, cross coupling voltages in zero sequence from the machine side, pulse-width modulation induced zero sequence voltage, and inverter nonlinearity from the inverter side. Particularly, the influence...

  15. Resistivity effects in non-inductive RF current drive via helicity injection by Alfven waves: the case of conventional and small aspect ratio Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1996-01-01

    Supplementary non-inductive current drive and heating are necessary to bring Tokamak plasmas into the ignition regime. The resonant excitation of shear Alfven waves (SAW) - in the continuum range (CR) or/and in the discrete global Alfven eigenmode spectrum (GAE's) - represents one potential, suitable method for this purpose. Within the framework of ideal MHD, the current drive (CD) via helicity injection in Tokamak plasmas has been considered by Cuperman et al (1996) and Komoshvili et al. (1996). This work is concerned with the investigation of the non-ideal resistive MHD effects on both the excitation of SAW's (CR's and GAE's) and the generation of non-inductive current drive via helicity injection in Tokamak plasmas. The research covers Tokamak aspect ratios ranging between large value cases (R/a = 10) and the very tight value case (R/ a = 1.2). (authors)

  16. Quantum effects in warp drives

    Directory of Open Access Journals (Sweden)

    Finazzi Stefano

    2013-09-01

    Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  17. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Porkolab, M.

    1993-01-01

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients

  18. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  19. Glaucoma and quality of life: fall and driving risk.

    Science.gov (United States)

    Montana, Cynthia L; Bhorade, Anjali M

    2018-03-01

    Numerous population-based studies suggest that glaucoma is an independent risk factor for falling and motor vehicle collisions, particularly for older adults. These adverse events lead to increased healthcare expenditures and decreased quality of life. Current research priorities, therefore, include identifying factors that predispose glaucoma patients to falling and unsafe driving, and developing screening strategies and targeted rehabilitation. The purpose of this article is to review recent studies that address these priorities. Studies continue to support that glaucoma patients, particularly those with advanced disease, have an increased risk of falling or unsafe driving. Risk factors, however, remain variable and include severity and location of visual field defects, contrast sensitivity, and performance on divided attention tasks. Such variability is likely because of the multifactorial nature of ambulating and driving and compensatory strategies used by patients. Falls and unsafe driving remain a serious public health issue for older adults with glaucoma. Ambulation and driving are complex tasks and there is no consensus yet, regarding the best methods for risk stratification and targeted interventions to increase safety. Therefore, comprehensive and individualized assessments are recommended to most effectively evaluate a patient's risk for falling or unsafe driving.

  20. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.

  1. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    International Nuclear Information System (INIS)

    Venkattraman, Ayyaswamy

    2013-01-01

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission

  2. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  3. Electrical motor/generator drive apparatus and method

    Science.gov (United States)

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  4. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-10-16

    Light-cone gauge formulation of fields in AdS space and conformal field theory in flat space adapted for the study of AdS/CFT correspondence is developed. Arbitrary spin mixed-symmetry fields in AdS space and arbitrary spin mixed-symmetry currents, shadows, and conformal fields in flat space are considered on an equal footing. For the massless and massive fields in AdS and the conformal fields in flat space, simple light-cone gauge actions leading to decoupled equations of motion are found. For the currents and shadows, simple expressions for all 2-point functions are also found. We demonstrate that representation of conformal algebra generators on space of currents, shadows, and conformal fields can be built in terms of spin operators entering the light-cone gauge formulation of AdS fields. This considerably simplifies the study of AdS/CFT correspondence. Light-cone gauge actions for totally symmetric arbitrary spin long conformal fields in flat space are presented. We apply our approach to the study of totally antisymmetric (one-column) and mixed-symmetry (two-column) fields in AdS space and currents, shadows, and conformal fields in flat space.

  5. Incentivizing energy-efficient behavior at work: An empirical investigation using a natural field experiment on eco-driving

    International Nuclear Information System (INIS)

