WorldWideScience

Sample records for fieldbus-h1 based instrumentation

  1. Market-based Economic Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Grundkategorien her er markedet som den optimale allokeringsmekanisme for de belastninger, som de økonomiske instrumenter / miljøskatterne påfører. Det mest omfattende og spektakulære eksempel på markedet som allokatorer af skatter er EU's børs for forureningstilladelser, dvs reelt CO-2 beskatnin...

  2. Multipotenciostat System Based on Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Arrieta-Almario Álvaro Angel

    2014-07-01

    Full Text Available To carry out this project an electronic multichannel system of electrochemical measurement or multipotenciostat was developed. It is based on the cyclic voltammetry measurement technique, controlled by a computer that monitors, by means of an electronic circuit, both the voltage generated from the Pc and supplied to an electrolytic cell, and the current that flows through the electrodes of it. To design the application software and the user interface, Virtual Instrumentation was used. On the other hand, to perform the communication between the multipotenciostat circuit and the designed software, the National Instruments NI9263 and NI9203 acquisition modules were used. The system was tested on a substance with a known REDOX property, as well as to discriminate and classify some samples of coffee.

  3. Ontology Based Vocabulary Matching for Oceanographic Instruments

    Science.gov (United States)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  4. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  5. Larmor-precession based neutron scattering instrumentation

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2009-01-01

    The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)

  6. Research on Web-Based Networked Virtual Instrument System

    International Nuclear Information System (INIS)

    Tang, B P; Xu, C; He, Q Y; Lu, D

    2006-01-01

    The web-based networked virtual instrument (NVI) system is designed by using the object oriented methodology (OOM). The architecture of the NVI system consists of two major parts: client-web server interaction and instrument server-virtual instrument (VI) communication. The web server communicates with the instrument server and the clients connected to it over the Internet, and it handles identifying the user's name, managing the connection between the user and the instrument server, adding, removing and configuring VI's information. The instrument server handles setting the parameters of VI, confirming the condition of VI and saving the VI's condition information into the database. The NVI system is required to be a general-purpose measurement system that is easy to maintain, adapt and extend. Virtual instruments are connected to the instrument server and clients can remotely configure and operate these virtual instruments. An application of The NVI system is given in the end of the paper

  7. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  8. Some suggestions based on the instrumentation installation experience at RAPP

    International Nuclear Information System (INIS)

    Raghunath, M.R.; Singh, S.; Jain, V.K.

    1977-01-01

    Suggestions regarding installation of reactor instrumentation have been made based on the instrumentation installation experience at the Rajasthan Atomic Power Plant. It has been mentioned that the instrumentation installation work has to proceed simultaneously with that of the heavy equipment and piping errection work, to meet the commissioning target dates. (S.K.K.)

  9. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  10. Knowledge based expert system approach to instrumentation selection (INSEL

    Directory of Open Access Journals (Sweden)

    S. Barai

    2004-08-01

    Full Text Available The selection of appropriate instrumentation for any structural measurement of civil engineering structure is a complex task. Recent developments in Artificial Intelligence (AI can help in an organized use of experiential knowledge available on instrumentation for laboratory and in-situ measurement. Usually, the instrumentation decision is based on the experience and judgment of experimentalists. The heuristic knowledge available for different types of measurement is domain dependent and the information is scattered in varied knowledge sources. The knowledge engineering techniques can help in capturing the experiential knowledge. This paper demonstrates a prototype knowledge based system for INstrument SELection (INSEL assistant where the experiential knowledge for various structural domains can be captured and utilized for making instrumentation decision. In particular, this Knowledge Based Expert System (KBES encodes the heuristics on measurement and demonstrates the instrument selection process with reference to steel bridges. INSEL runs on a microcomputer and uses an INSIGHT 2+ environment.

  11. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  12. Development of BC based nuclear instrument

    International Nuclear Information System (INIS)

    Nolida Yussup; Atsushi Birumachi; Kazuaki Shimizu

    2005-01-01

    This paper describes the development of a low-power portable dose rate meter with RS232 interface for data acquisition during 6 months course under MEXT Nuclear Researchers Exchange Program 2004 at JAERI, Japan. The development involved defining the system, selection of detector and components, designing the pre-amplifier, main amplifier, noise discriminator and testing. Software programming was developed on PC to acquire the data via RS232 and display the real-time data. This will allow a small nuclear instrument to have powerful data processing and bigger data storage capability. (Author)

  13. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  14. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  15. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  16. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  18. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  19. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  20. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  1. Feasibility of Optical Instruments Based on Multiaperture Optics.

    Science.gov (United States)

    1984-10-16

    system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  3. Avoidance-based human Pavlovian-to-instrumental transfer

    Science.gov (United States)

    Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.

    2013-01-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624

  4. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  5. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  6. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  7. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  8. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  9. Project B-610 instrument data base. Revision 6

    International Nuclear Information System (INIS)

    Silvan, G.R.

    1994-01-01

    The following technical information document contains the published data base listing for the instrumentation to be connected into the new MICON distributed control computer. Project B-610 PFP Instrument Upgrade (PFP HVAC Control Room Upgrade) will install the MICON system in PFP and provide for a new control room at the present site of the new SWP change room EDT-150750 1/11/93

  10. EPROM-based LSI-11 for distributed instrumentation control

    International Nuclear Information System (INIS)

    Hunt, D.N.

    1981-01-01

    The LLNL Nuclear Chemistry Counting Facility (NCCF) is being converted to a modern production facility. A computer network has been designed and built to implement this conversion. The outermost node of the computer network is a dedicated EPROM-based controller. The controller handles the details of driving the attached nuclear instrumentation, providing a standard interface to the remainder of the network. This paper addresses the design and the implementation of the dedicated instrumentation controller

  11. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  12. Computer-based instrumentation for partial discharge detection in GIS

    International Nuclear Information System (INIS)

    Md Enamul Haque; Ahmad Darus; Yaacob, M.M.; Halil Hussain; Feroz Ahmed

    2000-01-01

    Partial discharge is one of the prominent indicators of defects and insulation degradation in a Gas Insulated Switchgear (GIS). Partial discharges (PD) have a harmful effect on the life of insulation of high voltage equipment. The PD detection using acoustic technique and subsequent analysis is currently an efficient method of performing non-destructive testing of GIS apparatus. A low cost PC-based acoustic PD detection instrument has been developed for the non-destructive diagnosis of GIS. This paper describes the development of a PC-based instrumentation system for partial discharge detection in GIS and some experimental results have also presented. (Author)

  13. Mobile device-based optical instruments for agriculture

    Science.gov (United States)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  14. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  15. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  16. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  17. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  18. OFCC based voltage and transadmittance mode instrumentation amplifier

    Science.gov (United States)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  19. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  20. Advanced ESPI-based medical instruments for otolaryngology

    Science.gov (United States)

    Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.

    1993-05-01

    Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.

  1. Separation of musical instruments based on amplitude and frequency comodulation

    Science.gov (United States)

    Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.

    2002-05-01

    In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.

  2. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  3. Smart phone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

    International Nuclear Information System (INIS)

    Chang, Byoung Yong

    2012-01-01

    This report presents a mobile instrumentation platform based on a smart phone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smart phone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smart phone for demonstration. This report is believed to show the possibility of adapting a smart phone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smart phone

  4. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-01-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  5. Electronically Tunable Transimpedance Instrumentation Amplifier Based on OTRA

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2013-01-01

    Full Text Available Operational transresistance amplifier (OTRA is the most suitable analog building block (ABB for transimpedance type signal processing due to its very nature of current input and voltage output. In this paper, OTRA-based transimpedance instrumentation amplifier (TIA is presented. It provides high differential gain and bandwidth, which is independent of gain. It also offers high common-mode rejection ratio (CMRR. The amplifier gain can be controlled electronically by implementing resistors using MOS transistors operating in linear region. The circuit can be made fully integrated. The proposed circuit is insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. Theoretical analysis is verified through PSPICE simulations and experimentation.

  6. Development of microcontroller based instrumentation for low dose implantation

    International Nuclear Information System (INIS)

    Suresh, K.; Saravanan, K.; Panigrahi, B.K.; Nair, K.G.M.

    2011-01-01

    In experiments like ion implantation based ion track formations, the sample is implanted to low doses of the order of 10 10 ions/cm 2 , limiting the ion beam currents to be less than 1-5 x 10 -12 A. However the standard current integrators available are not sensitive to very low currents, causing an unacceptable high level of error in dose measurement. Hence a low dose implantation measurement system has been developed. It consists of a very sensitive low current preamplifier with full scale input 1nA/100pA, a standard current integrator, a microcontroller based interface circuit, which are connected to a personal computer(PC) through USB. Two types of the software are developed for the system: the microcontroller firmware using C and windows based virtual instrument programs using LabVIEW 7.0. Necessary precautions associated with pA level measurement like rigidly fastened good quality cables, low ripple DC power supply, shielding, close mounting of the preamplifier to the sample are adopted. After necessary calibrations with an ECIL make low current source, the system has been put into regular use. Design and development details, salient features are discussed in this paper. (author)

  7. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  8. Measurement of radiation dose with a PC-based instrument

    International Nuclear Information System (INIS)

    Jangland, L.; Neubeck, R.

    1994-01-01

    The purpose of this study was to investigate in what way the introduction of Digital Subtraction Angiography has influenced absorbed doses to the patient and personnel. Calculation of the energy imparted to the patient, ε, was based on measurements of the dose-area product, tube potential and tube current which were registered with a PC-based instrument. The absorbed doses to the personnel were measured with TLD. The measurements on the personnel were made only at the digital system. The results indicate large variations in ε between different types of angiographic examinations of the same type. The total ε were similar on both systems, although the relative contribution from image acquisition and fluoroscopy were different. At the conventional system fluoroscopy and image acquisition contributed almost equally to the total ε. At the digital system 25% of the total ε was due to fluoroscopy and 75% to image acquisition. The differences were due to longer fluoroscopic times on the conventional system, mainly due to lack of image memory and road mapping, and lower ε/image, due to lower dose settings to the film changer compared to the image intensifier on the digital system. 11 refs., 8 figs., 9 tabs

  9. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  10. PCI express hotplug implementation for ATCA based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, António P. [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, Rita C., E-mail: pricardofc@ipfn.ist.utl.pt [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, António J.N. [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Hotplug capabilities are designed as an expected or graceful methodology in which the user is not permitted to install or remove a PCIe endpoint device without first notifying the system software. • Hotswap capabilities allow endpoints or PCIe switches with endpoints to be inserted or removed from a PCIe system gracefully or unexpectedly without special consideration. • ATCA, advanced telecommunication computer architecture is a new specification with high availability and high reliability key features which improves data acquisition systems. • Data acquisition systems are used almost everywhere and a demand in the nuclear fusion research field. • Nuclear fusion is a future alternative for power and energy resources generation for world humanity consumption. - Abstract: This paper describes a Peripheral Component Interconnect Express (PCIe) hotplug and hotswap capability implementation for advanced telecommunication computer architecture (ATCA) based instrumentation. PCIe hotplug provides card insertion and removal capability from a running PCIe-based platform without causing system damages and not requiring an entire system shutdown. PCIe hotswap allows endpoints or PCIe switches with endpoint cards to be inserted or removed from a PCIe system gracefully or unexpectedly without special considerations. Control and data acquisition (C&DAQ) cards need to be replaced from a system for fault-condition repair, hardware malfunction, firmware updates or upgrades and hardware reconfiguration. ATCA specification key features such as high reliability and high availability for C&DAQ systems strongly benefits from these capabilities taking advantage from Redhat Enterprise Linux, installed operating system, and corresponding kernel with built-in mechanisms and embedded software modules for hotplug and hotswap support. PCIe hotplug and hotswap implemented solutions in the ATCA-based prototype provides described capabilities to the C&DAQ and PCIe switch

  11. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  12. Design of a TFT-LCD Based Digital Automobile Instrument

    Directory of Open Access Journals (Sweden)

    Yunsong Xu

    2014-01-01

    instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading.

  13. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  14. Instrumentation for PSD based neutron diffractometers at Dhruva reactor

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Prafulla, S.; Srivastava, V.D.; Behare, A.; Mukhopadhyay, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2004-01-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers, shaping amplifiers, ratio ADCs (RDC). The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here. (author)

  15. Instrumentation for PSD-based neutron diffractometers at Dhruva reactor

    Science.gov (United States)

    Pande, S. S.; Borkar, S. P.; Prafulla, S.; Srivastava, V. D.; Behare, A.; Mukhopadhyay, P. K.; Ghodgaonkar, M. D.; Kataria, S. K.

    2004-08-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system [1] is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers [2], shaping amplifiers, ratio ADCs (RDC) [3]. The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here.

  16. Use of modern software - based instrumentation in safety critical systems

    International Nuclear Information System (INIS)

    Emmett, J.; Smith, B.

    2005-01-01

    Many Nuclear Power Plants are now ageing and in need of various degrees of refurbishment. Installed instrumentation usually uses out of date 'analogue' technology and is often no longer available in the market place. New technology instrumentation is generally un-qualified for nuclear use and specifically the new 'smart' technology contains 'firmware', (effectively 'soup' (Software of Uncertain Pedigree)) which must be assessed in accordance with relevant safety standards before it may be used in a safety application. Particular standards are IEC 61508 [1] and the British Energy (BE) PES (Programmable Electronic Systems) guidelines EPD/GEN/REP/0277/97. [2] This paper outlines a new instrument evaluation system, which has been developed in conjunction with the UK Nuclear Industry. The paper concludes with a discussion about on-line monitoring of Smart instrumentation in safety critical applications. (author)

  17. Safeguards instrumentation: a computer-based catalog. Second edition

    International Nuclear Information System (INIS)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community

  18. Safeguards instrumentation: a computer-based catalog. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community.

  19. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  20. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  1. [Research on medical instrument information integration technology based on IHE PCD].

    Science.gov (United States)

    Zheng, Jianli; Liao, Yun; Yang, Yongyong

    2014-06-01

    Integrating medical instruments with medical information systems becomes more and more important in healthcare industry. To make medical instruments without standard communication interface possess the capability of interoperating and sharing information with medical information systems, we developed a medical instrument integration gateway based on Integrating the Healthcare Enterprise Patient Care Device (IHE PCD) integration profiles in this research. The core component is an integration engine which is implemented according to integration profiles and Health Level Seven (HL7) messages defined in IHE PCD. Working with instrument specific Javascripts, the engine transforms medical instrument data into HL7 ORU message. This research enables medical instruments to interoperate and exchange medical data with information systems in a standardized way, and is valuable for medical instrument integration, especially for traditional instruments.

  2. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  3. Automatic track counting with an optic RAM-based instrument

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, Alfredo

    1986-01-01

    A new image sensor, the optic RAM, is now used in a microprocessor controlled instrument to read and digitize images from CR39 solid state nuclear track detectors. The system performs image analysis, filtering, tracks counting and evaluation in a fully automatic way, not requiring an optic microscope, nor photographic or television devices. The proposed system is a very compact and low power device. (author)

  4. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  5. Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling

    Science.gov (United States)

    Speidel, Stefanie; Sudra, Gunther; Senemaud, Julien; Drentschew, Maximilian; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2008-03-01

    Minimally invasive surgery has gained significantly in importance over the last decade due to the numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality (AR) techniques. In order to generate a context-aware assistance it is necessary to recognize the current state of the intervention using intraoperatively gained sensor data and a model of the surgical intervention. In this paper we present the recognition of risk situations, the system warns the surgeon if an instrument gets too close to a risk structure. The context-aware assistance system starts with an image-based analysis to retrieve information from the endoscopic images. This information is classified and a semantic description is generated. The description is used to recognize the current state and launch an appropriate AR visualization. In detail we present an automatic vision-based instrument tracking to obtain the positions of the instruments. Situation recognition is performed using a knowledge representation based on a description logic system. Two augmented reality visualization programs are realized to warn the surgeon if a risk situation occurs.

  6. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  7. Preliminary investigations on TINI based distributed instrumentation systems

    International Nuclear Information System (INIS)

    Bezboruah, T.; Kalita, M.

    2006-04-01

    A prototype web enabled distributed instrumentation system is being proposed in the Department of Electronics Science, Gauhati University, Assam, India. The distributed instrumentation system contains sensors, legacy hardware, TCP/IP protocol converter, TCP/IP network Ethernet, Database Server, Web/Application Server and Client PCs. As part of the proposed work, Tiny Internet Interface (TINI, TBM390: Dallas Semiconductor) has been deployed as TCP/IP stack, and java programming language as software tools. A feature supported by Java, that is particularly relevant to the distributed system is its applet. An applet is a java class that can be downloaded from the web server and can be run in a context application such as web browser or an applet viewer. TINI has been installed as TCP/IP stack, as it is the best suited embedded system with java programming language and it has been uniquely designed for communicating over One Wire Devices (OWD) over network. Here we will discuss the hardware and software aspects of TINI with OWD for the present system. (author)

  8. New methods of magnet-based instrumentation for NOTES.

    Science.gov (United States)

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  9. An Automated Sorting System Based on Virtual Instrumentation Techniques

    Directory of Open Access Journals (Sweden)

    Rodica Holonec

    2008-07-01

    Full Text Available The application presented in this paper represents an experimental model and it refers to the implementing of an automated sorting system for pieces of same shape but different sizes and/or colors. The classification is made according to two features: the color and weight of these pieces. The system is a complex combination of NI Vision hardware and software tools, strain gauges transducers, signal conditioning connected to data acquisition boards, motion and control elements. The system is very useful for students to learn and experiment different virtual instrumentation techniques in order to be able to develop a large field of applications from inspection and process control to sorting and assembly

  10. Optimization of Orchestral Layouts Based on Instrument Directivity Patterns

    Science.gov (United States)

    Stroud, Nathan Paul

    The experience of hearing an exceptional symphony orchestra perform in an excel- lent concert hall can be profound and moving, causing a level of excitement not often reached for listeners. Romantic period style orchestral music, recognized for validating the use of intense emotion for aesthetic pleasure, was the last significant development in the history of the orchestra. In an age where orchestral popularity is waning, the possibil- ity of evolving the orchestral sound in our modern era exists through the combination of our current understanding of instrument directivity patterns and their interaction with architectural acoustics. With the aid of wave field synthesis (WFS), newly proposed variations on orchestral layouts are tested virtually using a 64-channel WFS array. Each layout is objectively and subjectively compared for determination of which layout could optimize the sound of the orchestra and revitalize the excitement of the performance.

  11. An instrument for the assessment of diarrhoeal severity based on a longitudinal community-based study

    Science.gov (United States)

    Lee, Gwenyth; Peñataro Yori, Pablo; Paredes Olortegui, Maribel; Caulfield, Laura E; Sack, David A; Fischer-Walker, Christa; Black, Robert E; Kosek, Margaret

    2014-01-01

    Objective Diarrhoea is a significant contributer to morbidity and is among the leading causes of death of children living in poverty. As such, the incidence, duration and severity of diarrhoeal episodes in the household are often key variables of interest in a variety of community-based studies. However, there currently exists no means of defining diarrhoeal severity that are (A) specifically designed and adapted for community-based studies, (B) associated with poorer child outcomes and (C) agreed on by the majority of researchers. Clinical severity scores do exist and are used in healthcare settings, but these tend to focus on relatively moderate-to-severe dehydrating and dysenteric disease, require trained observation of the child and, given the variability of access and utilisation of healthcare, fail to sufficiently describe the spectrum of disease in the community setting. Design Longitudinal cohort study. Setting Santa Clara de Nanay, a rural community in the Northern Peruvian Amazon. Participants 442 infants and children 0–72 months of age. Main outcome measures Change in weight over 1-month intervals and change in length/height over 9-month intervals. Results Diarrhoeal episodes with symptoms of fever, anorexia, vomiting, greater number of liquid stools per day and greater number of total stools per day were associated with poorer weight gain compared with episodes without these symptoms. An instrument to measure the severity was constructed based on the duration of these symptoms over the course of a diarrhoeal episode. Conclusions In order to address limitations of existing diarrhoeal severity scores in the context of community-based studies, we propose an instrument comprised of diarrhoea-associated symptoms easily measured by community health workers and based on the association of these symptoms with poorer child growth. This instrument can be used to test the impact of interventions on the burden of diarrhoeal disease. PMID:24907244

  12. Single-item screening for agoraphobic symptoms : validation of a web-based audiovisual screening instrument

    NARCIS (Netherlands)

    van Ballegooijen, Wouter; Riper, Heleen; Donker, Tara; Martin Abello, Katherina; Marks, Isaac; Cuijpers, Pim

    2012-01-01

    The advent of web-based treatments for anxiety disorders creates a need for quick and valid online screening instruments, suitable for a range of social groups. This study validates a single-item multimedia screening instrument for agoraphobia, part of the Visual Screener for Common Mental Disorders

  13. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  14. The Domain Five Observation Instrument: A Competency-Based Coach Evaluation Tool

    Science.gov (United States)

    Shangraw, Rebecca

    2017-01-01

    The Domain Five Observation Instrument (DFOI) is a competency-based observation instrument recommended for sport leaders or researchers who wish to evaluate coaches' instructional behaviors. The DFOI includes 10 behavior categories and four timed categories that encompass 34 observable instructional benchmarks outlined in domain five of the…

  15. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  16. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  17. Practical guidelines for developing a smartphone-based survey instrument

    DEFF Research Database (Denmark)

    Ohme, Jakob; de Vreese, Claes Holger; Albæk, Erik

    The increasing relevance of mobile surveys makes it important to gather empirical evidence on designs of such surveys. This research note presents the results of a test study conducted to identify the best set-up for a smartphone-based survey. We base our analysis on a random sample of Danish...

  18. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  19. Developing evaluation instrument based on CIPP models on the implementation of portfolio assessment

    Science.gov (United States)

    Kurnia, Feni; Rosana, Dadan; Supahar

    2017-08-01

    This study aimed to develop an evaluation instrument constructed by CIPP model on the implementation of portfolio assessment in science learning. This study used research and development (R & D) method; adapting 4-D by the development of non-test instrument, and the evaluation instrument constructed by CIPP model. CIPP is the abbreviation of Context, Input, Process, and Product. The techniques of data collection were interviews, questionnaires, and observations. Data collection instruments were: 1) the interview guidelines for the analysis of the problems and the needs, 2) questionnaire to see level of accomplishment of portfolio assessment instrument, and 3) observation sheets for teacher and student to dig up responses to the portfolio assessment instrument. The data obtained was quantitative data obtained from several validators. The validators consist of two lecturers as the evaluation experts, two practitioners (science teachers), and three colleagues. This paper shows the results of content validity obtained from the validators and the analysis result of the data obtained by using Aikens' V formula. The results of this study shows that the evaluation instrument based on CIPP models is proper to evaluate the implementation of portfolio assessment instruments. Based on the experts' judgments, practitioners, and colleagues, the Aikens' V coefficient was between 0.86-1,00 which means that it is valid and can be used in the limited trial and operational field trial.

  20. Testing Differential Effects of Computer-Based, Web-Based and Paper-Based Administration of Questionnaire Research Instruments

    Science.gov (United States)

    Hardre, Patricia L.; Crowson, H. Michael; Xie, Kui; Ly, Cong

    2007-01-01

    Translation of questionnaire instruments to digital administration systems, both self-contained and web-based, is widespread and increasing daily. However, the literature is lean on controlled empirical studies investigating the potential for differential effects of administrative methods. In this study, two university student samples were…

  1. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  2. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  3. Microcontroller-based data logging instrumentation system for wind ...

    African Journals Online (AJOL)

    In this study, a microcontroller based data logger for measuring wind speed and wind direction has been designed. The designed system uses the Atmel microcontroller family which consists of sensor inputs, a microcontroller and a data storage device. The system was designed and developed to measure the wind speed ...

  4. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  5. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  6. Intercomparison of radiation protection instruments based on microdosimetric principles

    International Nuclear Information System (INIS)

    Dietze, G.; Guldbakke, S.; Kluge, H.; Schmitz, T.

    1986-11-01

    Dosemeters based on low-pressure tissue-equivalent proportional counters were developed for the application in radiation protection area monitoring by several groups in Europe. Five different prototypes have been intercompared in a 60 Co photon field, in monoenergetic neutron fields with various energies between 73 keV and 5 MeV and in three neutron fields at a 252 Cf source moderated by a D 2 O sphere. This report describes the radiation fields, the measuring devices and first results of the intercomparison. Additional measurements with a system used in microdosimetry and with a conventional dose equivalent rate meter for neutrons (Rem Counter) were also described. (orig.) [de

  7. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Qiu Yingyu; Zhang Jiang

    2007-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  8. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Chen Jianjun; Zhang Jiang

    2008-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  9. The design of a simple portable γ ray detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Liu Chunmei; Cao Wen; Zhang Jiang

    2008-01-01

    The internal composition of the γ ray detecting instrument based on MCU and the working of the real electric circuit are introduced. The single-chip microcomputer of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  10. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  11. Laser-based instrumentation for the detection of chemical agents

    International Nuclear Information System (INIS)

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures

  12. Analysis and research of PWR instrument commissioning based on Simulink

    International Nuclear Information System (INIS)

    Luan Zhenhua; Liu Daoguang; Qiu Shaoshuai; Yang Zongwei; Feng Guangyu

    2013-01-01

    Based on Simulink platform, a mathematical model of the lead lag link, differential unit, arithmetic logic module is built. Considering the specific problems encountered in the debug field work, this model is applied in the analysis of key modules and controller and in the resolving of eddy current problems. The test process dynamic control characteristic is simulated, to analyze the trend of the actual response, and conduct the simulation study and propose the concrete solutions. The actual debugging process proved that the use of simulation technology to find the problem, optimize the control data, and adjust the control strategy is very important for the early detection of problems and to speed the test process, shorten the debug duration and increase the debug quality. (authors)

  13. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  14. Development of a web based instrument on higher education structures of industrial engineering

    OpenAIRE

    Tarba Ioan-Cristian

    2017-01-01

    The research and development of assisted operational instruments on higher education structures of industrial engineering represent a continuous and complex process. The present paper contributes to the building up of support elements and an assisted operational instrument on higher education structures of industrial engineering, with focus on the specific curricula. The use of tested and validated constructive solutions from other projects, as base for the new design, reduces the design time.

  15. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    Science.gov (United States)

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.

  16. A Reliability and Validity of an Instrument to Evaluate the School-Based Assessment System: A Pilot Study

    Science.gov (United States)

    Ghazali, Nor Hasnida Md

    2016-01-01

    A valid, reliable and practical instrument is needed to evaluate the implementation of the school-based assessment (SBA) system. The aim of this study is to develop and assess the validity and reliability of an instrument to measure the perception of teachers towards the SBA implementation in schools. The instrument is developed based on a…

  17. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Microprocessor-based, on-line decision aid for resolving conflicting nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    We describe one design for a microprocessor-based, on-line decision aid for identifying and resolving false, conflicting, or misleading instrument indications resulting from certain systems interactions for a pressurized water reactor. The system processes sensor signals from groups of instruments that track together under nominal transient and certain accident conditions, and alarms when they do not track together. We examine multiple-casualty systems interaction and formulate a trial grouping of variables that track together under specified conditions. A two-of-three type redundancy check of key variables provides alarm and indication of conflicting information when one signal suddenly tracks in opposition due to multiple casualty, instrument failure, and/or locally abnormal conditions. Since a vote count of two of three variables in conflict as inconclusive evidence, the system is not designed to provide tripping or corrective action, but improves the operator/instrument interface by providing additional and partially digested information

  19. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  20. Development of an international standard on instruments setpoints based on ISA S67.04 - 1994

    International Nuclear Information System (INIS)

    Quinn, E.L.

    1996-01-01

    This is a summary of the application for and development of an international standard on instrument setpoints, based on the Instrument Society of America (ISA) Standard S67.04 - 1994. The forum this new standard was proposed in is the International Electrotechnique Commission (IEC), based in Geneva, Switzerland, which is the international commission which oversees electrical and instrumentation standards for all applications around the world. The Instrument Society of America (ISA) is a United States based Society for the advancement of instrumentation and controls related science and technology and has 30,000 members. A division within the ISA is the Standard and Practices board which has over 5000 members actively involved in standards development and approval. In 1994, the ISA SP67, Nuclear Power Plant Standards Committee authorized that the IEC be approached to develop and issue an IEC standard on Instrument Setpoints. This application was formally submitted in January, 1995 to the IEC and approved for ballot to member countries in June, 1995. Approval for standard development by IEC was received in October, 1995 and the first draft vas issued in February, 1996, and is currently under review by the IEC working group. It is very important to focus on the approach that the U.S. and other countries are taking toward development of IEC standards that can apply to all nuclear instrumentation applications around the world. By referencing IEC standards in design specification, vendors can be solicited from many different countries, thereby ensuring that the highest quality products can be used. This also offsets the need to specify individual standards in the specification, based on the country that each vendor solicited, represents. In summary, this standard development process, with support from the American National Standards Institute (ANSI) will assist U.S. suppliers in competing in the global market for products and services into the next century. (author)

  1. Reliability assessment of a peer evaluation instrument in a team-based learning course

    Directory of Open Access Journals (Sweden)

    Wahawisan J

    2016-03-01

    Full Text Available Objective: To evaluate the reliability of a peer evaluation instrument in a longitudinal team-based learning setting. Methods: Student pharmacists were instructed to evaluate the contributions of their peers. Evaluations were analyzed for the variance of the scores by identifying low, medium, and high scores. Agreement between performance ratings within each group of students was assessed via intra-class correlation coefficient (ICC. Results: We found little variation in the standard deviation (SD based on the score means among the high, medium, and low scores within each group. The lack of variation in SD of results between groups suggests that the peer evaluation instrument produces precise results. The ICC showed strong concordance among raters. Conclusions: Findings suggest that our student peer evaluation instrument provides a reliable method for peer assessment in team-based learning settings.

  2. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  3. A compact HV supply for field/PC based nuclear instrumentation

    International Nuclear Information System (INIS)

    Manna, A.; Nikhare, D.M.; Madhavi, V.; Bayala, A.K.; Mukhopadhyay, P.K.; Kataria, S.K.

    2001-01-01

    In the recent years, most of the nuclear instruments that were earlier based on NIM Bin standards, are becoming available as PC Add-on cards. This trend is due to the decreasing prices of desktop personal computers and the necessity for automation in radioactivity measurements. This paper describes the design and development of a HV supply module and its PC Add-on card version for field portable/ PC based nuclear instrumentation. The HV supply though being very compact in size meets all the stringent specifications required for detector biasing applications and it has been tested for use with NaI, BF 3 . (author)

  4. A Method for Modeling the Virtual Instrument Automatic Test System Based on the Petri Net

    Institute of Scientific and Technical Information of China (English)

    MA Min; CHEN Guang-ju

    2005-01-01

    Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.

  5. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  6. The Pediatrics Milestones Assessment Pilot: Development of Workplace-Based Assessment Content, Instruments, and Processes.

    Science.gov (United States)

    Hicks, Patricia J; Margolis, Melissa; Poynter, Sue E; Chaffinch, Christa; Tenney-Soeiro, Rebecca; Turner, Teri L; Waggoner-Fountain, Linda; Lockridge, Robin; Clyman, Stephen G; Schwartz, Alan

    2016-05-01

    To report on the development of content and user feedback regarding the assessment process and utility of the workplace-based assessment instruments of the Pediatrics Milestones Assessment Pilot (PMAP). One multisource feedback instrument and two structured clinical observation instruments were developed and refined by experts in pediatrics and assessment to provide evidence for nine competencies based on the Pediatrics Milestones (PMs) and chosen to inform residency program faculty decisions about learners' readiness to serve as pediatric interns in the inpatient setting. During the 2012-2013 PMAP study, 18 U.S. pediatric residency programs enrolled interns and subinterns. Faculty, residents, nurses, and other observers used the instruments to assess learner performance through direct observation during a one-month rotation. At the end of the rotation, data were aggregated for each learner, milestone levels were assigned using a milestone classification form, and feedback was provided to learners. Learners and site leads were surveyed and/or interviewed about their experience as participants. Across the sites, 2,338 instruments assessing 239 learners were completed by 630 unique observers. Regarding end-of-rotation feedback, 93% of learners (128/137) agreed the assessments and feedback "helped me understand how those with whom I work perceive my performance," and 85% (117/137) agreed they were "useful for constructing future goals or identifying a developmental path." Site leads identified several benefits and challenges to the assessment process. PM-based instruments used in workplace-based assessment provide a meaningful and acceptable approach to collecting evidence of learner competency development. Learners valued feedback provided by PM-based assessment.

  7. DEVELOPMENT OF PERFORMANCE ASSESSMENT INSTRUMENT FOR NURSES BASED ON WEB IN INPATIENT UNIT

    Directory of Open Access Journals (Sweden)

    Aprilia Nuryanti

    2017-06-01

    Full Text Available Introduction: Performance assessment instrument will be problematic when it is not representative in describing the competency because it is not obvious indicators and inappropriate performance standard to nursing’s task. The purpose of this study is to develop nurses’ performance assessment instrument based on the web from multi sources assessment inpatient unit at SMC Hospital. Methods: This study had two phases. The first phase was an explanatory overview of the performance assessment system using questionnaires completed by 53 respondents of nurses, selected by purposive sampling. Instrument development based on FGD with six decision makers in the hospital. Validity was tested by Pearson Product Moment Correlation and reliability of instrument’s was tested by alpha Cronbach. The second phase was socialization and instrument test to observe the quality of instrument using a questionnaire by 47 respondents and recommendations made by 8 participants of FGD. The samples were selected by purposive sampling technique. Performance assessment system was moderate at 58.49%. All questions which aimed to measure the performance of nurses were valid and reliable. The quality of nurses’ performance assessment instruments based on the web was a good category, which was functionality: 81.60; reliability: 78.16; efficiency: 80.85; usability: 81.70 and portability: 81.70. Results: The result was a web-based assessment format, scoring with Likert scale, resource assessment by the direct supervisor which was a multisource evaluator, the development of performance graph, and confidentiality of data on the database server. Discussion: Recommendations for hospital is to make policy based on the final value of the performance assessment by the supervisor which was multisource feedback and it needs a global writing on a form of performance assessment result.

  8. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R; O'Brien, D; Nelson, J; Kamperschroer, J

    2007-01-01

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed

  9. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; O' Brien, D; Nelson, J; Kamperschroer, J

    2007-05-07

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the

  10. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  11. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  12. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  13. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    Science.gov (United States)

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  14. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  15. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  16. A Checklist for Reporting Valuation Studies of Multi-Attribute Utility-Based Instruments (CREATE)

    NARCIS (Netherlands)

    Xie, Feng; Pickard, A. Simon; Krabbe, Paul F. M.; Revicki, Dennis; Viney, Rosalie; Devlin, Nancy; Feeny, David

    Multi-attribute utility-based instruments (MAUIs) assess health status and provide an index score on the full health-dead scale, and are widely used to support reimbursement decisions for new healthcare interventions worldwide. A valuation study is a key part of the development of MAUIs, with the

  17. Explaining perceived oral texture of starch-based custard desserts from standard and novel instrumental tests

    NARCIS (Netherlands)

    Wijk, R.A.de; Prinz, J.F.; Janssen, A.M.