    Schall, Dominik L.; Mohnen, Alwine

    2017-01-01

    Highlights: • We conduct a natural field experiment on incentives for fuel-efficient driving. • A monetary and a tangible non-monetary reward for eco-driving are compared. • The non-monetary reward results in an average reduction of fuel consumption of 5%. • There is only a small reduction effect in the equivalent monetary reward treatment. • Emphasis of fun, emotional responses and frequency of recalling might play a role. - Abstract: Reducing greenhouse gas emissions is a highly prevalent goal of public policy in many countries around the world. Convincing people to drive more fuel-efficiently (“eco-driving”) can contribute substantially to this goal and is often an integral part of policy initiatives. However, there is a lack of scientific studies on the effects of individual monetary and non-monetary incentives for eco-driving, especially in organizational settings and with regards to demonstrating causality, e.g., by using controlled experiments. We address this gap with a six months long controlled natural field experiment and introduce a monetary and a non-monetary reward for eco-driving to drivers of light commercial vehicles in different branches of a logistics company. Our results show an average reduction of fuel consumption of 5% due to a tangible non-monetary reward and suggest only a small reduction of the average fuel consumption in the equivalent monetary reward treatment. We find indications that more emphasis on the fun of achieving a higher fuel efficiency, a more emotional response to non-monetary incentives, and a higher frequency of thinking and talking about non-monetary incentives might play a role in the stronger effect of the tangible non-monetary reward. Policy implications for private and public actors are discussed.

  6. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  7. Quantum rings in magnetic fields and spin current generation.

    Science.gov (United States)

    Cini, Michele; Bellucci, Stefano

    2014-04-09

    We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.

  8. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  9. Quantum theory of parametric excitation in plasmas with the driving field space dispersion

    International Nuclear Information System (INIS)

    Vo Hong Anh

    1998-11-01

    A development of the quantum theory of parametric wave excitation in plasmas is presented to take into account the effects of space dispersion of the driving external fields. The quantum equation of motion method with the use of appropriate matrix formalism leads to the system of dispersion equations for the eigenmodes of vibrations. Calculations show the enlargement of the excitable waves region both in wave number values and directions as compared to the case of dipole approximation considered earlier. (author)

  10. Progress in the ITER electron cyclotron heating and current drive system design

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Toshimichi, E-mail: toshimichi.omori@iter.org [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Darbos, Caroline [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Denisov, Grigory [Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation); Farina, Daniela [Istituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, Milano (Italy); Gagliardi, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco; Gassmann, Thibault [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Goodman, Timothy [CRPP, Association EURATOM-Confédération Suisse, EPFL Ecublens, CH-1015 Lausanne (Switzerland); Hanson, Gregory [US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831 (United States); Henderson, Mark A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Kajiwara, Ken [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 (Japan); McElhaney, Karen [US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831 (United States); Nousiainen, Risto [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Oda, Yasuhisa [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 (Japan); Oustinov, Alexander [Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation); and others

    2015-10-15

    Highlights: • EC system is designed with an ability to upgrade in power to 28 MW then 40 MW. • The TL is capable of 3 buildings movements; ±15 mm displacements at the worst. • Improved power deposition access injecting 20 MW across nearly the entire plasma. • Ensured nuclear safety by appropriate definition of confinement boundaries. • Proposed I&C architecture for the overall EC plant was successfully reviewed. - Abstract: An electron cyclotron system is one of the four auxiliary plasma heating systems to be installed on the ITER tokamak. The ITER EC system consists of 24 gyrotrons with associated 12 high voltage power supplies, a set of evacuated transmission lines and two types of launchers. The whole system is designed to inject 20 MW of microwave power at 170 GHz into the plasma. The primary functions of the system include plasma start-up, central heating and current drive, and magneto-hydrodynamic instabilities control. The design takes present day technology and extends towards high power CW operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond. The EC system is faced with significant challenges, which not only includes an advanced microwave system for plasma heating and current drive applications but also has to comply with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Since conceptual design of the EC system established in 2007, the EC system has progressed to a preliminary design stage in 2012, and is now moving forward towards a final design. The majority of the subsystems have completed the detailed design and now advancing towards the final design completion.

  11. Progress in the ITER electron cyclotron heating and current drive system design

    International Nuclear Information System (INIS)

    Omori, Toshimichi; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Darbos, Caroline; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Oustinov, Alexander

    2015-01-01

    Highlights: • EC system is designed with an ability to upgrade in power to 28 MW then 40 MW. • The TL is capable of 3 buildings movements; ±15 mm displacements at the worst. • Improved power deposition access injecting 20 MW across nearly the entire plasma. • Ensured nuclear safety by appropriate definition of confinement boundaries. • Proposed I&C architecture for the overall EC plant was successfully reviewed. - Abstract: An electron cyclotron system is one of the four auxiliary plasma heating systems to be installed on the ITER tokamak. The ITER EC system consists of 24 gyrotrons with associated 12 high voltage power supplies, a set of evacuated transmission lines and two types of launchers. The whole system is designed to inject 20 MW of microwave power at 170 GHz into the plasma. The primary functions of the system include plasma start-up, central heating and current drive, and magneto-hydrodynamic instabilities control. The design takes present day technology and extends towards high power CW operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond. The EC system is faced with significant challenges, which not only includes an advanced microwave system for plasma heating and current drive applications but also has to comply with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Since conceptual design of the EC system established in 2007, the EC system has progressed to a preliminary design stage in 2012, and is now moving forward towards a final design. The majority of the subsystems have completed the detailed design and now advancing towards the final design completion.