    2006-01-01

    A number of in vitro and in vivo instrumental tests have been developed to reflect various aspects of the perceived oral texture of starch-based vanilla custard desserts. These tests include measurements of the food's infra-red reflectance (IRR), of the turbidity of spat-out rinse water, and of the

  18. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  19. USB port compatible virtual instrument based automation for x-ray diffractometer setup

    International Nuclear Information System (INIS)

    Jayapandian, J.; Sheela, O.K.; Mallika, R.; Thiruarul, A.; Purniah, B.

    2004-01-01

    Windows based virtual instrument (VI) programs in graphic language simplify the design automation in R and D laboratories. With minimal hardware and maximum support of software, the automation becomes easier and user friendly. A novel design approach for the automation of SIEMENS make x-ray diffractometer setup is described in this paper. The automation is achieved with an indigenously developed virtual instrument program in labVIEW ver.6.0 and with a simple hardware design using 89C2051 micro-controller compatible with PC's USB port for the total automation of the experiment. (author)

  20. Design and implementation of embedded ion mobility spectrometry instrument based on SOPC

    Science.gov (United States)

    Zhang, Genwei; Zhao, Jiang; Yang, Liu; Liu, Bo; Jiang, Yanwei; Yang, Jie

    2015-02-01

    On the hardware platform with single CYCLONE IV FPGA Chip based on SOPC technology, the control functions of IP cores of a Ion Mobility Spectrometry instrument was tested, including 32 bit Nios II soft-core processor, high-voltage module, ion gate switch, gas flow, temperature and pressure sensors, signal acquisition and communication protocol. Embedded operating system μCLinux was successfully transplanted to the hardware platform, used to schedule all the tasks, such as system initialization, parameter setting, signal processing, recognition algorithm and results display. The system was validated using the IMS diagram of Acetone reagent, and the instrument was proved to have a strong signal resolution.

  1. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  2. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-01-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes

  3. The roles of lesson study in the development of mathematics learning instrument based on learning trajectory

    Science.gov (United States)

    Misnasanti; Dien, C. A.; Azizah, F.

    2018-03-01

    This study is aimed to describe Lesson Study (LS) activity and its roles in the development of mathematics learning instruments based on Learning Trajectory (LT). This study is a narrative study of teacher’s experiences in joining LS activity. Data collecting in this study will use three methods such as observation, documentations, and deep interview. The collected data will be analyzed with Milles and Huberman’s model that consists of reduction, display, and verification. The study result shows that through LS activity, teachers know more about how students think. Teachers also can revise their mathematics learning instrument in the form of lesson plan. It means that LS activity is important to make a better learning instruments and focus on how student learn not on how teacher teach.

  4. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I. [Research and Production Corporation Radiy, 29 Geroev Stalingrada Str., Kirovograd 25006 (Ukraine); Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A., E-mail: marketing@radiy.co [Center for Safety Infrastructure-Oriented Research and Analysis, 37 Astronomicheskaya Str., Kharkiv 61085 (Ukraine)

    2010-10-15

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY{sup TM} platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY{sup TM} platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY{sup TM} platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  5. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    International Nuclear Information System (INIS)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I.; Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A.

    2010-10-01

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY TM platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY TM platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY TM platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  6. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  7. Validation of an empirically based instrument for the assessment of the quality of teaching in medicine

    OpenAIRE

    Prescher, Anja

    2016-01-01

    Measuring the quality of teaching is a necessary prerequisite for the evaluation and development of medical education and thus for high-quality patient care. Corresponding quality indicators can make the feedback for teachers comprehensible. A completely empirically based instrument for the assessment of the quality of teaching in medicine has not yet been described. Ten empirically based criteria from the field of general pedagogy were developed: clear structure, amount of true learning time...

  8. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  9. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    Science.gov (United States)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  11. Development of a Symptom-Based Patient-Reported Outcome Instrument for Functional Dyspepsia: A Preliminary Conceptual Model and an Evaluation of the Adequacy of Existing Instruments.

    Science.gov (United States)

    Taylor, Fiona; Reasner, David S; Carson, Robyn T; Deal, Linda S; Foley, Catherine; Iovin, Ramon; Lundy, J Jason; Pompilus, Farrah; Shields, Alan L; Silberg, Debra G

    2016-10-01

    The aim was to document, from the perspective of the empirical literature, the primary symptoms of functional dyspepsia (FD), evaluate the extent to which existing questionnaires target those symptoms, and, finally, identify any missing evidence that would impact the questionnaires' use in regulated clinical trials to assess treatment efficacy claims intended for product labeling. A literature review was conducted to identify the primary symptoms of FD and existing symptom-based FD patient-reported outcome (PRO) instruments. Following a database search, abstracts were screened and articles were retrieved for review. The primary symptoms of FD were organized into a conceptual model and the PRO instruments were evaluated for conceptual coverage as well as compared against evidentiary requirements presented in the FDA's PRO Guidance for Industry. Fifty-six articles and 16 instruments assessing FD symptoms were reviewed. Concepts listed in the Rome III criteria for FD (n = 7), those assessed by existing FD instruments (n = 34), and symptoms reported by patients in published qualitative research (n = 6) were summarized in the FD conceptual model. Except for vomiting, all of the identified symptoms from the published qualitative research reports were also specified in the Rome III criteria. Only three of the 16 instruments, the Dyspepsia Symptom Severity Index (DSSI), Nepean Dyspepsia Index (NDI), and Short-Form Nepean Dyspepsia Index (SF-NDI), measure all seven FD symptoms defined by the Rome III criteria. Among these three, each utilizes a 2-week recall period and 5-point Likert-type scale, and had evidence of patient involvement in development. Despite their coverage, when these instruments were evaluated in light of regulatory expectations, several issues jeopardized their potential qualification for substantiation of a labeling claim. No existing PRO instruments that measured all seven symptoms adhered to the regulatory principles necessary to support product

  12. Replacement of the control and instrumentation system with the microprocessor based systems in Japanese PWR plants

    International Nuclear Information System (INIS)

    Hayashi, N.

    1998-01-01

    In Ohi Units 3 and 4, Ikata Unit 3, and Genkai Units 3 and 4, the latest of PWR plants now under operation in Japan, the reactor control system and turbine control system employ the microprocessor base digital control systems with a view to improving reliability, operability and maintainability. In the next stage plants, another application of such digital system is also planned for the instrumentation rack for the reactor protection system for further improvement. On the other hand, in Mihama Unit 1, the first of domestic PWR plants, and later plants except for the latest 5 plants, analog control systems are employed for the instrumentation racks. For the analog control systems of these plants, FOXBORO H-Line instruments, equivalent domestic box type instruments or WH7300 Series card type instruments were initially employed, and later replaced with domestic card type control systems after 10-15 year operation. However, 8-12 years have passed since these replacements, so the 15th year generally quoted as an interval for replacing C and I systems is near at hand. This is the time to consider next replacement. This replacement will be based on the latest digital technology. However, it is not practical way for the existing plants to apply the same integrated digital C and I system configuration for the next stage plants, because it requires the drastic change of the C and I system configuration and significant cost-up. Therefore, we must investigate the optimum digital C and I system configuration for the existing system. (author)

  13. Quality of persian addiction websites: a survey based on silberg, discern and wqet instruments (2011).

    Science.gov (United States)

    Zahedi, Razieh; Taheri, Behjat; Shahrzadi, Leila; Tazhibi, Mehdi; Ashrafi-rizi, Hasan

    2013-03-01

    Nowadays, World Wide Web is an accessible and widespread resource to attain medical information. So physicians and health institutions try to inform patients about different domains of medicine through Web. Addiction is a noteworthy subject in medicine and a controversial issue among them. However, quality of health information on the internet is doubtful. The objective of this study is to determine the quality of Persian addiction websites to offer recommendation for their improvement. This was survey and an applied study that the study population was all Persian addiction websites. Sample of this study was 28 Persian addiction website which were chosen by searching Persian equivalences of 7 key terms (addiction, addict, addiction center, drug, treatment of addiction, recovery of addiction, addiction withdrawal) into the Google and Yahoo search engines. Finally, the websites were ranked based on the Silberg, DISCERN and WQET instruments. Data were analyzed with Excel software using descriptive statistics. The overall mean of websites in Silberg, DISCERN and WQET instruments were 1.42, 41.89, 64.57. Also the results showed that "Unit of Substance Abuse Treatment" belonging to Mashhad University of Medical Sciences was ranked first based on the Silberg, DISCERN and WQET instruments. 5 (from total of 9), 60 (from total of 80) and 82 (from total of normalized grade 82) were grades for this website for these instruments respectively. It showed that the quality of Persian websites according to Silberg, DISCERN and WQET instruments was "low", "more than half" and "very good" respectively. Not assigning date of entering data, author names, and references of information (authority) were most important missing characteristics of these websites. In addition, lack of interactive opportunities like chat rooms was another problem that leads to dissatisfaction of users.

  14. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  15. Playing a Musical Instrument as a Protective Factor against Dementia and Cognitive Impairment: A Population-Based Twin Study.

    Science.gov (United States)

    Balbag, M Alison; Pedersen, Nancy L; Gatz, Margaret

    2014-01-01

    Increasing evidence supports that playing a musical instrument may benefit cognitive development and health at young ages. Whether playing an instrument provides protection against dementia has not been established. In a population-based cotwin control study, we examined the association between playing a musical instrument and whether or not the twins developed dementia or cognitive impairment. Participation in playing an instrument was taken from informant-based reports of twins' leisure activities. Dementia diagnoses were based on a complete clinical workup using standard diagnostic criteria. Among 157 twin pairs discordant for dementia and cognitive impairment, 27 pairs were discordant for playing an instrument. Controlling for sex, education, and physical activity, playing a musical instrument was significantly associated with less likelihood of dementia and cognitive impairment (odds ratio [OR] = 0.36 [95% confidence interval 0.13-0.99]). These findings support further consideration of music as a modifiable protective factor against dementia and cognitive impairment.

  16. The relative efficiency of market-based environmental policy instruments with imperfect compliance

    OpenAIRE

    Rousseau, Sandra; Proost, Stef

    2004-01-01

    This paper examines to what extent incomplete compliance of environmental regulation mitigates the distortions caused by pre-existing labour taxes. We study the relative cost efficiency of three market-based instruments: emission taxes, tradable permits and output taxes. In a first-best setting and given that monitoring and enforcement is costless, we find that the same utility levels can be reached with and without incomplete compliance. However, allowing for violations makes the policy i...

  17. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  18. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    Science.gov (United States)

    Lin, Chien-Liang

    2018-01-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and…

  19. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  20. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  1. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  2. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  3. Content comparison of occupation-based instruments in adult rheumatology and musculoskeletal rehabilitation based on the International Classification of Functioning, Disability and Health.

    Science.gov (United States)

    Stamm, Tanja A; Cieza, Alarcos; Machold, Klaus P; Smolen, Josef S; Stucki, Gerold

    2004-12-15

    To compare the content of clinical, occupation-based instruments that are used in adult rheumatology and musculoskeletal rehabilitation in occupational therapy based on the International Classification of Functioning, Disability and Health (ICF). Clinical instruments of occupational performance and occupation in adult rehabilitation and rheumatology were identified in a literature search. All items of these instruments were linked to the ICF categories according to 10 linking rules. On the basis of the linking, the content of these instruments was compared and the relationship between the capacity and performance component explored. The following 7 instruments were identified: the Canadian Occupational Performance Measure, the Assessment of Motor and Process Skills, the Sequential Occupational Dexterity Assessment, the Jebson Taylor Hand Function Test, the Moberg Picking Up Test, the Button Test, and the Functional Dexterity Test. The items of the 7 instruments were linked to 53 different ICF categories. Five items could not be linked to the ICF. The areas covered by the 7 occupation-based instruments differ importantly: The main focus of all 7 instruments is on the ICF component activities and participation. Body functions are covered by 2 instruments. Two instruments were linked to 1 single ICF category only. Clinicians and researchers who need to select an occupation-based instrument must be aware of the areas that are covered by this instrument and the potential areas that are not covered at all.

  4. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  5. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  6. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    Science.gov (United States)

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  7. Development and design of a late-model fitness test instrument based on LabView

    Science.gov (United States)

    Xie, Ying; Wu, Feiqing

    2010-12-01

    Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.

  8. Robust IFE Based Order Analysis of Rotating Machinery in Virtual Instrument

    International Nuclear Information System (INIS)

    Guo, Y; Chi, Y L; Huang, Y Y; Qin, S R

    2006-01-01

    Character analysis plays an important role in fault-find and diagnosis of rotating machinery. Order analysis is one of the major methods in character analysis for the analysis of non-stationary vibration signals in run-up or coast down of rotating machinery. An order analysis method, which employs instantaneous frequency estimation based on time-frequency analysis, is introduced. In contrast with traditional order analysis methods, this method avoids the use of tachometer and other special hardware; hence it makes the application of order analysis simplified. The order analysis introduced in the paper with the character that only software is depended for order tracking makes it specially satisfy the requirement of Virtual Instruments. Corresponding order analysis items, such as order spectrum, order spectrum matrix and tracking order spectrum etc., which are applied in Virtual Instruments, are also introduced. A test example is provided to demonstrate the validity of the method presented

  9. Recent applications of microprocessor-based instruments in nuclear power stations

    International Nuclear Information System (INIS)

    Cash, N.R.; Dennis, U.E.

    1988-01-01

    The incorporation of microprocessors in the design of nuclear power plant instrumentation has led to levels of measurement and control not available previously. In addition to the expected expansion of functional (system) capability, numerous desirable features now are possible. The added ability to both self-calibrate and perform compensation algorithms has led to dramatic improvements in accuracies, response times, and noise rejection. Automated performance checking and self-testing simplify troubleshooting and required periodic surveillance. Alphanumeric displays allow both menu-driven operation and user-prompting, which, in turn, contribute to mistake avoidance. New features of these microprocessor-based instruments are of specific benefit in nuclear power reactors, were safety is of prime concern. Greater reliability and accuracy can be provided. Shortened calibration, surveillance, and repair times reduce the exposure to unnecessary challenges of the plant's protection systems that can arise from spurious noise signals

  10. Virtual instrumention-based linearity test platform for DCCT of digital power supply at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian; Liu Hong

    2008-01-01

    Based on virtual instrumentation, a reliable and effective test platform, performing instrument control, data acquisition and data recording, has been established to evaluate linearity of high performance DCCT (DC current transducer) for digital power supply at Shanghai Synchrotron Radiation Facility (SSRF). The software in LabVIEW language was developed to perform computer communication via serial communication (RS232) and GPIB, providing a friendly user interface to the linearity test platform. This makes it easy to test the linearity and control power on or off and current output of high-precision and high-current DC constant current output power supply. The experimental data, stored in an EXCEL file, can be processed to obtain DCCT linearity, and provide basis to further analyze DCCT performance in the future. (authors)

  11. A model of the demand for Islamic banks debt-based financing instrument

    Science.gov (United States)

    Jusoh, Mansor; Khalid, Norlin

    2013-04-01

    This paper presents a theoretical analysis of the demand for debt-based financing instruments of the Islamic banks. Debt-based financing, such as through baibithamanajil and al-murabahah, is by far the most prominent of the Islamic bank financing and yet it has been largely ignored in Islamic economics literature. Most studies instead have been focusing on equity-based financing of al-mudharabah and al-musyarakah. Islamic bank offers debt-based financing through various instruments derived under the principle of exchange (ukud al-mu'awadhat) or more specifically, the contract of deferred sale. Under such arrangement, Islamic debt is created when goods are purchased and the payments are deferred. Thus, unlike debt of the conventional bank which is a form of financial loan contract to facilitate demand for liquid assets, this Islamic debt is created in response to the demand to purchase goods by deferred payment. In this paper we set an analytical framework that is based on an infinitely lived representative agent model (ILRA model) to analyze the demand for goods to be purchased by deferred payment. The resulting demand will then be used to derive the demand for Islamic debt. We also investigate theoretically, factors that may have an impact on the demand for Islamic debt.

  12. DESIGNING AFFECTIVE INSTRUMENT BASED ON SCIENTIFIC APPROACH FOR ENGLISH LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Maisarah Ira

    2018-01-01

    Full Text Available This research was describing the designing of instrument for affective assessment in English language teaching. The focus of the designing was only for observation sheet that will be used by English teachers during the teaching and learning process. The instrument was designed based on scientific approach that has five stages namely observing, questioning, experimenting, associating, and communicating. In the designing process, ADDIE Model was used as the method of research. The designing of instrument was considering the gap between the reality and the teachers’ need. The result showed that the designing was also notice to the affective taxonomy such as receiving, responding, valuing, organization, and characterization. Then, three key words were used as the indicator to show the five levels of affective taxonomy such as seriously, volunteer, and without asked by teacher. Furthermore, eighteen types of affective such as religious, honesty, responsible, discipline, hard work, self confidence, logical thinking, critical thinking, creative, innovative, independent, curiosity, love knowledge, respect, polite, democracy, emotional intelligence, and pluralist were put on each stage of scientific approach. So, it is hoped that can be implemented in all of context of English language teaching at schools and can assess the students’ affective comprehensively.

  13. Promoting Environmental Justice through Civil-Based Instruments in South Africa

    Directory of Open Access Journals (Sweden)

    Michelle Toxopeüs and Louis J. Kotzé

    2017-06-01

    Full Text Available Achieving environmental justice in South Africa is critically important, not only because of historical reasons rooted in the country’s apartheid past, but also to ensure that everyone in the country, especially marginalized and vulnerable sectors of society, are properly protected from disproportional environmental impacts. Another aim of environmental justice in South Africa is to ensure that everyone equally shares in the benefits of the country’s resources. In this article, we interrogate ways through which to achieve environmental justice in South Africa through the use of civil-based instruments (CBIs of environmental governance. The central hypothesis is that CBIs are particularly well-suited to contribute to the achievement of environmental justice since they are essentially instruments which empower civil society to become central stakeholders in environmental governance by fostering active participation in the decisions that may impact on the environment and people’s health and well-being. Through these instruments all of society, particularly disenfranchised people suffering most from environmental injustice, are afforded a platform to pursue their environment-related interests that may be affected by the decisions taken by government and private actors such as polluting companies. For the purpose of the discussion we focus specifically on public participation, access to information and access to justice, all of which are generally accepted as CBIs, including in international law.

  14. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046 Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Trombka, Jacob I. [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Floyd, Samuel [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Selavka, Carl [Massachusetts State Police Crime Laboratory, 59 Horse Pond Road, Sudbury, MA 01776 (United States); Zeosky, Gerald [Forensic Investigation Center, Crime Laboratory Building, 22 State Campus, Albany, NY 12226 (United States); Gahn, Norman [Assistant District Attorney, Milwaukee County, District Attorney' s Office, 821 West State Street, Milwaukee, WI 53233-1427 (United States); McClanahan, Timothy [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Burbine, Thomas [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States)

    2005-12-15

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  15. Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method

    Science.gov (United States)

    Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao

    2018-04-01

    Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.

  16. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J., E-mail: jft@hll.mpg.d [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Andricek, L. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Aschauer, F. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Heinzinger, K. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Herrmann, S. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Hilchenbach, M. [MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Lauf, T. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Lechner, P.; Lutz, G.; Majewski, P. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Porro, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Richter, R.H. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Schnecke, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany)

    2010-12-11

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300{mu}m{sup 2}. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm{sup 2}. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  17. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    International Nuclear Information System (INIS)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R.H.; Schaller, G.; Schnecke, M.

    2010-01-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300μm 2 . Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm 2 . Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  18. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Science.gov (United States)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.

    2010-12-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  19. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    Science.gov (United States)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  20. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  1. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  2. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  3. Technical requirements on knowledge base and instrumentation system for decision making in plant operation and maintenance

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Yoshikawa, Shinji; Hasegawa, Makoto

    1998-03-01

    A series of technical surveys and studies are described in this report to examine and identify technical requirements to be posed on knowledge base and instrumentation system as the fundamental in high reliability computational decision making in operation and maintenance of nuclear power plants. Monitoring and diagnosis are focused as the important tasks among the operation/maintenance-related tasks. A concrete monitoring and diagnosis system configuration has been proposed consisting of distributed symptom database and of on-demand measurement subsystem. An prototype of the proposed system configuration has been successfully verified. (author)

  4. Cooperation in environmental protection. The economics of green trade, market-based instruments and community involvement

    International Nuclear Information System (INIS)

    Roettgers, Dirk

    2013-01-01

    The Millennium Development Goals (United Nations, 2000) and, by extension, such efforts as the Convention on Biological Diversity and the Kyoto Protocol (Kyoto Protocol, 1997), present mankind with a challenge that can only be overcome through cooperation. Cooperative policies are necessary from the highest level, i.e. international policies and treaties, to regional and national agreements, down to the local level, where policies are actually enacted. To close some gaps in the understanding of applicable policy instruments, this dissertation looks at a few key topics of environmental protection with implications for market-based instruments. The five different research areas are (1) EU bioenergy trade, (2) Clean Development Mechanism (CDM), (3) comparison of the effectiveness of product certification, ecosystem certification and offset mechanisms in wetland ecosystems, (4) international market-based instruments for African protected areas and (5) local stakeholder decision making in rural ecosystems of developing countries. Bioenergy consumption, production and trade have been increasing worldwide in the recent decade, mostly due to demand from EU countries and the USA. Taking the example of the EU, it is questionable if these trade flows are caused mainly by EU trade rules or targeted bioenergy policies. A sector-specific analysis taking industry patterns into consideration is necessary to evaluate the impact of these two policy areas on trade flows. A common way to analyze trade flows is the gravity model, which is employed here. This dissertation finds out why that is by using a gravity model to analyze flows of Certified Emission Reductions (CERs) between host and financier countries. The special roles of foreign direct investments (FDI), official development aid (ODA) and trade are scrutinized closely in this context. Findings show that FDI, ODA and trade have a positive influence on project attraction, even when holding determinants of these factors constant

  5. Cooperation in environmental protection. The economics of green trade, market-based instruments and community involvement

    Energy Technology Data Exchange (ETDEWEB)

    Roettgers, Dirk

    2013-12-18

    The Millennium Development Goals (United Nations, 2000) and, by extension, such efforts as the Convention on Biological Diversity and the Kyoto Protocol (Kyoto Protocol, 1997), present mankind with a challenge that can only be overcome through cooperation. Cooperative policies are necessary from the highest level, i.e. international policies and treaties, to regional and national agreements, down to the local level, where policies are actually enacted. To close some gaps in the understanding of applicable policy instruments, this dissertation looks at a few key topics of environmental protection with implications for market-based instruments. The five different research areas are (1) EU bioenergy trade, (2) Clean Development Mechanism (CDM), (3) comparison of the effectiveness of product certification, ecosystem certification and offset mechanisms in wetland ecosystems, (4) international market-based instruments for African protected areas and (5) local stakeholder decision making in rural ecosystems of developing countries. Bioenergy consumption, production and trade have been increasing worldwide in the recent decade, mostly due to demand from EU countries and the USA. Taking the example of the EU, it is questionable if these trade flows are caused mainly by EU trade rules or targeted bioenergy policies. A sector-specific analysis taking industry patterns into consideration is necessary to evaluate the impact of these two policy areas on trade flows. A common way to analyze trade flows is the gravity model, which is employed here. This dissertation finds out why that is by using a gravity model to analyze flows of Certified Emission Reductions (CERs) between host and financier countries. The special roles of foreign direct investments (FDI), official development aid (ODA) and trade are scrutinized closely in this context. Findings show that FDI, ODA and trade have a positive influence on project attraction, even when holding determinants of these factors constant

  6. Validation of Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL), a Performance- Based Measurement of Instrumental Activities of Daily Living for Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Chen, Hui-Mei; Lin, Hsiu-Fen; Huang, Mei-Feng; Chang, Chun-Wei; Yeh, Yi-Chun; Lo, Yi-Ching; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2016-01-01

    Patients with cerebrovascular diseases often presented both cognitive and physical impairment. Disability in everyday functioning involving cognitive impairment among patients may be hard to completely rely on informants' reports, as their reports may be confounded with physical impairment. The aim of this study was to validate a performance-based measure of functional assessment, the Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL), for vascular cognitive impairment (VCI) by examining its psychometric properties and diagnostic accuracy. Ninety-seven patients with cerebrovascular diseases, including 30 with vascular dementia (VaD), 28 with mild cognitive impairment and 39 with no cognitive impairment, and 49 healthy control adults were recruited during study period. The TPIADL, as well as the Mini Mental State Examination (MMSE), Lawton-IADL and Barthel Index (BI), were performed. The internal consistency, convergent and criteria validity of the TPIADL were examined. Cronbach's alpha of the TPIADL test was 0.84. The TPIADL scores were significantly correlated with the Lawton IADL (r = -0.587, p cognitive domain of Lawton IADL (r = -0.663) than with physical domain of Lawton IADL (r = -0.541). The area under the relative operating characteristic curve was 0.888 (95% CI = 0.812-0.965) to differentiate VaD from other groups. The optimal cut-off point of the TPIADL for detecting VaD was 6/7, which gives a sensitivity of 73.3% and a specificity of 84.5%. The TPIADL is a brief and sensitive tool for the detection of IADL impairment in patients with VaD.

  7. Validation of Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL, a Performance- Based Measurement of Instrumental Activities of Daily Living for Patients with Vascular Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Hui-Mei Chen

    Full Text Available Patients with cerebrovascular diseases often presented both cognitive and physical impairment. Disability in everyday functioning involving cognitive impairment among patients may be hard to completely rely on informants' reports, as their reports may be confounded with physical impairment. The aim of this study was to validate a performance-based measure of functional assessment, the Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL, for vascular cognitive impairment (VCI by examining its psychometric properties and diagnostic accuracy.Ninety-seven patients with cerebrovascular diseases, including 30 with vascular dementia (VaD, 28 with mild cognitive impairment and 39 with no cognitive impairment, and 49 healthy control adults were recruited during study period. The TPIADL, as well as the Mini Mental State Examination (MMSE, Lawton-IADL and Barthel Index (BI, were performed. The internal consistency, convergent and criteria validity of the TPIADL were examined.Cronbach's alpha of the TPIADL test was 0.84. The TPIADL scores were significantly correlated with the Lawton IADL (r = -0.587, p <0.01. Notably, the TPIADL had a higher correlation coefficient with the cognitive domain of Lawton IADL (r = -0.663 than with physical domain of Lawton IADL (r = -0.541. The area under the relative operating characteristic curve was 0.888 (95% CI = 0.812-0.965 to differentiate VaD from other groups. The optimal cut-off point of the TPIADL for detecting VaD was 6/7, which gives a sensitivity of 73.3% and a specificity of 84.5%.The TPIADL is a brief and sensitive tool for the detection of IADL impairment in patients with VaD.

  8. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  9. Interactive CD based training on NDA instruments for facility operators and international inspectors

    International Nuclear Information System (INIS)

    Horley, E.C.; Smith, H.A.

    1996-01-01

    Interactive multimedia training is rapidly becoming a popular and highly effective medium for learning. An interactive CD based training module on the Active Well Coincidence counter is being developed for on-site training at nuclear facility, including foreign facilities. The training module incorporates interactive text, graphics and video that demonstrate the operating principles, and the use and set-up of the instrument. The user is in control of the pace of learning and of the directions taken to acquire information based on personal need. By being in control, the user stays highly motivated. A mix of visuals (text and graphics), audio clips (in different languages), and video (with audio) clips also keeps the interest level high. Skill reviews and evaluations can be incorporated into the training to provide feedback to the student. In addition, general background information is provided on gamma and neutron based MC and A measurements. This material serves as a condensed MC and A encyclopedia. By supplying an interactive CD with an NDA instrument, nuclear facilities will have greater assurance operators are properly trained in the set-up and operation of the NDA-equipment

  10. Innovative approach to implementation of FPGA-based NPP instrumentation and control systems

    International Nuclear Information System (INIS)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir; Siora, Alexander

    2011-01-01

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper. (author)

  11. Innovative Approach to Implementation of FPGA-based NPP Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir; SIORA Alexander

    2011-01-01

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper

  12. Innovative Approach to Implementation of FPGA-based NPP Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir [Centre for Safety Infrastructure-Oriented Research and Analysis, Kharkov (Ukraine); SIORA Alexander [Research and Production Corporation Radiy, Kirovograd (Ukraine)

    2011-08-15

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper.

  13. A risk-based review of Instrument Air systems at nuclear power plants

    International Nuclear Information System (INIS)

    DeMoss, G.; Lofgren, E.; Rothleder, B.; Villeran, M.; Ruger, C.

    1990-01-01

    The broad objective of this analysis was to provide risk-based information to help focus regulatory actions related to Instrument Air (IA) systems at operating nuclear power plants. We first created an extensive data base of summarized and characterized IA-related events that gave a qualitative indication of the nature and severity of these events. Additionally, this data base was used to calculate the frequencies of certain events, which were used in the risk analysis. The risk analysis consisted of reviewing published PRAs and NRC Accident Sequence Precursor reports for IA-initiated accident sequences, IA interactions with frontline systems, and IA-related risk significant events. Sensitivity calculations were performed when possible. Generically, IA was found to contribute less to total risk than many safety systems; however, specific design weaknesses in safety systems, non-safety systems, and the IA system were found to be significant in risk. 22 refs., 13 figs., 24 tabs

  14. Development of FPGA-based safety-related instrumentation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Oda, N.; Tanaka, A.; Izumi, M.; Tarumi, T.; Sato, T. [Toshiba Corporation, Isogo Nuclear Engineering Center, Yokohama (Japan)

    2004-07-01

    Toshiba has developed systems which perform signal processing by field programmable gate arrays (FPGA) for safety-related instrumentation and control systems. FPGA is a device which consists only of defined digital circuit: hardware, which performs defined processing. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing units (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. Considering application to safety-related systems, nonvolatile and non rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. The systems which Toshiba developed this time are Power range Monitor (PRM) and Trip Module (TM). These systems are compatible with the conventional analog-based systems and the CPU-based systems. Therefore, requested cost for upgrading will be minimized. Toshiba is planning to expand application of FPGA-based technology by adopting this development method to the other safety-related systems from now on. (authors)

  15. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data

    Directory of Open Access Journals (Sweden)

    Andrzej Kotela

    2015-01-01

    Full Text Available Total knee arthroplasty (TKA is a frequently performed procedure in orthopaedic surgery. Recently, patient-specific instrumentation was introduced to facilitate correct positioning of implants. The aim of this study was to compare the early clinical results of TKA performed with patient-specific CT-based instrumentation and conventional technique. A prospective, randomized controlled trial on 112 patients was performed between January 2011 and December 2011. A group of 112 patients who met the inclusion and exclusion criteria were enrolled in this study and randomly assigned to an experimental or control group. The experimental group comprised 52 patients who received the Signature CT-based implant positioning system, and the control group consisted of 60 patients with conventional instrumentation. Clinical outcomes were evaluated with the KSS scale, WOMAC scale, and VAS scales to assess knee pain severity and patient satisfaction with the surgery. Specified in-hospital data were recorded. Patients were followed up for 12 months. At one year after surgery, there were no statistically significant differences between groups with respect to clinical outcomes and in-hospital data, including operative time, blood loss, hospital length of stay, intraoperative observations, and postoperative complications. Further high-quality investigations of various patient-specific systems and longer follow-up may be helpful in assessing their utility for TKA.

  16. A Comparative Analysis of New Governance Instruments in the Transnational Educational Space: A Shift to Knowledge-Based Instruments?

    Science.gov (United States)

    Ioannidou, Alexandra

    2007-01-01

    In recent years, the ongoing development towards a knowledge-based society--associated with globalization, an aging population, new technologies and organizational changes--has led to a more intensive analysis of education and learning throughout life with regard to quantitative, qualitative and financial aspects. In this framework, education…

  17. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  18. Plasmonic-based instrument response function for time-resolved fluorescence: toward proper lifetime analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szlazak, Radoslaw; Tutaj, Krzysztof; Grudzinski, Wojciech; Gruszecki, Wieslaw I.; Luchowski, Rafal, E-mail: rafal.luchowski@umcs.pl [Maria Curie-Sklodowska University, Department of Biophysics, Institute of Physics (Poland)

    2013-06-15

    In this report, we investigated the so-called plasmonic platforms prepared to target ultra-short fluorescence and accurate instrumental response function in a time-domain spectroscopy and microscopy. The interaction of metallic nanoparticles with nearby fluorophores results in the increase of the dye fluorescence quantum yield, photostability and decrease of the lifetime parameter. The mentioned properties of platforms were applied to achieve a picosecond fluorescence lifetime (21 ps) of erythrosin B, used later as a better choice for deconvolution of fluorescence decays measured with 'color' sensitive photo-detectors. The ultra-short fluorescence standard based on combination of thin layers of silver film, silver colloidal nanoparticles (about 60 nm in diameter), and top layer of erythrosin B embedded in 0.2 % poly(vinyl) alcohol. The response functions were monitored on two photo-detectors; microchannel plate photomultiplier and single photon avalanche photodiode as a Rayleigh scattering and ultra-short fluorescence. We demonstrated that use of the plasmonic base fluorescence standard as an instrumental response function results in the absence of systematic error in lifetime measurements and analysis.

  19. [Research on fractal tones generating method for tinnitus rehabilitation based on musical instrument digital interface technology].

    Science.gov (United States)

    Wang, Lu; He, Peiyu; Pan, Fan

    2014-08-01

    Tinnitus is a subjective sensation of sound without external stimulation. It has become ubiquitous and has therefore aroused much attention in recent years. According to the survey, ameliorating tinnitus based on special music and reducing pressure have good effects on the treatment of it. Meantime, vicious cycle chains between tinnitus and bad feelings have been broken. However, tinnitus therapy has been restricted by using looping music. Therefore, a method of generating fractal tones based on musical instrument digital interface (MIDI) technology and pink noise has been proposed in this paper. The experimental results showed that the fractal fragments were self-similar, incompletely reduplicate, and no sudden changes in pitches and would have a referential significance for tinnitus therapy.

  20. The Study on Virtual Medical Instrument based on LabVIEW.

    Science.gov (United States)

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  1. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yin Peili

    2017-08-01

    Full Text Available Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI. The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  2. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.

  3. Fuel cell-based instrumentation for ethanol determination in alcoholic beverages, fermentations, and biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Parry, K W

    1988-01-01

    The main aim of this project was to devise an alternative method for ethanol assay, employing an electrochemical fuel cell sensor. Thus, the early part of this thesis describes the work carried out in the development of a new analytical technique for this purpose. This work resulted in the production of a successful prototype unit which has led to the development of a commercial instrument, vis., the Lion Drinks Alcolmeter (DA-1) available from Lion Laboratories Ltd. The problem of determining the ethanol content of a fermenting liquor at any point during a fermentation process was also broached and a novel technique combining a flow dilution system, dynamic headspace analysis and a fuel cell sensor was developed. This procedure, suitably automated, will enable the ethanolic content of a fermenting beverage to be determined at any stage during a fermentation, the results obtained in this manner being in excellent agreement with those obtained gas chromatographically. Methods of extending the linear working range of a fuel cell-based sampling system are reported in the hope that the encouraging results obtained may initiate further progress in this field. Finally, the sensing system used in this work has also been utilized with an alternative sampling procedure for the determination of ethanol in biological fluids, mainly for clinical and forensic applications. This work has also led to the production of a commercial instrument, viz. the Lion AE-D3 Alcolmeter.

  4. Microcontroller based, ore grade measuring portable instruments for uranium mining industry

    International Nuclear Information System (INIS)

    Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Ore Face Scanning and Bore Hole Logging are important essential activities which are required to be carried out in any Uranium mining industry. Microcontroller based, portable instruments with built-in powerful embedded code for data acquisition (of Radiation counts) and Ore Grade calculations will become a handy measuring tool for miners. Nucleonix Systems has recently developed and made these two portable instruments available to UCIL, which are under use at Jaduguda and Narvapahar mines. Some of the important features of these systems are compact, light weight, portable, hand held, battery powered. Modes of Data Acquisition: CPS, CPM and ORE GRADE. Detector: Sensitive GM Tube. Choice of Adj. TC (Time Constant) in 'ORE GRADE', acquisition mode. Built-in automatic BG (Background) recording and subtraction provided to indicate net CPS, CPM or ore GRADE in PPM. Can store 1000 readings at users choice. Built-in RS232 serial port facilitates data downloading into PC. This paper focuses on design concepts and technical details for the above two products. (author)

  5. Hilbert-Huang transform based instrumental assessment of intention tremor in multiple sclerosis

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Ferrarin, Maurizio

    2015-08-01

    Objective. This paper describes a method to extract upper limb intention tremor from gyroscope data, through the Hilbert-Huang transform (HHT), a technique suitable for the study of nonlinear and non-stationary processes. The aims of the study were to: (i) evaluate the method’s ability to discriminate between healthy controls and MS subjects; (ii) validate the proposed procedure against clinical tremor scores assigned using Fahn’s tremor rating scale (FTRS); and (iii) compare the performance of the HHT-based method with that of linear band-pass filters. Approach. HHT was applied on gyroscope data collected on 20 MS subjects and 13 healthy controls (CO) during finger-to-nose tests (FNTs) instrumented with an inertial sensor placed on the hand. The results were compared to those obtained after traditional linear filtering. The tremor amplitude was quantified with instrumental indexes (TIs) and clinical FTRS ratings. Main results. The TIs computed after HHT-based filtering discriminated between CO and MS subjects with clinically-detected intention tremor (MS_T). In particular, TIs were significantly higher in the final part of the movement (TI2) with respect to the first part (TI1), and, for all components (X, Y, Z), MST showed a TI2 significantly higher than in CO subjects. Moreover, the HHT detected subtle alterations not visible from clinical ratings, as TI2 (Z-component) was significantly increased in MS subjects without clinically-detected tremor (MS_NT). The method’s validity was demonstrated by significant correlations between clinical FTRS scores and TI2 related to X (rs = 0.587, p = 0.006) and Y (rs = 0.682, p < 0.001) components. Contrarily, fewer differences among the groups and no correlation between instrumental and clinical indexes emerged after traditional filtering. Significance. The present results supported the use of the HHT-based procedure for a fully-automated quantitative and objective measure of intention tremor in MS, which can overcome

  6. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-11-15

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  7. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Patel, Kiran; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-01-01

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  8. Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium.

    Science.gov (United States)

    Dubois, Maarten; Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Vanderreydt, Ive

    2015-10-01

    In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs. © The Author(s) 2015.

  9. Applying market-based instruments to environmental policies in China and OECD countries

    International Nuclear Information System (INIS)

    1998-01-01

    China's rapid economic growth since the late 1970s has been a remarkable achievement, and is projected to continue. However, this prospect could be compromised by pollution of air, water, and land, the unsustainable exploitation of natural resources, and the environmental impacts on public health. Air pollution associated with the use of coal for energy and industrial purposes is a particularly serious challenge in China, with important domestic and transboundary implications. This book presents papers from an international workshop co-sponsored by the OECD and China's National Environmental Protection Agency on the application of economic instruments to control air pollution in China and OECD countries. It presents the state-of-the-air in this field, based upon contributions from Chinese and OECD country policy makers and experts

  10. Nuclear instrumentation and measurement: a review based on the ANIMMA conferences

    Science.gov (United States)

    Giot, Michel; Vermeeren, Ludo; Lyoussi, Abdallah; Reynard-Carette, Christelle; Lhuillier, Christian; Mégret, Patrice; Deconinck, Frank; Gonçalves, Bruno Soares

    2017-12-01

    The ANIMMA conferences offer a unique opportunity to discover research carried out in all fields of nuclear measurements and instrumentation with applications extending from fundamental physics to fission and fusion reactors, medical imaging, environmental protection and homeland security. After four successful editions of the Conference, it was decided to prepare a review based to a large extent but not exclusively on the papers presented during the first four editions of the conference. This review is organized according to the measurement methodologies: neutronic, photonic, thermal, acoustic and optical measurements, as well as medical imaging and specific challenges linked to data acquisition and electronic hardening. The paper describes the main challenges justifying research in these different areas, and summarizes the recent progress reported. It offers researchers and engineers a way to quickly and efficiently access knowledge in highly specialized areas.

  11. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  12. A toolbox for safety instrumented system evaluation based on improved continuous-time Markov chain

    Science.gov (United States)

    Wardana, Awang N. I.; Kurniady, Rahman; Pambudi, Galih; Purnama, Jaka; Suryopratomo, Kutut

    2017-08-01

    Safety instrumented system (SIS) is designed to restore a plant into a safe condition when pre-hazardous event is occur. It has a vital role especially in process industries. A SIS shall be meet with safety requirement specifications. To confirm it, SIS shall be evaluated. Typically, the evaluation is calculated by hand. This paper presents a toolbox for SIS evaluation. It is developed based on improved continuous-time Markov chain. The toolbox supports to detailed approach of evaluation. This paper also illustrates an industrial application of the toolbox to evaluate arch burner safety system of primary reformer. The results of the case study demonstrates that the toolbox can be used to evaluate industrial SIS in detail and to plan the maintenance strategy.

  13. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  14. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  15. Evaluation of a Kalman filter based power pressurizer instrument failure detection system implemented on a nuclear power plant training simulator

    International Nuclear Information System (INIS)

    Seegmiller, D.S.

    1984-01-01

    The usefulness of a nuclear power plant training simulator for developing and testing modern estimation and control applications for nuclear power plants is demonstrated. A Kalman filter based instrument failure detection technique for a pressurized water reactor pressurizer is implemented on the Department of Energy N Reactor Training Simulator. This real-time failure detection method computes the first two moments (mean and variance) of each element of a normalized filter innovations vector. Failed pressurizer instrumentation can be detected by comparing these moments to the known statistical properties of the steady state, linear Kalman fitler innovations sequence. The capabilities of the detection system are evaluated using simulated plant transients and instrument failures

  16. Development of a field measurement instrument for nuclear electromagnetic pulse (NEMP) based on signal transmission through fiber

    International Nuclear Information System (INIS)

    Song Wenwu; Zhang Chuandong; Liu Yi; Chen Jiuchun; Fan Youwen

    2007-01-01

    This paper deals with design principles, development and performance of a field measurement instrument for nuclear electromagnetic pulse (EMP) based on signal transmission through fiber. To determine the minimum band width this instrument needs, we analyze cutoff spectrum of a time domain double exponential signal, employing Fast Fourier Transform (FFT), and get its inverse transform signal. Then we design the circuit of laser device and the circuit of measuring device according to previous analysis. This instrument meets requirements of related regulations. Its specifications meet requirements of NEMP hazard protection research and can be of great significance to it. (authors)

  17. Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device.

    Science.gov (United States)

    Liao, Shih-Chuan; Peng, Jing; Mauk, Michael G; Awasthi, Sita; Song, Jinzhao; Friedman, Harvey; Bau, Haim H; Liu, Changchun

    2016-06-28

    Nucleic acid amplification-based diagnostics offer rapid, sensitive, and specific means for detecting and monitoring the progression of infectious diseases. However, this method typically requires extensive sample preparation, expensive instruments, and trained personnel. All of which hinder its use in resource-limited settings, where many infectious diseases are endemic. Here, we report on a simple, inexpensive, minimally-instrumented, smart cup platform for rapid, quantitative molecular diagnostics of pathogens at the point of care. Our smart cup takes advantage of water-triggered, exothermic chemical reaction to supply heat for the nucleic acid-based, isothermal amplification. The amplification temperature is regulated with a phase-change material (PCM). The PCM maintains the amplification reactor at a constant temperature, typically, 60-65°C, when ambient temperatures range from 12 to 35°C. To eliminate the need for an optical detector and minimize cost, we use the smartphone's flashlight to excite the fluorescent dye and the phone camera to record real-time fluorescence emission during the amplification process. The smartphone can concurrently monitor multiple amplification reactors and analyze the recorded data. Our smart cup's utility was demonstrated by amplifying and quantifying herpes simplex virus type 2 (HSV-2) with LAMP assay in our custom-made microfluidic diagnostic chip. We have consistently detected as few as 100 copies of HSV-2 viral DNA per sample. Our system does not require any lab facilities and is suitable for use at home, in the field, and in the clinic, as well as in resource-poor settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.

  18. Development and Testing of Screen-Based and Psychometric Instruments for Assessing Resident Performance in an Operating Room Simulator

    Directory of Open Access Journals (Sweden)

    Richard R. McNeer

    2016-01-01

    Full Text Available Introduction. Medical simulators are used for assessing clinical skills and increasingly for testing hypotheses. We developed and tested an approach for assessing performance in anesthesia residents using screen-based simulation that ensures expert raters remain blinded to subject identity and experimental condition. Methods. Twenty anesthesia residents managed emergencies in an operating room simulator by logging actions through a custom graphical user interface. Two expert raters rated performance based on these entries using custom Global Rating Scale (GRS and Crisis Management Checklist (CMC instruments. Interrater reliability was measured by calculating intraclass correlation coefficients (ICC, and internal consistency of the instruments was assessed with Cronbach’s alpha. Agreement between GRS and CMC was measured using Spearman rank correlation (SRC. Results. Interrater agreement (GRS: ICC = 0.825, CMC: ICC = 0.878 and internal consistency (GRS: alpha = 0.838, CMC: alpha = 0.886 were good for both instruments. Subscale analysis indicated that several instrument items can be discarded. GRS and CMC scores were highly correlated (SRC = 0.948. Conclusions. In this pilot study, we demonstrated that screen-based simulation can allow blinded assessment of performance. GRS and CMC instruments demonstrated good rater agreement and internal consistency. We plan to further test construct validity of our instruments by measuring performance in our simulator as a function of training level.

  19. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    Science.gov (United States)

    Lin, Chien-Liang

    2018-02-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.

  20. Playing a Musical Instrument as a Protective Factor against Dementia and Cognitive Impairment: A Population-Based Twin Study

    Directory of Open Access Journals (Sweden)

    M. Alison Balbag

    2014-01-01

    Full Text Available Increasing evidence supports that playing a musical instrument may benefit cognitive development and health at young ages. Whether playing an instrument provides protection against dementia has not been established. In a population-based cotwin control study, we examined the association between playing a musical instrument and whether or not the twins developed dementia or cognitive impairment. Participation in playing an instrument was taken from informant-based reports of twins’ leisure activities. Dementia diagnoses were based on a complete clinical workup using standard diagnostic criteria. Among 157 twin pairs discordant for dementia and cognitive impairment, 27 pairs were discordant for playing an instrument. Controlling for sex, education, and physical activity, playing a musical instrument was significantly associated with less likelihood of dementia and cognitive impairment (odds ratio [OR] = 0.36 [95% confidence interval 0.13–0.99]. These findings support further consideration of music as a modifiable protective factor against dementia and cognitive impairment.

  1. Developing a PC-based expert system for fault analysis of reactor instruments

    International Nuclear Information System (INIS)

    Diwakar, M.P.; Rathod, N.C.; Bairi, B.R.; Darbhe, M.D.; Joglekar, S.S.

    1989-01-01

    This paper describes the development of an expert system for fault analysis of electronic instruments in the CIRUS nuclear reactor. The system was developed in Prolog on an IBM PC-XT compatible computer. A 'model-based' approach (Button et al, 1986) was adopted combining 'frames' and 'rules' to provide flexible control over the inferencing mechanisms. Frames represent the domain-objects as well as the inter-object relationships. They include 'demons' or 'active values' for triggering actions. Rules, along with frames, are used for fault analysis. The rules can be activated either in a data-driven or a goal-driven manner. The use of frames makes rule management easier. It is felt that developing in-house shell proved advantageous, compared to using commercially available shells. Choosing the model-based approach was efficient compared to a production system architecture. Therefore, the use of hybrid representations for diagnostic applications is advocated. Based on the experience, some general recommendations for developing such systems are presented. The expert system helps novice operators to understand the process of diagnosis and achieve a significant required level of competence. The system may not achieve the required level of proficiency by itself, but it can be used to train operators to become experts. (author). 12 refs

  2. Natural Language Processing Based Instrument for Classification of Free Text Medical Records

    Directory of Open Access Journals (Sweden)

    Manana Khachidze

    2016-01-01

    Full Text Available According to the Ministry of Labor, Health and Social Affairs of Georgia a new health management system has to be introduced in the nearest future. In this context arises the problem of structuring and classifying documents containing all the history of medical services provided. The present work introduces the instrument for classification of medical records based on the Georgian language. It is the first attempt of such classification of the Georgian language based medical records. On the whole 24.855 examination records have been studied. The documents were classified into three main groups (ultrasonography, endoscopy, and X-ray and 13 subgroups using two well-known methods: Support Vector Machine (SVM and K-Nearest Neighbor (KNN. The results obtained demonstrated that both machine learning methods performed successfully, with a little supremacy of SVM. In the process of classification a “shrink” method, based on features selection, was introduced and applied. At the first stage of classification the results of the “shrink” case were better; however, on the second stage of classification into subclasses 23% of all documents could not be linked to only one definite individual subclass (liver or binary system due to common features characterizing these subclasses. The overall results of the study were successful.

  3. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  4. Exploratory and Creative Properties of Physical-Modeling-based Musical Instruments

    DEFF Research Database (Denmark)

    Gelineck, Steven

    Digital musical instruments are developed to enable musicians to find new ways of expressing themselves. The development and evaluation of these instruments can be approached from many different perspectives depending on which capabilities one wants the musicians to have. This thesis attempts...... to approach development and evaluation of these instruments with the notion that instruments today are able to facilitate the creative process that is so crucial for creating music. The fundamental question pursued throughout the thesis is how creative work processes of composers of electronic music can...... be supported and even challenged by the instruments they use. What is it that makes one musical instrument more creatively inspiring than another, and how do we evaluate how well it succeeds? In order to present answers to these questions, the thesis focusses on the sound synthesis technique of physical...

  5. Swarm-Aurora: A web-based tool for quickly identifying multi-instrument auroral events

    Science.gov (United States)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Frey, H. U.; Kauristie, K.; Partamies, N.; Jackel, B. J.; Gillies, M.; Holmdahl Olsen, P. E.

    2016-12-01

    In recent years there has been a dramatic increase in ground-based auroral imaging systems. These include the continent-wide THEMIS-ASI network, and imagers operated by other programs including GO-Canada, MIRACLE, AGO, OMTI, and more. In the near future, a new Canadian program called TREx will see the deployment of new narrow-band ASIs that will provide multi-wavelength imaging across Western Canada. At the same time, there is an unprecedented fleet of international spacecraft probing geospace at low and high altitudes. We are now in the position to simultaneously observe the magnetospheric drivers of aurora, observe in situ the waves, currents, and particles associated with MI coupling, and the conjugate aurora. Whereas a decade ago, a single magnetic conjunction between one ASI and a low altitude satellite was a relatively rare event, we now have a plethora of triple conjunctions between imagers, low-altitude spacecraft, and near-equatorial magnetospheric probes. But with these riches comes a new level of complexity. It is often difficult to identify the many useful conjunctions for a specific line of inquiry from the multitude of conjunctions where the geospace conditions are often not relevant and/or the imaging is compromised by clouds, moon, or other factors. Swarm-Aurora was designed to facilitate and drive the use of Swarm in situ measurements in auroral science. The project seeks to build a bridge between the Swarm science community, Swarm data, and the complimentary auroral data and community. Swarm-Aurora (http://swarm-aurora.phys.ucalgary.ca) incorporates a web-based tool which provides access to quick-look summary data for a large array of instruments, with Swarm in situ and ground-based ASI data as the primary focus. This web interface allows researchers to quickly and efficiently browse Swarm and ASI data to identify auroral events of interest to them. This allows researchers to be able to easily and quickly identify Swarm overflights of ASIs that

  6. Design and Implementation of Electric Steering Gear Inspection System for Unmanned Aerial Vehicles Based on Virtual Instruments

    Directory of Open Access Journals (Sweden)

    Zheng Xing

    2016-01-01

    Full Text Available A kind of UAV electric servo detection system based on Virtual Instrument is designed in this paper, including the hardware platform based on PC-DAQ virtual instrument architecture and the software platform based on LabVIEW function, structure and system implementation methods. The function, structure and system implementation method of software platform is also described. The gear limits checking, zero testing, time domain characteristics test results showed that the system achieves testing requirements well, and can complete detection of electric steering gear automatically, fast, easy and accurate.

  7. Applicability of market-based instruments for safeguarding water quality in coastal waterways: Case study for Darwin Harbour, Australia

    Science.gov (United States)

    Greiner, Romy

    2014-02-01

    Water pollution of coastal waterways is a complex problem due to the cocktail of pollutants and multiplicity of polluters involved and pollution characteristics. Pollution control therefore requires a combination of policy instruments. This paper examines the applicability of market-based instruments to achieve effective and efficient water quality management in Darwin Harbour, Northern Territory, Australia. Potential applicability of instruments is examined in the context of biophysical and economic pollution characteristics, and experience with instruments elsewhere. The paper concludes that there is potential for inclusion of market-based instruments as part of an instrument mix to safeguard water quality in Darwin Harbour. It recommends, in particular, expanding the existing licencing system to include quantitative pollution limits for all significant point polluters; comprehensive and independent pollution monitoring across Darwin Harbour; public disclosure of water quality and emissions data; positive incentives for landholders in the Darwin Harbour catchment to improve land management practices; a stormwater offset program for greenfield urban developments; adoption of performance bonds for developments and operations which pose a substantial risk to water quality, including port expansion and dredging; and detailed consideration of a bubble licensing scheme for nutrient pollution. The paper offers an analytical framework for policy makers and resource managers tasked with water quality management in coastal waterways elsewhere in Australia and globally, and helps to scan for MBIs suitable in any given environmental management situation.

  8. Benefits of a Classroom Based Instrumental Music Program on Verbal Memory of Primary School Children: A Longitudinal Study

    Science.gov (United States)

    Rickard, Nikki S.; Vasquez, Jorge T.; Murphy, Fintan; Gill, Anneliese; Toukhsati, Samia R.

    2010-01-01

    Previous research has demonstrated a benefit of music training on a number of cognitive functions including verbal memory performance. The impact of school-based music programs on memory processes is however relatively unknown. The current study explored the effect of increasing frequency and intensity of classroom-based instrumental training…

  9. The Development of Physics Learning Instrument Based on Hypermedia and Its Influence on the Student Problem Solving Skill

    Science.gov (United States)

    Amin, Bunga Dara; Mahmud, Alimuddin; Muris

    2016-01-01

    This research aims to produce a learning instrument based on hypermedia which is valid, interesting, practical, and effective as well as to know its influence on the problem based skill of students Mathematical and Science Faculty, Makassar State University. This research is a research and development at (R&D) type. The development procedure…

  10. A practical tablet-based hearing aid configuration as an exemplar project for students of instrumentation

    Directory of Open Access Journals (Sweden)

    Ricardo Simeoni

    2015-06-01

    Full Text Available This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability, and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/ receiver, wired headphones are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.

  11. A Practical Tablet-Based Hearing Aid Configuration as an Exemplar Project for Students of Instrumentation.

    Science.gov (United States)

    Simeoni, Ricardo

    2015-06-11

    This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.

  12. An instrument to characterize the environment for residents' evidence-based medicine learning and practice.

    Science.gov (United States)

    Mi, Misa; Moseley, James L; Green, Michael L

    2012-02-01

    Many residency programs offer training in evidence-based medicine (EBM). However, these curricula often fail to achieve optimal learning outcomes, perhaps because they neglect various contextual factors in the learning environment. We developed and validated an instrument to characterize the environment for EBM learning and practice in residency programs. An EBM Environment Scale was developed following scale development principles. A survey was administered to residents across six programs in primary care specialties at four medical centers. Internal consistency reliability was analyzed with Cronbach's coefficient alpha. Validity was assessed by comparing predetermined subscales with the survey's internal structure as assessed via factor analysis. Scores were also compared for subgroups based on residency program affiliation and residency characteristics. Out of 262 eligible residents, 124 completed the survey (response rate 47%). The overall mean score was 3.89 (standard deviation=0.56). The initial reliability analysis of the 48-item scale had a high reliability coefficient (Cronbach α=.94). Factor analysis and further item analysis resulted in a shorter 36-item scale with a satisfactory reliability coefficient (Cronbach α=.86). Scores were higher for residents with prior EBM training in medical school (4.14 versus 3.62) and in residency (4.25 versus 3.69). If further testing confirms its properties, the EBM Environment Scale may be used to understand the influence of the learning environment on the effectiveness of EBM training. Additionally, it may detect changes in the EBM learning environment in response to programmatic or institutional interventions.

  13. A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls

    International Nuclear Information System (INIS)

    Han, Young-Min; Kim, Chan-Jung; Choi, Seung-Bok

    2009-01-01

    This paper presents control performances of a magnetorheological (MR) fluid-based multifunctional haptic device which is applicable to vehicular instrument controls. By combining in-vehicle functions into a single device, the proposed haptic device can transmit various reflection forces for each comfort function to a driver without requiring the driver's visual attention. As a multifunctional haptic device, a MR knob is proposed in this work and then devised to be capable of both rotary and push motions with a single knob. Under consideration of the spatial limitations of vehicle dashboards, design parameters are optimally determined by finite element analysis, and the objective function is to maximize a relative control torque. The proposed haptic device is then manufactured, and in-vehicle comfort functions are constructed in a virtual environment which makes the functions to communicate with the haptic device. Subsequently, a feed-forward controller using torque/force maps is formulated for the force tracking control. Control performances such as reflection force of the haptic device are experimentally evaluated via the torque/force map-based feed-forward controller

  14. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  15. SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities

    International Nuclear Information System (INIS)

    Q. S. Shu; I. Ben-Zvi; G. Cheng; I. M. Phipps; J. T. Susta; P. Kneisel; G. Myneni; J. Mast; R. Selim

    2007-01-01

    Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelerating fields

  16. The Los Alamos accelerator control system data base: A generic instrumentation interface

    International Nuclear Information System (INIS)

    Dalesio, L.R.

    1990-01-01

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range requird, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements. (orig.)

  17. A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines

    International Nuclear Information System (INIS)

    Xiao, Heng; Qiu, Kuanrong; Gou, Xiaolong; Ou, Qiang

    2013-01-01

    Highlights: ► MPPT is used to improve the feature that TEG output is sensitive to load variation. ► The improved feature makes TEG suitable to power electronic device on gas pipeline. ► Test shows heat transfer uniformity plays an important role in improving TEG output. ► It can get an optimized TEG by uniformly filling a thermal insulation material. - Abstract: This paper presents a flameless catalytic combustion-based thermoelectric power generator that uses commercial thermoelectric modules. The structure of the thermoelectric generator (TEG) is introduced and the power performance is measured based on a designed circuit system. The open circuit voltage of the TEG is about 7.3 V. The maximum power output can reach up to 6.5 W when the load resistance matches the TEG internal resistance. However, the system output is sensitive to load variation. To improve this characteristic, maximum power point tracking technique is used and results in an open circuit voltage of 13.8 V. The improved characteristic makes the TEG system a good charger to keep the lead acid battery fully charged so as to meet the needs of electronic instruments on gas pipelines. In addition, the combustion features have been investigated based on the temperature measurement. Test results show that the uniformity of combustion heat transfer process and the combustion chamber structure play important roles in improving system power output. It can get an optimized TEG system (maximum power output: 8.3 W) by uniformly filling a thermal insulation material (asbestos) to avoid a non-uniform combustion heat transfer process

  18. “Lock-in” effect of emission standard and its impact on the choice of market based instruments

    International Nuclear Information System (INIS)

    Haoqi, Qian; Libo, Wu; Weiqi, Tang

    2017-01-01

    A country's existing emission standard policy will lead to a “lock in” effect. When the country plans to adopt new market-based instruments to control greenhouse gas emissions, it must consider this effect as it chooses among instruments to avoid larger efficiency loss. In this paper, we find that the “lock in” effect will cause a kink point to occur on the marginal abatement cost (MAC) curve. This change of shape for the MAC curve reminds us to be cautious in choosing market-based instruments when applying Weitzman's rule. We also introduce this concept into a dynamic multi-regional computable general equilibrium (CGE) model for China and simulate MAC curves for all regions. After applying Weitzman's rule, we propose a timeline for introducing price instruments under different marginal benefit (MB) curve scenarios. - Highlights: • China's existing carbon intensity policy has a “lock-in” effect and leads to a “kink point” on MAC. • A dynamic inter-regional CGE model is developed to simulate the regional kinked MAC curves in China. • A timeline of introducing new market based instrument is proposed by combining different MB scenarios.

  19. Telephone-based screening tools for mild cognitive impairment and dementia in aging studies: a review of validated instruments

    Directory of Open Access Journals (Sweden)

    Teresa Costa Castanho

    2014-02-01

    Full Text Available The decline of cognitive function in old age is a great challenge for modern society. The simultaneous increase in dementia and other neurodegenerative diseases justifies a growing need for accurate and valid cognitive assessment instruments. Although in-person testing is considered the most effective and preferred administration mode of assessment, it can pose not only a research difficulty in reaching large and diverse population samples, but it may also limit the assessment and follow-up of individuals with either physical or health limitations or reduced motivation. Therefore, telephone-based cognitive screening instruments pose an alternative and attractive strategy to in-person assessments. In order to give a current view of the state of the art of telephone-based tools for cognitive assessment in aging, this review highlights some of the existing instruments with particular focus on data validation, cognitive domains assessed, administration time and instrument limitations and advantages. From the review of the literature, performed using the databases EBSCO, Science Direct and PubMed, it was possible to verify that while telephone-based tools are useful in research and clinical practice, providing a promising approach, the methodologies still need refinement in the validation steps, including comparison with either single instruments or neurocognitive test batteries, to improve specificity and sensitivity to validly detect subtle changes in cognition that may precede cognitive impairment.

  20. Attack tree based cyber security analysis of nuclear digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Khand, P.A.

    2009-01-01

    To maintain the cyber security, nuclear digital Instrumentation and Control (I and C) systems must be analyzed for security risks because a single security breach due to a cyber attack can cause system failure, which can have catastrophic consequences on the environment and staff of a Nuclear Power Plant (NPP). Attack trees have been widely used to analyze the cyber security of digital systems due to their ability to capture system specific as well as attacker specific details. Therefore, a methodology based on attack trees has been proposed to analyze the cyber security of the systems. The methodology has been applied for the Cyber Security Analysis (CSA) of a Bistable Processor (BP) of a Reactor Protection System (RPS). Threats have been described according to their source. Attack scenarios have been generated using the attack tree and possible counter measures according to the Security Risk Level (SRL) of each scenario have been suggested. Moreover, cyber Security Requirements (SRs) have been elicited, and suitability of the requirements has been checked. (author)

  1. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  2. ACTIVITY-BASED COSTING IN THE MANUFACTURING SECTOR: A MANAGERIAL INSTRUMENT FOR DECISION-MAKING

    Directory of Open Access Journals (Sweden)

    Ioana D. BUFAN

    2014-04-01

    Full Text Available The aim of this paper is to emphasize the importance of using the activity-based costing (management system in the manufacturing sector. The utility of the ABC (ABM system concerns decisions taken at a strategic and operational level. In our country, few managers understand the need for such a system and many Romanian companies use only a traditional costing system or don’t use one at all. The paper also includes a case study which is a small example of using the ABC method in a Romanian manufacturing company. The study shows that the ABC/ABM system helps managers to properly manage indirect costs (by activities and understand the profitability of products, distribution channels and customers. Therefore, it offers a powerful instrument for decision-making. Although ABC is a new system of cost calculation that is absolutely necessary, in most cases the ABC method must be implemented in addition to the traditional costing systems, which are essential for the purposes of management accounting.

  3. Report of the 2. research co-ordination meeting of the co-ordinated research programme on the development of computer-based troubleshooting tools and instruments

    International Nuclear Information System (INIS)

    1998-11-01

    The Research coordination meeting reviewed current results on the Development of Computer-Based Troubleshooting Tools and Instruments. Presentations at the meeting were made by the participants, and the project summary reports include: PC based software for troubleshooting microprocessor-based instruments; technical data base software; design and construction of a random pulser for maintenance and quality control of a nuclear counting system; microprocessor-based power conditioner; in-circuit emulator for microprocessor-based nuclear instruments; PC-based analog signal generator for simulated detector signals and arbitrary test waveforms for testing of nuclear instruments; expert system for nuclear instrument troubleshooting; development and application of versatile computer-based measurement and diagnostic tools; and development of a programmable signal generator for troubleshooting of nuclear instrumentation

  4. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    Science.gov (United States)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  5. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  6. Violent reinjury risk assessment instrument (VRRAI) for hospital-based violence intervention programs.

    Science.gov (United States)

    Kramer, Erik J; Dodington, James; Hunt, Ava; Henderson, Terrell; Nwabuo, Adaobi; Dicker, Rochelle; Juillard, Catherine

    2017-09-01

    Violent injury is the second most common cause of death among 15- to 24-year olds in the US. Up to 58% of violently injured youth return to the hospital with a second violent injury. Hospital-based violence intervention programs (HVIPs) have been shown to reduce injury recidivism through intensive case management. However, no validated guidelines for risk assessment strategies in the HVIP setting have been reported. We aimed to use qualitative methods to investigate the key components of risk assessments employed by HVIP case managers and to propose a risk assessment model based on this qualitative analysis. An established academic hospital-affiliated HVIP served as the nexus for this research. Thematic saturation was reached with 11 semi-structured interviews and two focus groups conducted with HVIP case managers and key informants identified through snowball sampling. Interactions were analyzed by a four-member team using Nvivo 10, employing the constant comparison method. Risk factors identified were used to create a set of models presented in two follow-up HVIP case managers and leadership focus groups. Eighteen key themes within seven domains (environment, identity, mental health, behavior, conflict, indicators of lower risk, and case management) and 141 potential risk factors for use in the risk assessment framework were identified. The most salient factors were incorporated into eight models that were presented to the HVIP case managers. A 29-item algorithmic structured professional judgment model was chosen. We identified four tiers of risk factors for violent reinjury that were incorporated into a proposed risk assessment instrument, VRRAI. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  8. A new informant-based questionnaire for instrumental activities of daily living in dementia

    NARCIS (Netherlands)

    Sikkes, S.A.M.; de Lange-de Klerk, E.S.M.; Pijnenburg, Y.A.L.; Gillissen, F.; Romkes, R.; Knol, D.L.; Uitdehaag, B.M.J.; Scheltens, P.

    2012-01-01

    Background: Interference in everyday functioning is part of the diagnostic criteria for dementia. Questionnaires measuring "instrumental activities of daily living" (IADL) are used to measure this interference, but the psychometric quality of these questionnaires is often questioned. In addition,

  9. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  10. Development of a new instrument for the measurement of the milk constituents based on the embedded system

    International Nuclear Information System (INIS)

    Zhou Zhen; Wu Juan; Su Lijun; Li Zhonggang; Zhao Hong

    2007-01-01

    This paper presents a new way for measuring milk constituents. The new technology utilizes the scattered light to transmitted light ratio of laser light to determine the amount of protein and fat in milk. Fundamental theories of this new technology are discussed in detail and the design blueprint of an embedded system built based on this technology is outlined. Furthermore, the protein concentrations measured by the newly developed instrument are fit well with the authentic results from Dairy Quality Supervision and Inspection Center of the Country, indicating the instrument is feasible and has great potential for the application in dairy industry

  11. Research on the improvement of traditional dial instrument precision based on C8051F020.

    Science.gov (United States)

    Sun, Guiling; Liu, Yi; Lu, Li

    2006-11-01

    Two essential parameters to weigh the quality of a reinforcing steel bar are the value of its bending force and the maximum pull it can withstand, in order to measure them with higher precision, it is significant to describe the changing tendency of force with time and displacement by drawing a real-time curve directly during the process examining the quality of a bar when the pull exerted is variable continuously. Using C8051F020 as the core component, this paper improves traditional dial instruments whose precision can only reach the second level. Adopting a high precision pulling/pressing force sensor, an amplifier, a two-order Butterworth low-pass filter and a 12-bit AD converter which is in the C8051F020, the first level of precision can be obtained. A rotary encoder is used to measure the length increment of the bar during the pulling process, based on an algorithm, a force-displacement (or time) curve which is quite important for operators to control the course of experiment can be displayed on the LCD. Meanwhile, real-time experimental data can be stored in local flash, or uploaded to PC by RS-485 and stored in the center database. A real-time clock is also adopted to mark the time of each experiment that is useful to index the data. The measure system we describe here is characterized by simple structure, high precision and stabilization, and convenience operation, can be used in other actual measure systems by only changing the front sensor, so it is of great value of application and popularization.

  12. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Ding-Hui Dong

    2015-01-01

    Full Text Available Background: Magnetic anchored surgical instruments (MASI, relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3 is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. "BMI-ICAWT" curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056, P2 = 1.098 (0.03197, 2.164, P3 = −18.52 (−31.64, −5.412, R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of "BMI-ICAWT" curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI.

  13. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  15. Measuring quality in community based housing support - the QPC-H instrument.

    Science.gov (United States)

    Lundqvist, Lars-Olov; Rask, Mikael; Brunt, David; Ivarsson, Ann-Britt; Schröder, Agneta

    2016-04-18

    Purpose - The purpose of this paper is to test the psychometric properties and dimensionality of the instrument Quality in Psychiatric Care-Housing (QPC-H) and briefly describe the residents' perception of quality of housing support. Design/methodology/approach - A sample of 174 residents from 22 housing support services in nine Swedish municipalities participated in the study. Confirmatory factor analysis (CFA) revealed that the QPC-H consisted of six dimensions and had a factor structure largely corresponding to that found among other instruments in the Quality in Psychiatric Care (QPC) family of instruments. Findings - CFA revealed that the QPC-H consisted of six dimensions and had a factor structure largely corresponding to that found among other instruments in the QPC family of instruments. The internal consistency of the factors was acceptable except in the case of secure and secluded environment, probably due to few numbers of items. With this exception, the QPC-H shows adequate psychometric properties. Social implications - The residents' ratings of quality of housing service were generally high; the highest rating was for secluded environment and the lowest for participation. This dimension would thus seem to indicate an important area for improvement. Originality/value - The QPC-H includes important aspects of residents' assessment of quality of housing service and offers a simple and inexpensive way to evaluate housing support services from the residents' perspective.

  16. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  17. Kryptonate-based instrumentation development for automobile exhaust pollutants. Phase III report: design and construction of four (4) experimental models

    International Nuclear Information System (INIS)

    Goodman, P.; Donaghue, T.

    This phase of the program encompasses the design, construction and evaluation of four (4) prototype instruments for the detection of automobile exhaust pollutant. These instruments employ the radio release mechanism utilized by Panametrics in detection of various trace gases. The prototype instruments are of two (2) designs. One design is operable from a power source supplied by an automobile battery. The second design is operable from 110 volts AC power. Successful evaluation in the laboratory as well as with various automobiles were performed with both type instruments. Scale-up of the quantity of sensor material prepared introduced unexpected problems with respect to detection lifetime which were not satisfactorily resolved within the time and funds available to the program. Nevertheless, a Kryptonate-based instrument using a single detection method for the measurement of hydrocarbons, CO and NO/sub x/ as pollutants by automobile exhausts was shown to be operable with actual automobile exhausts, to provide more than adequate sensitivity for inspection purposes, and to provide response and recovery times for full scale reading in the range 10-15 secs. (auth)

  18. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  19. Market-based instruments for water policy: the market for water rights in Chile

    International Nuclear Information System (INIS)

    Redaelli, C.

    2008-01-01

    Market instruments have been often proposed with the aim of improving the efficient allocation of use rights over natural resources. This article analyzes the potential of market mechanisms in the field of water resources and focuses attention on the experience of Chile, one of the few cases in which water markets have been implemented on a wide scale. Evidence from the Chilean case is discussed in order to verify theoretical hypotheses and to outline the potential benefits but also the many drawbacks of these instruments. [it

  20. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); Frechtling, M. K. [Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); School of Electrical Engineering, The University of Sydney, Sydney NSW 2006 (Australia)

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  1. State-of-the-art report for the instrumentation and control technology based on the nuclear-information technology convergence

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Kim, Chang Hwoi; Lee, Dong Young; Lee, Cheol Kwon; Lee, Hyun Chul

    2011-12-01

    As digitalized the instrumentation and control systems in nuclear power plants, in the past that were implemented in an analog system or circuit for monitoring, control and protection, most of the them is implemented in embedded software based on hardware platform. Digital instrumentation and control system hardware platforms and a digital safety systems have developed in Korea. The fundamental technology of the software part of MMIS (Man-Machine Interface System) has achieved the localization. But in order to secure our global competitiveness, in the -based software, the source of the content areas / It is needed to develop core technologies of the software and contents areas based on the nuclear-IT convergence technology. In this report, the IT technology centered for the characteristics of embedded software applied to nuclear power is described. Also state-of-the-art IT technologies that will converge to nuclear power plants are mentioned

  2. Comparison of three sampling instruments, Cytobrush, Curette and OralCDx, for liquid-based cytology of the oral mucosa.

    Science.gov (United States)

    Reboiras-López, M D; Pérez-Sayáns, M; Somoza-Martín, J M; Antúnez-López, J R; Gándara-Vila, P; Gayoso-Diz, P; Gándara-Rey, J M; García-García, A

    2012-01-01

    Exfoliative cytology of the oral cavity is a simple and noninvasive technique that permits the study of epithelial cells. Liquid-based cytology is an auxiliary diagnostic tool for improving the specificity and sensitivity of conventional cytology. The objective of our study was to compare the quality of normal oral mucosa cytology samples obtained using three different instruments, Cytobrush®, dermatological curette and Oral CDx® for liquid-based cytology. One hundred four cytological samples of oral cavity were analyzed. Samples were obtained from healthy volunteer subjects using all three instruments. The clinical and demographic variables were age, sex and smoking habits. We analyzed cellularity, quality of the preparation and types of cells in the samples. All preparations showed appropriate preparation quality. In all smears analyzed, cells were distributed uniformly and showed no mucus, bleeding, inflammatory exudate or artifacts. We found no correlation between the average number of cells and the type of instrument. The samples generally consisted of two types of cells: superficial and intermediate. No differences were found among the cytological preparations of these three instruments. We did not observe basal cells in any of the samples analyzed.

  3. Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model.

    Science.gov (United States)

    Tibesku, Carsten O; Hofer, Pamela; Portegies, Wesley; Ruys, C J M; Fennema, Peter

    2013-03-01

    The growing demand for total knee arthroplasty (TKA) associated with the efforts to contain healthcare expenditure by advanced economies necessitates the use of economically effective technologies in TKA. The present analysis based on activity-based costing (ABC) model was carried out to estimate the economic value of patient-matched instrumentation (PMI) compared to standard surgical instrumentation in TKA. The costs of the two approaches, PMI and standard instrumentation in TKA, were determined by the use of ABC which measures the cost of a particular procedure by determining the activities involved and adding the cost of each activity. Improvement in productivity due to increased operating room (OR) turn-around times was determined and potential additional revenue to the hospital by the efficient utilization of gained OR time was estimated. Increased efficiency in the usage of OR and utilization of surgical trays were noted with patient-specific approach. Potential revenues to the hospital were estimated with the use of PMI by efficient utilization of time saved in OR. Additional revenues of 78,240 per year were estimated considering utilization of gained OR time to perform surgeries other than TKA. The analysis suggests that use of PMI in TKA is economically effective when compared to standard instrumentation.

  4. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    Science.gov (United States)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  5. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    Science.gov (United States)

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  6. Application of an ion mobility spectrometer based on virtual instrument technology

    International Nuclear Information System (INIS)

    Fu Shihong; Wei Yongbo; Jiang Dazhen

    2008-01-01

    This paper presents the application of virtual instrument technology on an ion mobility spectrometer (IMS). By designing the data acquisition and processing system of IMS on LabVIEW platform, the ability of signal processing and real time measurement in practice has been improved. (authors)

  7. Pruning the Money-Tree to Ensure Sustainable Growth: Facilitating Sustainable Development Through Market-Based Instruments

    Directory of Open Access Journals (Sweden)

    AR Paterson

    2006-12-01

    Full Text Available South Africa’s pristine landscapes and natural resources are under significant threat. This is not subject to debate, but what is, is how to implement a regulatory regime to deal effectively with these environmental realities – a challenge complicated by competing socio-economic imperatives; significant capacity and resource constraints and the need to redress past inequalities, efforts to increase access to land and natural resources as well as perceptions that the environment is an elitist concern. Many countries are exploring alternative ways of providing for effective environmental management such as: co-opting civil society participation; creating markets for environmental goods and services; and using market-based instruments (MBI. The latter form the focus of this article as the National Treasury recently released a draft policy paper for discussion titled A Framework for Considering Market-Based Instruments to Support Environmental Fiscal Reform in South Africa 2006 (Draft Policy Paper.

  8. Evaluation of two disinfection/sterilization methods on silicon rubber-based composite finishing instruments.

    Science.gov (United States)

    Lacerda, Vánia A; Pereira, Leandro O; Hirata JUNIOR, Raphael; Perez, Cesar R

    2015-12-01

    To evaluate the effectiveness of disinfection/sterilization methods and their effects on polishing capacity, micomorphology, and composition of two different composite fiishing and polishing instruments. Two brands of finishing and polishing instruments (Jiffy and Optimize), were analyzed. For the antimicrobial test, 60 points (30 of each brand) were used for polishing composite restorations and submitted to three different groups of disinfection/sterilization methods: none (control), autoclaving, and immersion in peracetic acid for 60 minutes. The in vitro tests were performed to evaluate the polishing performance on resin composite disks (Amelogen) using a 3D scanner (Talyscan) and to evaluate the effects on the points' surface composition (XRF) and micromorphology (MEV) after completing a polishing and sterilizing routine five times. Both sterilization/disinfection methods were efficient against oral cultivable organisms and no deleterious modification was observed to point surface.

  9. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  10. Microprocessor- and LSI-based CAMAC RAM controllers in a modular multiparameter instrumentation system

    International Nuclear Information System (INIS)

    Skarda, V.

    1982-01-01

    This contribution deals with the main features and with the hardware modifications of RAM controllers in the dual-port accessed CAMAC memory modules that have been applied in a modular multichannel analyzer instrumentation system. The modules described in this paper are fully compatible with the CAMAC standard EUR 4100 and with the COMPEX draft proposal of the ESONE Study Group, as well. Special attention is paid to the possible application of modern LSI bipolar circuits. (orig.)

  11. Understanding practice change in community pharmacy: a qualitative research instrument based on organisational theory.

    Science.gov (United States)

    Roberts, Alison S; Hopp, Trine; Sørensen, Ellen Westh; Benrimoj, Shalom I; Chen, Timothy F; Herborg, Hanne; Williams, Kylie; Aslani, Parisa

    2003-10-01

    The past decade has seen a notable shift in the practice of pharmacy, with a strong focus on the provision of cognitive pharmaceutical services (CPS) by community pharmacists. The benefits of these services have been well documented, yet their uptake appears to be slow. Various strategies have been developed to overcome barriers to the implementation of CPS, with varying degrees of success, and little is known about the sustainability of the practice changes they produce. Furthermore, the strategies developed are often specific to individual programs or services, and their applicability to other CPS has not been explored. There seems to be a need for a flexible change management model for the implementation and dissemination of a range of CPS, but before it can be developed, a better understanding of the change process is required. This paper describes the development of a qualitative research instrument that may be utilised to investigate practice change in community pharmacy. Specific objectives included gaining knowledge about the circumstances surrounding attempts to implement CPS, and understanding relationships that are important to the change process. Organisational theory provided the conceptual framework for development of the qualitative research instrument, within which two theories were used to give insight into the change process: Borum's theory of organisational change, which categorizes change strategies as rational, natural, political or open; and Social Network Theory, which helps identify and explain the relationships between key people involved in the change process. A semi-structured affecting practice change found in the literature that warranted further investigation with the theoretical perspectives of organisational change and social networks. To address the research objectives, the instrument covered four broad themes: roles, experiences, strategies and networks. The qualitative research instrument developed in this study provides a

  12. Transcultural adaptation into Portuguese of an instrument for pain evaluation based on the biopsychosocial model

    Directory of Open Access Journals (Sweden)

    Monique Rocha Peixoto dos Santos

    Full Text Available Abstract Introduction: Pain is an individual experience influenced by multiple interacting factors. The “biopsychosocial” care model has gained popularity in response to growing research evidence indicating the influence of biological, psychological, and social factors on the pain experience. The implementation of this model is a challenge in the practice of the health professional. Objective: To perform the transcultural adaptation of the SCEBS method into Brazilian Portuguese. Methods: The instrument was translated and applied to 50 healthy subjects and 50 participants with non-specific chronic pain in the spine. The process of cross-cultural adaptation included the following steps: transcultural adaptation, content analysis of the scale, pre-test, revision, back-translation review, cross-cultural adaptation, revised text correction and final report. Results: The translated and adapted 51-item Portuguese version of the SCEBS method produced an instrument called SCEBS-BR. In the assessment by the target population, 50 adult users of the Brazilian Unified Health System answered the questionnaire and showed good understanding of the instrument on the verbal rating scale. Conclusion: The SCEBS-BR was proved to be easily understandable, showing good semantic validation regardless of schooling level or age, and can be considered adequate for clinical use.

  13. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  14. A telemedicine instrument for Internet-based home monitoring of thoracoabdominal motion in patients with respiratory diseases

    Science.gov (United States)

    da Silva Junior, Evert Pereira; Esteves, Guilherme Pompeu; Dames, Karla Kristine; Melo, Pedro Lopes de

    2011-01-01

    Changes in thoracoabdominal motion are highly prevalent in patients with chronic respiratory diseases. Home care services that use telemedicine techniques and Internet-based monitoring have the potential to improve the management of these patients. However, there is no detailed description in the literature of a system for Internet-based monitoring of patients with disturbed thoracoabdominal motion. The purpose of this work was to describe the development of a new telemedicine instrument for Internet-based home monitoring of thoracoabdominal movement. The instrument directly measures changes in the thorax and abdomen circumferences and transfers data through a transmission control protocol/Internet protocol connection. After the design details are described, the accuracy of the electronic and software processing units of the instrument is evaluated by using electronic signals simulating normal subjects and individuals with thoracoabdominal motion disorders. The results obtained during in vivo studies on normal subjects simulating thoracoabdominal motion disorders showed that this new system is able to detect a reduction in abdominal movement that is associated with abnormal thoracic breathing (p telemedicine scenarios, which can reduce the costs of assistance offered to patients with respiratory diseases.

  15. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  16. Preference-based disease-specific health-related quality of life instrument for glaucoma: a mixed methods study protocol

    Science.gov (United States)

    Muratov, Sergei; Podbielski, Dominik W; Jack, Susan M; Ahmed, Iqbal Ike K; Mitchell, Levine A H; Baltaziak, Monika; Xie, Feng

    2016-01-01

    Introduction A primary objective of healthcare services is to improve patients' health and health-related quality of life (HRQoL). Glaucoma, which affects a substantial proportion of the world population, has a significant detrimental impact on HRQoL. Although there are a number of glaucoma-specific questionnaires to measure HRQoL, none is preference-based which prevent them from being used in health economic evaluation. The proposed study is aimed to develop a preference-based instrument that is capable of capturing important effects specific to glaucoma and treatments on HRQoL and is scored based on the patients' preferences. Methods A sequential, exploratory mixed methods design will be used to guide the development and evaluation of the HRQoL instrument. The study consists of several stages to be implemented sequentially: item identification, item selection, validation and valuation. The instrument items will be identified and selected through a literature review and the conduct of a qualitative study. Validation will be conducted to establish psychometric properties of the instrument followed by a valuation exercise to derive utility scores for the health states described. Ethics and dissemination This study has been approved by the Trillium Health Partners Research Ethics Board (ID number 753). All personal information will be de-identified with the identification code kept in a secured location including the rest of the study data. Only qualified and study-related personnel will be allowed to access the data. The results of the study will be distributed widely through peer-reviewed journals, conferences and internal meetings. PMID:28186941

  17. Testing instrument validity for LATE identification based on inequality moment constraints

    DEFF Research Database (Denmark)

    Huber, Martin; Mellace, Giovanni

    2015-01-01

    We derive testable implications of instrument validity in just identified treatment effect models with endogeneity and consider several tests. The identifying assumptions of the local average treatment effect allow us to both point identify and bound the mean potential outcomes (i) of the always...... takers under treatment and (ii) of the never takers under non-treatment. The point identified means must lie within their respective bounds, which provides us with four testable inequality moment constraints. Finally, we adapt our testing framework to the identification of distributional features....... A brief simulation study and an application to labor market data are also provided....

  18. Radiation protection instruments based on tissue equivalent proportional counters: Part II of an international intercomparison

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.; Guldbakke, S.; Kluge, H.; Schumacher, H.

    1988-04-01

    This report describes the irradiation conditions and procedures of Part II of an international intercomparison of tissue-equivalent proportional counters used for radiation protection measurements. The irradiations took place in monoenergetic reference neutron fields produced by the research reactor and accelerator facilities of the PTB Braunschweig in the range from thermal neutrons to 14.8 MeV. In addition measurements were performed in 60 Co and D 2 O-moderated 252 Cf radiation fields. Prototype instruments from 7 European groups were investigated. The results of the measurements are summarized and compared with the reference data of the irradiations. (orig.) [de

  19. Assessing an organizational culture instrument based on the Competing Values Framework: Exploratory and confirmatory factor analyses

    Science.gov (United States)

    Helfrich, Christian D; Li, Yu-Fang; Mohr, David C; Meterko, Mark; Sales, Anne E

    2007-01-01

    Background The Competing Values Framework (CVF) has been widely used in health services research to assess organizational culture as a predictor of quality improvement implementation, employee and patient satisfaction, and team functioning, among other outcomes. CVF instruments generally are presented as well-validated with reliable aggregated subscales. However, only one study in the health sector has been conducted for the express purpose of validation, and that study population was limited to hospital managers from a single geographic locale. Methods We used exploratory and confirmatory factor analyses to examine the underlying structure of data from a CVF instrument. We analyzed cross-sectional data from a work environment survey conducted in the Veterans Health Administration (VHA). The study population comprised all staff in non-supervisory positions. The survey included 14 items adapted from a popular CVF instrument, which measures organizational culture according to four subscales: hierarchical, entrepreneurial, team, and rational. Results Data from 71,776 non-supervisory employees (approximate response rate 51%) from 168 VHA facilities were used in this analysis. Internal consistency of the subscales was moderate to strong (α = 0.68 to 0.85). However, the entrepreneurial, team, and rational subscales had higher correlations across subscales than within, indicating poor divergent properties. Exploratory factor analysis revealed two factors, comprising the ten items from the entrepreneurial, team, and rational subscales loading on the first factor, and two items from the hierarchical subscale loading on the second factor, along with one item from the rational subscale that cross-loaded on both factors. Results from confirmatory factor analysis suggested that the two-subscale solution provides a more parsimonious fit to the data as compared to the original four-subscale model. Conclusion This study suggests that there may be problems applying conventional

  20. Development of the Quality of Australian Nursing Documentation in Aged Care (QANDAC) instrument to assess paper-based and electronic resident records.

    Science.gov (United States)

    Wang, Ning; Björvell, Catrin; Hailey, David; Yu, Ping

    2014-12-01

    To develop an Australian nursing documentation in aged care (Quality of Australian Nursing Documentation in Aged Care (QANDAC)) instrument to measure the quality of paper-based and electronic resident records. The instrument was based on the nursing process model and on three attributes of documentation quality identified in a systematic review. The development process involved five phases following approaches to designing criterion-referenced measures. The face and content validities and the inter-rater reliability of the instrument were estimated using a focus group approach and consensus model. The instrument contains 34 questions in three sections: completion of nursing history and assessment, description of care process and meeting the requirements of data entry. Estimates of the validity and inter-rater reliability of the instrument gave satisfactory results. The QANDAC instrument may be a useful audit tool for quality improvement and research in aged care documentation. © 2013 ACOTA.

  1. The Project Based Mechanisms of the Kyoto Protocol. Credible Instruments or Challenges to the Integrity of the Kyoto Protocol?

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi Waldegren, Linn

    2006-03-15

    The project based mechanisms of the Kyoto Protocol are innovative instruments which allow projects to earn credits for reducing greenhouse gas (GHG) emissions. The credits can in turn be used by countries to reach their emissions targets according to the Kyoto Protocol. The Project based mechanisms are known as the Clean Development Mechanism (CDM) and the Joint Implementation (JI). If the project based mechanisms are to be effective policy instruments they must ensure the integrity of the Kyoto Protocol, and their ability to promote and prove real emission reductions is critical. The environmental credibility of the project based mechanisms will also ensure their ability to promote cost effectiveness. Key concepts in this context are environmental and project additionality, and their role and value for the project based mechanisms are analyzed. Environmental additionality is established by comparing a project's emissions to a baseline. The baseline's credibility is thus vital. The concept of project additionality is somewhat controversial, but is nonetheless of equal importance. The case studies of CDM approved methodologies (AMs) and proposed projects suggest that there are credibility issues that need to be addressed if the project based mechanisms are to promote real emissions reductions.

  2. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  3. The JPSS CrIS Instrument and the Evolution of Space-Based Infrared Sounders

    Science.gov (United States)

    Glumb, Ronald; Suwinski, Lawrence; Wells, Steven; Glumb, Anna; Malloy, Rebecca; Colton, Marie

    2018-01-01

    This paper will summarize the development of infrared sounders since the 1970s, describe the technological hurdles that were overcome to provide ever-increasing performance capabilities, and highlight the radiometric performance of the CrIS instrument on JPSS-1 (CrIS-JPSS1). This includes details of the CrIS-JPSS1 measured noise-equivalent spectral radiance (NEdN) performance, radiometric uncertainty performance utilizing a new and improved internal calibration target, short-term and long-term repeatability, spectral uncertainty, and spectral stability. In addition, the full-resolution operating modes for CrIS-JPSS1 will be reviewed, including a discussion of how these modes will be used during on-orbit characterization tests. We will provide a brief update of CrIS-SNPP on-obit performance and the production status of the CrIS instruments for JPSS-2 through JPSS-4. Current technological challenges will also be reviewed, including how ongoing research and development is enabling improvements to future sounders. The expanding usage of infrared sounding data will also be discussed, including demonstration of value via data assimilation, the roles of the public/private sector in communicating the importance of sounding data for long-term observations, and the long road to success from research to operational data products.

  4. The development of special equipment amplitude detection instrument based on DSP

    International Nuclear Information System (INIS)

    Dai Sidan; Chen Ligang; Lan Peng; Wang Huiting; Zhang Liangxu; Wang Lin

    2014-01-01

    Development and industrial application of special equipment plays an important role in the development of nuclear energy process. Equipment development process need to do a lot of tests, amplitude detection is a key test,it can analysis the device's electromechanical and physical properties. In the industrial application, the amplitude detection can effectively reflect the operational status of the current equipment, the equipment can also be a certain degree of fault diagnosis, identify problems in a timely manner. The main development target in this article is amplitude detection of special equipment. This article describes the development of special equipment amplitude detection instrument. The instrument uses a digital signal processor (DSP) as the central processing unit, and uses the DSP + CPLD + high-speed AD technology to build a complete set of high-precision signal acquisition and analysis processing systems, rechargeable lithium battery as the powered device. It can do a online monitoring of special equipment amplitude, speed parameters by acquiring and analysing the tachometer signal in the special equipment, and locally display through the LCD screen. (authors)

  5. Conceptual design of wearpack with physiology detector feature based on wearable instrumentation

    Science.gov (United States)

    Sukirman, Melani; Laksono, Pringgo Widyo; Priadythama, Ilham; Susmartini, Susy; Suhardi, Bambang

    2017-11-01

    Every company in Indonesia is responsible for their worker health and safety condition as mentioned in UU No I year 1970. In manufacturing industries, there are many manual tasks dealing with high work load and risk, so that they require excellent concentration and physical condition. There is no ideal way to guarantee worker safety without a real time physiological monitoring. This paper reports our ongoing study in conceptual design development of worker's clothing which is equipped with a wearable instrumentation system. The system is designed to detect and measure body temperature and pulse in real time. Some electrical components such as, LCD (liquid crystal display), LEDs (light emitting diode), batteries, and physiological sensors were assembled. All components are controlled by a wearable on board controller. LEDs is used as alert which can indicate abnormal physical conditions. The LCD was added to provide more detail information. TMP 36 and XD-58C were selected as the physiological sensors. Finally, an Arduino Lilypad was chosen for the controller. This instrumentation system was verified by accurately detected and inform physiological condition of 3 subjects. Further we are going to attach the system to a worker's clothing which was specifically designed to simplify and comfortable usage.

  6. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  7. From theory based policy evaluation to SMART Policy Design: Lessons learned from 20 ex-post evaluations of energy efficiency instruments

    International Nuclear Information System (INIS)

    Harmelink, Mirjam; Harmsen, Robert; Nilsson, Lars

    2007-01-01

    This article presents the results of an in-depth ex-post analysis of 20 energy efficiency policy instruments applied across different sectors and countries. Within the AID-EE project, we reconstructed and analysed the implementation process of energy efficiency policy instruments with the aim to identify key factors behind successes and failures. The analysis was performed using a uniform methodology called 'theory based policy evaluation'. With this method the whole implementation process is assessed with the aim to identify: (i) the main hurdles in each step of the implementation process, (ii) key success factors for different types of instruments and (iii) the key indicators that need to be monitored to enable a sound evaluation of the energy efficiency instruments. Our analysis shows that: Energy efficiency policies often lack quantitative targets and clear timeframes; Often policy instruments have multiple and/or unclear objectives; The need for monitoring information does often not have priority in the design phase; For most instruments, monitoring information is collected on a regular basis. However, this information is often insufficient to determine the impact on energy saving, cost-effectiveness and target achievement of an instrument; Monitoring and verification of actual energy savings have a relatively low priority for most of the analyzed instruments. There is no such thing as the 'best' policy instrument. However, typical circumstances in which to apply different types of instruments and generic characteristics that determine success or failure can be identified. Based on the assessments and the experience from applying theory based policy evaluation ex-post, we suggest that this should already be used in the policy formulation and design phase of instruments. We conclude that making policy theory an integral and mandated part of the policy process would facilitate more efficient and effective energy efficiency instruments

  8. Instrument for analysis of electric motors based on slip-poles component

    Science.gov (United States)

    Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.

    1996-01-01

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  9. A PC-based Flexible Solution for Virtual Instrumentation of a Multi-Purpose Test Bed

    Directory of Open Access Journals (Sweden)

    Benatzky Christian

    2006-11-01

    Full Text Available The aim of the paper is to give an overview of a test bed set up for lightweight flexible structures. The purpose of the test bed is to compare different concepts for suppressing structural vibrations. It is demonstrated that such a complex measurement and actuation task can be easily implemented on a single PC using standard software like Matlab/SIMULINK® with a minimum of custom hardware. With the help of this PC standard engineering tasks like measuring, identification of transfer functions, as well as controller design and implementation in soft real-time can be carried out easily (rapid prototyping. The resulting system is flexible and scalable, enabling an engineer to perform all the above mentioned tasks for a given test object within minimum time. Additionally, the utilization of Matlab/SIMULINK® facilitates the realization of a versatile virtual instrumentation system which is easy to use and may also be remote-controlled.

  10. Market based instruments for urban mobility management: the case of parking fees

    International Nuclear Information System (INIS)

    Zatti, Andrea

    2005-01-01

    The increasing difficulties met by the Italian authorities in facing congestion and environmental pollution caused by urban traffic have obliged all administrative levels to implement measures to tackle the problem in an effective way. At first, from the beginning of the Eighties, interventions have been directed - mainly at the European and national level - to the improvement of environmental and safety performances of the vehicle fleet, in particular the private one. Only later, due to the continuous growth of car ownership and use, that in some cases have more than compensated the progress obtained in engine technology and brought about new emergencies as congestion, excessive land use and casualties, an increasing need came out to carry out measures aiming at controlling and influencing, above all in metropolitan areas, mobility pattern and modal split, independently from progress in the vehicle fleet. This need led first, at the local level, to the introduction of command and control measures (pedestrian areas, traffic bans and circulation with alternate plate number, until the wide implementation of car free areas), mainly in the inner parts of cities, which have progressively shown some of the common drawbacks associated with regulatory instruments: difficult enforcement, increasing number of permissions and exceptions, concentration of policies in small areas, reduced spatial and temporal flexibility. In this framework, a high share of Italian municipalities has introduced since the end of the nineties parking fees to salve (at least potentially) some of the problems considered, so that, in the common view, they have become the most diffused instrument (numerically and spatially) to tackle mobility growth in large urban areas. However, as commonly found in literature, the Italian experience has been characterized by some problematic aspects: both in terms of the real capacity of parking fees to represent adequately external costs associated to mobility (no

  11. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  12. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  13. Assessing research activity and capacity of community-based organizations: development and pilot testing of an instrument.

    Science.gov (United States)

    Humphries, Debbie L; Carroll-Scott, Amy; Mitchell, Leif; Tian, Terry; Choudhury, Shonali; Fiellin, David A

    2014-01-01

    Although awareness of the importance of the research capacity of community-based organizations (CBOs) is growing, a uniform framework of the research capacity domains within CBOs has not yet been developed. To develop a framework and instrument (the Community REsearch Activity assessment Tool [CREAT]) for assessing the research activity and capacity of CBOs that incorporates awareness of the different data collection and analysis priorities of CBOs. We conducted a review of existing tools for assessing research capacity to identify key capacity domains. Instrument items were developed through an iterative process with CBO representatives and community researchers. The CREAT was then pilot tested with 30 CBOs. The four primary domains of the CREAT framework include 1) organizational support for research, 2) generalizable experiences, 3) research specific experiences, and 4) funding. Organizations reported a high prevalence of activities in the research-specific experiences domain, including conducting literature reviews (70%), use of research terminology (83%), and primary data collection (100%). Respondents see research findings as important to improve program and service delivery, and to seek funds for new programs and services. Funders, board members, and policymakers are the most important dissemination audiences. The work reported herein advances the field of CBO research capacity by developing a systematic framework for assessing research activity and capacity relevant to the work of CBOs, and by developing and piloting an instrument to assess activity in these domains.

  14. "Fibromyalgia and quality of life: mapping the revised fibromyalgia impact questionnaire to the preference-based instruments".

    Science.gov (United States)

    Collado-Mateo, Daniel; Chen, Gang; Garcia-Gordillo, Miguel A; Iezzi, Angelo; Adsuar, José C; Olivares, Pedro R; Gusi, Narcis

    2017-05-30

    The revised version of the Fibromyalgia Impact Questionnaire (FIQR) is one of the most widely used specific questionnaires in FM studies. However, this questionnaire does not allow calculation of QALYs as it is not a preference-based measure. The aim of this study was to develop mapping algorithm which enable FIQR scores to be transformed into utility scores that can be used in the cost utility analyses. A cross-sectional survey was conducted. One hundred and 92 Spanish women with Fibromyalgia were asked to complete four general quality of life questionnaires, i.e. EQ-5D-5 L, 15D, AQoL-8D and SF-12, and one specific disease instrument, the FIQR. A direct mapping approach was adopted to derive mapping algorithms between the FIQR and each of the four multi-attribute utility (MAU) instruments. Health state utility was treated as the dependent variable in the regression analysis, whilst the FIQR score and age were predictors. The mean utility scores ranged from 0.47 (AQoL-8D) to 0.69 (15D). All correlations between the FIQR total score and MAU instruments utility scores were highly significant (p fibromyalgia specific questionnaire.

  15. How to investigate the goal orientations of students in competence-based pre-vocational secondary education: choosing the right instrument.

    NARCIS (Netherlands)

    Dr. M. Koopman; prof dr Douwe Beijaard; Dr P.J. Teune

    2008-01-01

    This study explores the psychometric properties of three instruments: a semi-structured interview, a questionnaire and a sorting task. The central question is which instrument is most suitable to investigate the goal orientations of students in competence-based Pre-Vocational Secondary Education.

  16. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  17. Databases as policy instruments. About extending networks as evidence-based policy

    Directory of Open Access Journals (Sweden)

    Stoevelaar Herman

    2007-12-01

    Full Text Available Abstract Background This article seeks to identify the role of databases in health policy. Access to information and communication technologies has changed traditional relationships between the state and professionals, creating new systems of surveillance and control. As a result, databases may have a profound effect on controlling clinical practice. Methods We conducted three case studies to reconstruct the development and use of databases as policy instruments. Each database was intended to be employed to control the use of one particular pharmaceutical in the Netherlands (growth hormone, antiretroviral drugs for HIV and Taxol, respectively. We studied the archives of the Dutch Health Insurance Board, conducted in-depth interviews with key informants and organized two focus groups, all focused on the use of databases both in policy circles and in clinical practice. Results Our results demonstrate that policy makers hardly used the databases, neither for cost control nor for quality assurance. Further analysis revealed that these databases facilitated self-regulation and quality assurance by (national bodies of professionals, resulting in restrictive prescription behavior amongst physicians. Conclusion The databases fulfill control functions that were formerly located within the policy realm. The databases facilitate collaboration between policy makers and physicians, since they enable quality assurance by professionals. Delegating regulatory authority downwards into a network of physicians who control the use of pharmaceuticals seems to be a good alternative for centralized control on the basis of monitoring data.

  18. Comparison of Instrumentation and Control Parameters Based on Simulation and Experimental Data for Reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Anith Khairunnisa Ghazali; Mohd Sabri Minhat

    2015-01-01

    Reactor TRIGA PUSPATI (RTP) undergoes safe operation for more than 30 years and the only research reactor in Malaysia. The main safety feature of Instrumentation and Control (I and C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. There are no best models for RTP simulation was designed for study and research. Therefore, the comparison for I&C parameters are very essential, to design the best RTP model using MATLAB/ Simulink as close as the RTP. The simulation of TRIGA reactor type already develop using desktop reactor simulator such as Personal Computer Transient Analyzer (PCTRAN). The experimental data from RTP and simulation of PCTRAN shows some similarities and differences due to certain limitation. Currently, the structured RTP simulation was designed using MATLAB and Simulink tool that consist of ideal fission chamber, controller, control rod position, height to worth and RTP model. The study on this paper focus on comparison between real data from RTP and simulation result from PCTRAN on I&C parameters such as water level, fuel temperature, bulk temperature, power rated and rod position. The error analysis due to some similarities and differences of I&C parameters shall be obtained and analysed. The result will be used as reference for proposed new structured of RTP model. (author)

  19. Prototype of a Laser-Induced Fluorescence Ground-Based Instrument for Measurements of Atmospheric Iodine Monoxide (IO)

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; Hanisco, T. F.; Lapson, L. B.; Anderson, J. G.

    2008-12-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer: (1) IO participates in depletion episodes of O3 and in the removal of mercury in the Arctic polar spring by enhancing atomic Br mixing ratios. Recent observations and computer simulations suggest that mercury sequestration is closely tied to halogen photochemistry and that gaseous atomic Hg depletion can be enhanced significantly by the presence of small amounts of iodine-containing compounds. (2) IO and higher- order iodine oxides are involved in the formation of new particles in coastal marine environments. Studies using smog chamber experiments simulating coastal atmospheric conditions have demonstrated that new particles can form from condensable iodine-containing vapors and that their concentrations over the open ocean are sufficient to influence marine particle formation. (3) IO has also been shown to affect the oxidizing capacity of the troposphere by altering the partitioning of NO2/NO and HO2/HO and by activating chlorine and bromine in sea salt aerosols. In the stratosphere, these same processes can lead to enhanced ozone loss rates. Detailed photochemical models that include iodine photochemistry, however, are hampered by the lack of observational data. The distribution of IO in vertical, horizontal, and temporal coordinates is unknown, so the impact of IO on global photochemistry cannot be predicted. The resolution of these important scientific issues requires an in situ IO instrument. A fully functional nanosecond Nd:YAG-pumped Ti:Sapphire laser system and a prototype IO ground-based instrument have been built in our lab. With the current setup, the laser system was situated 10 m from the field station, and the laser light was coupled via an optical fiber. With the use of highly efficient fluorescence detection optics and photon counting techniques, sensitivities of better than 0.1 ppt in 1 s for IO was achieved in the

  20. Validation of an instrument to assess evidence-based practice knowledge, attitudes, access, and confidence in the dental environment.

    Science.gov (United States)

    Hendricson, William D; Rugh, John D; Hatch, John P; Stark, Debra L; Deahl, Thomas; Wallmann, Elizabeth R

    2011-02-01

    This article reports the validation of an assessment instrument designed to measure the outcomes of training in evidence-based practice (EBP) in the context of dentistry. Four EBP dimensions are measured by this instrument: 1) understanding of EBP concepts, 2) attitudes about EBP, 3) evidence-accessing methods, and 4) confidence in critical appraisal. The instrument-the Knowledge, Attitudes, Access, and Confidence Evaluation (KACE)-has four scales, with a total of thirty-five items: EBP knowledge (ten items), EBP attitudes (ten), accessing evidence (nine), and confidence (six). Four elements of validity were assessed: consistency of items within the KACE scales (extent to which items within a scale measure the same dimension), discrimination (capacity to detect differences between individuals with different training or experience), responsiveness (capacity to detect the effects of education on trainees), and test-retest reliability. Internal consistency of scales was assessed by analyzing responses of second-year dental students, dental residents, and dental faculty members using Cronbach coefficient alpha, a statistical measure of reliability. Discriminative validity was assessed by comparing KACE scores for the three groups. Responsiveness was assessed by comparing pre- and post-training responses for dental students and residents. To measure test-retest reliability, the full KACE was completed twice by a class of freshman dental students seventeen days apart, and the knowledge scale was completed twice by sixteen faculty members fourteen days apart. Item-to-scale consistency ranged from 0.21 to 0.78 for knowledge, 0.57 to 0.83 for attitude, 0.70 to 0.84 for accessing evidence, and 0.87 to 0.94 for confidence. For discrimination, ANOVA and post hoc testing by the Tukey-Kramer method revealed significant score differences among students, residents, and faculty members consistent with education and experience levels. For responsiveness to training, dental students

  1. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model

    Science.gov (United States)

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-01-01

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people’s postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future. PMID:27999324

  2. An instrument based on protection motivation theory to predict Chinese adolescents' intention to engage in protective behaviors against schistosomiasis.

    Science.gov (United States)

    Xiao, Han; Peng, Minjin; Yan, Hong; Gao, Mengting; Li, Jingjing; Yu, Bin; Wu, Hanbo; Li, Shiyue

    2016-01-01

    Further advancement in schistosomiasis prevention requires new tools to assess protective motivation, and promote innovative intervention program. This study aimed to develop and evaluate an instrument developed based on the Protection Motivation Theory (PMT) to predict protective behavior intention against schistosomiasis among adolescents in China. We developed the Schistosomiasis PMT Scale based on two appraisal pathways of protective motivation- threat appraisal pathway and coping appraisal pathway. Data from a large sample of middle school students ( n  = 2238, 51 % male, mean age 13.13 ± 1.10) recruited in Hubei, China was used to evaluated the validity and reliability of the scale. The final scale contains 18 items with seven sub-constructs. Cronbach's Alpha coefficients for the entire instrument was 0.76, and for the seven sub-constructs of severity, vulnerability, intrinsic reward, extrinsic reward, response efficacy, self-efficacy and response cost was 0.56, 0.82, 0.75, 0.80, 0.90, 0.72 and 0.70, respectively. The construct validity analysis revealed that the one level 7 sub-constructs model fitted data well (GFI = 0.98, CFI = 0.98, RMSEA = 0.03, Chi-sq/df = 3.90, p  motivation in schistosomiasis prevention control. Further studies are needed to develop more effective intervention programs for schistosomiasis prevention.

  3. Development of a Wearable Instrumented Vest for Posture Monitoring and System Usability Verification Based on the Technology Acceptance Model.

    Science.gov (United States)

    Lin, Wen-Yen; Chou, Wen-Cheng; Tsai, Tsai-Hsuan; Lin, Chung-Chih; Lee, Ming-Yih

    2016-12-17

    Body posture and activity are important indices for assessing health and quality of life, especially for elderly people. Therefore, an easily wearable device or instrumented garment would be valuable for monitoring elderly people's postures and activities to facilitate healthy aging. In particular, such devices should be accepted by elderly people so that they are willing to wear it all the time. This paper presents the design and development of a novel, textile-based, intelligent wearable vest for real-time posture monitoring and emergency warnings. The vest provides a highly portable and low-cost solution that can be used both indoors and outdoors in order to provide long-term care at home, including health promotion, healthy aging assessments, and health abnormality alerts. The usability of the system was verified using a technology acceptance model-based study of 50 elderly people. The results indicated that although elderly people are anxious about some newly developed wearable technologies, they look forward to wearing this instrumented posture-monitoring vest in the future.

  4. High-Throughput Array Instrument for DNA-Based Breast Cancer Diagnostics

    National Research Council Canada - National Science Library

    Swerdlow, Harold

    2000-01-01

    ...) for breast-cancer diagnostics. These methods are based upon large numbers of discrete DNA spots placed on glass microscope slides typically, and hybridized to a probe derived from a tIssue or blood sample...

  5. Development of Novel, Optically-Based Instrumentation for Aircraft System Testing and Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and evaluate a prototype of a compact, robust, optically-based sensor for making temperature and multi-species concentration measurements...

  6. Development of Novel, Optically-Based Instrumentation for Aircraft System Testing and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for making temperature and multi-species concentration measurements in aircraft system ground and...

  7. Design of LabVIEW®-based software for the control of sequential injection analysis instrumentation for the determination of morphine

    Science.gov (United States)

    Lenehan, Claire E.; Lewis, Simon W.

    2002-01-01

    LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10-10 to 5 × 10-6 M) with a line of best fit of y=1.05x+8.9164 (R2 =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8 M). The limit of detection (3σ) was determined as 5 × 10-11 M morphine. PMID:18924729

  8. Design of LabVIEW-based software for the control of sequential injection analysis instrumentation for the determination of morphine.

    Science.gov (United States)

    Lenehan, Claire E; Barnett, Neil W; Lewis, Simon W

    2002-01-01

    LabVIEW-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 x 10(-10) to 5 x 10(-6) M) with a line of best fit of y=1.05(x)+8.9164 (R(2) =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 x 10(-8) M). The limit of detection (3sigma) was determined as 5 x 10(-11) M morphine.

  9. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2007-09-01

    Full Text Available An airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com. Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O3, total and gaseous H2O, NO and NOy, CO, CO2, O2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter. Furthermore, an optical particle counter (OPC and a proton transfer mass spectrometer (PTR-MS are incorporated. Aerosol samples are collected for analysis of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases (including isotopic composition of CO2 in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. The flying observatory, its equipment and examples of measurement results are reported.

  10. Labour dystocia--risk of recurrence and instrumental delivery in following labour--a population-based cohort study.

    Science.gov (United States)

    Sandström, A; Cnattingius, S; Wikström, A K; Stephansson, O

    2012-12-01

    To investigate risk of recurrence of labour dystocia and mode of delivery in second labour after taking first labour and fetal and maternal characteristics into account. A population-based cohort study. The Swedish Medical Birth Register from 1992 to 2006. A total of 239 953 women who gave birth to their first and second singleton infants in cephalic presentation at ≥ 37 weeks of gestation with spontaneous onset of labour. We used logistic regression analysis to estimate crude and adjusted odds ratios. Labour dystocia and mode of delivery in second labour. Overall labour dystocia affected only 12% of women with previous dystocia. Regardless of mode of first delivery, rates of dystocia in the second labour were higher in women with than without previous dystocia, but were more pronounced in women with previous caesarean section (34%). Analyses with risk score groups for dystocia (risk factors were long interpregnancy interval, maternal age ≥ 35 years, obesity, short maternal stature, not cohabiting and post-term pregnancy) showed that risk of instrumental delivery in second labour increased with previous dystocia and increasing risk score. Among women with trial of labour after caesarean section with previous dystocia and a risk score of 3 or more, 66% had a vaginal instrumental or caesarean delivery (17 and 49%, respectively). In women with trial of labour after caesarean section without previous dystocia and a risk score of 0, corresponding risk was 32% (14 and 18%, respectively). Previous labour dystocia increases the risk of dystocia in subsequent delivery. Taking first labour and fetal and maternal characteristics into account is important in the risk assessments for dystocia and instrumental delivery in second labour. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.

  11. The development and psychometric testing of a theory-based instrument to evaluate nurses' perception of clinical reasoning competence.

    Science.gov (United States)

    Liou, Shwu-Ru; Liu, Hsiu-Chen; Tsai, Hsiu-Min; Tsai, Ying-Huang; Lin, Yu-Ching; Chang, Chia-Hao; Cheng, Ching-Yu

    2016-03-01

    The purpose of the study was to develop and psychometrically test the Nurses Clinical Reasoning Scale. Clinical reasoning is an essential skill for providing safe and quality patient care. Identifying pre-graduates' and nurses' needs and designing training courses to improve their clinical reasoning competence becomes a critical task. However, there is no instrument focusing on clinical reasoning in the nursing profession. Cross-sectional design was used. This study included the development of the scale, a pilot study that preliminary tested the readability and reliability of the developed scale and a main study that implemented and tested the psychometric properties of the developed scale. The Nurses Clinical Reasoning Scale was developed based on the Clinical Reasoning Model. The scale includes 15 items using a Likert five-point scale. Data were collected from 2013-2014. Two hundred and fifty-one participants comprising clinical nurses and nursing pre-graduates completed and returned the questionnaires in the main study. The instrument was tested for internal consistency and test-retest reliability. Its validity was tested with content, construct and known-groups validity. One factor emerged from the factor analysis. The known-groups validity was confirmed. The Cronbach's alpha for the entire instrument was 0·9. The reliability and validity of the Nurses Clinical Reasoning Scale were supported. The scale is a useful tool and can be easily administered for the self-assessment of clinical reasoning competence of clinical nurses and future baccalaureate nursing graduates. Study limitations and further recommendations are discussed. © 2015 John Wiley & Sons Ltd.

  12. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    Science.gov (United States)

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The research of period measuring instruments on zero power assembly based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong

    2007-12-01

    In order to improving measure precision and anti-interference capacity, and respond to the digital trend, a new technique to measure reactor period is promoted, which is based on the DSP technique, calculate period with least-squares-fitting method. The systematic design is promoted, in which TMS320F2812 chip is chosen as the Central Processing/Controlling unit and software design is based on DSP/BIOS embedded operating system. Testing of both a simulation of the lab environment and an experiment shows that, as expected, the new TMS320F2812 based reactor period inspection equipment has excellent anti-interference capacity, high precision and fast response time, all of which prove that it has good prospective. (authors)

  14. Automatic calibration system of the temperature instrument display based on computer vision measuring

    Science.gov (United States)

    Li, Zhihong; Li, Jinze; Bao, Changchun; Hou, Guifeng; Liu, Chunxia; Cheng, Fang; Xiao, Nianxin

    2010-07-01

    With the development of computers and the techniques of dealing with pictures and computer optical measurement, various measuring techniques are maturing gradually on the basis of optical picture processing technique and using in practice. On the bases, we make use of the many years' experience and social needs in temperature measurement and computer vision measurement to come up with the completely automatic way of the temperature measurement meter with integration of the computer vision measuring technique. It realizes synchronization collection with theory temperature value, improves calibration efficiency. based on least square fitting principle, integrate data procession and the best optimize theory, rapidly and accurately realizes automation acquisition and calibration of temperature.

  15. Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation

    International Nuclear Information System (INIS)

    Vondrak, R.R.

    1981-01-01

    Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors

  16. Spectral-based features ranking for gamelan instruments identification using filter techniques

    Directory of Open Access Journals (Sweden)

    Diah P Wulandari

    2013-03-01

    Full Text Available In this paper, we describe an approach of spectral-based features ranking for Javanese gamelaninstruments identification using filter techniques. The model extracted spectral-based features set of thesignal using Short Time Fourier Transform (STFT. The rank of the features was determined using the fivealgorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then,we tested the ranked features by cross validation using Support Vector Machine (SVM. The experimentshowed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%.

  17. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  18. Testing Causal Impacts of a School-Based SEL Intervention Using Instrumental Variable Techniques

    Science.gov (United States)

    Torrente, Catalina; Nathanson, Lori; Rivers, Susan; Brackett, Marc

    2015-01-01

    Children's social-emotional skills, such as conflict resolution and emotion regulation, have been linked to a number of highly regarded academic and social outcomes. The current study presents preliminary results from a causal test of the theory of change of RULER, a universal school-based approach to social and emotional learning (SEL).…

  19. Brief Instrumental School-Based Mentoring for Middle School Students: Theory and Impact

    Science.gov (United States)

    McQuillin, Samuel D.; Lyons, Michael D.

    2016-01-01

    This study evaluated the efficacy of an intentionally brief school-based mentoring program. This academic goal-focused mentoring program was developed through a series of iterative randomized controlled trials, and is informed by research in social cognitive theory, cognitive dissonance theory, motivational interviewing, and research in academic…

  20. New technique for radiation detection by instruments based on microchannel plates

    International Nuclear Information System (INIS)

    Ammosov, V.V.; Bolozdynya, A.I.; Kubantsev, M.A.; Lebedenko, V.N.; Suvorov, A.L.

    1986-01-01

    Coordinate information can be obtained directly from microchanel plates (MCP) as storage matrix in MCP based radiation detectors, which is proved using as an example the registering of pulsed laser ultraviolet radiation. For read-out and representation of the information the TV channel was used: the vidicon electron-optical system - TV transmission camera - TV monitor

  1. The RFI situation for a space-based low-frequency radio astronomy instrument

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.

    2016-01-01

    Space based ultra-long wavelength radio astronomy has recently gained a lot of interest. Techniques to open the virtually unexplored frequency band below 30 MHz are becoming within reach at this moment. Due to the ionosphere and the radio interference (RFI) on Earth exploring this frequency band

  2. The Development of Instruments to Measure Motivational Interviewing Skill Acquisition for School-Based Personnel

    Science.gov (United States)

    Small, Jason W.; Lee, Jon; Frey, Andy J.; Seeley, John R.; Walker, Hill M.

    2014-01-01

    As specialized instructional support personnel begin learning and using motivational interviewing (MI) techniques in school-based settings, there is growing need for context-specific measures to assess initial MI skill development. In this article, we describe the iterative development and preliminary evaluation of two measures of MI skill adapted…

  3. Behavior-based environmental attitude : development of an instrument for adolescents

    NARCIS (Netherlands)

    Kaiser, F.G.; Oerke, B.; Bogner, F.X.

    2007-01-01

    Due to the omnipresent attitude–behavior gap, conservation psychologists have ceased to believe that attitudes are traceable from people's behavioral records. In contrast to this conventional wisdom and to the current state of the art in attitude measurement, we developed a behavior-based attitude

  4. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Using cognitive pre-testing methods in the development of a new evidenced-based pressure ulcer risk assessment instrument

    Directory of Open Access Journals (Sweden)

    S. Coleman

    2016-11-01

    Full Text Available Abstract Background Variation in development methods of Pressure Ulcer Risk Assessment Instruments has led to inconsistent inclusion of risk factors and concerns about content validity. A new evidenced-based Risk Assessment Instrument, the Pressure Ulcer Risk Primary Or Secondary Evaluation Tool - PURPOSE-T was developed as part of a National Institute for Health Research (NIHR funded Pressure Ulcer Research Programme (PURPOSE: RP-PG-0407-10056. This paper reports the pre-test phase to assess and improve PURPOSE-T acceptability, usability and confirm content validity. Methods A descriptive study incorporating cognitive pre-testing methods and integration of service user views was undertaken over 3 cycles comprising PURPOSE-T training, a focus group and one-to-one think-aloud interviews. Clinical nurses from 2 acute and 2 community NHS Trusts, were grouped according to job role. Focus group participants used 3 vignettes to complete PURPOSE-T assessments and then participated in the focus group. Think-aloud participants were interviewed during their completion of PURPOSE-T. After each pre-test cycle analysis was undertaken and adjustment/improvements made to PURPOSE-T in an iterative process. This incorporated the use of descriptive statistics for data completeness and decision rule compliance and directed content analysis for interview and focus group data. Data were collected April 2012-June 2012. Results Thirty-four nurses participated in 3 pre-test cycles. Data from 3 focus groups, 12 think-aloud interviews incorporating 101 PURPOSE-T assessments led to changes to improve instrument content and design, flow and format, decision support and item-specific wording. Acceptability and usability were demonstrated by improved data completion and appropriate risk pathway allocation. The pre-test also confirmed content validity with clinical nurses. Conclusions The pre-test was an important step in the development of the preliminary PURPOSE-T and the

  6. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  7. PC-based analog signal generator for simulated detector signals and arbitrary test waveforms for testing the nuclear instruments

    International Nuclear Information System (INIS)

    Catanescu, V.

    1999-01-01

    This work is performed in cooperation with IAEA-Vienna as a project, proposed as part of Agency's C o-ordinated Research Programme of Development of Computer-based Troubleshooting Tools and Instruments. A convenient way for testing and calibrating modern scientific equipment is to connect the test instruments to a personal computer to get additional feasibilities. This way, all settings for test, measurement and data acquisition functions are done by means of PC and are controlled by software drivers. This multifunctional spectrometric pulse generator is able to characterize different parts of high-resolution nuclear spectroscopy chain (preamplifier, amplifier, analog to digital converter, multichannel analyzer) as well as the whole chain. For this it generates periodic or random pulses with shape, time and amplitude specifications controlled by PC. Characteristics such as integral linearity, differential linearity, dead time, rate channel shifting and others will be easily determined. The block diagram of the multifunctional spectrometric generator is shown. The main sections are: PC-interface, control registers and command generation; PC-controlled periodic and random logic pulse oscillators; PC-controlled delay and width of periodic or random logic pulses; constant and ultra-linear ramp references for spectrometric pulse generation; generation of the tail and flat top pulses with PC-controlled amplitude and decay time; semi-gaussian pulse generation, polarity inverter and output amplifier. The specifications for generated signal correspond to: shape, time specifications and amplitude size. (author)

  8. The contribution of process tracing to theory-based evaluations of complex aid instruments

    DEFF Research Database (Denmark)

    Beach, Derek; Schmitt, Johannes

    2015-01-01

    studies in demanding settings. For the specific task of evaluating the governance effectiveness of budget support interventions, we developed a more fine-grained causal mechanism for a subset of the comprehensive program theory of budget support. Moreover, based on the informal use of Bayesian logic, we...... remedy some of the problems at hand in much case-study research and increase the inferential leverage in complex within-case evaluation studies....

  9. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    Science.gov (United States)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  10. Developing a theory-based instrument to assess the impact of continuing professional development activities on clinical practice: a study protocol

    Directory of Open Access Journals (Sweden)

    Rousseau Michel

    2011-03-01

    Full Text Available Abstract Background Continuing professional development (CPD is one of the principal means by which health professionals (i.e. primary care physicians and specialists maintain, improve, and broaden the knowledge and skills required for optimal patient care and safety. However, the lack of a widely accepted instrument to assess the impact of CPD activities on clinical practice thwarts researchers' comparisons of the effectiveness of CPD activities. Using an integrated model for the study of healthcare professionals' behaviour, our objective is to develop a theory-based, valid, reliable global instrument to assess the impact of accredited CPD activities on clinical practice. Methods Phase 1: We will analyze the instruments identified in a systematic review of factors influencing health professionals' behaviours using criteria that reflect the literature on measurement development and CPD decision makers' priorities. The outcome of this phase will be an inventory of instruments based on social cognitive theories. Phase 2: Working from this inventory, the most relevant instruments and their related items for assessing the concepts listed in the integrated model will be selected. Through an e-Delphi process, we will verify whether these instruments are acceptable, what aspects need revision, and whether important items are missing and should be added. The outcome of this phase will be a new global instrument integrating the most relevant tools to fit our integrated model of healthcare professionals' behaviour. Phase 3: Two data collections are planned: (1 a test-retest of the new instrument, including item analysis, to assess its reliability and (2 a study using the instrument before and after CPD activities with a randomly selected control group to explore the instrument's mere-measurement effect. Phase 4: We will conduct individual interviews and focus groups with key stakeholders to identify anticipated barriers and enablers for implementing the

  11. Study of behaviour of workings in longwall panel based on field instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    V.R. Sastry; Roshan Nair [National Institute of Technology Karnataka, Mangalore (India). Department of Mining Engineering

    2009-07-01

    The paper presents field monitoring study of two adjacent longwall panels based on stress measurements in longwall block and barrier, load transferred on to the gate roads and convergence measurements in the gate roads during face retreat in the panels. Results indicated that the section of barrier lying in the goaf experienced higher abutment stress when compared with the section lying ahead of face. There was a transfer of load in gate roads ahead of face after the occurrence of roof fall in goaf. Maximum cumulative convergence of more than 8 mm was observed in the gate roads during weightings.

  12. The design of laser atmosphere transmission characteristic measurement system based on virtual instrument

    Science.gov (United States)

    Zhang, Laixian; Sun, Huayan; Xu, Jiawen

    2010-10-01

    The laser atmosphere transmission characteristic affects the use of laser in engineering greatly. This paper designed a laser atmosphere transmission characteristic measurement system based on LabVIEW software, a product of NI. The system acquires laser spacial distribution by means of controlling NI image acquisition card and CCD through PCI, controls oscillograph to acquire laser time domain distribution through Ethernet and controls power meter to acquire energy of laser through RS-232. It processes the data acquired and analyses the laser atmosphere transmission characteristic using Matlab, which is powerful in data processing, through software interface. It provided a new way to study the laser atmosphere transmission characteristic.

  13. Musical instrument pickup based on a laser locked to an optical fiber resonator.

    Science.gov (United States)

    Avino, Saverio; Barnes, Jack A; Gagliardi, Gianluca; Gu, Xijia; Gutstein, David; Mester, James R; Nicholaou, Costa; Loock, Hans-Peter

    2011-12-05

    A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

  14. Microchemostat - microbial continuous culture in a polymer-based, instrumented microbioreactor

    DEFF Research Database (Denmark)

    Zhang, Z.; Bocazzi, P.; Choi, H. G.

    2006-01-01

    -based microbioreactor system integrated with optical density (OD), pH, and dissolved oxygen (DO) real-time measurements for continuous cultivation of microbial cells. Escherichia coli (E. coli) cells are continuously cultured in a 150 mL, membrane-aerated, well-mixed microbioreactor fed by a pressure-driven flow......In a chemostat, microbial cells reach a steady state condition at which cell biomass production, substrates and the product concentrations remain constant. These features make continuous culture a unique and powerful tool for biological and physiological research. We present a polymer...

  15. Design of real-time communication system for image recognition based colony picking instrument

    Science.gov (United States)

    Wang, Qun; Zhang, Rongfu; Yan, Hua; Wu, Huamin

    2017-11-01

    In order to aachieve autommated observatiion and pickinng of monocloonal colonies, an overall dessign and realizzation of real-time commmunication system based on High-throoughput monooclonal auto-piicking instrumment is propossed. The real-time commmunication system is commposed of PCC-PLC commuunication systtem and Centrral Control CComputer (CCC)-PLC communicatioon system. Bassed on RS232 synchronous serial communnication methood to develop a set of dedicated shoort-range commmunication prootocol betweenn the PC and PPLC. Furthermmore, the systemm uses SQL SSERVER database to rrealize the dataa interaction between PC andd CCC. Moreoover, the commmunication of CCC and PC, adopted Socket Ethernnet communicaation based on TCP/IP protoccol. TCP full-dduplex data cannnel to ensure real-time data eexchange as well as immprove system reliability andd security. We tested the commmunication syystem using sppecially develooped test software, thee test results show that the sysstem can realizze the communnication in an eefficient, safe aand stable way between PLC, PC andd CCC, keep thhe real-time conntrol to PLC annd colony inforrmation collecttion.

  16. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    Science.gov (United States)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  17. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    Science.gov (United States)

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  18. Variability of floods, droughts and windstorms over the past 500 years in Central Europe based on documentary and instrumental data

    Science.gov (United States)

    Brazdil, Rudolf

    2016-04-01

    Hydrological and meteorological extremes (HMEs) in Central Europe during the past 500 years can be reconstructed based on instrumental and documentary data. Documentary data about weather and related phenomena represent the basic source of information for historical climatology and hydrology, dealing with reconstruction of past climate and HMEs, their perception and impacts on human society. The paper presents the basic distribution of documentary data on (i) direct descriptions of HMEs and their proxies on the one hand and on (ii) individual and institutional data sources on the other. Several groups of documentary evidence such as narrative written records (annals, chronicles, memoirs), visual daily weather records, official and personal correspondence, special prints, financial and economic records (with particular attention to taxation data), newspapers, pictorial documentation, chronograms, epigraphic data, early instrumental observations, early scientific papers and communications are demonstrated with respect to extraction of information about HMEs, which concerns usually of their occurrence, severity, seasonality, meteorological causes, perception and human impacts. The paper further presents the analysis of 500-year variability of floods, droughts and windstorms on the base of series, created by combination of documentary and instrumental data. Results, advantages and drawbacks of such approach are documented on the examples from the Czech Lands. The analysis of floods concentrates on the River Vltava (Prague) and the River Elbe (Děčín) which show the highest frequency of floods occurring in the 19th century (mainly of winter synoptic type) and in the second half of the 16th century (summer synoptic type). Reported are also the most disastrous floods (August 1501, March and August 1598, February 1655, June 1675, February 1784, March 1845, February 1862, September 1890, August 2002) and the European context of floods in the severe winter 1783/84. Drought

  19. Perspective Intercultural Bioethics and Human Rights: the search for instruments for resolving ethical conflicts culturally based.

    Directory of Open Access Journals (Sweden)

    Aline ALBUQUERQUE

    2015-10-01

    Full Text Available This article aims to contribute to a deeper reflection on intercultural conflicts within the bioethics scope, and to point out the problem of using human rights as a theoretical normative mediator of the conflicts in bioethics that bear elements of interculturalism. The methodological steps adopted in this inquiry were: analysis of the concept of intercultural conflict in bioethics, from the perception developed by Colectivo Amani; study of human rights as tools of the culture of human beings, based on Bauman’s and Beauchamp’s theories; investigation of the toolsthat human rights offer so as to solve intercultural conflicts in bioethics. It was concluded that intercultural bioethics must incorporate to its prescriptive and descriptive tasks norms and institutions of human rights that ensure the participation and social integration of the individuals from communities that are in cultural conflict. Such measure will act as instrumentsfor the solution of intercultural conflicts.

  20. "Economic microscope": The agent-based model set as an instrument in an economic system research

    Science.gov (United States)

    Berg, D. B.; Zvereva, O. M.; Akenov, Serik

    2017-07-01

    To create a valid model of a social or economic system one must consider a lot of parameters, conditions and restrictions. Systems and, consequently, the corresponding models are proved to be very complicated. The problem of such system model engineering can't be solved only with mathematical methods usage. The decision could be found in computer simulation. Simulation does not reject mathematical methods, mathematical expressions could become the foundation for a computer model. In these materials the set of agent-based computer models is under discussion. All the set models simulate productive agents communications, but every model is geared towards the specific goal, and, thus, has its own algorithm and its own peculiarities. It is shown that computer simulation can discover new features of the agents' behavior that can not be obtained by analytical solvation of mathematical equations and thus plays the role of some kind of economic microscope.

  1. Applications of a Navigation Instrument Based on a Micro-Motor Driven by Photons

    Directory of Open Access Journals (Sweden)

    Jorge VALENZUELA

    2011-12-01

    Full Text Available We report potential applications of a novel design of a micro-motor driven by light. The design, based on a scale of micro-machines fabrication, takes into consideration the concept of radiation pressure as a method of actuation. The micro-motor of diameter 15 mm is designed to be made in Silicon wafer. To decrease the weight of the rotational part, we designed a hollow structure metalized by Aluminum. To reduce friction, we suggest the use of octadecylphosphonic acid (ODPA as Aluminium coating and perfluoropolyoxyalkane (Z-DOL as Silicon coating. The materials selected lower friction by approximately 50 % and increase reflectivity, allowing a better conversion of the radiant energy into movement. Our design targets altimeter and inclinometer as major applications. It is clear that other applications such as measurement of light intensity, identification of wavelength of incident light, measurement of degree of polarization of light and others can be served by this design.

  2. Failure mode taxonomy for assessing the reliability of Field Programmable Gate Array based Instrumentation and Control systems

    International Nuclear Information System (INIS)

    McNelles, Phillip; Zeng, Zhao Chang; Renganathan, Guna; Chirila, Marius; Lu, Lixuan

    2017-01-01

    Highlights: • The use FPGAs in I&C systems in Nuclear Power Plants is an important issue (IAEA). • OECD-NEA published a failure mode taxonomy for software-based digital I&C systems. • This paper extends the OECD-NEA taxonomy to model FPGA-based systems. • FPGA failure modes, failure effects, uncovering methods are categorized/described. • Provides an example of modelling an FPGA-Based RTS/ESFAS using the FPGA taxonomy. - Abstract: Field Programmable Gate Arrays (FPGAs) are a form of programmable digital hardware configured to perform digital logic functions. This configuration (programming) is performed using Hardware Description Language (HDL), making FPGAs a form of HDL Programmed Device (HPD). In the nuclear field, FPGAs have seen use in upgrades and replacements of obsolete Instrumentation and Control (I&C) systems. This paper expands upon previous work that resulted in extensive FPGA failure mode data, to allow for the application of the OECD-NEA failure modes taxonomy. The OECD-NEA taxonomy presented a method to model digital (software-based) I&C systems, based on the hardware and software failure modes, failure uncovering effects and levels of abstraction, using a Reactor Trip System/Engineering Safety Feature Actuation System (RTS/ESFAS) as an example system. To create the FPGA taxonomy, this paper presents an additional “sub-component” level of abstraction, to demonstrate the effect of the FPGA failure modes and failure categories on an FPGA-based system. The proposed FPGA taxonomy is based on the FPGA failure modes, failure categories, failure effects and uncovering situations. The FPGA taxonomy is applied to the RTS/ESFAS test system, to demonstrate the effects of the anticipated FPGA failure modes on a digital I&C system, and to provide a modelling example for this proposed taxonomy.

  3. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    International Nuclear Information System (INIS)

    Xu, S C; Li, J Q; Zhang, R

    2006-01-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible

  4. An Instrumented Glove to Assess Manual Dexterity in Simulation-Based Neurosurgical Education

    Directory of Open Access Journals (Sweden)

    Juan Diego Lemos

    2017-04-01

    Full Text Available The traditional neurosurgical apprenticeship scheme includes the assessment of trainee’s manual skills carried out by experienced surgeons. However, the introduction of surgical simulation technology presents a new paradigm where residents can refine surgical techniques on a simulator before putting them into practice in real patients. Unfortunately, in this new scheme, an experienced surgeon will not always be available to evaluate trainee’s performance. For this reason, it is necessary to develop automatic mechanisms to estimate metrics for assessing manual dexterity in a quantitative way. Authors have proposed some hardware-software approaches to evaluate manual dexterity on surgical simulators. This paper presents IGlove, a wearable device that uses inertial sensors embedded on an elastic glove to capture hand movements. Metrics to assess manual dexterity are estimated from sensors signals using data processing and information analysis algorithms. It has been designed to be used with a neurosurgical simulator called Daubara NS Trainer, but can be easily adapted to another benchtop- and manikin-based medical simulators. The system was tested with a sample of 14 volunteers who performed a test that was designed to simultaneously evaluate their fine motor skills and the IGlove’s functionalities. Metrics obtained by each of the participants are presented as results in this work; it is also shown how these metrics are used to automatically evaluate the level of manual dexterity of each volunteer.

  5. Effects of a School-Based Instrumental Music Program on Verbal and Visual Memory in Primary School Children: A Longitudinal Study

    OpenAIRE

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 minutes sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests for three times over a period of 18 ...

  6. Reliability analysis and computation of computer-based safety instrumentation and control used in German nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Ding, Yongjian; Krause, Ulrich; Gu, Chunlei

    2014-01-01

    The trend of technological advancement in the field of safety instrumentation and control (I and C) leads to increasingly frequent use of computer-based (digital) control systems which consisting of distributed, connected bus communications computers and their functionalities are freely programmable by qualified software. The advantages of the new I and C system over the old I and C system with hard-wired technology are e.g. in the higher flexibility, cost-effective procurement of spare parts, higher hardware reliability (through higher integration density, intelligent self-monitoring mechanisms, etc.). On the other hand, skeptics see the new technology with the computer-based I and C a higher potential by influences of common cause failures (CCF), and the easier manipulation by sabotage (IT Security). In this joint research project funded by the Federal Ministry for Economical Affaires and Energy (BMWi) (2011-2014, FJZ 1501405) the Otto-von-Guericke-University Magdeburg and Magdeburg-Stendal University of Applied Sciences are therefore trying to develop suitable methods for the demonstration of the reliability of the new instrumentation and control systems with the focus on the investigation of CCF. This expertise of both houses shall be extended to this area and a scientific contribution to the sound reliability judgments of the digital safety I and C in domestic and foreign nuclear power plants. First, the state of science and technology will be worked out through the study of national and international standards in the field of functional safety of electrical and I and C systems and accompanying literature. On the basis of the existing nuclear Standards the deterministic requirements on the structure of the new digital I and C system will be determined. The possible methods of reliability modeling will be analyzed and compared. A suitable method called multi class binomial failure rate (MCFBR) which was successfully used in safety valve applications will be

  7. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  8. Efficacy of reduced doses of bentazone assessed by instruments based on measurement of chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Vojtěch Kocurek

    2011-01-01

    Full Text Available Chlorophyll fluorescence is a type of radiation emitted by plants as unused part of energy absorbed from sunlight. Its intensity depends on many stress factors, nutrition, weather conditions etc. Methods based on chlorophyll fluorescence measurement have potential to be perspective for the assessment of herbicide efficacy, phytotoxicity or stress influence. Two fluorometers (FluorCam and handy FluorPen were used for measurements in laboratory experiments in 2007–2009. Herbicide Basagran super with active ingredient bentazone (480 g.l−1 was tested using a parameter called ‚Quantum yield of fluorescence‘ (QY in three different doses: the registered dose 2.0 l.ha−1 (100% and lower doses 1.5 l.ha−1 (75% and 1.0 l.ha−1 (50%. Treated experimental plants of redroot pigweed (Amaranthus retroflexus L. were measured in 0, 1, 2, 3, 6, 9 and 15 days after treatment and the results were compared with subjective assessment (estimation and growth parameters. The obtained results showed that the effect of bentazone measured by both devices was statistically significantly different from untreated control. We can also detect herbicide effect earlier by QY measurement than by other methods. Different doses showed significant differences 15 days after treatment for dose 2.0 l.ha−1 in comparison with both reduced doses. The subjective assessment showed significant differences in all terms of measurement (1–15 days after application except of the day of application. Regeneration of plants for which the youngest leaves were not treated by herbicide was observed for all doses. Difference of QY values between used devices was on average 0.119 (higher for FluorCam but statistically insignificant.

  9. Future space-based direct imaging platforms: high fidelity simulations and instrument testbed development

    Science.gov (United States)

    Hicks, Brian A.; Eberhardt, Andrew; SAINT, VNC, LUVOIR

    2017-06-01

    nulling.The development of various VNC/SAINT subsystems and components will be presented along with detection performance analyses for several nearby systems assuming a range of space-based architectures spanning mulitple mission lifetimes.

  10. Tackling regional health inequalities in france by resource allocation : a case for complementary instrumental and process-based approaches?

    Science.gov (United States)

    Bellanger, Martine M; Jourdain, Alain

    2004-01-01

    This article aims to evaluate the results of two different approaches underlying the attempts to reduce health inequalities in France. In the 'instrumental' approach, resource allocation is based on an indicator to assess the well-being or the quality of life associated with healthcare provision, the argument being that additional resources would respond to needs that could then be treated quickly and efficiently. This governs the distribution of regional hospital budgets. In the second approach, health professionals and users in a given region are involved in a consensus process to define those priorities to be included in programme formulation. This 'procedural' approach is employed in the case of the regional health programmes. In this second approach, the evaluation of the results runs parallel with an analysis of the process using Rawlsian principles, whereas the first approach is based on the classical economic model.At this stage, a pragmatic analysis based on both the comparison of regional hospital budgets during the period 1992-2003 (calculated using a 'RAWP [resource allocation working party]-like' formula) and the evolution of regional health policies through the evaluation of programmes for the prevention of suicide, alcohol-related diseases and cancers provides a partial assessment of the impact of the two types of approaches, the second having a greater effect on the reduction of regional inequalities.

  11. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  12. The Teamwork Assessment Scale: A Novel Instrument to Assess Quality of Undergraduate Medical Students' Teamwork Using the Example of Simulation-based Ward-Rounds.

    Science.gov (United States)

    Kiesewetter, Jan; Fischer, Martin R

    2015-01-01

    Simulation-based teamwork trainings are considered a powerful training method to advance teamwork, which becomes more relevant in medical education. The measurement of teamwork is of high importance and several instruments have been developed for various medical domains to meet this need. To our knowledge, no theoretically-based and easy-to-use measurement instrument has been published nor developed specifically for simulation-based teamwork trainings of medical students. Internist ward-rounds function as an important example of teamwork in medicine. The purpose of this study was to provide a validated, theoretically-based instrument that is easy-to-use. Furthermore, this study aimed to identify if and when rater scores relate to performance. Based on a theoretical framework for teamwork behaviour, items regarding four teamwork components (Team Coordination, Team Cooperation, Information Exchange, Team Adjustment Behaviours) were developed. In study one, three ward-round scenarios, simulated by 69 students, were videotaped and rated independently by four trained raters. The instrument was tested for the embedded psychometric properties and factorial structure. In study two, the instrument was tested for construct validity with an external criterion with a second set of 100 students and four raters. In study one, the factorial structure matched the theoretical components but was unable to separate Information Exchange and Team Cooperation. The preliminary version showed adequate psychometric properties (Cronbach's α=.75). In study two, the instrument showed physician rater scores were more reliable in measurement than those of student raters. Furthermore, a close correlation between the scale and clinical performance as an external criteria was shown (r=.64) and the sufficient psychometric properties were replicated (Cronbach's α=.78). The validation allows for use of the simulated teamwork assessment scale in undergraduate medical ward-round trainings to reliably

  13. The Teamwork Assessment Scale: A Novel Instrument to Assess Quality of Undergraduate Medical Students' Teamwork Using the Example of Simulation-based Ward-Rounds

    Directory of Open Access Journals (Sweden)

    Kiesewetter, Jan

    2015-05-01

    Full Text Available Background: Simulation-based teamwork trainings are considered a powerful training method to advance teamwork, which becomes more relevant in medical education. The measurement of teamwork is of high importance and several instruments have been developed for various medical domains to meet this need. To our knowledge, no theoretically-based and easy-to-use measurement instrument has been published nor developed specifically for simulation-based teamwork trainings of medical students. Internist ward-rounds function as an important example of teamwork in medicine.Purposes: The purpose of this study was to provide a validated, theoretically-based instrument that is easy-to-use. Furthermore, this study aimed to identify if and when rater scores relate to performance.Methods: Based on a theoretical framework for teamwork behaviour, items regarding four teamwork components ( were developed. In study one, three ward-round scenarios, simulated by 69 students, were videotaped and rated independently by four trained raters. The instrument was tested for the embedded psychometric properties and factorial structure. In study two, the instrument was tested for construct validity with an external criterion with a second set of 100 students and four raters. Results: In study one, the factorial structure matched the theoretical components but was unable to separate Information Exchange and Team Cooperation. The preliminary version showed adequate psychometric properties (Cronbach’s α=.75. In study two, the instrument showed physician rater scores were more reliable in measurement than those of student raters. Furthermore, a close correlation between the scale and clinical performance as an external criteria was shown (r=.64 and the sufficient psychometric properties were replicated (Cronbach’s α=.78.Conclusions: The validation allows for use of the simulated teamwork assessment scale in undergraduate medical ward-round trainings to reliably measure

  14. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  15. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  16. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  17. Observations of the neutral atmosphere between 100 and 200 km using ARIA rocket-borne and ground-based instruments

    International Nuclear Information System (INIS)

    Hecht, J.H.; Christensen, A.B.; Gutierrez, D.J.

    1995-01-01

    The atmospheric response in the aurora (ARIA) rocket was launched at 1406 UT on March 3, 1992, from Poker Flat, Alaska, into a pulsating diffuse aurora; rocket-borne instruments included an eight-channel photometer, a far ultraviolet spectrometer, a 130.4-nm atomic oxygen resonance lamp, and two particle spectrometers covering the energy range of 1-400 eV and 10 eV to 20 keV. The photometer channels were isolated using narrow-band interference filters and included measurements of the strong permitted auroral emissions N 2 (337.1 nm), N 2 + (391.4 nm), and O I (844.6 nm). A ground-based photometer measured the premitted N 2 + (427.8 nm), the forbidden O I (630.0 nm), and the premitted O I (844.6 nm) emissions. The ground-based instrument was pointed in the magnetic zenith. Also, the rocket payload was pointed in the magnetic zenith from 100 to 200 km on the upleg. The data were analyzed using the Strickland electron transport code, and the rocket and ground-based results were found to be in good agreement regarding the inferred characteristic energy of the precipitating auroral flux and the composition of the neutral atmosphere during the rocket flight. In particular, it was found that the O/N 2 density ratio in the neutral atmosphere diminished during the auroral substorm, which started about 2 hours before the ARIA rocket flight. The data showed that there was about a 10-min delay between the onset of the substorm and the decrease of the O/N 2 density ratio. At the time of the ARIA flight this ratio had nearly returned to its presubstorm value. However, the data also showed that the O/N 2 density ratio did not recover to its presubstorm value until nearly 30 min after the particle and joule heating had subsided. Both the photometer and oxygen densities in the region above 130 km. The observed auroral brightness ratio B 337.1 /B 391.4 equaled 0.29 and was in agreement with other recent measurements

  18. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Science.gov (United States)

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  19. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    Directory of Open Access Journals (Sweden)

    Michael G. Mauk

    2018-02-01

    Full Text Available Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC tests for resource-limited settings. Microfluidic cartridges (‘chips’ that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets is demonstrated. Low-cost detection and added functionality (data analysis, control, communication can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.

  20. Validating a Computer-Assisted Language Learning Attitude Instrument Used in Iranian EFL Context: An Evidence-Based Approach

    Science.gov (United States)

    Aryadoust, Vahid; Mehran, Parisa; Alizadeh, Mehrasa

    2016-01-01

    A few computer-assisted language learning (CALL) instruments have been developed in Iran to measure EFL (English as a foreign language) learners' attitude toward CALL. However, these instruments have no solid validity argument and accordingly would be unable to provide a reliable measurement of attitude. The present study aimed to develop a CALL…

  1. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  2. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    Science.gov (United States)

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  3. Development and Validation of an Instrument Measuring Theory-Based Determinants of Monitoring Obesogenic Behaviors of Pre-Schoolers among Hispanic Mothers

    Directory of Open Access Journals (Sweden)

    Paul Branscum

    2016-06-01

    Full Text Available Public health interventions are greatly needed for obesity prevention, and planning for such strategies should include community participation. The study’s purpose was to develop and validate a theory-based instrument with low-income, Hispanic mothers of preschoolers, to assess theory-based determinants of maternal monitoring of child’s consumption of fruits and vegetables and sugar-sweetened beverages (SSB. Nine focus groups with mothers were conducted to determine nutrition-related behaviors that mothers found as most obesogenic for their children. Next, behaviors were operationally defined and rated for importance and changeability. Two behaviors were selected for investigation (fruits and vegetable and SSB. Twenty semi-structured interviews with mothers were conducted next to develop culturally appropriate items for the instrument. Afterwards, face and content validity were established using a panel of six experts. Finally, the instrument was tested with a sample of 238 mothers. Psychometric properties evaluated included construct validity (using the maximum likelihood extraction method of factor analysis, and internal consistency reliability (Cronbach’s alpha. Results suggested that all scales on the instrument were valid and reliable, except for the autonomy scales. Researchers and community planners working with Hispanic families can use this instrument to measure theory-based determinants of parenting behaviors related to preschoolers’ consumption of fruits and vegetables, and SSB.

  4. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  5. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  6. Routine Outcome Monitoring and Clinical Decision-Making in Forensic Psychiatry Based on the Instrument for Forensic Treatment Evaluation.

    Science.gov (United States)

    van der Veeken, Frida C A; Lucieer, Jacques; Bogaerts, Stefan

    2016-01-01

    Rehabilitation in forensic psychiatry is achieved gradually with different leave modules, in line with the Risk Need Responsivity model. A forensic routine outcome monitoring tool should measure treatment progress based on the rehabilitation theory, and it should be predictive of important treatment outcomes in order to be usable in decision-making. Therefore, this study assesses the predictive validity for both positive (i.e., leave) and negative (i.e., inpatient incidents) treatment outcomes with the Instrument for Forensic Treatment Evaluation (IFTE). Two-hundred and twenty-four patients were included in this study. ROC analyses were conducted with the IFTE factors and items for three leave modules: guided, unguided and transmural leave for the whole group of patients. Predictive validity of the IFTE for aggression in general, physical aggression specifically, and urine drug screening (UDS) violations was assessed for patients with the main diagnoses in Dutch forensic psychiatry, patients with personality disorders and the most frequently occurring co-morbid disorders: those with combined personality and substance use disorders. Results tentatively imply that the IFTE has a reasonable to good predictive validity for inpatient aggression and a marginal to reasonable predictive value for leave approvals and UDS violations. The IFTE can be used for information purposes in treatment decision-making, but reports should be interpreted with care and acknowledge patients' personal risk factors, strengths and other information sources.

  7. How much market do market-based instruments create? An analysis for the case of 'white' certificates

    International Nuclear Information System (INIS)

    Langniss, Ole; Praetorius, Barbara

    2006-01-01

    Among the diverse economic instruments to foster energy efficiency (EE) and climate protection, tradable certificates have been investigated for renewable energy, and the EU directive on an emissions-trading scheme for CO 2 certificates has been approved in 2003. In contrast, tradable energy efficiency-or 'white'-certificates have only lately been considered as a market-based tool to foster EE as compared with standards and labelling, for example. Theoretically, there is little doubt about the advantages. In practice, however, some fundamental problems arise. Critical issues are the design of an efficient artificial market for white certificates, its compatibility with the European emissions-trading system, the identification of a suitable target group for an EE obligation and the measurement of energy savings as compared with a reference use of energy. We use the theoretical framework of transaction cost economics to elaborate these issues. We conclude that transaction costs and investment specificity will restrict markets for white certificates in practice. Long-term contracts rather than spot trade will be the prevailing form of governance for EE investments. (author)

  8. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  9. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    Directory of Open Access Journals (Sweden)

    Micaela Troglia Gamba

    2015-11-01

    Full Text Available Global Navigation Satellite Systems (GNSS broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R, whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs, which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  10. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  11. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  12. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  13. Application of an online ion-chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur

    Science.gov (United States)

    Rumsey, Ian C.; Walker, John T.

    2016-06-01

    The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air-surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air-surface exchange measurements of HNO3, NH3, NH4+, NO3-, SO2 and SO42-. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3-, SO2 and SO42-, respectively. Flux

  14. Incentivizing wood-based Fischer-Tropsch diesel through financial policy instruments: An economic assessment for Norway

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Stromman, Anders H.

    2010-01-01

    The objective of this study is to evaluate a select set of financial incentive instruments that can be employed by the Norwegian government for encouraging early investment and production experience in wood-based Fischer-Tropsch diesel (FTD) technologies as a means to accelerate reductions in greenhouse gas emissions (GHG) stemming from road-based transport. We start by performing an economic analysis of FTD produced from Norwegian forest biomass at a pioneer commercial plant in Norway, followed with a cost growth analysis to estimate production costs after uncertainty in early plant performance and capital cost estimates are considered. Results after the cost growth analysis imply that the initial production cost estimates for a pioneer producer may be underestimated by up to 30%. Using the revised estimate we then assess, through scenarios, how various financial support mechanisms designed to encourage near-term investment would affect production costs over a range of uncertain future oil prices. For all policy scenarios considered, we evaluate trade-offs between the levels of public expenditure, or subsidy, and private investor profitability. When considering the net present value of the subsidy required to incentivize commercial investment during a future of low oil prices, we find that GHG mitigation via wood-FTD is likely to be considered cost-ineffective. However, should the government expect that mean oil prices in the coming two decades will hover between $97 and 127/bbl, all the incentive policies considered would likely spur investment at net present values ≤$-100/tonne-fossil-CO 2 -equivalent avoided.

  15. A joint Cluster and ground-based instruments study of two magnetospheric substorm events on 1 September 2002

    Directory of Open Access Journals (Sweden)

    N. C. Draper

    2004-12-01

    Full Text Available We present a coordinated ground- and space-based multi-instrument study of two magnetospheric substorm events that occurred on 1 September 2002, during the interval from 18:00 UT to 24:00 UT. Data from the Cluster and Polar spacecraft are considered in combination with ground-based magnetometer and HF radar data. During the first substorm event the Cluster spacecraft, which were in the Northern Hemisphere lobe, are to the west of the main region affected by the expansion phase. Nevertheless, substorm signatures are seen by Cluster at 18:25 UT (just after the expansion phase onset as seen on the ground at 18:23 UT, despite the ~5 RE} distance of the spacecraft from the plasma sheet. The Cluster spacecraft then encounter an earthward-moving diamagnetic cavity at 19:10 UT, having just entered the plasma sheet boundary layer. The second substorm expansion phase is preceded by pseudobreakups at 22:40 and 22:56 UT, at which time thinning of the near-Earth, L=6.6, plasma sheet occurs. The expansion phase onset at 23:05 UT is seen simultaneously in the ground magnetic field, in the magnetotail and at Polar's near-Earth position. The response in the ionospheric flows occurs one minute later. The second substorm better fits the near-Earth neutral line model for substorm onset than the cross-field current instability model. Key words. Magnetospheric physics (Magnetosphereionosphere interactions; Magnetic reconnection; Auroral phenomenon

  16. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  17. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  18. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  19. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  20. Patient-Specific Instruments Based on Knee Joint Computed Tomography and Full-Length Lower Extremity Radiography in Total Knee Replacement

    Directory of Open Access Journals (Sweden)

    Hua Tian

    2018-01-01

    Conclusions: The use of PSIs based on knee joint CT and standing full-length lower extremity radiography in TKR resulted in acceptable alignment compared with the use of conventional instruments, although the marginal advantage was not statistically different. Surgical time and clinical results were also similar between the two groups. However, the PSI group had less postoperative drainage.

  1. Outline of the requirements of application of computer based instrumentation and control systems in the systems important to safety on Bohunice NPPs

    International Nuclear Information System (INIS)

    Bacurik, J.

    1997-01-01

    The most important regulatory requirements and issues are described related to the review, evaluation and assessment of computer-based safety-related IandC systems, with emphasis on safety instrumentation and control. These aspects include safety classification and categorization of IandC, ranking of applicable codes and standards, design evaluation on the system level, and software assessment. (author)

  2. Psychometric Validation of the Parental Bonding Instrument in a UK Population–Based Sample Role of Gender and Association With Mental Health in Mid-Late Life

    NARCIS (Netherlands)

    M.K. Xu (Kate); A. J. S. Morin (Alexandre); H. W. Marsh (Herbert); M. Richards (Martin); P. B. Jones (Peter)

    2016-01-01

    markdownabstractThe factorial structure of the Parental Bonding Instrument (PBI) has been frequently studied in diverse samples but no study has examined its psychometric properties from large, population-based samples. In particular, important questions have not been addressed such as the

  3. Identifying developmental coordination disorder : MOQ-T validity as a fast screening instrument based on teachers' ratings and its relationship with praxic and visuospatial working memory deficits

    NARCIS (Netherlands)

    Giofre, David; Cornoldi, Cesare; Schoemaker, Marina M.

    2014-01-01

    The present study was devoted to test the validity, of the Italian adaptation of the Motor Observation Questionnaire for Teachers (MOQ-T, Schoemaker, Flapper, Reinders-Messelink, & De Kloet, 2008) as a fast screening instrument, based on teachers' ratings, for detecting developmental coordination

  4. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    International Nuclear Information System (INIS)

    Ferreira, N; Krah, T; Jeong, D C; Kniel, K; Härtig, F; Metz, D; Dietzel, A; Büttgenbach, S

    2014-01-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules. (paper)

  5. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Precession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80-/24 single-board computer. Precession motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer, and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated, and the results are displayed on a liquid crystal display on the front panel of the CPA. The thesis contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down, (2) xenon gas during slip test, steady state, and the addition of gas, and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  6. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine. Revision 1

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Procession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80/24 single/board computer. Pression motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated and the results are displayed on a liquid crystal display on the front panel of the CPA. The report contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down; (2) xenon gas during slip test, steady state, and the addition of gas; and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines using UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  7. Development and community-based validation of the IDEA study Instrumental Activities of Daily Living (IDEA-IADL questionnaire

    Directory of Open Access Journals (Sweden)

    Cecilia Collingwood

    2014-12-01

    Full Text Available Background: The dementia diagnosis gap in sub-Saharan Africa (SSA is large, partly due to difficulties in assessing function, an essential step in diagnosis. Objectives: As part of the Identification and Intervention for Dementia in Elderly Africans (IDEA study, to develop, pilot, and validate an Instrumental Activities of Daily Living (IADL questionnaire for use in a rural Tanzanian population to assist in the identification of people with dementia alongside cognitive screening. Design: The questionnaire was developed at a workshop for rural primary healthcare workers, based on culturally appropriate roles and usual activities of elderly people in this community. It was piloted in 52 individuals under follow-up from a dementia prevalence study. Validation subsequently took place during a community dementia-screening programme. Construct validation against gold standard clinical dementia diagnosis using DSM-IV criteria was carried out on a stratified sample of the cohort and validity assessed using area under the receiver operating characteristic (AUROC curve analysis. Results: An 11-item questionnaire (IDEA-IADL was developed after pilot testing. During formal validation on 130 community-dwelling elderly people who presented for screening, the AUROC curve was 0.896 for DSM-IV dementia when used in isolation and 0.937 when used in conjunction with the IDEA cognitive screen, previously validated in Tanzania. The internal consistency was 0.959. Performance on the IDEA-IADL was not biased with regard to age, gender or education level. Conclusions: The IDEA-IADL questionnaire appears to be a useful aid to dementia screening in this setting. Further validation in other healthcare settings in SSA is required.

  8. Trends in disability of instrumental activities of daily living among older Chinese adults, 1997-2006: population based study.

    Science.gov (United States)

    Liang, Yajun; Welmer, Anna-Karin; Möller, Jette; Qiu, Chengxuan

    2017-08-28

    Data on trends for disability in instrumental activity of daily living (IADL) are sparse in older Chinese adults. To assess trends in prevalence and incidence of IADL disability among older Chinese adults and to explore contributing factors. Population based study. 15 provinces and municipalities in China. Participants (age ≥60) were from four waves of the China Health and Nutrition Survey, conducted in 1997 (n=1533), 2000 (n=1581), 2004 (n=2028) and 2006 (n=2256), and from two cohorts constructed within the national survey: cohort 1997-2004 (n=712) and cohort 2000-2006 (n=823). IADL disability was defined as inability to perform one or more of the following: shopping, cooking, using transportation, financing and telephoning. Data were analysed with logistic regression and generalised estimating equation models. The prevalence of IADL disability significantly decreased from 1997 to 2006 in the total sample and in all of the subgroups by age, sex, living region and IADL items (all p trend 0.10). The recovery rate from IADL disability significantly increased over time in those aged 60-69 years (p=0.03). Living in a rural area or access to local clinics for healthcare was less disabling over time (p trend <0.02). The prevalence of IADL disability decreased among older Chinese adults during 1997-2006, whereas the incidence remained stable. The declining prevalence of IADL disability might be partly due to the decreased duration of IADL disability, and to improvements in living conditions and healthcare facilities over time. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Evaluation of a Nutrition Care Process-based audit instrument, the Diet-NCP-Audit, for documentation of dietetic care in medical records.

    Science.gov (United States)

    Lövestam, Elin; Orrevall, Ylva; Koochek, Afsaneh; Karlström, Brita; Andersson, Agneta

    2014-06-01

    Adequate documentation in medical records is important for high-quality health care. Documentation quality is widely studied within nursing, but studies are lacking within dietetic care. The aim of this study was to translate, elaborate and evaluate an audit instrument, based on the four-step Nutrition Care Process model, for documentation of dietetic care in medical records. The audit instrument includes 14 items focused on essential parts of dietetic care and the documentation's clarity and structure. Each item is to be rated 0-1 or 0-2 points, with a maximum total instrument score of 26. A detailed manual was added to facilitate the interpretation and increase the reliability of the instrument. The instrument is based on a similar tool initiated 9 years ago in the United States, which in this study was translated to Swedish and further elaborated. The translated and further elaborated instrument was named Diet-NCP-Audit. Firstly, the content validity of the Diet-NCP-Audit instrument was tested by five experienced dietitians. They rated the relevance and clarity of the included items. After a first rating, minor improvements were made. After the second rating, the Content Validity Indexes were 1.0, and the Clarity Index was 0.98. Secondly, to test the reliability, four dietitians reviewed 20 systematically collected dietetic notes independently using the audit instrument. Before the review, a calibration process was performed. A comparison of the reviews was performed, which resulted in a moderate inter-rater agreement with Krippendorff's α = 0.65-0.67. Grouping the audit results in three levels: lower, medium or higher range, a Krippendorff's α of 0.74 was considered high reliability. Also, an intra-rater reliability test-retest with a 9 weeks interval, performed by one dietitian, showed strong agreement. To conclude, the evaluated audit instrument had high content validity and moderate to high reliability and can be used in auditing documentation of dietetic

  10. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  11. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  12. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  13. The ConCom Safety Management Scale: developing and testing a measurement instrument for control-based and commitment-based safety management approaches in hospitals.

    Science.gov (United States)

    Alingh, Carien W; Strating, Mathilde M H; van Wijngaarden, Jeroen D H; Paauwe, Jaap; Huijsman, Robbert

    2018-03-06

    Nursing management is considered important for patient safety. Prior research has predominantly focused on charismatic leadership styles, although it is questionable whether these best characterise the role of nurse managers. Managerial control is also relevant. Therefore, we aimed to develop and test a measurement instrument for control-based and commitment-based safety management of nurse managers in clinical hospital departments. A cross-sectional survey design was used to test the newly developed questionnaire in a sample of 2378 nurses working in clinical departments. The nurses were asked about their perceptions of the leadership behaviour and management practices of their direct supervisors. Psychometric properties were evaluated using confirmatory factor analysis and reliability estimates. The final 33-item questionnaire showed acceptable goodness-of-fit indices and internal consistency (Cronbach's α of the subscales range: 0.59-0.90). The factor structure revealed three subdimensions for control-based safety management: (1) stressing the importance of safety rules and regulations; (2) monitoring compliance; and (3) providing employees with feedback. Commitment-based management consisted of four subdimensions: (1) showing role modelling behaviour; (2) creating safety awareness; (3) showing safety commitment; and (4) encouraging participation. Construct validity of the scale was supported by high factor loadings and provided preliminary evidence that control-based and commitment-based safety management are two distinct yet related constructs. The findings were reconfirmed in a cross-validation procedure. The results provide initial support for the construct validity and reliability of our ConCom Safety Management Scale. Both management approaches were found to be relevant for managing patient safety in clinical hospital departments. The scale can be used to deepen our understanding of the influence of patient safety management on healthcare professionals

  14. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    Science.gov (United States)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  15. Dopamine efflux in the nucleus accumbens during within-session extinction, outcome-dependent, and habit-based instrumental responding for food reward.

    Science.gov (United States)

    Ahn, Soyon; Phillips, Anthony G

    2007-04-01

    Dopamine (DA) activity in the nucleus accumbens (NAc) is related to the general motivational effects of rewarding stimuli. Dickinson and colleagues have shown that initial acquisition of instrumental responding reflects action-outcome relationships based on instrumental incentive learning, which establishes the value of an outcome. Given that the sensitivity of responding to outcome devaluation is not affected by NAc lesions, it is unlikely that incentive learning during the action-outcome phase is mediated by DA activity in the NAc. DA efflux in the NAc after limited and extended training was compared on the assumption that comparable changes would be observed during both action-outcome- and habit-based phases of instrumental responding for food. This study also tested the hypothesis that increase in NAc DA activity is correlated with instrumental responding during extinction maintained by a conditioned stimulus paired with food. Rats were trained to lever press for food (random-interval 30 s schedule). On the 5th and 16th day of training, microdialysis samples were collected from the NAc or mediodorsal striatum (a control site for generalized activity) during instrumental responding in extinction and then for food reward, and analyzed for DA content using high performance liquid chromatography. Increase in DA efflux in the NAc accompanied responding for food pellets on both days 5 and 16, with the magnitude of increase significantly enhanced on day 16. DA efflux was also significantly elevated during responding in extinction only on day 16. These results support a role for NAc DA activity in Pavlovian, but not instrumental, incentive learning.

  16. Quantitative assessment of selected policy instruments using the Western European MARKAL model. Phase III EU SAVE White and Green Project: Comparison of market-based instruments to promote energy efficiency

    International Nuclear Information System (INIS)

    Mundaca, Luis; Santi, Federico

    2004-01-01

    This report summarises the modelling exercise carried out in order to assess the implications of selected policy instruments using the energy model of Western Europe (WEU) generated by the Market Allocation (MARKAL) modelling tool. The chosen methodology was the usage of the WEU MARKAL model for analysing the response of this energy system to the following policy instruments: White Certificates, Green Certificates, and Carbon Dioxide (CO 2 ) emissions trading. Results show that the order of magnitude of the effects of the analysed instruments depends on the target/cap that is applied. For the case of White Certificates, it can be observed that up to certain level (i.e., around 15% of cumulated energy savings by 2020 compared to the base case) energy savings are obtained at negative costs. Major savings occur in the residential sector for all the applied targets. Results for CO 2 emissions appear to be robust for the years 2015 and 2020, but it should also be observed that these emission trends are less robust for the years 2005 and 2010. Energy efficiency improvements for the WEU economy that are policy-induced around 6%, 9% and 15% for the low, medium and high target scenarios respectively. For the case of Green Certificates, results show that the sustained penetration of renewable energy sources is dominated by wind and biomass. By examining the autonomous fossil fuel intensity of the WEU economy, energy efficiency improvements that are policy induced account for around 1%, 4% and 6% for each scenario respectively. All the targets are technically possible. For the case of CO 2 emissions trading, due to the fact that these results address just the power sector, they must be seen as complementary of other modelling works that deal with a wider industrial coverage. In our case, the more ambitious the cap is, the lower the share of fossil fuels in electricity production becomes. The different trends for the electricity production seem to be less robust. Compared to

  17. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    Science.gov (United States)

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  18. Developing a dementia-specific health state classification system for a new preference-based instrument AD-5D.

    Science.gov (United States)

    Nguyen, Kim-Huong; Mulhern, Brendan; Kularatna, Sanjeewa; Byrnes, Joshua; Moyle, Wendy; Comans, Tracy

    2017-01-25

    With an ageing population, the number of people with dementia is rising. The economic impact on the health care system is considerable and new treatment methods and approaches to dementia care must be cost effective. Economic evaluation requires valid patient reported outcome measures, and this study aims to develop a dementia-specific health state classification system based on the Quality of Life for Alzheimer's disease (QOL-AD) instrument (nursing home version). This classification system will subsequently be valued to generate a preference-based measure for use in the economic evaluation of interventions for people with dementia. We assessed the dimensionality of the QOL-AD to develop a new classification system. This was done using exploratory and confirmatory factor analysis and further assessment of the structure of the measure to ensure coverage of the key areas of quality of life. Secondly, we used Rasch analysis to test the psychometric performance of the items, and select item(s) to describe each dimension. This was done on 13 items of the QOL-AD (excluding two general health items) using a sample of 284 residents living in long-term care facilities in Australia who had a diagnosis of dementia. A five dimension classification system is proposed resulting from the three factor structure (defined as 'interpersonal environment', 'physical health' and 'self-functioning') derived from the factor analysis and two factors ('memory' and 'mood') from the accompanying review. For the first three dimensions, Rasch analysis selected three questions of the QOL-AD ('living situation', 'physical health', and 'do fun things') with memory and mood questions representing their own dimensions. The resulting classification system (AD-5D) includes many of the health-related quality of life dimensions considered important to people with dementia, including mood, global function and skill in daily living. The development of the AD-5D classification system is an important step

  19. Assessment of economic instruments for countries with low municipal waste management performance: An approach based on the analytic hierarchy process.

    Science.gov (United States)

    Kling, Maximilian; Seyring, Nicole; Tzanova, Polia

    2016-09-01

    Economic instruments provide significant potential for countries with low municipal waste management performance in decreasing landfill rates and increasing recycling rates for municipal waste. In this research, strengths and weaknesses of landfill tax, pay-as-you-throw charging systems, deposit-refund systems and extended producer responsibility schemes are compared, focusing on conditions in countries with low waste management performance. In order to prioritise instruments for implementation in these countries, the analytic hierarchy process is applied using results of a literature review as input for the comparison. The assessment reveals that pay-as-you-throw is the most preferable instrument when utility-related criteria are regarded (wb = 0.35; analytic hierarchy process distributive mode; absolute comparison) mainly owing to its waste prevention effect, closely followed by landfill tax (wb = 0.32). Deposit-refund systems (wb = 0.17) and extended producer responsibility (wb = 0.16) rank third and fourth, with marginal differences owing to their similar nature. When cost-related criteria are additionally included in the comparison, landfill tax seems to provide the highest utility-cost ratio. Data from literature concerning cost (contrary to utility-related criteria) is currently not sufficiently available for a robust ranking according to the utility-cost ratio. In general, the analytic hierarchy process is seen as a suitable method for assessing economic instruments in waste management. Independent from the chosen analytic hierarchy process mode, results provide valuable indications for policy-makers on the application of economic instruments, as well as on their specific strengths and weaknesses. Nevertheless, the instruments need to be put in the country-specific context along with the results of this analytic hierarchy process application before practical decisions are made. © The Author(s) 2016.

  20. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Smidts, Carol; Huang, Fuqun; Li, Boyuan; Li, Xiang

    2016-01-01

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems' characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  1. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smidts, Carol [The Ohio State Univ., Columbus, OH (United States); Huang, Funqun [The Ohio State Univ., Columbus, OH (United States); Li, Boyuan [The Ohio State Univ., Columbus, OH (United States); Li, Xiang [The Ohio State Univ., Columbus, OH (United States)

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  2. Fairness in teacher evaluation: validity of personal evaluations based on an classroom observation instrument measuring sequential development of teaching skill

    NARCIS (Netherlands)

    van der Lans, Rikkert; van de Grift, Willem; van Veen, Klaas

    Interest in teacher evaluation is mainly motivated by a desire for selection. Given this motivation, it is unrealistic to think that an evaluation instrument will never result in others making summative decisions about teachers’ careers. This study applies the validity argument approach (Kane, 2006)

  3. Developing an ICT-Literacy Task-Based Assessment Instrument: The Findings on the Final Testing Phase

    Science.gov (United States)

    Mat-jizat, Jessnor Elmy

    2013-01-01

    This paper reports the findings of a study which seeks to identify the information and communications technology (ICT) literacy levels of trainee teachers, by investigating their ICT proficiency using a task-bask assessment instrument. The Delphi technique was used as a primary validation method for the new assessment tool and the ICT literacy…

  4. Framing of mobility items: a source of poor agreement between preference-based health-related quality of life instruments in a population of individuals receiving assisted ventilation.

    Science.gov (United States)

    Hannan, Liam M; Whitehurst, David G T; Bryan, Stirling; Road, Jeremy D; McDonald, Christine F; Berlowitz, David J; Howard, Mark E

    2017-06-01

    To explore the influence of descriptive differences in items evaluating mobility on index scores generated from two generic preference-based health-related quality of life (HRQoL) instruments. The study examined cross-sectional data from a postal survey of individuals receiving assisted ventilation in two state/province-wide home mechanical ventilation services, one in British Columbia, Canada and the other in Victoria, Australia. The Assessment of Quality of Life 8-dimension (AQoL-8D) and the EQ-5D-5L were included in the data collection. Graphical illustrations, descriptive statistics, and measures of agreement [intraclass correlation coefficients (ICCs) and Bland-Altman plots] were examined using index scores derived from both instruments. Analyses were performed on the full sample as well as subgroups defined according to respondents' self-reported ability to walk. Of 868 individuals receiving assisted ventilation, 481 (55.4%) completed the questionnaire. Mean index scores were 0.581 (AQoL-8D) and 0.566 (EQ-5D-5L) with 'moderate' agreement demonstrated between the two instruments (ICC = 0.642). One hundred fifty-nine (33.1%) reported level 5 ('I am unable to walk about') on the EQ-5D-5L Mobility item. The walking status of respondents had a marked influence on the comparability of index scores, with a larger mean difference (0.206) and 'slight' agreement (ICC = 0.386) observed when the non-ambulant subgroup was evaluated separately. This study provides further evidence that between-measure discrepancies between preference-based HRQoL instruments are related in part to the framing of mobility-related items. Longitudinal studies are necessary to determine the responsiveness of preference-based HRQoL instruments in cohorts that include non-ambulant individuals.

  5. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  6. Development of a simple 12-item theory-based instrument to assess the impact of continuing professional development on clinical behavioral intentions.

    Directory of Open Access Journals (Sweden)

    France Légaré

    Full Text Available Decision-makers in organizations providing continuing professional development (CPD have identified the need for routine assessment of its impact on practice. We sought to develop a theory-based instrument for evaluating the impact of CPD activities on health professionals' clinical behavioral intentions.Our multipronged study had four phases. 1 We systematically reviewed the literature for instruments that used socio-cognitive theories to assess healthcare professionals' clinically-oriented behavioral intentions and/or behaviors; we extracted items relating to the theoretical constructs of an integrated model of healthcare professionals' behaviors and removed duplicates. 2 A committee of researchers and CPD decision-makers selected a pool of items relevant to CPD. 3 An international group of experts (n = 70 reached consensus on the most relevant items using electronic Delphi surveys. 4 We created a preliminary instrument with the items found most relevant and assessed its factorial validity, internal consistency and reliability (weighted kappa over a two-week period among 138 physicians attending a CPD activity. Out of 72 potentially relevant instruments, 47 were analyzed. Of the 1218 items extracted from these, 16% were discarded as improperly phrased and 70% discarded as duplicates. Mapping the remaining items onto the constructs of the integrated model of healthcare professionals' behaviors yielded a minimum of 18 and a maximum of 275 items per construct. The partnership committee retained 61 items covering all seven constructs. Two iterations of the Delphi process produced consensus on a provisional 40-item questionnaire. Exploratory factorial analysis following test-retest resulted in a 12-item questionnaire. Cronbach's coefficients for the constructs varied from 0.77 to 0.85.A 12-item theory-based instrument for assessing the impact of CPD activities on health professionals' clinical behavioral intentions showed adequate validity and

  7. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Optimization of Instrument Requirements for NASAs GEO-CAPE Coastal Mission Concept Based On Sensor Capability And Cost Studies

    Science.gov (United States)

    Mannino, Antonio

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.

  9. Field-portable high-resolution EDXRF analysis with HgI2-detector-based instrumentation

    International Nuclear Information System (INIS)

    Berry, P.F.; Little, S.R.; Voots, G.R.

    1992-01-01

    Energy dispersive x-ray fluorescence (EDXRF) analysis is well known for its efficient use of x-ray detector technology for simultaneous multielement determination. Low-intensity excitation, such as from a radioisotope source, can thus be employed and has enabled the design of many types of truly portable EDXRF instrumentation. Portable design, however, has not been without significant compromise in analytical performance because of the limited x-ray resolving power of prior detection methods, except by the use of a cryogenically operated detector. The developments we refer to stem from the use of a comparatively new x-ray detection device fabricated from mercuric iodide (HgI 2 ). For this detector, only a modest degree of cooling is required to achieve an energy resolution of > 300 eV. Two field-portable instrument designs of different hand-held measurement probe configurations are available that have applications for industrial quality assurance and environmental screening

  10. GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere

    Science.gov (United States)

    Floyd, M.; Grunberg, M.; Wilson, E. L.

    2017-12-01

    Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.

  11. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  12. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  13. A versatile and modular quasi optics-based 200 GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  14. A versatile and modular quasi optics-based 200GHz dual dynamic nuclear polarization and electron paramagnetic resonance instrument.

    Science.gov (United States)

    Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi

    2016-03-01

    Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW

  15. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  16. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  17. Treating pre-instrumental data as "missing" data: using a tree-ring-based paleoclimate record and imputations to reconstruct streamflow in the Missouri River Basin

    Science.gov (United States)

    Ho, M. W.; Lall, U.; Cook, E. R.

    2015-12-01

    Advances in paleoclimatology in the past few decades have provided opportunities to expand the temporal perspective of the hydrological and climatological variability across the world. The North American region is particularly fortunate in this respect where a relatively dense network of high resolution paleoclimate proxy records have been assembled. One such network is the annually-resolved Living Blended Drought Atlas (LBDA): a paleoclimate reconstruction of the Palmer Drought Severity Index (PDSI) that covers North America on a 0.5° × 0.5° grid based on tree-ring chronologies. However, the use of the LBDA to assess North American streamflow variability requires a model by which streamflow may be reconstructed. Paleoclimate reconstructions have typically used models that first seek to quantify the relationship between the paleoclimate variable and the environmental variable of interest before extrapolating the relationship back in time. In contrast, the pre-instrumental streamflow is here considered as "missing" data. A method of imputing the "missing" streamflow data, prior to the instrumental record, is applied through multiple imputation using chained equations for streamflow in the Missouri River Basin. In this method, the distribution of the instrumental streamflow and LBDA is used to estimate sets of plausible values for the "missing" streamflow data resulting in a ~600 year-long streamflow reconstruction. Past research into external climate forcings, oceanic-atmospheric variability and its teleconnections, and assessments of rare multi-centennial instrumental records demonstrate that large temporal oscillations in hydrological conditions are unlikely to be captured in most instrumental records. The reconstruction of multi-centennial records of streamflow will enable comprehensive assessments of current and future water resource infrastructure and operations under the existing scope of natural climate variability.

  18. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study

    Directory of Open Access Journals (Sweden)

    S. Pfahl

    2012-07-01

    Full Text Available Variations of stable water isotopes in water vapour have become measurable at a measurement frequency of about 1 Hz in recent years using novel laser spectroscopic techniques. This enables us to perform continuous measurements for process-based investigations of the atmospheric water cycle at the time scales relevant for synoptic and mesoscale meteorology. An important prerequisite for the interpretation of data from automated field measurements lasting for several weeks or months is a detailed knowledge about instrument properties and the sources of measurement uncertainty. We present here a comprehensive characterisation and comparison study of two commercial laser spectroscopic systems based on cavity ring-down spectroscopy (Picarro and off-axis integrated cavity output spectroscopy (Los Gatos Research. The uncertainty components of the measurements were first assessed in laboratory experiments, focussing on the effects of (i water vapour mixing ratio, (ii measurement stability, (iii uncertainties due to calibration and (iv response times of the isotope measurements due to adsorption-desorption processes on the tubing and measurement cavity walls. Based on the experience from our laboratory experiments, we set up a one-week field campaign for comparing measurements of the ambient isotope signals from the two laser spectroscopic systems. The optimal calibration strategy determined for both instruments was applied as well as the correction functions for water vapour mixing ratio effects. The root mean square difference between the isotope signals from the two instruments during the field deployment was 2.3‰ for δ2H, 0.5‰ for δ18O and 3.1‰ for deuterium excess. These uncertainty estimates from field measurements compare well to those found in the laboratory experiments. The present quality of measurements from laser spectroscopic instruments combined with a calibration system opens new possibilities for investigating the atmospheric

  19. An improved Peltier effect-based instrument for critical temperature threshold measurement in cold- and heat-induced urticaria.

    Science.gov (United States)

    Magerl, M; Abajian, M; Krause, K; Altrichter, S; Siebenhaar, F; Church, M K

    2015-10-01

    Cold- and heat-induced urticaria are chronic physical urticaria conditions in which wheals, angioedema or both are evoked by skin exposure to cold and heat respectively. The diagnostic work up of both conditions should include skin provocation tests and accurate determination of critical temperature thresholds (CTT) for producing symptoms in order to be able to predict the potential risk that each individual patient faces and how this may be ameliorated by therapy. To develop and validate TempTest(®) 4, a simple and relatively inexpensive instrument for the accurate determination of CTT which may be used in clinical practice. TempTest(®) 4 has a single 2 mm wide 350 mm U-shaped Peltier element generating a temperature gradient from 4 °C to 44 °C along its length. Using a clear plastic guide placed over the skin after provocation, CTT values may be determined with an accuracy of ±1 °C. Here, TempTest(®) 4 was compared with its much more expensive predecessor, TempTest(®) 3, in inducing wheals in 30 cold urticaria patients. Both TempTest(®) 4 and TempTest(®) 3 induced wheals in all 30 patients between 8 ° and 28 °C. There was a highly significant (P < 0.0001) correlation between the instruments in the CTT values in individual patients. The TempTest(®) 4 is a simple, easy to use, licensed, commercially available and affordable instrument for the determination of CTTs in both cold- and heat-induced urticaria. © 2014 European Academy of Dermatology and Venereology.

  20. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  1. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  2. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  3. Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Ingo eRoden

    2012-12-01

    Full Text Available This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 minutes sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests for three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children's socio-economic background, age and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills.

  4. Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study.

    Science.gov (United States)

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children's socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills.

  5. Effects of a School-Based Instrumental Music Program on Verbal and Visual Memory in Primary School Children: A Longitudinal Study

    Science.gov (United States)

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children’s socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills. PMID:23267341

  6. A real-time FPGA based monitoring and fault detection processing system for the Beam Wire Scanner instruments at CERN

    CERN Document Server

    AUTHOR|(CDS)2070252; Tognolini, Maurizio; Zamantzas, Christos

    The CERN Beam Instrumentation group (BE-BI) is designing a new generation of an instrument called Beam Wire Scanner (BWS). This system uses an actuator to move a very thin wire through a particle beams, back and forth with a movement stroke of pi [rad]. To achieve very fast speed when touching the particle beam with such a small stroke, large torque is applied while the expected smoothness of the displacement is crucial. This system relies on a resolver to determine the angular position and power correctly its Permanent Magnet Synchronous Motor (PMSM). In 2016, a failure of the position acquisition chain has highlighted the severe consequences of such problem, which resulted by 24 hours downtime of the Super Proton Synchrotron (SPS) accelerator with significant financial consequences. This work mitigates this single failure point by taking advantage of the existing redundancy in the sensors embedded on the system. The resolver is compared to two Incremental Optical Position Sensor (IOPS) developed in-house ...

  7. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  8. Green public procurement – legal base and instruments supporting sustainable development in the construction industry in Poland

    Directory of Open Access Journals (Sweden)

    Kozik Renata

    2016-01-01

    Full Text Available In the respect of value, public procurement in the construction industry belongs to one of the largest ones in the domestic market. Therefore, green procurement for construction works should become the center of attention of public authorities in a broad sense, due to its scale and importance for the sustainable development. The authorities and contracting entities who spend public money should have the opportunity to apply such legal articles and instruments that allow them to both optimize public expenditures and consider the environmental factor, such as decreasing carbon emission. To make the idea of sustainable development a reality as European Union’s the most vital aim, EU law is implemented in Poland. Local authorities’ duty is to appropriately shape their policies and use the vital instrument of sustainable development, namely green public procurement. This paper presents a comparative analysis of legal regulations to illustrate the actual Polish and EU laws concerning the construction industry. Even though the generally applicable law allows to implement the idea of sustainable development efficiently, local self-government units in their regional policies do not report any need for specific solutions, or they do so only occasionally.

  9. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  10. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    Science.gov (United States)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2012-02-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia for 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day, the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales, the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  11. Analysis of instrumentation technology for SMART

    International Nuclear Information System (INIS)

    Hur, Seop; Koo, I. S.; Park, H. Y.; Lee, C. K.; Kim, D. H.; Suh, Y. S.; Seong, S. H.; Jang, G. S.

    1998-03-01

    It is necessary that development requirements, techniques to be developed, and development tasks and approach are established to develop the SMART instrumentation system. It is important to establish the development strategies for input for developing SMART instrumentation system. To meet above needs, the industry general and nuclear instrumentation techniques were analyzed and reviewed, respectively, based on the classification of instrumentation to analyze the industrial instrumentation techniques, and analysis results which described the inherent merits and demerits of each technique can be used for inputs to select the instruments for SMART. For the instrumentation techniques for nuclear environments, the major instrumentation techniques were reviewed, and the instrumentation system were established. The following development approaches were established based on the development requirements and the analysis results of research and development trends of industrial and nuclear instrumentation techniques. (author). 90 refs., 38 tabs., 33 figs

  12. DEVELOPING ONLINE CO-CREATION INSTRUMENTS BASED ON A FOCUS GROUP APPROACH: THE E-PICUS CASE

    Directory of Open Access Journals (Sweden)

    ALEXA Lidia

    2016-09-01

    Full Text Available The current business environment is in constant change, characterized by increased competition and in order to remain relevant and to create products and services that respond better to the customers’ needs and expectations, companies need to become more innovative and proactive. To address the competitive challenges, more and more companies are using innovation co-creation where all the relevant stakeholders are participating across the value chain, from idea generation, selection, development and eventually, even to marketing the new products or services.The paper presents the process of developing an online cocreation. The platform, within the framework of a research project, underlying the importance of using a focus group approach for requirements elicitation in IT instruments development.

  13. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, M. E., E-mail: thurlow@huarp.harvard.edu; Hannun, R. A.; Lapson, L. B.; Anderson, J. G. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Co, D. T. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Argonne-Northwestern Solar Energy Research Center and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113 (United States); O' Brien, A. S. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Hanisco, T. F. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); NASA Goddard Space Flight Center, Code 614, Greenbelt, Maryland 20771 (United States)

    2014-04-15

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10{sup 12}. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A{sup 2}Π{sub 3/2} (v{sup ′} = 2) ← X{sup 2}Π{sub 3/2} (v{sup ″} = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  14. Comparison of instrumental and interpolated meteorological data-based summer temperature reconstructions on Mt. Taibai in the Qinling Mountains, northwestern China

    Science.gov (United States)

    Qin, Jin; Bai, Hongying; Su, Kai; Liu, Rongjuan; Zhai, Danping; Wang, Jun; Li, Shuheng; Zhou, Qi; Li, Bin

    2018-01-01

    Previous dendroclimatical studies have been based on the relationship between tree growth and instrumental climate data recorded at lower land meteorological stations, but the climate conditions somehow differ between sampling sites and distant population centers. Thus, in this study, we performed a comparison between the 152-year reconstruction of June to July mean air temperature on the basis of interpolated meteorological data and instrumental meteorological data. The reconstruction explained 38.7% of the variance in the interpolated temperature data (37.2% after the degrees of freedom were adjusted) and 39.6% of the variance in the instrumental temperature data (38.4% after adjustment for loss of degrees of freedom) during the period 1962-2013 AD. The first global warming (the 1920s) and recent warming (1990-2013) found from the reconstructed temperature series match reasonably well with two other reported summer temperature reconstructions from north-central China. Cold periods occurred three times during 1866-1885, 1901-1921, and 1981-2000, while hot periods occurred four times during 1886-1900, 1922-1933, 1953-1966, and 2001-2007. The extreme warm (cold) years are coherent with the documentary drought (flood) events. Significant 31-22-year, 22-18-year, and 12-8-year cycles indicate major fluctuations in regional temperatures may reflect large-scale climatic shifts.

  15. Validity and reliability of instruments aimed at measuring Evidence-Based Practice in Physical Therapy: a systematic review of the literature.

    Science.gov (United States)

    Fernández-Domínguez, Juan Carlos; Sesé-Abad, Albert; Morales-Asencio, Jose Miguel; Oliva-Pascual-Vaca, Angel; Salinas-Bueno, Iosune; de Pedro-Gómez, Joan Ernest

    2014-12-01

    Our goal is to compile and analyse the characteristics - especially validity and reliability - of all the existing international tools that have been used to measure evidence-based clinical practice in physiotherapy. A systematic review conducted with data from exclusively quantitative-type studies synthesized in narrative format. An in-depth search of the literature was conducted in two phases: initial, structured, electronic search of databases and also journals with summarized evidence; followed by a residual-directed search in the bibliographical references of the main articles found in the primary search procedure. The studies included were assigned to members of the research team who acted as peer reviewers. Relevant information was extracted from each of the selected articles using a template that included the general characteristics of the instrument as well as an analysis of the quality of the validation processes carried out, by following the criteria of Terwee. Twenty-four instruments were found to comply with the review screening criteria; however, in all cases, they were found to be limited as regards the 'constructs' included. Besides, they can all be seen to be lacking as regards comprehensiveness associated to the validation process of the psychometric tests used. It seems that what constitutes a rigorously developed assessment instrument for EBP in physical therapy continues to be a challenge. © 2014 John Wiley & Sons, Ltd.

  16. Development of Reasoning Test Instruments Based on TIMSS Framework for Measuring Reasoning Ability of Senior High School Student on the Physics Concept

    Science.gov (United States)

    Muslim; Suhandi, A.; Nugraha, M. G.

    2017-02-01

    The purposes of this study are to determine the quality of reasoning test instruments that follow the framework of Trends in International Mathematics and Science Study (TIMSS) as a development results and to analyse the profile of reasoning skill of senior high school students on physics materials. This research used research and development method (R&D), furthermore the subject were 104 students at three senior high schools in Bandung selected by random sampling technique. Reasoning test instruments are constructed following the TIMSS framework in multiple choice forms in 30 questions that cover five subject matters i.e. parabolic motion and circular motion, Newton’s law of gravity, work and energy, harmonic oscillation, as well as the momentum and impulse. The quality of reasoning tests were analysed using the Content Validity Ratio (CVR) and classic test analysis include the validity of item, level of difficulty, discriminating power, reliability and Ferguson’s delta. As for the students’ reasoning skills profiles were analysed by the average score of achievements on eight aspects of the reasoning TIMSS framework. The results showed that reasoning test have a good quality as instruments to measure reasoning skills of senior high school students on five matters physics which developed and able to explore the reasoning of students on all aspects of reasoning based on TIMSS framework.

  17. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    International Nuclear Information System (INIS)

    Thurlow, M. E.; Hannun, R. A.; Lapson, L. B.; Anderson, J. G.; Co, D. T.; O'Brien, A. S.; Hanisco, T. F.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10 12 . The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A 2 Π 3/2 (v ′ = 2) ← X 2 Π 3/2 (v ″ = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America

  18. The Development and Deployment of a Ground-Based, Laser-Induced Fluorescence Instrument for the In Situ Detection of Iodine Monoxide Radicals

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; O'Brien, A. S.; Hannun, R. A.; Lapson, L. B.; Hanisco, T. F.; Anderson, J. G.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) ? X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  19. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  20. Development and evaluation of a social cognitive theory-based instrument to assess correlations for physical activity among people with spinal cord injury.

    Science.gov (United States)

    Wilroy, Jereme; Turner, Lori; Birch, David; Leaver-Dunn, Deidre; Hibberd, Elizabeth; Leeper, James

    2018-01-01

    People with spinal cord injury (SCI) are more susceptible to sedentary lifestyles because of the displacement of physical functioning and the copious barriers. Benefits of physical activity for people with SCI include physical fitness, functional capacity, social integration and psychological well-being. The purpose of this study was to develop and test a social cognitive theory-based instrument aimed to predict physical activity among people with SCI. An instrument was developed through the utilization and modification of previous items from the literature, an expert panel review, and cognitive interviewing, and tested among a sample of the SCI population using a cross-sectional design. Statistical analysis included descriptives, correlations, multiple regression, and exploratory factor analysis. The physical activity outcome variable was significantly and positively correlated with self-regulatory efficacy (r = 0.575), task self-efficacy (r = 0.491), self-regulation (r = 0.432), social support (r = 0.284), and outcome expectations (r = 0.247). Internal consistency for the constructs ranged from 0.82 to 0.96. Construct reliability values for the self-regulation (0.95), self-regulatory efficacy (0.96), task self-efficacy (0.94), social support (0.84), and outcome expectations (0.92) each exceeded the 0.70 a priori criteria. The factor analysis was conducted to seek modifications of current instrument to improve validity and reliability. The data provided support for the convergent validity of the five-factor SCT model. This study provides direction for further development of a valid and reliable instrument for predicting physical activity among people with SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Directory of Open Access Journals (Sweden)

    P. Forkman

    2012-11-01

    Full Text Available Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E are presented. The dataset covers the period 2002–2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2, MLS on Aura (v3-3, MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200 and SMR on Odin (v225 and v021 is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55–100 km altitude range. During 2004–2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200 is good in the altitude range 55–70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002–2004, CO from MIPAS (12 + 13 is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  2. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Science.gov (United States)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.

    2012-11-01

    Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  3. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  4. Study Modules for Calculus-Based General Physics. [Includes Modules 38-40: Optical Instruments; Diffraction; and Alternating Current Circuits].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  5. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  6. Real-time, high frequency (1 Hz), in situ measurement of HCl and HF gases in volcanic plumes with a novel cavity-enhanced, laser-based instrument

    Science.gov (United States)

    Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.

    2017-12-01

    Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.

  7. Objective evaluation of analyzer performance based on a retrospective meta-analysis of instrument validation studies: point-of-care hematology analyzers.

    Science.gov (United States)

    Cook, Andrea M; Moritz, Andreas; Freeman, Kathleen P; Bauer, Natali

    2017-06-01

    Information on quality requirements and objective evaluation of performance of veterinary point-of-care analyzers (POCAs) is scarce. The study was aimed at assessing observed total errors (TE obs s) for veterinary hematology POCAs via meta-analysis and comparing TE obs to allowable total error (TE a ) specifications based on experts' opinions. The TE obs for POCAs (impedance and laser-based) was calculated based on data from instrument validation studies published between 2006 and 2013 as follows: TE obs = 2 × CV [%] + bias [%]. The CV was taken from published studies; the bias was estimated from the regression equation at 2 different concentration levels of measurands. To fulfill quality requirements, TE obs should be 60% of analyzers showed TE obs hematology variables, respectively. For the CBC, TE obs was TE a (data from 3 analyzers). This meta-analysis is considered a pilot study. Experts' requirements (TE obs < TE a ) were fulfilled for most measurands except HGB (due to instrument-related bias for the ADVIA 2120) and platelet counts. Available data on the WBC differential count suggest an analytic bias, so nonstatistical quality control is recommended. © 2017 American Society for Veterinary Clinical Pathology.

  8. OSIRIS: the first M.T.R. with a new instrumentation and control system based on digital logic of vote

    International Nuclear Information System (INIS)

    Joly, C.; Thiercelin, C.; Corre, J.; Dubois, J.F.; Contenson, G. de.

    1993-01-01

    OSIRIS, one of the french C.E.A. research reactors located at SACLAY, near PARIS, is since 27 years mainly devoted to production and irradiation technologies. To satisfy these objectives, OSIRIS is equipped by different test sections allowing mainly: - the long time irradiation of different materials including fuel rods, reactor vessel materials, fusion reactor components, - the power ramps of fuel rods, the Silicon doping, the radioelements production, the neutronography of materials and test sections. In most of the loops, the nuclear reactor conditions are fully simulated to approach as far as possible the exact behaviour of the materials. Through the new irradiation facilities under development, let's cite the OPERA test section foreseen for the simultaneous irradiation of 32 fuel rods with a maximum length of 2 m. To guarantee the safety and the high performances of the reactor, a continuous maintenance and improvement programme took place during the whole life of the reactor. The paper gives an overview of the part of this programme devoted to the replacement of the instrumentation and control system of the reactor. After 5 years study and development, the on site work took place in the second part of 1992 allowing a reactor start up beginning of 1993. (authors). 10 figs

  9. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    Science.gov (United States)

    Ferreira, J.; Álvarez, L.; Buendía, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R.; Seoane, F.

    2013-04-01

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  10. An Online Fault Pre-warning System of the Rolling Mill Screw-down Device Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Qing Bai

    2014-04-01

    Full Text Available A traditional off-line screw-down monitoring system performs not well on real-time signal analysis or process, which cannot provide simultaneous fault pre-warning either. A diagnostic monitoring system as well as a remotely accessible graphic user interface is presented in this paper. The main objective of this work is to develop an online and available technique for monitoring the kinetic, hydrodynamic and electrical parameters of the rolling mill screw-down device, and analyze these figures to support online fault pre-warning. A series of transducers are installed in suitable locations to measure parameters decried above including the vibration acceleration of a rolling mill stand, the rolling force of a screw-down device, the stroke of a hydraulic cylinder, the system source pressure, the in-cylinder stress and the output value of an electro-hydraulic servo valve. An industrial personal computer picks up the information transformed by an extra high-speed data acquisition board embedded inside, processes the signals via a software designed by means of Laborary Virtual Instrument Engineering Workbench (LabVIEW and indicates fault conditions through the graphic user interface. Besides, the data of the overall system can be published over the Internet using LabVIEW Web Server capabilities. The results of experiments suggest that the system works well on real-time data acquisition and online fault pre- warning. The statistics saved contributes to the research of vibration performance and malfunction analysis of a rolling mill.

  11. Bioimpedance-Based Wearable Measurement Instrumentation for Studying the Autonomic Nerve System Response to Stressful Working Conditions

    International Nuclear Information System (INIS)

    Ferreira, J; Buendía, R; Seoane, F; Álvarez, L; Ayllón, D; Llerena, C; Gil-Pita, R

    2013-01-01

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  12. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  13. APPLICATION OF THE SPECTROMETRIC METHOD FOR CALCULATING THE DOSE RATE FOR CREATING CALIBRATION HIGHLY SENSITIVE INSTRUMENTS BASED ON SCINTILLATION DETECTION UNITS

    Directory of Open Access Journals (Sweden)

    R. V. Lukashevich

    2017-01-01

    Full Text Available Devices based on scintillation detector are highly sensitive to photon radiation and are widely used to measure the environment dose rate. Modernization of the measuring path to minimize the error in measuring the response of the detector to gamma radiation has already reached its technological ceiling and does not give the proper effect. More promising for this purpose are new methods of processing the obtained spectrometric information. The purpose of this work is the development of highly sensitive instruments based on scintillation detection units using a spectrometric method for calculating dose rate.In this paper we consider the spectrometric method of dosimetry of gamma radiation based on the transformation of the measured instrumental spectrum. Using predetermined or measured functions of the detector response to the action of gamma radiation of a given energy and flux density, a certain function of the energy G(E is determined. Using this function as the core of the integral transformation from the field to dose characteristic, it is possible to obtain the dose value directly from the current instrumentation spectrum. Applying the function G(E to the energy distribution of the fluence of photon radiation in the environment, the total dose rate can be determined without information on the distribution of radioisotopes in the environment.To determine G(E by Monte-Carlo method instrumental response function of the scintillator detector to monoenergetic photon radiation sources as well as other characteristics are calculated. Then the whole full-scale energy range is divided into energy ranges for which the function G(E is calculated using a linear interpolation.Spectrometric method for dose calculation using the function G(E, which allows the use of scintillation detection units for a wide range of dosimetry applications is considered in the article. As well as describes the method of calculating this function by using Monte-Carlo methods

  14. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  15. Development of an item bank for food parenting practices based on published instruments and reports from Canadian and US parents.

    Science.gov (United States)

    O'Connor, Teresia M; Pham, Truc; Watts, Allison W; Tu, Andrew W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom; Mâsse, Louise C

    2016-08-01

    Research to understand how parents influence their children's dietary intake and eating behaviors has expanded in the past decades and a growing number of instruments are available to assess food parenting practices. Unfortunately, there is no consensus on how constructs should be defined or operationalized, making comparison of results across studies difficult. The aim of this study was to develop a food parenting practice item bank with items from published scales and supplement with parenting practices that parents report using. Items from published scales were identified from two published systematic reviews along with an additional systematic review conducted for this study. Parents (n = 135) with children 5-12 years old from the US and Canada, stratified to represent the demographic distribution of each country, were recruited to participate in an online semi-qualitative survey on food parenting. Published items and parent responses were coded using the same framework to reduce the number of items into representative concepts using a binning and winnowing process. The literature contributed 1392 items and parents contributed 1985 items, which were reduced to 262 different food parenting concepts (26% exclusive from literature, 12% exclusive from parents, and 62% represented in both). Food parenting practices related to 'Structure of Food Environment' and 'Behavioral and Educational' were emphasized more by parent responses, while practices related to 'Consistency of Feeding Environment' and 'Emotional Regulation' were more represented among published items. The resulting food parenting item bank should next be calibrated with item response modeling for scientists to use in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta

    Science.gov (United States)

    Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Gombosi, T. I.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2015-12-01

    The ROSETTA spacecraft of ESA is in the environment of comet 67P/Churyumov-Gerasimenko since August 2014. Among the experiments onboard the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and a pressure sensor (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. The Reflectron-type Time-Of-Flight (RTOF) mass spectrometer possesses a wide mass range and a high temporal resolution [1,2]. It was designed to measure cometary neutral gas as well as cometary ions. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will then be provided. The influence of various parameters on the coma measurements is investigated on a statistical basis, with the parameters being distance to the comet, heliocentric distance, longitude and latitude of nadir point. Our analysis of the northern hemisphere summer season shows the presence of water vapor mostly in the illuminated northern hemisphere near the neck region with cyclic diurnal variations whereas CO2 was confined to the cold southern hemisphere with a more spatially homogeneous composition, in agreement with previous observations of 67P [2] or Hartley 2 [3]. A comparison will also be provided with the COPS total density and DFMS abundance measurements. [1] Balsiger et al., "ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis", Space Sci. Rev., 2007. [2] Scherer et al., "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr., 2006. [3] Hässig et al., "Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko", Science, 2015. [4] A'Hearn et al., "EPOXI at comet Hartley 2", Science, 2011.

  17. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    Science.gov (United States)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  18. Developing a workplace resilience instrument.

    Science.gov (United States)

    Mallak, Larry A; Yildiz, Mustafa

    2016-05-27

    Resilience benefits from the use of protective factors, as opposed to risk factors, which are associated with vulnerability. Considerable research and instrument development has been conducted in clinical settings for patients. The need existed for an instrument to be developed in a workplace setting to measure resilience of employees. This study developed and tested a resilience instrument for employees in the workplace. The research instrument was distributed to executives and nurses working in the United States in hospital settings. Five-hundred-forty completed and usable responses were obtained. The instrument contained an inventory of workplace resilience, a job stress questionnaire, and relevant demographics. The resilience items were written based on previous work by the lead author and inspired by Weick's [1] sense-making theory. A four-factor model yielded an instrument having psychometric properties showing good model fit. Twenty items were retained for the resulting Workplace Resilience Instrument (WRI). Parallel analysis was conducted with successive iterations of exploratory and confirmatory factor analyses. Respondents were classified based on their employment with either a rural or an urban hospital. Executives had significantly higher WRI scores than nurses, controlling for gender. WRI scores were positively and significantly correlated with years of experience and the Brief Job Stress Questionnaire. An instrument to measure individual resilience in the workplace (WRI) was developed. The WRI's four factors identify dimensions of workplace resilience for use in subsequent investigations: Active Problem-Solving, Team Efficacy, Confident Sense-Making, and Bricolage.

  19. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  20. MathWorks Simulink and C++ integration with the new VLT PLC-based standard development platform for instrument control systems

    Science.gov (United States)

    Kiekebusch, Mario J.; Di Lieto, Nicola; Sandrock, Stefan; Popovic, Dan; Chiozzi, Gianluca

    2014-07-01

    ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems (new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal capabilities of the traditional PLC programming environments. We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based controller implemented in Simulink and used for the control of telescope main axes.

  1. Design and Elementary Evaluation of a Highly-Automated Fluorescence-Based Instrument System for On-Site Detection of Food-Borne Pathogens

    Directory of Open Access Journals (Sweden)

    Zhan Lu

    2017-02-01

    Full Text Available A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD (nearly 102–103 CFU·mL−1 in food samples. Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens.

  2. A Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS and the Resultant Hyperspectral Field Goniometer System

    Directory of Open Access Journals (Sweden)

    Marcel Buchhorn

    2013-11-01

    Full Text Available This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI. The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS, and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.

  3. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  4. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  5. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  6. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    Science.gov (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of

  7. Life Cycle V and V Process for Hardware Description Language Programs of Programmable Logic Device-based Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Cha, K. H.; Lee, D. Y.

    2010-01-01

    Programmable Logic Device (PLD), especially Complex PLD (CPLD) or Field Programmable Logic Array (FPGA), has been growing in interest in nuclear Instrumentation and Control (I and C) applications. PLD has been applied to replace an obsolete analog device or old-fashioned microprocessor, or to develop digital controller, subsystem or overall system on hardware aspects. This is the main reason why the PLD-based I and C design provides higher flexibility than the analog-based one, and the PLD-based I and C systems shows better real-time performance than the processor-based I and C systems. Due to the development of the PLD-based I and C systems, their nuclear qualification has been issued in the nuclear industry. Verification and Validation (V and V) is one of necessary qualification activities when a Hardware Description Language (HDL) is used to implement functions of the PLD-based I and C systems. The life cycle V and V process, described in this paper, has been defined as satisfying the nuclear V and V requirements, and it has been applied to verify Correctness, Completeness, and Consistency (3C) among design outputs in a safety-grade programmable logic controller and a safety-critical data communication system. Especially, software engineering techniques such as the Fagan Inspection, formal verification, simulated verification and automated testing have been defined for the life cycle V and V tasks of behavioral, structural, and physical design in VHDL

  8. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  9. Routine outcome monitoring and clinical decision-making in forensic psychiatry based on the Instrument for Forensic Treatment Evaluation

    NARCIS (Netherlands)

    van der Veeken, F.C.A.; Lucieer, Jacques; Bogaerts, S.

    2016-01-01

    Background Rehabilitation in forensic psychiatry is achieved gradually with different leave modules, in line with the Risk Need Responsivity model. A forensic routine outcome monitoring tool should measure treatment progress based on the rehabilitation theory, and it should be predictive of

  10. Content Validity and Inter-Rater Reliability of the Halliwick-Concept-Based Instrument "Swimming with Independent Measure"

    Science.gov (United States)

    Srsen, Katja Groleger; Vidmar, Gaj; Pikl, Masa; Vrecar, Irena; Burja, Cirila; Krusec, Klavdija

    2012-01-01

    The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine…

  11. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    Science.gov (United States)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO

  12. Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2008-06-01

    Full Text Available The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band, and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement. In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC and balloon flight missions conducted by the Canadian Space Agency (CSA, the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France, and the Service d'Aéronomie (SA, Paris, France. Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km within −0.3±0.2 ppmv (bias±standard deviation for SMR (v222, v2.1 and within −0.5±0.2 ppmv for OSIRIS (v3.0. Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv

  13. Implementation of Instrument Based on Eight Health Related Quality of Life Domains for Measuring of Willingness to Pay for Psoriasis Treatment.

    Science.gov (United States)

    Dobrev, Hristo P; Atanasov, Nikolay G; Dimitrova, Donka D

    2017-09-01

    Psoriasis vulgaris (PsV) is a chronic skin condition that has a major impact on health-related quality of life (HRQOL). To determine the individual burden of PsV on HRQOL using willingness to pay (WTP) instrument. Fifty-one consecutive PsV patients were asked to evaluate their overall health and psoriasis affected health by visual analogue scale (VAS), and interviewed on 8 domains (physical, emotional, sleep, work, social, self-care, intimacy, and concentration) of HRQOL and WTP for a hypothetical cure in each domain. Two additional questions proposing 6 alternatives for therapy were also asked. The analysis is performed with descriptive and frequency statistics, Mann-Whitney and Kruskal-Wallis tests. The domains ranked highly were: physical comfort (90%), social comfort (77%), emotional health (75%) and work (53%). The following tendencies concerning WTP for top four impacted domains were found: the median WTP were the highest in the top impacted domains; the younger patients were willing to pay more than the older ones; the highest median WTP amounts appear in the lowest income group; the highest median WTP is associated with smaller psoriasis affected health VAS scores. The largest proportion and number of patients (37.3%, n=19) stated preferences for the systemic therapy. The second preferred choice was the thalassotherapy (29.4%, n=15). The utility and reliability of the instrument based on the assessment of WTP stated preferences for 8 domains of HRQOL for evaluation the individual burden of psoriasis were strongly supported.

  14. Application of the defense-in-depth concept to qualify computer-based instrumentation and control systems important to safety

    International Nuclear Information System (INIS)

    Seidel, F.

    1998-01-01

    In parallel to the technological development, the authorities and expert organisations are preparing the application of computer-based I and C to NPPs from the regulatory point of view. Generally the associated world-wide procedure follows steps like identification of safety issues, completion of the regulatory framework particularly regarding the licensing requirements and furthermore, recommendation of an appropriate set of qualification methods to prove that the requirements are met. The paper's intention is to show from the regulatory point of view that the choice as well as the combination of the qualification methods depend on system design features and development strategy. Similar as for the safety system design required, a defense-in-depth qualification concept is suggested to be helpful in order to prove that the computer-based system meets the licensing requirements. (author)

  15. Application of the defense-in-depth concept to qualify computer-based instrumentation and control systems important to safety

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, F [Federal Office for Radiation Protection, Salzgitter (Germany)

    1998-10-01

    In parallel to the technological development, the authorities and expert organisations are preparing the application of computer-based I and C to NPPs from the regulatory point of view. Generally the associated world-wide procedure follows steps like identification of safety issues, completion of the regulatory framework particularly regarding the licensing requirements and furthermore, recommendation of an appropriate set of qualification methods to prove that the requirements are met. The paper`s intention is to show from the regulatory point of view that the choice as well as the combination of the qualification methods depend on system design features and development strategy. Similar as for the safety system design required, a defense-in-depth qualification concept is suggested to be helpful in order to prove that the computer-based system meets the licensing requirements. (author)

  16. The "Intentionality Measurement Instrument" [or "IMI"]: A Comprehensive Psychometric Instrument Based upon the Dual Quadrant Scalar Model of Intentionality That Is Designed to Measure Intent, Motive Type, and Disposition

    Science.gov (United States)

    Osler, James Edward, II

    2016-01-01

    The overall aim of this paper is to provide an epistemological rational for the measurement of intentionality. The purpose of this narrative is to identify "Intentionality" as an arena of action in the dispositional learning domain can be measured using an "Intentionality Measurement Instrument" [also referred by the acronym…

  17. Exploring the relationships among performance-based functional ability, self-rated disability, perceived instrumental support, and depression: a structural equation model analysis.

    Science.gov (United States)

    Weil, Joyce; Hutchinson, Susan R; Traxler, Karen

    2014-11-01

    Data from the Women's Health and Aging Study were used to test a model of factors explaining depressive symptomology. The primary purpose of the study was to explore the association between performance-based measures of functional ability and depression and to examine the role of self-rated physical difficulties and perceived instrumental support in mediating the relationship between performance-based functioning and depression. The inclusion of performance-based measures allows for the testing of functional ability as a clinical precursor to disability and depression: a critical, but rarely examined, association in the disablement process. Structural equation modeling supported the overall fit of the model and found an indirect relationship between performance-based functioning and depression, with perceived physical difficulties serving as a significant mediator. Our results highlight the complementary nature of performance-based and self-rated measures and the importance of including perception of self-rated physical difficulties when examining depression in older persons. © The Author(s) 2014.

  18. A GC Instrument Simulator

    Science.gov (United States)

    Armitage, D. Bruce

    1999-02-01

    This simulator was developed to help students beginning the study of gas chromatographic instruments to understand their operation. It is not meant to teach chromatographic theory. The instrument simulator is divided into 5 sections. One is for sample preparation. Another is used to manage carrier gases and choose a detector and column. The third sets the conditions for either isothermal or programmed temperature operation. A fourth section models manual injections, and the fifth is the autosampler. The operator has a choice among 6 columns of differing diameters and packing polarities and a choice of either isothermal or simple one-stage temperature programming. The simulator can be operated in either single-sample mode or as a 10-sample autosampler. The integrator has two modes of operation, a "dumb" mode in which only the retention time, area of the peak, and percentage area are listed and a "smart" mode that also lists the components' identities. The identities are obtained from a list of names and retention times created by the operator. Without this list only the percentages and areas are listed. The percentages are based on the areas obtained from the chromatogram and not on the actual percentages assigned during sample preparation. The data files for the compounds used in the simulator are ASCII files and can be edited easily to add more compounds than the 11 included with the simulator. A maximum of 10 components can be used in any one sample. Sample mixtures can be made on a percent-by-volume basis, but not by mass of sample per volume of solvent. A maximum of 30 compounds can be present in any one file, but the number of files is limited only by the operating system. (I suggest that not more than 20 compounds be used in any one file, as scrolling through large numbers of compounds is annoying to say the least.) File construction and layout are discussed in detail in the User's Manual. Chromatograms are generated by calculating a retention time based on

  19. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    OpenAIRE

    Jong-Kyun Chung; Young-In Won; Bang Yong Lee; Jhoon Kim

    1998-01-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both sola...

  20. [Web-based electronic patient record as an instrument for quality assurance within an integrated care concept].

    Science.gov (United States)

    Händel, A; Jünemann, A G M; Prokosch, H-U; Beyer, A; Ganslandt, T; Grolik, R; Klein, A; Mrosek, A; Michelson, G; Kruse, F E

    2009-03-01

    A prerequisite for integrated care programmes is the implementation of a communication network meeting quality assurance standards. Against this background the main objective of the integrated care project between the University Eye Hospital Erlangen and the health insurance company AOK Bayern was to evaluate the potential and the acceptance of a web-based electronic patient record in the context of cataract and retinal surgery. Standardised modules for capturing pre-, intra- and post-operative data on the basis of clinical pathway guidelines for cataract- and retinal surgery have been developed. There are 6 data sets recorded per patient (1 pre-operative, 1 operative, 4-6 post-operative). For data collection, a web-based communication system (Soarian Integrated Care) has been chosen which meets the high requirements in data security, as well as being easy to handle. This teleconsultation system and the embedded electronic patient record are independent of the software used by respective offices and hospitals. Data transmission and storage were carried out in real-time. At present, 101 private ophthalmologists are taking part in the IGV contract with the University Eye Hospital Erlangen. This corresponds to 52% of all private ophthalmologists in the region. During the period from January 1st 2006 to December 31st 2006, 1844 patients were entered. Complete documentation was achieved in 1390 (75%) of all surgical procedures. For evaluation of this data, a multidimensional report and analysis tool (Cognos) was used. The deviation from target refraction as one quality indicator was in the mean 0.09 diopter. The web-based patient record used in this project was highly accepted by the private ophthalmologists. However there are still general concerns against the exchange of medical data via the internet. Nevertheless, the web-based patient record is an essential tool for a functional integration between the ambulatory and stationary health-care units. In addition to the

  1. Do medical students’ scores using different assessment instruments predict their scores in clinical reasoning using a computer-based simulation?

    Directory of Open Access Journals (Sweden)

    Fida M

    2015-02-01

    Full Text Available Mariam Fida,1 Salah Eldin Kassab2 1Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; 2Department of Medical Education, Faculty of Medicine, Suez Canal University, Ismailia, Egypt Purpose: The development of clinical problem-solving skills evolves over time and requires structured training and background knowledge. Computer-based case simulations (CCS have been used for teaching and assessment of clinical reasoning skills. However, previous studies examining the psychometric properties of CCS as an assessment tool have been controversial. Furthermore, studies reporting the integration of CCS into problem-based medical curricula have been limited. Methods: This study examined the psychometric properties of using CCS software (DxR Clinician for assessment of medical students (n=130 studying in a problem-based, integrated multisystem module (Unit IX during the academic year 2011–2012. Internal consistency reliability of CCS scores was calculated using Cronbach's alpha statistics. The relationships between students' scores in CCS components (clinical reasoning, diagnostic performance, and patient management and their scores in other examination tools at the end of the unit including multiple-choice questions, short-answer questions, objective structured clinical examination (OSCE, and real patient encounters were analyzed using stepwise hierarchical linear regression. Results: Internal consistency reliability of CCS scores was high (α=0.862. Inter-item correlations between students' scores in different CCS components and their scores in CCS and other test items were statistically significant. Regression analysis indicated that OSCE scores predicted 32.7% and 35.1% of the variance in clinical reasoning and patient management scores, respectively (P<0.01. Multiple-choice question scores, however, predicted only 15.4% of the variance in diagnostic performance scores (P<0.01, while

  2. The Squiggle: A Digital Musical Instrument

    OpenAIRE

    Sheehan, Brian

    2004-01-01

    This paper discusses some of the issues pertaining to thedesign of digital musical instruments that are to effectively fillthe role of traditional instruments (i.e. those based on physicalsound production mechanisms). The design andimplementation of a musical instrument that addresses some ofthese issues, using scanned synthesis coupled to a "smart"physical system, is described.

  3. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  4. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification.

    Science.gov (United States)

    Wang, Rui; Zhang, Fang; Wang, Liu; Qian, Wenjuan; Qian, Cheng; Wu, Jian; Ying, Yibin

    2017-04-18

    On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.

  5. Pose estimation of surgical instrument using sensor data fusion with optical tracker and IMU based on Kalman filter

    Directory of Open Access Journals (Sweden)

    Oh Hyunmin

    2015-01-01

    Full Text Available Tracking system is essential for Image Guided Surgery(IGS. The Optical Tracking Sensor(OTS has been widely used as tracking system for IGS due to its high accuracy and easy usage. However, OTS has a limit that tracking fails when occlusion of marker occurs. In this paper, sensor fusion with OTS and Inertial Measurement Unit(IMU is proposed to solve this problem. The proposed algorithm improves the accuracy of tracking system by eliminating scattering error of the sensor and supplements the disadvantages of OTS and IMU through sensor fusion based on Kalman filter. Also, coordinate axis calibration method that improves the accuracy is introduced. The performed experiment verifies the effectualness of the proposed algorithm.

  6. Is the activity based costing system a viable instrument for small and medium enterprises? The case of Mexico

    Directory of Open Access Journals (Sweden)

    Martha Ríos-Manríquez

    2014-07-01

    Full Text Available Small and medium-sized firms (SMEs face serious challenges in order to be competitive, and they need to develop strategies enabling them to control their costs. This work aims to analyze and evaluate the impact, penetration and characteristics of Activity-Based Costs (ABC. This research is of a quantitative type descriptive design, with a sample of 180 SMEs. The results show low penetration of the ABC in SMEs using traditional systems, due to the lack of knowledge, and that there are enterprises that do not use any costing system at all. Finally the Mexican SMEs recognize the compatibility and usefulness of ABC, and that the most important fact is to understand the possible application of different costing methodologies for different purposes.

  7. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  8. EPLD/CPLD based solution for sodium vapour leak detection processing instrumentation - ECIL's development, design, manufacturing and commissioning for implementation of DDCS at SGTF, IGCAR

    International Nuclear Information System (INIS)

    Rajasekhara Rao, K.S.; Mitra, S.G.; Kannaiah, B.

    2004-01-01

    For the Complex Process and Instrumentation needs of Sodium System of SGTF (Steam Generator Test Facility) of IGCAR, ECIL has developed the State of the Art EPLD / CPLD based solutions for Sodium Vapour Leak Detection Processing with Distributed I/O Intelligence for the task of Acquiring the Data, Analog to Digital Conversion, Data Interpretation as Sodium Leak, Healthy, Sensor /Cable Open/Short, Annunciation and Data Communication with DDCS. The System is flexible on a programmable chip for each group of 32 Sensors Data Processing and the Processing is Software Controlled rather than traditional hardware based. The System is adaptable to process requirement changes with simple Software updation/tuning rather than cumbersome and time-consuming hardware changes. Since the design is Software based, there is no drift and it is calibration free. The implementation is based on conceptual Design, Schematic Capture, VHDL Coding and Compilation, EPLD/CPLD Programming using J-Tag, Prefabrication Simulation Testing with Test Bench, Thermal-EMI-EMC Analysis, Fabrication, Assembly and Testing. The Leak Detection Processing is Integrated as part of 'DDCS - Developed, Designed, Manufactured and Commissioned at SGTF, IGCAR' consisting of Dual Redundant Multi Loop PID Controllers/PLCs, DAS and net worked HMI. The System is well established and, operational at IGCAR. (author)

  9. Digital study of nuclear reactor instrument

    International Nuclear Information System (INIS)

    Lv Gongxiang; Yang Zhijun

    2006-01-01

    The paper introduces the design method of nuclear reactor's digital instrument developed by authors based on the AT89C52 single chip microcomputer. Also the instrument system hardware structure and software framework are given. The instrument apply DDC112 which is responsible for the measure of lower current. When designing the instrument system, anti-interference measure of software, especially hardware is considered seriously. (authors)

  10. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  11. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  12. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yu [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 and Medical Physics Program, University of Nevada, Las Vegas, Nevada 89154-3037 (United States); Pratx, Guillem; Bazalova, Magdalena; Qian Jianguo; Meng Bowen; Xing Lei [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 (United States)

    2013-03-15

    Purpose: Developing an imaging method to directly monitor the spatial distribution of platinum-based (Pt) drugs at the tumor region is of critical importance for early assessment of treatment efficacy and personalized treatment. In this study, the authors investigated the feasibility of imaging platinum (Pt)-based drug distribution using x-ray fluorescence (XRF, a.k.a. characteristic x ray) CT (XFCT). Methods: A 5-mm-diameter pencil beam produced by a polychromatic x-ray source equipped with a tungsten anode was used to stimulate emission of XRF photons from Pt drug embedded within a water phantom. The phantom was translated and rotated relative to the stationary pencil beam in a first-generation CT geometry. The x-ray energy spectrum was collected for 18 s at each position using a cadmium telluride detector. The spectra were then used for the K-shell XRF peak isolation and sinogram generation for Pt. The distribution and concentration of Pt were reconstructed with an iterative maximum likelihood expectation maximization algorithm. The capability of XFCT to multiplexed imaging of Pt, gadolinium (Gd), and iodine (I) within a water phantom was also investigated. Results: Measured XRF spectrum showed a sharp peak characteristic of Pt with a narrow full-width at half-maximum (FWHM) (FWHM{sub K{alpha}1}= 1.138 keV, FWHM{sub K{alpha}2}= 1.052 keV). The distribution of Pt drug in the water phantom was clearly identifiable on the reconstructed XRF images. Our results showed a linear relationship between the XRF intensity of Pt and its concentrations (R{sup 2}= 0.995), suggesting that XFCT is capable of quantitative imaging. A transmission CT image was also obtained to show the potential of the approach for providing attenuation correction and morphological information. Finally, the distribution of Pt, Gd, and I in the water phantom was clearly identifiable in the reconstructed images from XFCT multiplexed imaging. Conclusions: XFCT is a promising modality for monitoring

  13. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    Science.gov (United States)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  14. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    Science.gov (United States)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other

  15. Operational Test Instrumentation Guide.

    Science.gov (United States)

    1981-11-01

    System. A topographic, transit-level measuring system, instrumented with altimeter, clinometers, compasses , and an alidade, plane table, and stadia rod...dual hangar 250 x 135 feet with two door openings, 80 feet each. There is no compass swing base, no electronic landing aids, ro aircraft wash or...month) of SDG &E) Haybarn Canyon 15,000 6,183,870 Lan Pulgas 1,500 433,890 Las Pulgas Well #41621 100 4,258 Las Pulgas Well #41611 150 7,548 Las Flores

  16. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  17. How much market do market-based instruments create? An analysis for the case of 'white' certificates

    International Nuclear Information System (INIS)

    Langniss, Ole

    2003-01-01

    Discussions about 'green' certificates for renewable energy forms are under way for some time now. In contrast, tradable 'white' certificates have only lately been celebrated as a market-based tool to foster energy efficiency. Theoretically, there is little doubt about this. In practice, however, some fundamental problems and doubts about the usefulness of certificates arise: How 'competitive' are markets for certificates in reality? Is a 'white' certificate scheme only a new name for an old hat rooted in control and command regulation? With this suspicion, a number of questions and aspects arise: - Market mechanism: Which criteria guarantee that an - artificial - market for certificates really becomes competitive? Will trading be characterized by spot markets or by rather anti-competitive long-term over-the-counter contracts? Which minimum market size is needed, and which are the conditions regarding the tradability of the certificate that have to be met? - Target group: Who should be obliged to purchase certificates? Are electricity suppliers the right target group, or should fuel and heat suppliers be addressed, or the consumer himself? - Additionality and measurability: Which efficiency technologies should be eligible for certificates? What exactly is an efficient technology? A narrow definition might ease measuring problems but at the same time reduce innovation incentives. We use the theoretical framework of Transaction Cost Economics to discuss these issues. A brief review of the design of tradable certificate schemes in Italy and the UK is given. Lessons can also be learned from renewable portfolio standards recently implemented in a number of countries

  18. Optical studies of X-ray sources with the MASCOT - a charge-coupled device /CCD/-based astronomical instrument

    International Nuclear Information System (INIS)

    Ricker, G.R.; Bautz, M.W.; Dewey, D.; Meyer, S.S.

    1981-01-01

    The performance levels achieved by the MASCOT (MIT Astronomical Spectrometer/Camera for Optical Telescopes) on the 1.3-m telescope at the McGraw-Hill observatory in March 1981 are discussed along with preliminary data obtained in searches for optical counterparts to four 'empty-field' X-ray sources. In the W band (4000-7000 A), the MASCOT achieved a sky-limited sensitivity of +24.4 mag per sq arcsec in an 1800 s integration. The ability to flatten pictures to a level consistent with (sky + source) photon statistics and readout noise was demonstrated. For the four sources observed, an optical counterpart was established for one source (1413+13) based on positional coincidence (better than 1.8 arcsec), four possible candidates were detected in the error box of another source (1009 35) and upper sensitivity limits were established for optical counterparts in the error boxes for the other two sources (0920+39 and 0931-11)

  19. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  20. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  1. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  2. [Diagnosis-related groups as an instrument to develop suitable case-based lump sums in hematology and oncology].

    Science.gov (United States)

    Thalheimer, Markus

    2011-01-01

    In 2003 a new reimbursement system was established for German hospitals. The approximately 17 million inpatient cases per year are now reimbursed based on a per-case payment regarding diagnoses and procedures, which was developed from an internationally approved system. The aim was a better conformity of costs and efforts in in-patient cases. In the first 2 years after implementation, the German diagnosis-related group (DRG) system was not able to adequately represent the complex structures of treatment in hematological and oncological in-patients. By creating new diagnoses and procedures (International Classification of Diseases 10 (ICD-10) and Surgical Operations and Procedures Classification System (OPS) catalogues), generating new DRGs and better splitting of existing ones, the hematology and oncology field could be much better described in the following years. The implementation of about 70 'co-payment structures' for new and expensive drugs and procedures in oncology was also crucial. To reimburse innovations, an additional system of co-payments for innovations was established to bridge the time until innovations are represented within the DRG system itself. In summary, hematological and oncological in-patients, including cases with extraordinary costs, are meanwhile well mapped in the German reimbursement system. Any tendencies to rationing could thereby be avoided, as most of the established procedures and costly drugs are adequately represented in the DRG system. Copyright © 2011 S. Karger AG, Basel.

  3. Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Guiral, P.; Ribouton, J.; Jalade, P. [Service de Physique Médicale et Radioprotection, Centre Hospitalier Lyon Sud, Pierre-Bénite F-69495 (France); Wang, R.; Galvan, J.-M.; Lu, G.-N.; Pittet, P., E-mail: patrick.pittet@univ-lyon1.fr [Institut des Nanotechnologies de Lyon, University Lyon, Université Claude Bernard Lyon 1, CNRS, INL UMR5270, F-69622 Villeurbanne (France); Rivoire, A.; Gindraux, L. [DOSILAB, 66 Boulevard Niels Bohr, Villeurbanne F-69100 (France)

    2016-09-15

    Purpose: High dose rate brachytherapy (HDR-BT) is widely used to treat gynecologic, anal, prostate, head, neck, and breast cancers. These treatments are typically administered in large dose per fraction (>5 Gy) and with high-gradient-dose-distributions, with serious consequences in case of a treatment delivery error (e.g., on dwell position and dwell time). Thus, quality assurance (QA) or quality control (QC) should be systematically and independently implemented. This paper describes the design and testing of a phantom and an instrumented gynecological applicator for pretreatment QA and in vivo QC, respectively. Methods: The authors have designed a HDR-BT phantom equipped with four GaN-based dosimeters. The authors have also instrumented a commercial multichannel HDR-BT gynecological applicator by rigid incorporation of four GaN-based dosimeters in four channels. Specific methods based on the four GaN dosimeter responses are proposed for accurate determination of dwell time and dwell position inside phantom or applicator. The phantom and the applicator have been tested for HDR-BT QA in routine over two different periods: 29 and 15 days, respectively. Measurements in dwell position and time are compared to the treatment plan. A modified position–time gamma index is used to monitor the quality of treatment delivery. Results: The HDR-BT phantom and the instrumented applicator have been used to determine more than 900 dwell positions over the different testing periods. The errors between the planned and measured dwell positions are 0.11 ± 0.70 mm (1σ) and 0.01 ± 0.42 mm (1σ), with the phantom and the applicator, respectively. The dwell time errors for these positions do not exhibit significant bias, with a standard deviation of less than 100 ms for both systems. The modified position–time gamma index sets a threshold, determining whether the treatment run passes or fails. The error detectability of their systems has been evaluated through tests on

  4. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  5. Organizational readiness to change assessment (ORCA: Development of an instrument based on the Promoting Action on Research in Health Services (PARIHS framework

    Directory of Open Access Journals (Sweden)

    Li Yu-Fang

    2009-07-01

    Full Text Available Abstract Background The Promoting Action on Research Implementation in Health Services, or PARIHS, framework is a theoretical framework widely promoted as a guide to implement evidence-based clinical practices. However, it has as yet no pool of validated measurement instruments that operationalize the constructs defined in the framework. The present article introduces an Organizational Readiness to Change Assessment instrument (ORCA, organized according to the core elements and sub-elements of the PARIHS framework, and reports on initial validation. Methods We conducted scale reliability and factor analyses on cross-sectional, secondary data from three quality improvement projects (n = 80 conducted in the Veterans Health Administration. In each project, identical 77-item ORCA instruments were administered to one or more staff from each facility involved in quality improvement projects. Items were organized into 19 subscales and three primary scales corresponding to the core elements of the PARIHS framework: (1 Strength and extent of evidence for the clinical practice changes represented by the QI program, assessed with four subscales, (2 Quality of the organizational context for the QI program, assessed with six subscales, and (3 Capacity for internal facilitation of the QI program, assessed with nine subscales. Results Cronbach's alpha for scale reliability were 0.74, 0.85 and 0.95 for the evidence, context and facilitation scales, respectively. The evidence scale and its three constituent subscales failed to meet the conventional threshold of 0.80 for reliability, and three individual items were eliminated from evidence subscales following reliability testing. In exploratory factor analysis, three factors were retained. Seven of the nine facilitation subscales loaded onto the first factor; five of the six context subscales loaded onto the second factor; and the three evidence subscales loaded on the third factor. Two subscales failed to load

  6. Organizational readiness to change assessment (ORCA): development of an instrument based on the Promoting Action on Research in Health Services (PARIHS) framework.

    Science.gov (United States)

    Helfrich, Christian D; Li, Yu-Fang; Sharp, Nancy D; Sales, Anne E

    2009-07-14

    The Promoting Action on Research Implementation in Health Services, or PARIHS, framework is a theoretical framework widely promoted as a guide to implement evidence-based clinical practices. However, it has as yet no pool of validated measurement instruments that operationalize the constructs defined in the framework. The present article introduces an Organizational Readiness to Change Assessment instrument (ORCA), organized according to the core elements and sub-elements of the PARIHS framework, and reports on initial validation. We conducted scale reliability and factor analyses on cross-sectional, secondary data from three quality improvement projects (n = 80) conducted in the Veterans Health Administration. In each project, identical 77-item ORCA instruments were administered to one or more staff from each facility involved in quality improvement projects. Items were organized into 19 subscales and three primary scales corresponding to the core elements of the PARIHS framework: (1) Strength and extent of evidence for the clinical practice changes represented by the QI program, assessed with four subscales, (2) Quality of the organizational context for the QI program, assessed with six subscales, and (3) Capacity for internal facilitation of the QI program, assessed with nine subscales. Cronbach's alpha for scale reliability were 0.74, 0.85 and 0.95 for the evidence, context and facilitation scales, respectively. The evidence scale and its three constituent subscales failed to meet the conventional threshold of 0.80 for reliability, and three individual items were eliminated from evidence subscales following reliability testing. In exploratory factor analysis, three factors were retained. Seven of the nine facilitation subscales loaded onto the first factor; five of the six context subscales loaded onto the second factor; and the three evidence subscales loaded on the third factor. Two subscales failed to load significantly on any factor. One measured resources

  7. A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices

    Energy Technology Data Exchange (ETDEWEB)

    Whitty-Léveillé, Laurence; Turgeon, Keven [Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, QC (Canada); Département de chimie, Université Laval, Québec, QC (Canada); Bazin, Claude [Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec, QC (Canada); Larivière, Dominic, E-mail: dominic.lariviere@chm.ulaval.ca [Département de chimie, Université Laval, Québec, QC (Canada)

    2017-04-08

    The recent commercialisation of inductively coupled plasma tandem mass spectrometric (ICP-MS/MS) instruments has provided analytical chemists with a new tool to properly quantify atomic composition in a variety of matrices with minimal sample preparation. In this article, we report on our assessment of the compatibility of 3 sample preparation techniques (open-vessel acid digestion, microwave digestion and alkaline fusion) for the quantification of rare earth elements (REEs) in mineral matrices. The combination of the high digestion temperatures (1050 °C) and using LiBO{sub 2} as a flux was the most effective strategy for the digestion of all rare earth elements in mineral matrices and was compatible with ICP-MS/MS measurements. We also assessed the analytical performances of ICP-MS/MS against other plasma-based instrumentation (microwave induced plasma and inductively coupled plasma atomic emission spectroscopy (MIP-AES and ICP-AES, respectively) and single quadrupole inductively coupled plasma mass spectrometry (ICP-MS). The comparative study showed that the concentrations obtained by ICP-MS/MS are in excellent agreement with the certified reference material values, and much more suited than the other analytical techniques tested for the quantification of REEs, which exhibited low detectability and/or spectral interferences for some elements/isotopes. Finally, the ruggedness of the analytical protocol proposed which combines a rapid sample dissolution step performed by an automated fusion unit and an ICP-MS/MS as a detector was established using various certified mineral matrices containing variable levels of REEs. - Highlights: • Three types of digestion methods were tested. • Four types of analytical techniques were compared. • Elimination of the spectral interferences encountered in ICP-MS was achieved by the use of Tandem ICP-MS. • Robustness of the analytical procedure was successfully evaluate on four types of certified reference material.

  8. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  9. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the Interference Pattern GNSS-R Technique

    Science.gov (United States)

    Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H.

    2011-12-01

    Reflectometry using Global Navigation Satellite Systems signals (GNSSR) has been the focus of many studies during the past few years for a number of applications over different scenarios as land, ocean or snow and ice surfaces. In the past decade, its potential has increased yearly, with improved receivers and signal processors, from generic GNSS receivers whose signals were recorded in magnetic tapes to instruments that measure full Delay Doppler Maps (the power distribution of the reflected GNSS signal over the 2-D space of delay offsets and Doppler shifts) in real time. At present, these techniques are considered to be promising tools to retrieve geophysical parameters such as soil moisture, vegetation height, topography, altimetry, sea state and ice and snow thickness, among others. This paper focuses on the land geophysical retrievals (topography, vegetation height and soil moisture) performed from a ground-based instrument using the Interference Pattern Technique (IPT). This technique consists of the measurement of the power fluctuations of the interference signal resulting from the simultaneous reception of the direct and the reflected GNSS signals. The latest experiment performed using this technique over a maize field is shown in this paper. After a review of the previous results, this paper presents the latest experiment performed using this technique over a maize field. This new study provides a deeper analysis on the soil moisture retrieval by observing three irrigation-drying cycles and comparing them to different depths soil moisture probes. Furthermore, the height of the maize, almost 300 cm, has allowed testing the capabilities of the technique over dense and packed vegetation layers, with high vegetation water content.

  10. A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices

    International Nuclear Information System (INIS)

    Whitty-Léveillé, Laurence; Turgeon, Keven; Bazin, Claude; Larivière, Dominic

    2017-01-01

    The recent commercialisation of inductively coupled plasma tandem mass spectrometric (ICP-MS/MS) instruments has provided analytical chemists with a new tool to properly quantify atomic composition in a variety of matrices with minimal sample preparation. In this article, we report on our assessment of the compatibility of 3 sample preparation techniques (open-vessel acid digestion, microwave digestion and alkaline fusion) for the quantification of rare earth elements (REEs) in mineral matrices. The combination of the high digestion temperatures (1050 °C) and using LiBO_2 as a flux was the most effective strategy for the digestion of all rare earth elements in mineral matrices and was compatible with ICP-MS/MS measurements. We also assessed the analytical performances of ICP-MS/MS against other plasma-based instrumentation (microwave induced plasma and inductively coupled plasma atomic emission spectroscopy (MIP-AES and ICP-AES, respectively) and single quadrupole inductively coupled plasma mass spectrometry (ICP-MS). The comparative study showed that the concentrations obtained by ICP-MS/MS are in excellent agreement with the certified reference material values, and much more suited than the other analytical techniques tested for the quantification of REEs, which exhibited low detectability and/or spectral interferences for some elements/isotopes. Finally, the ruggedness of the analytical protocol proposed which combines a rapid sample dissolution step performed by an automated fusion unit and an ICP-MS/MS as a detector was established using various certified mineral matrices containing variable levels of REEs. - Highlights: • Three types of digestion methods were tested. • Four types of analytical techniques were compared. • Elimination of the spectral interferences encountered in ICP-MS was achieved by the use of Tandem ICP-MS. • Robustness of the analytical procedure was successfully evaluate on four types of certified reference material.

  11. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  12. Economic instruments for environmental mitigation

    International Nuclear Information System (INIS)

    Wilkinson, A.

    1995-01-01

    A joint International Chamber of Commerce (ICC)/World Energy Council (WEC) Working Group has been studying a range of policy instruments which are being used or considered for use to address the question of ever increasing energy demand versus environmental protection, and pollution reduction. Economic instruments for such environmental protection include direct regulation, market-based instruments, and voluntary approaches. No single policy or device was likely to suffice in addressing the diversity of environmental problems currently faced. Altering energy prices must be seen in a social context, but some direct regulation may also be inevitable. Generally economic instruments of change were preferred as these were viewed as more flexible and cost-effective. (UK)

  13. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  14. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.

  15. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    Science.gov (United States)

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.

  16. Performance on cognitive tests, instrumental activities of daily living and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro, Brazil

    Science.gov (United States)

    Lima, Christina Martins Borges; Alves, Heloisa Veiga Dias; Mograbi, Daniel Correa; Pereira, Flávia Furtado; Fernandez, Jesus Landeira; Charchat-Fichman, Helenice

    2017-01-01

    Objective To describe the performance on basic cognitive tasks, instrumental activities of daily living, and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro (Brazil) who participated in multiple physical, social, and cognitive activities at government-run community centers. Methods A total of 264 educated older adults (> 60 years of age of both genders) were evaluated by the Brief Cognitive Screening Battery (BCSB), Lawton's and Pfeffer's activities of daily living indexes, and the Geriatric Depressive Scale (GDS). Results The mean age of the sample was 75.7 years. The participants had a mean of 9.3 years of formal education. With the exception of the Clock Drawing Test (CDT), mean scores on the cognitive tests were consistent with the values in the literature. Only 6.4% of the sample had some kind of dependence for activities of daily living. The results of the Geriatric Depression Scale (GDS-15) indicated mild symptoms of depression in 16.8% of the sample Conclusion This study provided important demographic, cognitive, and functional characteristics of a specific community-based sample of elderly adults in Rio de Janeiro, Brazil. PMID:29213494

  17. Performance on cognitive tests, instrumental activities of daily living and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Christina Martins Borges Lima

    Full Text Available ABSTRACT Objective: To describe the performance on basic cognitive tasks, instrumental activities of daily living, and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro (Brazil who participated in multiple physical, social, and cognitive activities at government-run community centers. Methods: A total of 264 educated older adults (> 60 years of age of both genders were evaluated by the Brief Cognitive Screening Battery (BCSB, Lawton's and Pfeffer's activities of daily living indexes, and the Geriatric Depressive Scale (GDS . Results: The mean age of the sample was 75.7 years. The participants had a mean of 9.3 years of formal education. With the exception of the Clock Drawing Test (CDT, mean scores on the cognitive tests were consistent with the values in the literature. Only 6.4% of the sample had some kind of dependence for activities of daily living. The results of the Geriatric Depression Scale (GDS-15 indicated mild symptoms of depression in 16.8% of the sample. Conclusion: This study provided important demographic, cognitive, and functional characteristics of a specific community-based sample of elderly adults in Rio de Janeiro, Brazil.

  18. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  19. Advanced neutron instrumentation at FRM-II

    International Nuclear Information System (INIS)

    Petry, Winfried

    2003-01-01

    The construction of the new German high flux neutron source FRM-II is finished and FRM-II is waiting for its licence to start nuclear operation. With the beginning of the routine operation 22 instruments will be in action, including 5 irradiation facilities and 17 beam tube instruments, most of them use neutron scattering techniques. Additional instruments are under construction. Some of these instruments are unique, others are expected to be the best of their kind, all instruments are based on innovative techniques. (author)

  20. MITIGATING INNOVATION RISKS CONCERNING INTELLECTUAL PROPERTY INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Andreea DUMITRESCU

    2014-11-01

    Full Text Available As protection of innovation is possible using a variety of intellectual property instruments, the current paper aims at emphasizing the vulnerabilities of these instruments in order to facilitate the right choice in terms of protection, exploitation and dissemination of innovation. Based on a review of the intellectual property instruments and their related risk factors, the study identifies and formulates specific proactive strategies which arise from the fact that an instrument alone does not allow for effective protection, exploitation and dissemination and oftentimes the owners of innovation should combine traditional and alternative instruments. Therefore, the results of this analysis represent a helpful tool for managers in the decisional process.