  12. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    Science.gov (United States)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  13. Adjustable Speed Drives and Power Quality

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    This paper provides an overview and proposes cost-effective and efficient opportunities in improving power quality in Adjustable Speed Drive (ASD) systems. In particular, an Electronic Inductor (EI) technique has been used in single drives to overcome the existing challenges in conventional...... frontend rectifiers even at partial loading conditions. Moreover, the effectiveness of the EI technique along with a phase-shifted current control in terms of improved grid current quality in multi-drive configurations is addressed. Furthermore, a novel DC-link current modulation scheme for multi...

  14. A quasilinear formulation of turbulence driven current

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.

  15. A quasilinear formulation of turbulence driven current

    International Nuclear Information System (INIS)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua

    2014-01-01

    Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude

  16. On ray stochasticity during lower hybrid current drive in tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Moreau, D.

    1992-08-01

    A comprehensive and detailed analysis is presented on the importance of toroidally induced ray stochasticity for the modelling of lower hybrid current drive and for the dynamics of the launched power spectrum. A combined ray tracing and Fokker-Planck code is used and the injected lower hybrid power distribution in poloidal angle and in parallel wave index is accurately represented by taking into account the poloidal extent of the antenna ad by efficiently covering the full range of its radiated spectrum. The importance of the balance between the wave damping and the exponential divergence of nearby ray trajectories in determining the shape of the predicted lower hybrid power deposition profiles is emphasized. When a sufficiently large number of rays is used to densely cover the region of the launched power spectrum which is affected by stochastic effects, code predictions are shown to be stable with respect to small changes in initial conditions and plasma parameters and to be consistent with experimental data

  17. Heating, current drive and MHD control using ECH in TCV

    International Nuclear Information System (INIS)

    Goodman, T.

    2001-01-01

    The 6 beam 2nd harmonic X-mode (X2), 3MW, ECH/ECCD system of the TCV tokamak allows a fine tailoring of the deposition profiles in the plasma. The sensitivity of the sawtooth period to the deposition location is used to increase the equilibria reconstruction and ray-tracing accuracy. Off-axis ECH, followed by on-axis counter-ECCD produces improved central confinement regimes in which τ Ee exceeds RLW scaling by a factor of 3.5. The PRETOR transport code (incorporating an RLW local transport model but constrained by the experimental density profiles) predicts an extreme sensitivity of τ Ee to the deposition location of the counter-ECCD. This is confirmed by experiments. Sawtooth simulations using PRETOR, including the effects of current drive with inputs from the TORAY ray-tracing code, are in good agreement with experimental results. These results are an initial benchmark for the package of analysis codes, LIUQE/TORAY/PRETOR used during ECH/ECCD experiments on TCV. (author)

  18. Advancements, prospects, and impacts of automated driving systems

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chan

    2017-09-01

    Full Text Available Over the last decade, significant progress has been made in automated driving systems (ADS. Given the current momentum and progress, ADS can be expected to continue to advance and a variety of ADS products will become commercially available within a decade. It is envisioned that automated driving technology will lead to a paradigm shift in transportation systems in terms of user experience, mode choices, and business models. In this paper, we start with a review of the state-of-the-art in the field of ADS and their deployment paths. It is followed by a discussion of the future prospects of ADS and their effects on various aspects of the transportation field. We then identify two specific use cases of ADS where the impacts can be significant – personal mobility services and vehicle automation for aging society. A survey of impact assessment studies and the associated methodologies for evaluating ADS is given, which is followed by concluding remarks at the end of the paper.

  19. Study of lower hybrid current drive system in tokamak fusion devices

    International Nuclear Information System (INIS)

    Maebara, Sunao

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 μP is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 μsec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10 -6 Pam 3 /sm 2 at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm -2 (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10 -5 Pam 3 /sm 2 which is low enough for an antenna material. (author)

  20. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive (γ B ∝ n e I o R o /P CD ), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γ B depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium