WorldWideScience

Sample records for field-of-view sensor seawifs

  1. Field of view selection for optimal airborne imaging sensor performance

    Science.gov (United States)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  2. An insect eye based image sensor with very large field of view

    NARCIS (Netherlands)

    Moens, E.; Meuret, Y.; Ottevaere, H.; Sarkar, M.; San Segundo Bello, D.; Merken, P.; Thienpont, H.

    2010-01-01

    In this paper we discuss the design of a novel miniaturized image sensor based on the working principle of insect facet eyes. The main goals are to design an imaging system which captures a large field of view (FOV) and to find a good trade-off between image resolution and sensitivity. To capture a

  3. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    Science.gov (United States)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  4. Water-transparency (Secchi Depth) monitoring in the China Sea with the SeaWiFS satellite sensor

    Science.gov (United States)

    He, Xianqiang; Pan, Delu; Mao, Zhihua

    2004-10-01

    Water transparency (Secchi depth) is a basic parameter that describes the optical property of water, and it is a traditional item measured in situ. The traditional method of monitoring water transparency is the in-situ measurement by ship. However, because of its inherent shortcoming, this in situ method can not satisfy the requirement of the large-scale, quick and real-time monitoring of the water transparency. Therefore, it must be combined with the remote sensing technology to fulfill the monitoring of the water transparency. This paper studies the water transparency monitoring in China Sea by using SeaWiFS satellite sensor. First, the inversing algorithm of water transparency is introduced briefly, which based on the radiative transfer theory and bio-optical model of water. Second, the accuracy of the algorithm is validated by using the large-scale in-situ data from the Japan Meteorological Agency (JMA), which covered most of the Northwest Pacific ocean. The result shows the inversing relative error of water transparency is 22.6% by using the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data, and it is even better in the open sea. Third, using this algorithm and SeaWiFS data, a remote sensing product data set of water transparency in China Sea was generated. Finally, we present the analysis of seasonal distribution and fluctuation patterns of water transparency in China Sea by using the generated remote sensing product collection of water transparency.

  5. OW NASA SeaWIFS Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)...

  6. Optical characterization of a miniaturized large field of view motion sensor

    Science.gov (United States)

    Moens, Els; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this paper we discuss the geometrical and optical characterization of a miniaturized very wide field-of-view (FOV) motion sensor inspired by the working principle of insect facet eyes. The goal of the sensor is to detect movement in the environment and to specify where in the surroundings these changes took place. Based on the measurements of the sensor, certain actions can be taken such as sounding an alarm in security applications or turning on the light in domotic applications. The advantage of miniaturizing these sensors is that they are low-cost, compact and more esthetical compared to current motion detectors. The sensor was designed to have a very large FOV of 125° and an angular resolution of 1° or better. The micro-optics is built up of two stacked polymer plates consisting each out of a five by five lens array. In between there is a plate of absorbing material with a five by five array of baffles to create 25 optically isolated channels that each image part of the total FOV of 125° onto the detector. To geometrically characterize the lens arrays and verify the designed specifications, we made use of a coordinate measuring machine. The optical performance of the designed micro-optical system was analyzed by sending white light beams with different angles of incidence with respect to the sample through the sensor, comparing the position of the light spots visible on the detector and determining optical quality parameters such as MTF and distortion.

  7. Accurate and Wide-Field-of-View MEMS-Based Sun Sensor for Industrial Applications

    OpenAIRE

    Delgado Seseña, Francisco José; Quero Reboul, José Manuel; García Ortega, Juan de la Cruz; López Tarrida, Cristina; Ortega, Pablo R; Bermejo, Sandra

    2012-01-01

    This paper describes the design, fabrication, sim- ulation, and experimental results of an improved miniaturized two-axis sun sensor for industrial applications, created by adapt- ing a technology used previously in satellite applications. The sensor for each axis is composed of six photodiodes integrated in a crystalline-silicon substrate and a layer of cover glass, which is used to protect the silicon and to hold the windows. The high preci...

  8. Chlorophyll-a, Orbview-2 SeaWiFS, 0.04167 degrees, Alaska, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  9. Chlorophyll-a, Orbview-2 SeaWiFS, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2 satellite. Because data is...

  10. Chlorophyll-a, Orbview-2 SeaWiFS, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  11. Chlorophyll-a, Orbview-2 SeaWiFS, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2 satellite. Because data is...

  12. Chlorophyll-a, Orbview-2 SeaWiFS, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  13. Chlorophyll-a, Orbview-2 SeaWiFS, 0.04167 degrees, West US, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  14. Analysis of marine aerosol optical depth retrieved from IRS-P4 OCM sensor and comparison with the aerosol derived from SeaWiFS and MODIS sensor

    Indian Academy of Sciences (India)

    A K Mishra; V K Dadhwal; C B S Dutt

    2008-07-01

    Aerosol optical depth is regularly derived from SeaWiFS and MODIS sensor and used by the scientific community in various climatic studies. In the present study an attempt has been made to retrieve the aerosol optical depth using the IRS-P4 OCM sensor data and a comparison has been carried out using few representative datasets. The results show that the IRS-P4 OCM retrieved aerosol optical depth is in good agreement with the aerosols retrieved from SeaWiFS as well as MODIS. The RMSE are found to be ± 0.0522 between OCM and SeaWIFS and ± 0.0638 between OCM and MODIS respectively. However, IRS-P4 OCM sensor retrieved aerosol optical depth is closer to SeaWiFS (correlation = 0.88, slope = 0.96 and intercept = −0.013) compared to MODIS (correlation = 0.75, slope = 0.91 and intercept = 0.0198). The mean percentage difference indicates that OCM retrieved AOD is +12% higher compared to SeaWiFS and +8% higher compared to MODIS. The mean absolute percentage between OCM derived AOD and SeaWiFS is found to be less (16%) compared to OCM and MODIS (20%).

  15. SeaWiFS

    Data.gov (United States)

    Washington University St Louis — SEAWiFS_US is a high resolution (1km) satellite dataset derived from the eight wavelength SEAWiFS sensor. The dataset also includes the aerosol reflectance over the...

  16. Usefulness of a large field of view sensor for physicochemical, textural, and yield predictions under industrial goat cheese (Murcia al Vino) manufacturing conditions.

    Science.gov (United States)

    Rovira, S; García, V; Ferrandini, E; Carrión, J; Castillo, M; López, M B

    2012-11-01

    The applicability of a light backscatter sensor with a large field of view was tested for on-line monitoring of coagulation and syneresis in a goat cheese (Murcia al Vino) manufactured under industrial conditions. Cheesemaking was carried out concurrently in a 12-L pilot vat and a 10,000-L industrial vat following the normal cheesemaking protocol. Cheese moisture, whey fat content, hardness, springiness, and adhesiveness were measured during syneresis. The results obtained show that cutting time is best predicted by considering the coagulation ratio at the inflection point and the percentage increase in the ratio during coagulation, with no need for the first derivative. The large field of view reflectance ratio provided good results for the prediction of moisture content, yield, hardness, springiness, and adhesiveness of the final cheese. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Passenger flow statistics across the field of view based on the depth map of the double Xtion sensors

    Science.gov (United States)

    Yin, Zhang-qin; Gu, Guo-hua; Bai, Xiao-feng; Zhao, Tie-kun; Chen, Hai-xin

    2013-08-01

    It introduces a new method to achieve the passenger flow statistics in stereo vision according to the original depth image output by the monocular Xtion sensor, aiming at the problem of algorithm with large amounts of data and realization of single field with dual camera on the basis of stereo vision. Double Xtion sensors are used to expand the range of view angle because of the monocular Xtion sensor's limitations, whose view range is 45°*58° with small transverse view range and can't meet the passenger flow statistics. Due to the characteristics of constant physical space dimensions, use the improved SIFT (Scale Invariant Features Transform) feature algorithm to realize the auto - stereoscopic splice of binocular original depth images. Firstly, the feature points of the reference image (the image to be matched) and the subsequent image (the image to be matched with the reference image) are obtained by SIFT algorithm, getting the location, scale and direction of the feature points and the feature points are described by means of the 128-dimensional vector .Secondly, complete the match of the feature points of the two images to calculate overlapping area, using the nearest neighbor method. Finally, image stitching is completed based on multi-resolution wavelet transform, which contains three-dimensional spatial information of the human body, thus use a method to analysis comprehensively the depth image for field detection and tracking based on the features such as the head shape, the head area the spatial position relation of the human head and shoulder and so on. The experimental results show that this method not only improve the detection accuracy and efficiency, reduce the amount of operation data, so that the system is simple in structure, but also solve many problems of passenger flow statistics based on video stream in the system, accuracy up to 93%, having high and practical application value.

  18. SeaWiFS technical report series. Volume 11: Analysis of selected orbit propagation models for the SeaWiFS mission

    Science.gov (United States)

    Patt, Frederick S.; Hoisington, Charles M.; Gregg, Watson W.; Coronado, Patrick L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)

    1993-01-01

    An analysis of orbit propagation models was performed by the Mission Operations element of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Project, which has overall responsibility for the instrument scheduling. The orbit propagators selected for this analysis are widely available general perturbations models. The analysis includes both absolute accuracy determination and comparisons of different versions of the models. The results show that all of the models tested meet accuracy requirements for scheduling and data acquisition purposes. For internal Project use the SGP4 propagator, developed by the North American Air Defense (NORAD) Command, has been selected. This model includes atmospheric drag effects and, therefore, provides better accuracy. For High Resolution Picture Transmission (HRPT) ground stations, which have less stringent accuracy requirements, the publicly available Brouwer-Lyddane models are recommended. The SeaWiFS Project will make available portable source code for a version of this model developed by the Data Capture Facility (DCF).

  19. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    Directory of Open Access Journals (Sweden)

    W. von Hoyningen-Huene

    2010-05-01

    Full Text Available For the determination of aerosol optical thickness (AOT Bremen AErosol Retrieval (BAER has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2 observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6 channels (0.412–0.670 μm and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI, taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.

  20. SeaWiFS Postlaunch Technical Report Series. Volume 2; AMT-5 Cruise Report

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Cummings, Denise G.; Gibb, Stuart W.; Rees, Nigel W.; Woodd-Walker, Rachel; Woodward, E. Malcolm S.; Woolfenden, James; Berthon, Jean-Francois; Dempsey, Cyril D.; Suggett, David J.; Wood, Peter; Donlon, Craig; Gonzalez-Benitez, Natalia; Huskin, Ignacio; Quevedo, Mario; Barciela-Fernandez, Rosa; deVargas, Colomban; McKee, Connor

    1998-01-01

    This report documents the scientific activities on board the Royal Research Ship (RRS) James Clark Ross (JCR) during the fifth Atlantic Meridional Transect (AMT-5), 14 September to 17 October 1997. There are three objectives of the AMT Program. The first is to derive an improved understanding of the links between biogeochemical processes, biogenic gas exchange, air-sea interactions, and the effects on, and responses of, oceanic ecosystems to climate change. The second is to investigate the functional roles of biological particles and processes that influence ocean color in ecosystem dynamics. The Program relates directly to algorithm development and the validation of remotely-sensed observations of ocean color. Because the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument achieved operational status during the cruise (on 18 September), AMT-5 was designated the SeaWiFS Atlantic Characterization Experiment (SeaACE) and was the only major research cruise involved in the validation of SeaWiFS data during the first 100 days of operations. The third objective involved the near-real time reporting of in situ light and pigment observations to the SeaWiFS Project, so the performance of the satellite sensor could be determined.

  1. Wide field of view telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  2. SeaWiFS technical report series. Volume 16: The second SeaWiFS Intercalibration Round-Robin Experiment, SIRREX-2, June 1993

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mueller, James L.; Mclean, James T.; Johnson, B. Carol; Westphal, Todd L.; Cooper, John W.

    1994-01-01

    The results of the second Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-2), which was held at the Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State University on 14-25 Jun. 1993 are presented. SeaWiFS is an ocean color radiometer that is scheduled for launch in 1994. The SIRREXs are part of the SeaWiFS Calibration and Validation Program that includes the GSFC, CHORS, NIST, and several other laboratories. GSFC maintains the radiometric scales (spectral radiance and irradiance) for the SeaWiFS program using spectral irradiance standards lamps, which are calibrated by NIST. The purpose of each SIRREX is to assure that the radiometric scales which are realized by the laboratories who participate in the SeaWiFS Calibration and Validation Program are correct; that is, the uncertainties of the radiometric scales are such that measurements of normalized water-leaving radiance using oceanographic radiometers have uncertainties of 5%. SIRREX-1 demonstrated, from the internal consistency of the results, that the program goals would not be met without improvements to the instrumentation. The results of SIRREX-2 demonstrate that spectral irradiance scales realized using the GSFC standard irradiance lamp (F269) are consistent with the program goals, as the uncertainty of these measurements is assessed to be about 1%. However, this is not true for the spectral radiance scales, where again the internal consistency of the results is used to assess the uncertainty. This is attributed to inadequate performance and characterization of the instrumentation. For example, spatial nonuniformities, spectral features, and sensitivity to illumination configuration were observed in some of the integrating sphere sources. The results of SIRREX-2 clearly indicate the direction for future work, with the main emphasis on instrument characterization and the assessment of the measurement uncertainties so that the results may be

  3. SeaWiFS technical report series. Volume 4: An analysis of GAC sampling algorithms. A case study

    Science.gov (United States)

    Yeh, Eueng-Nan (Editor); Hooker, Stanford B. (Editor); Hooker, Stanford B. (Editor); Mccain, Charles R. (Editor); Fu, Gary (Editor)

    1992-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument will sample at approximately a 1 km resolution at nadir which will be broadcast for reception by realtime ground stations. However, the global data set will be comprised of coarser four kilometer data which will be recorded and broadcast to the SeaWiFS Project for processing. Several algorithms for degrading the one kilometer data to four kilometer data are examined using imagery from the Coastal Zone Color Scanner (CZCS) in an effort to determine which algorithm would best preserve the statistical characteristics of the derived products generated from the one kilometer data. Of the algorithms tested, subsampling based on a fixed pixel within a 4 x 4 pixel array is judged to yield the most consistent results when compared to the one kilometer data products.

  4. Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    Science.gov (United States)

    Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.; Eplee, R. E., Jr.; Evans, Robert H.; Feldman, Gene C.; Fields, Erik; Franz, Bryan A.; Kuring, Norman A.; Mengelt, Claudia; Nelson, Norman B.; Patt, Fred S.; Robinson, Wayne D.; Sarmiento, J. L.; Swan, C. M.; Werdell, Paul J.; Westberry, T. K.; Wilding, John G.; Yoder, J. A.

    2013-01-01

    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll

  5. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    Science.gov (United States)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  6. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced

  7. Stereoscopic wide field of view imaging system

    Science.gov (United States)

    Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)

    2011-01-01

    A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.

  8. SeaWiFS Postlaunch Technical Report Series. Volume 7; The Fifth Sea-WiFS Intercalibration Round-Robin Experiment (SIRREX-5), July 1996

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Yoon, Howard W.; Bruce, Sally S.; Shaw, Ping-Shine; Thompson, Ambler; Hooker, Stanford B.; Barnes, Robert A.; Eplee, Robert E., Jr.; Maritorena, Stephane; Mueller, James L.

    1999-01-01

    This report documents the fifth Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-5), which was held at the National Institute of Standards and Technology (NIST) on 23-30 July 1996. The agenda for SIRREX-5 was established based on recommendations made during SIRREX-4. For the first time in a SIRREX activity, instrument intercomparisons were performed at field sites, which were near NIST. The goals of SIRREX-5 were to continue the emphasis on training and the implementation of standard measurement practices, investigate the calibration methods and measurement chains in use by the oceanographic community, provide opportunities for discussion, and intercompare selected instruments. As at SIRREX-4, the day was divided between morning lectures and afternoon laboratory exercises. A set of core laboratory sessions were performed: 1) in-water radiant flux measurements; 2) in-air radiant flux measurements; 3) spectral radiance responsivity measurements using the plaque method; 4) device calibration or stability monitoring with portable field sources; and 5) various ancillary exercises designed to illustrate radiometric concepts. Before, during, and after SIRREX-5, NIST calibrated the SIRREX-5 participating radiometers for radiance and irradiance responsivity. The Facility for Automated Spectroradiometric Calibrations (FASCAL) was scheduled for spectral irradiance calibrations for standard lamps during SIRREX-5. Three lamps from the SeaWiFS community were submitted and two were calibrated.

  9. Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view

    Science.gov (United States)

    Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.

    2007-01-01

    Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.

  10. SeaWiFS technical report series. Volume 26: Results of the SeaWiFS Data Analysis Round-Robin, July 1994 (DARR-1994)

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Siegel, David A.; Obrien, Margaret C.; Sorensen, Jen C.; Konnoff, Daniel A.; Brody, Eric A.; Mueller, James L.; Davis, Curtiss O.; Rhea, W. Joseph

    1995-01-01

    The accurate determination of upper ocean apparent optical properties (AOP's) is essential for the vicarious calibration of the sea-viewing wide field-of-view sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the role that data analysis methods have upon values of derived AOP's, the first Data Analysis Round-Robin (DARR-94) workshop was sponsored by the SeaWiFS Project during 21-23 July, 1994. The focus of this intercomparison study was the estimation of the downwelling irradiance spectrum just beneath the sea surface, E(sub d)(0(sup -), lambda); the upwelling nadir radiance just beneath the sea surface, L(sub u)(0(sup -), lambda); and the vertical profile of the diffuse attenuation coefficient spectrum, K(sub d)(z, lambda). In the results reported here, different methodologies from four research groups were applied to an identical set of 10 spectroradiometry casts in order to evaluate the degree to which data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-94 are presented in Chapter 1 and the individual methods of the four groups are presented in Chapters 2-5. The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is apparent, however, that some degree of outlier rejection is required in order to accurately estimate L(sub u)(0(sup -), lambda) or E(sub d)(0(sup -), lambda). Furthermore, the calculation, evaluation and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS calibration and validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates with known confidence intervals.

  11. SeaWiFS Postlaunch Technical Report Series. Volume 5; The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barnes, Robert A.; Eplee, Robert E., Jr.; Biggar, Stuart F.; Thome, Kurtis J.; Zalewski, Edward F.; Slater, Philip N.; Holmes, Alan W.

    1999-01-01

    The solar radiation-based calibration (SRBC) of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was performed on 1 November 1993. Measurements were made outdoors in the courtyard of the instrument manufacturer. SeaWiFS viewed the solar irradiance reflected from the sensor's diffuser in the same manner as viewed on orbit. The calibration included measurements using a solar radiometer designed to determine the transmittances of principal atmospheric constituents. The primary uncertainties in the outdoor measurements are the transmission of the atmosphere and the reflectance of the diffuser. Their combined uncertainty is about 5 or 6%. The SRBC also requires knowledge of the extraterrestrial solar spectrum. Four solar models are used. When averaged over the responses of the SeaWiFS bands, the irradiance models agree at the 3.6% level, with the greatest difference for SeaWiFS band 8. The calibration coefficients from the SRBC are lower than those from the laboratory calibration of the instrument in 1997. For a representative solar model, the ratios of the SRBC coefficients to laboratory values average 0.962 with a standard deviation of 0.012. The greatest relative difference is 0.946 for band 8. These values are within the estimated uncertainties of the calibration measurements. For the transfer-to-orbit experiment, the measurements in the manufacturer's courtyard are used to predict the digital counts from the instrument on its first day on orbit (August 1, 1997). This experiment requires an estimate of the relative change in the diffuser response for the period between the launch of the instrument and its first solar measurements on orbit (September 9, 1997). In relative terms, the counts from the instrument on its first day on orbit averaged 1.3% higher than predicted, with a standard deviation of 1.2% and a greatest difference of 2.4% or band 7. The estimated uncertainty for the transfer-to-orbit experiment is about 3 or 4%.

  12. Imaging ellipsometer with large field-of-view

    Science.gov (United States)

    Gu, Liyuan; Zeng, Aijun; Hu, Shiyu; Yuan, Qiao; Cheng, Weilin; Zhang, Shanhua; Hu, Guohang; He, Hongbo; Huang, Huijie

    2016-11-01

    A polarizer-compensator-sample-analyzer (PCSA) imaging ellipsometer with large field of view is presented. The sample is imaged on a CCD sensor by a telecentric imaging system and its tilt is monitored by an optical autocollimator. The sample, the telecentric imaging system and the CCD sensor satisfy the Scheimpflug condition. In measurement, the light extinction measurement method and the four quadrants average method are used to improve the accuracy. In experiments, a chromium thin film sample is measured by the imaging ellipsometer and a spectroscopic ellipsometer. The measurement results by two ellipsometers are consistent. The usefulness of the imaging ellipsometer is verified.

  13. Fields of View for Environmental Radioactivity

    CERN Document Server

    Malins, Alex; Machida, Masahiko; Takemiya, Hiroshi; Saito, Kimiaki

    2015-01-01

    The gamma component of air radiation dose rates is a function of the amount and spread of radioactive nuclides in the environment. These radionuclides can be natural or anthropogenic in origin. The field of view describes the area of radionuclides on, or below, the ground that is responsible for determining the air dose rate, and hence correspondingly the external radiation exposure. This work describes Monte Carlo radiation transport calculations for the field of view under a variety of situations. Presented first are results for natural 40K and thorium and uranium series radionuclides distributed homogeneously within the ground. Results are then described for atmospheric radioactive caesium fallout, such as from the Fukushima Daiichi Nuclear Power Plant accident. Various stages of fallout evolution are considered through the depth distribution of 134Cs and 137Cs in soil. The fields of view for the natural radionuclides and radiocaesium are different. This can affect the responses of radiation monitors to th...

  14. Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans.

    Science.gov (United States)

    He, Xianqiang; Pan, Delu; Bai, Yan; Zhu, Qiankun; Gong, Fang

    2011-08-01

    The operational atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses the predefined aerosol models to retrieve aerosol optical properties, and their accuracy depends on how well the aerosol models can represent the real aerosol optical properties. In this paper, we developed a method to evaluate the aerosol models (combined with the model selection methodology) by simulating the aerosol retrieval using the Aerosol Robotic Network (AERONET) data. Our method can evaluate the ability of aerosol models themselves, independent of the sensor performance. Two types of aerosol models for SeaWiFS and MODIS operational atmospheric correction algorithms are evaluated over global open oceans, namely the GW1994 models and Ahmad2010 models. The results show that GW1994 models significantly overestimate the aerosol optical thicknesses and underestimate the Ångström exponent, which is caused by the underestimation of the scattering phase function. However, Ahmad2010 models can significantly reduce the overestimation of the aerosol optical thickness and the underestimation of the Ångström exponent as a whole, but this improvement depends on the backscattering angle. Ahmad2010 models have a significant improvement in the retrieval of the aerosol optical thickness at a backscattering angle less than 140°. For a backscattering angle larger than 140°, GW1994 models are better at retrieving the aerosol optical thickness than the Ahmad2010 models.

  15. SeaWiFS technical report series. Volume 17: Ocean color in the 21st century. A strategy for a 20-year time series

    Science.gov (United States)

    Abbott, Mark R.; Brown, Otis B.; Evans, Robert H.; Gordon, Howard R.; Carder, Kendall L.; Mueller-Karger, Frank E.; Esaias, Wayne E.; Hooker, Stanford B.; Firestone, Elaine R.

    1994-01-01

    Beginning with the upcoming launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), there should be almost continuous measurements of ocean color for nearly 20 years if all of the presently planned national and international missions are implemented. This data set will present a unique opportunity to understand the coupling of physical and biological processes in the world ocean. The presence of multiple ocean color sensors will allow the eventual development of an ocean color observing system that is both cost effective and scientifically based. This report discusses the issues involved and makes recommendations intended to ensure the maximum scientific return from this unique set of planned ocean color missions. An executive summary is included with this document which briefly discusses the primary issues and suggested actions to be considered.

  16. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS

    Directory of Open Access Journals (Sweden)

    Tara Blakey

    2016-10-01

    Full Text Available This study evaluated the ability to improve Sea-Viewing Wide Field-of-View Sensor (SeaWiFS chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels’ benthic class. The form of the Ocean Color (OC algorithm was assumed for this study. The operational atmospheric correction producing Level 2 SeaWiFS data was retained since the focus of this study was on establishing the benefit from the alternative specification of the bio-optical algorithm. Benthic class was determined through satellite image-based classification methods. Accuracy of the chl-a algorithms evaluated was determined through comparison with coincident in situ measurements of chl-a. The regionally-tuned models that were allowed to vary by benthic class produced more accurate estimates of chl-a than the single, unified regionally-tuned model. Mean absolute percent difference was approximately 70% for the regionally-tuned, benthic class-specific algorithms. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Atmospheric correction procedures specialized to coastal environments were recognized as areas for future improvement as these procedures would improve both classification and algorithm tuning.

  17. Real-time RGB-D image stitching using multiple Kinects for improved field of view

    Directory of Open Access Journals (Sweden)

    Hengyu Li

    2017-03-01

    Full Text Available This article concerns the problems of a defective depth map and limited field of view of Kinect-style RGB-D sensors. An anisotropic diffusion based hole-filling method is proposed to recover invalid depth data in the depth map. The field of view of the Kinect-style RGB-D sensor is extended by stitching depth and color images from several RGB-D sensors. By aligning the depth map with the color image, the registration data calculated by registering color images can be used to stitch depth and color images into a depth and color panoramic image concurrently in real time. Experiments show that the proposed stitching method can generate a RGB-D panorama with no invalid depth data and little distortion in real time and can be extended to incorporate more RGB-D sensors to construct even a 360° field of view panoramic RGB-D image.

  18. Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends

    Directory of Open Access Journals (Sweden)

    Eko Siswanto

    2014-03-01

    Full Text Available Seasonal cycles, interannual variations and decadal trends of Sea-viewing Wide Field-of-view Sensor (SeaWiFS-retrieved chlorophyll-a concentration (Chl-a in the Strait of Malacca (SM were investigated with reconstructed, cloud-free SeaWiFS Chl-a during the period of the SeaWiFS full mission (September 1997 to December 2010. Pixel-based non-parametric correlations of SeaWiFS Chl-a on environmental variables were used to identify the probable causes of the observed spatio-temporal variations of SeaWiFS Chl-a in northern, middle and southern regions of the SM. Chl-a was high (low during the northeast (southwest monsoon. The principal causes of the seasonality were wind-driven vertical mixing in the northern region and wind-driven coastal upwelling and possibly river discharges in the middle region. Among the three regions, the southern region showed the largest interannual variations of Chl-a. These variations were associated with the El Niño/Southern Oscillation (ENSO and river runoff. Interannual variations of Chl-a in the middle and northern regions were more responsive to the Indian Ocean Dipole and ENSO, respectively, with atmospheric deposition being the most important driver. The most significant decadal-scale trend of increasing Chl-a was in the southern region; the trend was moderate in the middle region. This increasing trend was probably caused by environmental changes unrelated to the variables investigated in this study.

  19. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  20. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans.

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A; McClain, Charles R; Kwiatkowska, Ewa J; Werdell, Jeremy; Shettle, Eric P; Holben, Brent N

    2010-10-10

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFS and MODIS sensors, including aerosol optical thickness (τ), angstrom coefficient (α), and water-leaving radiance (L(w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity. These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity. From these findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all, 80 distributions (8 Rh×10 fine-mode fractions) were created to process the satellite data. We also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of the fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data. The reprocessing of the SeaWiFS data show that, over deep ocean, the average τ(865) values retrieved from the new aerosol models was 0.100±0.004, which was closer to the average AERONET value of 0.086±0.066 for τ(870) for the eight open-ocean sites used in this study. The average τ(865) value from the old models was 0.131±0.005. The comparison of monthly mean aerosol optical thickness retrieved from the SeaWiFS sensor with AERONET data over Bermuda and

  1. An airborne pushbroom hyperspectral imager with wide field of view

    Institute of Scientific and Technical Information of China (English)

    Peixin Hu; Qirnin Lu; Rong Shu; Jianyu Wang

    2005-01-01

    @@ An airborne pushbroom hyperspectral imager (APHI) with wide field (42° field of view) is presented.It is composed of two 22°field of view (FOV) imagers and can provide 1304 pixels in spatial dimension,124 bands in spectral dimension in one frame. APHI has a bandwidth ranging from 400 to 900 nm.

  2. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation

    Science.gov (United States)

    Werdell, P. Jeremy; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor); Bailey, Sean W.

    2002-01-01

    Satellite ocean color missions require an abundance of high-quality in situ measurements for bio-optical and atmospheric algorithm development and post-launch product validation and sensor calibration. To facilitate the assembly of a global data set, the NASA Sea-viewing Wide Field-of-view (SeaWiFS) Project developed the Seafaring Bio-optical Archive and Storage System (SeaBASS), a local repository for in situ data regularly used in their scientific analyses. The system has since been expanded to contain data sets collected by the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project, as part of NASA Research Announcements NRA-96-MTPE-04 and NRA-99-OES-99. SeaBASS is a well moderated and documented hive for bio-optical data with a simple, secure mechanism for locating and extracting data based on user inputs. Its holdings are available to the general public with the exception of the most recently collected data sets. Extensive quality assurance protocols, comprehensive data and system documentation, and the continuation of an archive and relational database management system (RDBMS) suitable for bio-optical data all contribute to the continued success of SeaBASS. This document provides an overview of the current operational SeaBASS system.

  3. Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC

    Science.gov (United States)

    Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.

    2012-01-01

    Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.

  4. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  5. Fundamentals of absolute pyroheliometry and objective characterization. [using a narrow field of view radiometer

    Science.gov (United States)

    Crommelynck, D. A.

    1982-01-01

    The radiometric methodology in use with a narrow field of view radiometer for observation of the solar constant is described. The radiation output of the Sun is assumed to be constant, enabling the monitoring of the solar source by an accurately pointed radiometer, and the Sun's output is measured as a function of time. The instrument is described, its angular response considered, and principles for absolute radiometric measurement presented. Active modes of operation are analyzed, taking into consideration instrumental perturbations and sensor efficiency, heating wire effect, cavity sensor efficiency, thermal effects on the surface of the sensitive area, the effect of the field of view limiting system, and the frequency response of the heat flux detector and absolute radiometric system. Performance of absolute measurements with relatively high accuracy is demonstrated.

  6. Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean

    Science.gov (United States)

    Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.

    2010-12-01

    Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will

  7. MODIS and SeaWIFS on-orbit lunar calibration

    Science.gov (United States)

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric

  8. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    Science.gov (United States)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  9. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  10. Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00)

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; Maritorena, Stephane; McLean, Scott; Sildam, Juri; McClain, Charles R. (Technical Monitor)

    2001-01-01

    The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the importance of data analysis methods upon derived AOP values, the Second Data Analysis Round Robin (DARR-00) activity was planned during the latter half of 1999 and executed during March 2000. The focus of the study was the intercomparison of several standard AOP parameters: (1) the upwelled radiance immediately below the sea surface, L(sub u)(0(-),lambda); (2) the downward irradiance immediately below the sea surface, E(sub d)(0(-),lambda); (3) the diffuse attenuation coefficients from the upwelling radiance and the downward irradiance profiles, L(sub L)(lambda) and K(sub d)(lambda), respectively; (4) the incident solar irradiance immediately above the sea surface, E(sub d)(0(+),lambda); (5) the remote sensing reflectance, R(sub rs)(lambda); (6) the normalized water-leaving radiance, [L(sub W)(lambda)](sub N); (7) the upward irradiance immediately below the sea surface, E(sub u)(0(-)), which is used with the upwelled radiance to derive the nadir Q-factor immediately below the sea surface, Q(sub n)(0(-),lambda); and (8) ancillary parameters like the solar zenith angle, theta, and the total chlorophyll concentration, C(sub Ta), derived from the optical data through statistical algorithms. In the results reported here, different methodologies from three research groups were applied to an identical set of 40 multispectral casts in order to evaluate the degree to which differences in data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-00 are presented in Chapter 1 and the individual methods used by the three groups and their data processors are presented in Chapters 2-4.

  11. The Fourth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-4)

    Science.gov (United States)

    Hooker, Stanford B.; Thomas, Crystal S.; van Heukelem, Laurie; Schlueter, louise; Russ, Mary E.; Ras, Josephine; Claustre, Herve; Clementson, Lesley; Canuti, Elisabetta; Berthon, Jean-Francois; hide

    2010-01-01

    Ten international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a mixed pigment sample. Although prior Sea-viewing Wide Field-of-view Sensor (SeaWiFS) High Performance Liquid Chromatography (HPLC) Round-Robin Experiment (SeaHARRE) activities conducted in open-ocean waters covered a wide dynamic range in productivity, and some of the samples were collected in the coastal zone, none of the activities involved exclusively coastal samples. Consequently, SeaHARRE-4 was organized and executed as a strictly coastal activity and the field samples were collected from primarily eutrophic waters within the coastal zone of Denmark. The more restrictive perspective limited the dynamic range in chlorophyll concentration to approximately one and a half orders of magnitude (previous activities covered more than two orders of magnitude). The method intercomparisons were used for the following objectives: a) estimate the uncertainties in quantitating individual pigments and higher-order variables formed from sums and ratios; b) confirm if the chlorophyll a accuracy requirements for ocean color validation activities (approximately 25%, although 15% would allow for algorithm refinement) can be met in coastal waters; c) establish the reduction in uncertainties as a result of applying QA procedures; d) show the importance of establishing a properly defined referencing system in the computation of uncertainties; e) quantify the analytical benefits of performance metrics, and f) demonstrate the utility of a laboratory mix in understanding method performance. In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied.

  12. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  13. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    Science.gov (United States)

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-04-11

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  14. Field Of View Of A Spacecraft Antenna: Analysis And Software

    Science.gov (United States)

    Wu, Te-Kao; Kipp, R.; Lee, S. W.

    1995-01-01

    Report summarizes computational analysis of field of view of rotating elliptical-cross-section parabolic-reflector antenna for SeaWinds spacecraft. Issues considered include blockage and diffraction by other objects near antenna, related concerns about electromagnetic interference and electromagnetic compatibility, and how far and in which configuration other objects positioned with respect to antenna to achieve required performance.

  15. Effect of field-of-view on the Coriolis illusion

    NARCIS (Netherlands)

    Groen, E.L.; Muis, H.; Kooi, F.L.

    2008-01-01

    Tilting the head during rotation about an Earth-vertical axis produces cross-coupled stimulation of the semicircular canals. Without visual feedback on the actual self-motion, this leads to the so-called Coriolis illusion. We investigated the effect of the field-of-view (FOV) on the magnitude and du

  16. Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China

    Directory of Open Access Journals (Sweden)

    J. Yoon

    2011-07-01

    Full Text Available The main purpose of the present paper is to derive and discuss linear long-term trends of Aerosol Optical Thickness (AOT at 443 and 555 nm over regions in Europe and South China. These areas are densely populated and highly polluted. The study uses the Bremen AErosol Retrieval (BAER and Sea-viewing Wide Field-of-view Sensor (SeaWiFS data for AOT retrievals in the specified regions from October 1997 to May 2008. In order to validate the individually retrieved AOTs and the corresponding trends, AErosol RObotic NETwork (AERONET level 2.0 data have been used. The retrieved AOTs were in good agreement with those of AERONET (0.79 ≤ R ≤ 0.88, 0.08 ≤ RMSD ≤ 0.13. The contamination of BAER aerosol retrievals and/or AERONET observations by thin clouds can significantly degrade the AOT and lead to statistically non-representative monthly-means, especially during cloudy seasons. Therefore an inter-correction method has been developed and applied. The "corrected" trends for both BAER SeaWiFS and AERONET AOT were similar having an average of relative error ~25.19 %. In general terms, negative trends (decrease of aerosol loading were mainly observed over European regions, with magnitudes up to −0.00453 (−1.93 % and −0.00484 (−2.35 % per year at 443 and 555 nm, respectively. In contrast, the trend in Pearl River Delta was positive, most likely attributed to rapid urbanization and industrialization. The magnitudes of AOT increased by +0.00761 (+1.24 % and +0.00625 (+1.15 % per year respectively at 443 and 555 nm.

  17. Hemispherical Field-of-View Above-Water Surface Imager for Submarines

    Science.gov (United States)

    Hemmati, Hamid; Kovalik, Joseph M.; Farr, William H.; Dannecker, John D.

    2012-01-01

    A document discusses solutions to the problem of submarines having to rise above water to detect airplanes in the general vicinity. Two solutions are provided, in which a sensor is located just under the water surface, and at a few to tens of meter depth under the water surface. The first option is a Fish Eye Lens (FEL) digital-camera combination, situated just under the water surface that will have near-full- hemisphere (360 azimuth and 90 elevation) field of view for detecting objects on the water surface. This sensor can provide a three-dimensional picture of the airspace both in the marine and in the land environment. The FEL is coupled to a camera and can continuously look at the entire sky above it. The camera can have an Active Pixel Sensor (APS) focal plane array that allows logic circuitry to be built directly in the sensor. The logic circuitry allows data processing to occur on the sensor head without the need for any other external electronics. In the second option, a single-photon sensitive (photon counting) detector-array is used at depth, without the need for any optics in front of it, since at this location, optical signals are scattered and arrive at a wide (tens of degrees) range of angles. Beam scattering through clouds and seawater effectively negates optical imaging at depths below a few meters under cloudy or turbulent conditions. Under those conditions, maximum collection efficiency can be achieved by using a non-imaging photon-counting detector behind narrowband filters. In either case, signals from these sensors may be fused and correlated or decorrelated with other sensor data to get an accurate picture of the object(s) above the submarine. These devices can complement traditional submarine periscopes that have a limited field of view in the elevation direction. Also, these techniques circumvent the need for exposing the entire submarine or its periscopes to the outside environment.

  18. A long-range, wide field-of-view infrared eyeblink detector.

    Science.gov (United States)

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise.

  19. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  20. High-Resolution, Wide-Field-of-View Scanning Telescope

    Science.gov (United States)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  1. Design of optoelectronic imaging system with high resolution and large field-of-view based on dual CMOS

    Science.gov (United States)

    Cheng, Hanglin; Hao, Qun; Hu, Yao; Cao, Jie; Wang, Shaopu; Li, Lin

    2016-10-01

    With the advantages of high resolution, large field of view and compacted size, optoelectronic imaging sensors are widely used in many fields, such as robot's navigation, industrial measurement and remote sensing. Many researchers pay more attention to improve the comprehensive performances of imaging sensors, including large field of view (FOV), high resolution, compact size and high imaging efficiency, etc. One challenge is the tradeoff between high resolution and large field of view simultaneously considering compacted size. In this paper, we propose an optoelectronic imaging system combining the lenses of short focal length and long focal length based on dual CMOS to simulate the characters of human eyes which observe object within large FOV in high resolution. We design and optimize the two lens, the lens of short focal length is used to search object in a wide field and the long one is responsible for high resolution imaging of the target area. Based on a micro-CMOS imaging sensor with low voltage differential transmission technology-MIPI (Mobile Industry Processor Interface), we design the corresponding circuits to realize collecting optical information with high speed. The advantage of the interface is to help decreasing power consumption, improving transmission efficiency and achieving compacted size of imaging sensor. Meanwhile, we carried out simulations and experiments to testify the optoelectronic imaging system. The results show that the proposed method is helpful to improve the comprehensive performances of optoelectronic imaging sensors.

  2. Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.

    2007-01-01

    Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.

  3. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    Science.gov (United States)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  4. Wide-field-of-view (WFOV) night vision goggle

    Science.gov (United States)

    Isbell, Wayne; Estrera, Joseph P.

    2003-09-01

    The United States' armed forces continue to be presented with increased challenges in adverse operational environments with increasing risk and complexity - especially at night. To ensure continued operational success and battlefield superiority during darkness, our armed forces must be equipped with night vision (NV) systems providing increased situational awareness. Doing so will significantly enhance threat detection and engagement, as well as survivability, thus ensuring greater mission success. Northrop Grumman Electro-Optical Systems (EOS) continues to develop its Wide Field of View (WFOV) image intensification (I2) night vision system for ground forces. This system will provide a significant increase in visual coverage enabling US forces to continue "to own the night". Until now, NV systems have typically been limited to a 40-degree field of view (FOV), vertically and horizontally. This limited FOV reduces off-axis detection, restricts an individual soldier's recognition and engagement capabilities and hinders added peripheral vision. To counter this operational deficiency, EOS proposes the Wide Field of View (WFOV) night vision binocular. The WFOV system will have a 70-degree horizontal FOV, with a 55-degree vertical FOV. The increased FOV will result in increased situational awareness of soldiers' surrounding environment (including terrain, hazards, threat, etc) during normal night operations. It will also allow for rapid and safer movement, especially in MOUT operations. Additionally, the increased visual coverage of large areas will enable soldiers to detect and engage targets faster and with greater reliability. The WFOV binocular will significantly enhance survivability, threat detection and engagement, and hence, greater mission success rate.

  5. Foveated scanning: dynamic monodimensional enlargement of resolved field of view in lenses of scanner systems.

    Science.gov (United States)

    Javaherian, Farhang; Rashidian, Bizhan

    2016-09-10

    An inconsistency between the circular symmetric geometry of conventional optical imagers and the geometry of long linear sensors used in today's line-scan cameras results in suboptimal separate design of optics and electronics of scanner systems. Based on the method of foveated optical imaging, a technique named foveated scanning (FS) is proposed in this paper. The FS technique is employed to enlarge the one-dimensional resolved field of view (RFOV) of conventional lenses and permits optimized performance on a line-of-interest in the image plane where the optoelectronic sensor is located. The achieved enlargement of RFOV is verified on a proof-of-concept basic telephoto lens. Both modulation transfer function analysis and the imaging simulation of a standard target have been performed. Results show a twofold increase in RFOV by this technique.

  6. Vision Based Navigation for a Mobile Robot with Different Field of Views

    CERN Document Server

    Khan, Rizwan A; Saeed, Saqib

    2009-01-01

    The basic idea behind evolutionary robotics is to evolve a set of neural controllers for a particular task at hand. It involves use of various input parameters such as infrared sensors, light sensors and vision based methods. This paper aims to explore the evolution of vision based navigation in a mobile robot. It discusses in detail the effect of different field of views for a mobile robot. The individuals have been evolved using different FOV values and the results have been recorded and analyzed.The optimum values for FOV have been proposed after evaluating more than 100 different values. It has been observed that the optimum FOV value requires lesser number of generations for evolution and the mobile robot trained with that particular value is able to navigate well in the environment.

  7. Wide field-of-view fluorescence imaging of coral reefs.

    Science.gov (United States)

    Treibitz, Tali; Neal, Benjamin P; Kline, David I; Beijbom, Oscar; Roberts, Paul L D; Mitchell, B Greg; Kriegman, David

    2015-01-13

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

  8. Field of view for near-field aperture synthesis imaging

    CERN Document Server

    Buscher, David F

    2015-01-01

    Aperture synthesis techniques are increasingly being employed to provide high angular resolution images in situations where the object of interest is in the near field of the interferometric array. Previous work has showed that an aperture synthesis array can be refocused on an object in the near field of an array, provided that the object is smaller than the effective Fresnel zone size corresponding to the array-object range. We show here that, under paraxial conditions, standard interferometric techniques can be used to image objects which are substantially larger than this limit. We also note that interferometric self-calibration and phase-closure image reconstruction techniques can be used to achieve near-field refocussing without requiring accurate object range information. We use our results to show that the field of view for high-resolution aperture synthesis imaging of geosynchronous satellites from the ground can be considerably larger than the largest satellites in Earth orbit.

  9. Convergent acoustic field of view in echolocating bats

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    square at 10 cm. Thus all bats adapted their calls to achieve similar acoustic fields of view. We propose that the necessity for high directionality has been a key constraint on the evolution of echolocation, which explains the relationship between bat size and echolocation call frequency. Our results......Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed...... on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate...

  10. A Dual Field-of-View Zoom Metalens

    CERN Document Server

    Zheng, Guoxing; Li, Zile; Zhang, Shuang; Mehmood, Muhammad Qasim; He, Pingan; Li, Song

    2016-01-01

    Conventional optical zoom system is bulky, expensive and complicated for real time adjustment. Recent progress in the metasurface research has provided a new solution to achieve innovative compact optical systems. In this paper, we propose a highly integrated zoom lens with dual field-of-view (FOV) based on double sided metasurfaces. With silicon nanobrick arrays of spatially varying orientations sitting on both side of a transparent substrate, this ultrathin zoom metalens can be designed to focus an incident circular polarized beam with spin-dependent FOVs without varying the focal plane, which is important for practical applications. The proposed dual FOV zoom metalens, with the advantages such as ultracompactness, flexibility and replicability, can find applications in fields which require ultracompact zoom imaging and beam focusing.

  11. Cross calibration of IRS-P4 OCM satellite sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    The cross calibration of ocean color satellite sensor, IRS-P4 OCM using the radiative transfer code, with SeaWiFS as a reference are presented here. Since the bands of IRS-P4 OCM are identical to those of SeaWiFS and SeaWiFS has been continuously...

  12. New in-flight calibration adjustment of the Nimbus 6 and 7 earth radiation budget wide field of view radiometers

    Science.gov (United States)

    Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.

    1984-01-01

    In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.

  13. Chip-based wide field-of-view nanoscopy

    Science.gov (United States)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  14. Out-of-band effects of satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Naik, Puneeta; Son, SeungHyun

    2016-03-20

    We analyze the sensor out-of-band (OOB) effects for satellite ocean color sensors of the sea-viewing wild field-of-view sensor (SeaWiFS), the moderate resolution imaging spectroradiometer (MODIS), and the visible infrared imaging radiometer suite (VIIRS) for phytoplankton-dominated open oceans and turbid coastal and inland waters, following the approach of Wang et al. [Appl. Opt.40, 343 (2001)APOPAI0003-693510.1364/AO.40.000343]. The applicability of the open ocean water reflectance model of Morel and Maritorena [J. Geophys. Res.106, 7163 (2001)JGREA20148-022710.1029/2000JC000319] (MM01) for the sensor OOB effects is analyzed for oligotrophic waters in Hawaii. The MM01 model predicted OOB contributions for oligotrophic waters are consistent with the result from in situ measurements. The OOB effects cause an apparent shift in sensor band center wavelengths in radiometric response, which depends on the sensor spectral response function and the target radiance being measured. Effective band center wavelength is introduced and calculated for three satellite sensors and for various water types. Using the effective band center wavelengths, satellite and in situ measured water optical property data can be more meaningfully and accurately compared. It is found that, for oligotrophic waters, the OOB effect is significant for the SeaWiFS 555 nm band (and somewhat 510 nm band), MODIS 412 nm band, and VIIRS 551 nm band. VIIRS and SeaWiFS have similar sensor OOB performance. For coastal and inland waters, however, the OOB effect is generally not significant for all three sensors, even though some small OOB effects do exist. This study highlights the importance of understanding the sensor OOB effect and the necessity of a complete prelaunch sensor characterization on the quality of ocean color products. Furthermore, it shows that hyperspectral in situ optics measurements are preferred for the purpose of accurately validating satellite-measured normalized water

  15. Aerosol Optical Depth Retrieval by NPS Model Modified for SEAWIFS Input

    Science.gov (United States)

    2002-03-01

    20 3. Aeronet Cimel CE 318-1 ..................... 21 IV. RESULTS ............................................. 23 A. IMAGERY...SeaWiFS. (From: Hooker)........... 3 Figure 3. ACE-Asia Network and Cimel 318-1.................. 4 Figure 4. SeaWiFS channels over atmospheric...western Pacific Ocean. More details of these sensors will be discussed in Chapter III. 4 Figure 3. ACE-Asia Network and Cimel 318-1. (From

  16. Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: application to absorbing aerosols.

    Science.gov (United States)

    Brajard, Julien; Jamet, Cédric; Moulin, Cyril; Thiria, Sylvie

    2006-03-01

    This paper presents a new development of the NeuroVaria method. NeuroVaria computes relevant atmospheric and oceanic parameters by minimizing the difference between the observed satellite reflectances and those computed from radiative transfer simulations modelled by artificial neural networks. Aerosol optical properties are computed using the Junge size distribution allowing taking into account highly absorbing aerosols. The major improvement to the method has been to implement an iterative cost function formulation that makes the minimization more efficient. This implementation of NeuroVaria has been applied to sea-viewing wide field-of-view sensor (SeaWiFS) imagery. A comparison with in situ measurements and the standard SeaWiFS results for cases without absorbing aerosols shows that this version of NeuroVaria remains consistent with the former. Finally, the processing of SeaWiFS images of a plume of absorbing aerosols off the US East coast demonstrate the ability of this improved version of NeuroVaria to deal with absorbing aerosols.

  17. Application of SeaWIFS- and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical biological model of the Gulf of St. Lawrence (Canada)

    Science.gov (United States)

    Le Fouest, V.; Zakardjian, B.; Saucier, F. J.; Çizmeli, S. A.

    2006-04-01

    We present here a first attempt to validate a regional three-dimensional (3-D) physical-biological coupled model of the Gulf of St. Lawrence with coincident Advanced Very High Resolution Radiometer (AVHRR)-derived sea surface temperature (SST) and Sea-viewing Wide Field-of-view Sensor (SeaWIFS)-derived Chlorophyll- a (Chl- a) data. The analysis focused on comparisons between remotely sensed data and simulated as well as in situ temperature, salinity, Chl- a, and nitrate. Results show that the simulated and AVHRR-derived fields of SST were qualitatively and quantitatively in agreement with in situ measurements. By contrast, marked differences were found between the simulated and SeaWIFS-derived fields of Chl- a, the latter comparing better with the freshwater-associated turbidity simulated by the model. Simulated temperature, salinity, nitrate, and Chl- a data compared well with coincident in situ measurements, and it is then suggested that freshwater-associated turbidity related to the river discharges largely contributed to the Chl- a retrievals by SeaWIFS in the Gulf's waters when using the standard OC4v.4 algorithm and atmospheric correction. Nevertheless, the striking agreement between SeaWIFS-derived ocean colour data and the simulated freshwater-associated turbidity allowed to validate the regional estuarine circulation and associated mesoscale variability. This result brings support to the model's ability to simulate realistic physical and biogeochemical fields in the Gulf of St. Lawrence.

  18. The effects of field of view on the perception of 3D slant from texture

    NARCIS (Netherlands)

    Todd, J.T.; Thaler, L.; Dijkstra, T.M.H.

    2005-01-01

    Observers judged the apparent signs and magnitudes of surface slant from monocular textured images of convex or concave dihedral angles with varying fields of view between 5 degrees C and 60 degrees C. The results revealed that increasing the field of view or the regularity of the surface texture

  19. Defining Constellation Suit Helmet Field of View Requirements Employing a Mission Segment Based Reduction Process

    Science.gov (United States)

    McFarland, Shane

    2009-01-01

    Field of view has always been a design feature paramount to helmets, and in particular space suits, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view will be required. Through taxonimization of various parameters that affect suited field of view, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was employed to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables while sacrificing minimal fidelity.

  20. Dynamic Range and Sensitivity Requirements of Satellite Ocean Color Sensors: Learning from the Past

    Science.gov (United States)

    Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O.; Mannino, Antonio; McClain, Charles R.; Franz, Bryan A.

    2012-01-01

    Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands

  1. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    Science.gov (United States)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  2. Mimicking honeybee eyes with a 280{sup 0} field of view catadioptric imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzl, W; Boeddeker, N; Dittmar, L; Egelhaaf, M, E-mail: wolfgang.stuerzl@uni-bielefeld.d [Department of Neurobiology and Center of Excellence ' Cognitive Interaction Technology' , Bielefeld University (Germany)

    2010-09-15

    We present a small single camera imaging system that provides a continuous 280{sup 0} field of view (FOV) inspired by the large FOV of insect eyes. This is achieved by combining a curved reflective surface that is machined into acrylic glass with lenses covering the frontal field that otherwise would have been obstructed by the mirror. Based on the work of Seidl (1982 PhD Thesis Technische Hochschule Darmstadt), we describe an extension of the 'bee eye optics simulation' (BEOS) model by Giger (1996 PhD Thesis Australian National University) to the full FOV which enables us to remap camera images according to the spatial resolution of honeybee eyes. This model is also useful for simulating the visual input of a bee-like agent in a virtual environment. The imaging system in combination with our bee eye model can serve as a tool for assessing the visual world from a bee's perspective which is particularly helpful for experimental setups. It is also well suited for mobile robots, in particular on flying vehicles that need light-weight sensors.

  3. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  4. Characterisation of a high resolution small field of view portable gamma camera.

    Science.gov (United States)

    Bugby, S L; Lees, J E; Bhatia, B S; Perkins, A C

    2014-05-01

    A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.

  5. Subcutaneous electrocardiogram monitors and their field of view.

    Science.gov (United States)

    Arzbaecher, Robert; Hampton, David R; Burke, Martin C; Garrett, Michael C

    2010-01-01

    the direction of cardiac activation and patient's body position. This permits accurate identification of dramatic changes in the ECG pattern, such as those occurring in ventricular fibrillation and polymorphic tachycardia. Because of this feature, CARDIOALARM can detect cardiac arrest, and its external receiver can alert bystanders to begin cardiopulmonary resuscitation and can automatically summon Emergency Medical Services. In the future, addition of other sensors, integration of data streams via body surface wireless networks, and real-time interpretive algorithms will allow enhanced monitoring systems to more generally assess evolving risks, the impacts of therapeutic interventions, and patient compliance with rehabilitative programs. When coupled to remote medical monitoring services, these devices have the potential to dramatically impact patient outcomes by lessening the diagnostic dependence on symptom recognition and decreasing event response times. Significant cost savings may also be realized through more efficient use of specialist resources, reduction in the number of office visits to physicians, and long-term improvements in patient health. Structural and behavior barriers to adoption need to be addressed for these methods to reach their full potential, addressing patient privacy concerns, adequate reimbursement, and integration into standard care protocols.

  6. Toward a real time stand-off submillimeter-wave imaging system with large field of view: quasi-optical system design considerations

    Science.gov (United States)

    Gandini, Erio; Llombart, Nuria

    2015-05-01

    In the frame-work of the European project CONSORTIS, a stand-off system for concealed object detections working at submillimeter-wave frequencies is being developed. The system is required to perform real-time image acquisition over a large field of view at a short range using both an active and a passive sensor operating in the frequency range from 250 to 600 GHz. In this contribution, the main trade-offs associated with the quasi-optical system design are presented. The imaging distance is from 2 m to 5 m range with a spatial resolution lower than 2 cm. Focal plane arrays will be used to achieve high imaging frame rates. Two configurations are considered in CONSORTIS: a sparse array of active transceivers and incoherent passive staring array with a large number of elements. Both cases use mechanical scanning to achieve the required field of view. This paper presents an in-depth analysis of the different trade-offs driving the quasi-optical design: from the mechanical scanner considerations to the optical beam quality required over the whole field of view. This analysis starts from the fundamental limitations of the quasi-optical mechanical systems. The limitations of the optics are discussed considering a canonical elliptical reflector as a reference. After this fundamental analysis, we compare the performances of several practical standard implementations, based on dual-reflectors and lenses, with canonical geometries. It is shown that, at short ranges, the main limitation of the optical system is the poor beam quality associated with the wide angular field of view and none of the standard implementation fulfills the requirements. In the last section, a technique to overcome this limitation is investigated. In particular, the use of optics with oversized reflectors can significantly improve the performance over a larger field of view if the coma aberrations are limited by a good angular filter.

  7. SeaWiFS Third Anniversary Global Biosphere

    Science.gov (United States)

    2002-01-01

    September 18,2000 is the third anniversary of the start of regular SeaWiFS operations of this remarkable planet called Earth. This SeaWiFS image is of the Global Biosphere depicting the ocean's long-term average phytoplankton chlorophyll concentration acquired between September 1997 and August 2000 combined with the SeaWiFS-derived Normalized Difference Vegetation Index (NDVI) over land during July 2000.

  8. A Novel Method for Quantifying Helmeted Field of View of a Spacesuit - And What It Means for Constellation

    Science.gov (United States)

    McFarland, Shane M.

    2010-01-01

    Field of view has always been a design feature paramount to helmet design, and in particular spacesuit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. Historically, suited field of view has been evaluated either qualitatively in parallel with design or quantitatively using various test methods and protocols. As such, oftentimes legacy suit field of view information is either ambiguous for lack of supporting data or contradictory to other field of view tests performed with different subjects and test methods. This paper serves to document a new field of view testing method that is more reliable and repeatable than its predecessors. It borrows heavily from standard ophthalmologic field of vision tests such as the Goldmann kinetic perimetry test, but is designed specifically for evaluating field of view of a spacesuit helmet. In this test, four suits utilizing three different helmet designs were tested for field of view. Not only do these tests provide more reliable field of view data for legacy and prototype helmet designs, they also provide insight into how helmet design impacts field of view and what this means for the Constellation Project spacesuit helmet, which must meet stringent field of view requirements that are more generous to the crewmember than legacy designs.

  9. SeaWiFS data from oceanic waters around New Zealand: Validation and applications

    Science.gov (United States)

    Richardson, K.; Boyd, P.; Gall, M.; Pinkerton, M.

    Satellite observations of ocean colour are the only realistic way to measure phytoplankton abundance at regional and global scales. NASA's Sea-viewing Wide Field -o f-view Sensor (SeaWiFS) began operation in September 1997 and is still providing data today. The data are of particular value to New Zealand, which has the fourth largest Exclusive Economic Zone (EEZ) in the world (some 4 million km2 ). Analysis of moderate resolution (9 km) SeaWiFS monthly Standard Mapped Images has substantially increased knowledge of the dynamics of chlorophyll concentrations around New Zealand. SeaWiFS data over nearly three years shows that northern New Zealand Subtropical and Tasman Sea waters follow a classical cycle of spring and autumn chlorophyll blooms consistent with production being co-limited by nitrate and light. Subantarctic Waters south of New Zealand had a low-magnitude annual cycle of chlorophyll abundance that peaked in early autumn, consistent with production being principally iron-limited. Chlorophyll was generally highest in the Subtropical Front either side of New Zealand where Subtropical and Subantarctic waters mix. NIWA (National Institute of Water and Atmospheric Research) has been receiving and processing high resolution (1.1 km) SeaWiFS data for the NZ region since May 2000. In addition to this, extensive bio-optical data from a number of NIWA cruises are being used to validate the satellite data and assess the accuracy of the ocean products in New Zealand open ocean and coastal waters. The performance of the SeaWiFS chlorophyll-a algorithm (OC4v4) has been investigated by comparing high-precision in situ measurements of the underwater radiation field with measurements of phytoplankton pigment concentration. Analyses of these results suggest that the algorithm may be performing well in the open ocean for chlorophyll- a concentrations below 0.3-0.4 mg m-3 but overestimating by a factor of two or more at higher concentrations. NIWA believes that ocean colour

  10. Effect of field of view and monocular viewing on angular size judgements in an outdoor scene

    Science.gov (United States)

    Denz, E. A.; Palmer, E. A.; Ellis, S. R.

    1980-01-01

    Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators.

  11. Atmospheric Aerosols Detection Research with a Dual Field of View Lidar

    Directory of Open Access Journals (Sweden)

    Lv Lihui

    2015-01-01

    Full Text Available A dual field of view lidar system with two independent receivers is described to realize the detection of atmospheric aerosols. A CCD camera is attached to a backscatter lidar as a receiver to complement the data in the near-field range affected by the incomplete overlap between the laser beam and the receiver field of view. The signal detected by the CCD camera is corrected and finally glued with the signal of the backscatter lidar to retrieve the aerosol extinction coefficient with Fernald algorithm. The aerosol extinction profile and visibilities measured by the dual field of lidar had been compared with the results measured by another general backscatter lidar and a surface aerosol instrument, respectively. The results suggested that the dual field of view lidar based on a CCD camera is feasible and reliable. It could obtain the data both in the near and in the far range simultaneously, improving the detection accuracy of the lidar system effectively.

  12. A scheme for assessing the performance characteristics of small field-of-view gamma cameras.

    Science.gov (United States)

    Bhatia, B S; Bugby, S L; Lees, J E; Perkins, A C

    2015-02-01

    Existing protocols for assessing the performance characteristics of large field-of-view (LFOV) gamma cameras can be inappropriate and require modification for use with small field-of-view (SFOV) gamma camera systems. This communication proposes a generic scheme suitable for evaluating the performance characteristics of SFOV gamma cameras, based on modifications to the standard procedures of NEMA NU1-2007. Key differences in methodology between tests for LFOV and SFOV gamma cameras are highlighted along with the rationale for these changes. It is envisaged that this scheme will provide more appropriate methods for equipment characterisation, ensuring quality and consistency for all SFOV cameras.

  13. Extending the field of view of KD/asterisk/P electrooptic modulators

    Science.gov (United States)

    West, E. A.

    1978-01-01

    The use of KD(asterisk)P as a polarization rotator has been limited to small field of view instruments. To investigate this limitation, the index ellipsoid is used to describe the optical properties of KD(asterisk)P and to calculate the retardance and fast axis as a function of the angle of incidence and voltage. Computed converging light patterns are then compared with observed intensity patterns formed by KD(asterisk)P. Finally, computed intensity patterns are used to demonstrate how the field of view of KD(asterisk)P can be increased when properly aligned with a positive uniaxial crystal.

  14. Systems and methods for maintaining multiple objects within a camera field-of-view

    Science.gov (United States)

    Gans, Nicholas R.; Dixon, Warren

    2016-03-15

    In one embodiment, a system and method for maintaining objects within a camera field of view include identifying constraints to be enforced, each constraint relating to an attribute of the viewed objects, identifying a priority rank for the constraints such that more important constraints have a higher priority that less important constraints, and determining the set of solutions that satisfy the constraints relative to the order of their priority rank such that solutions that satisfy lower ranking constraints are only considered viable if they also satisfy any higher ranking constraints, each solution providing an indication as to how to control the camera to maintain the objects within the camera field of view.

  15. Structured scene modeling using micro stereo vision system with large field of view

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method for structured scene modeling using micro stereo vision system with large field of view. The proposed algorithm includes edge detection with Canny detector, line fitting with princi ple axis-based approach, finding corresponding lines using feature-based matching method, and 3D line depth computation.

  16. Interpupillary and Vertex Distance Effects on Field-of-View and Acuity With ANVIS

    Science.gov (United States)

    1992-01-01

    derived from binocular as opposed to monocular viewing ( Arditi , 1986; Boff and Lincoln, 1988). As an ANVIS with its IPD set to other than the optimal value...periphery of the field-of-view and under conditions of low stimulus contrast. 28 References Arditi , A. 1986. Binocular vision, in Boff, K.R., Kaufman

  17. Method and systems for collecting data from multiple fields of view

    Science.gov (United States)

    Schwemmer, Geary K. (Inventor)

    2002-01-01

    Systems and methods for processing light from multiple fields (48, 54, 55) of view without excessive machinery for scanning optical elements. In an exemplary embodiment of the invention, multiple holographic optical elements (41, 42, 43, 44, 45), integrated on a common film (4), diffract and project light from respective fields of view.

  18. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    Science.gov (United States)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  19. Performance Modelling of Automatic Identification System with Extended Field of View

    DEFF Research Database (Denmark)

    Lauersen, Troels; Mortensen, Hans Peter; Pedersen, Nikolaj Bisgaard

    2010-01-01

    This paper deals with AIS (Automatic Identification System) behavior, to investigate the severity of packet collisions in an extended field of view (FOV). This is an important issue for satellite-based AIS, and the main goal is a feasibility study to find out to what extent an increased FOV...

  20. Optimal usage of cone beam computed tomography system with different field of views in image guided radiotherapy (IGRT

    Directory of Open Access Journals (Sweden)

    Narayana Venkata Naga Madhusudhana Sresty

    2015-09-01

    Full Text Available Purpose: To find methods for optimal usage of XVI (X-ray volume imaging system in Elekta synergy linear accelerator with different field of views for same lesion in order to minimize patient dose due to imaging.Methods: 20 scans of 2 individual patients with ca sigmoid colon and ca lung were used in this study. Kilo voltage collimators with medium field of view were used as per the preset information. Images were reconstructed for another collimator with small field of view. The set up errors were evaluated with XVI software. Shift results of both methods were compared. Results: Variation in treatment set up errors with M20 and S20 collimators were ≤ 0.2 mm in translational and 0.30 in rotational shifts. Results showed almost equal translational and rotational shifts in both medium and small field of views with different collimators in all the scans. Visualization of target and surrounding structures were good enough and sufficient for XVI auto matching.Conclusion: Imaging with small field of view results less patient dose compared with medium or large field of views. It is Suggestible to use collimators with small field of view wherever possible. In this study, collimators with small field of view were sufficient for both patients though the preset information indicated medium field of view. But, it always depends on the area required for matching purpose. So, individual selection is important than preset information in the XVI system.

  1. Ulva prolifera monitoring by GF-1 wide field-of-view sensor data

    Science.gov (United States)

    Liang, Wenxiu; Li, Junsheng; Zhou, Demin; Shen, Qian; Zhang, Fangfang; Zhang, Haobin

    2014-11-01

    Ulva prolifera, a kind of green macroalgae, is nontoxic itself, however, its bloom has bad effects on the marine environment, coastal scene, water sports and seashore tourism. Monitoring of the Ulva prolifera by remote sensing technology has the advantages of wide coverage, rapidness, low cost and dynamic monitoring over a long period of time. The GF-1 satellite was launched in April 2013, which provides a new suitable remote sensing data source for monitoring the Ulva prolifera. At present, segmenting image with a threshold is the most widely used method in Ulva prolifera extraction by remote sensing data, because it is simple and easy to operate. However, the threshold value is obtained through visual analysis or using a fixed statistical value, and could not be got automatically. Facing this problem, we proposed a new method, which can obtain the segmentation threshold automatically based on the local maximum gradient value. This method adopted the average NDVI value of local maximum gradient points as the threshold, and could get an appropriate segmentation threshold automatically for each image. The preliminary results showed that this method works well in monitoring Ulva prolifera by GF-1 WFV data.

  2. Differential measurement of atmospheric refraction with a telescope with double fields of view

    CERN Document Server

    Yu, Yong; Tang, Zheng-Hong; Luo, Hao; Zhao, Ming

    2015-01-01

    For the sake of complete theoretical research of atmospheric refraction, the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. In some engineering applications, the objects with larger zenith distance must be observed sometimes. Carrying out observational research of the atmospheric refraction at lower angles of elevation has an important significance. It has been considered difficult to measure the atmospheric refraction at lower angles of elevation. A new idea for determining atmospheric refraction by utilizing differential measurement with double fields of view is proposed. Taking the observational principle of HIPPARCOS satellite as a reference, a schematic prototype with double fields of view was developed. In August of 2013, experimental observations were carried out and the atmospheric refractions at lower angles of elevation can be obtained by the schematic prototype. The measured value of the atmospheric refraction at the zenith dista...

  3. EMBRACE@Nancay: An Ultra Wide Field of View Prototype for the SKA

    CERN Document Server

    Torchinsky, S A; Censier, B; Karastergiou, A; Serylak, M; Renaud, P; Taffoureau, C

    2015-01-01

    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the "intensity mapping" experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.

  4. High speed color imaging through scattering media with a large field of view

    Science.gov (United States)

    Zhuang, Huichang; He, Hexiang; Xie, Xiangsheng; Zhou, Jianying

    2016-09-01

    Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.

  5. Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection

    Science.gov (United States)

    Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)

    2002-01-01

    An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.

  6. Multi-beaming propertieis of reflector antennas used in radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The given work is devoted to the modern developments in the field of radio astronomy instrumentation. In particular, the sensitivity of the multi-beam reflector radio telescope which is fed by phased array (PAF) is considered. Using PAF as reflector feed allows obtaining wide and continuous field of view (FOV) of the telescope. This has several advantages with compare to horn-cluster feeds which are described in this work. The sensitivity inside whole FOV was computed using three different beamforming schemes.

  7. Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    CERN Document Server

    Zhang, S S; Cao, Z; Chen, S Z; Chen, M J; Chen, Y; Chen, L H; Ding, K Q; He, H H; Liu, J L; Li, X X; Liu, J; Ma, L L; Ma, X H; Sheng, X D; Zhou, B; Zhang, Y; Zhao, J; Zha, M; Xiao, G

    2011-01-01

    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented.

  8. An Overview of Wide-Field-Of-View Optical Designs for Survey Telescopes

    Science.gov (United States)

    2010-09-01

    aberrations while trying not to introduce chromatic aberration . For wide fields of view, the designs can become quite complex and expensive...published details of a refractive aberration corrector for the Ritchey- Chretien optical system [5]. Before this time, refractive correctors were not...well known, but were in use as chromatic correctors and field flatteners on refractor telescopes [2, 6]. The 1931 introduction of the Schmidt Camera

  9. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  10. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent;

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  11. PSF and field of view characteristics of imaging and nulling interferometers

    OpenAIRE

    Hénault, François

    2010-01-01

    In this communication are presented some complements to a recent paper entitled "Simple Fourier optics formalism for high angular resolution systems and nulling interferometry", dealing with imaging and nulling capacities of a few types of multi-aperture optical systems. Herein the characteristics of such systems in terms of Point Spread Function (PSF) and Field of View (FoV) are derived from simple analytical expressions that are further evaluated numerically for various configurations. We c...

  12. Smartphone Microscopy of Parasite Eggs Accumulated into a Single Field of View.

    Science.gov (United States)

    Sowerby, Stephen J; Crump, John A; Johnstone, Maree C; Krause, Kurt L; Hill, Philip C

    2016-01-01

    A Nokia Lumia 1020 cellular phone (Microsoft Corp., Auckland, New Zealand) was configured to image the ova of Ascaris lumbricoides converged into a single field of view but on different focal planes. The phone was programmed to acquire images at different distances and, using public domain computer software, composite images were created that brought all the eggs into sharp focus. This proof of concept informs a framework for field-deployable, point of care monitoring of soil-transmitted helminths.

  13. First phantom and in vivo MPI images with an extended field of view

    Science.gov (United States)

    Schmale, I.; Rahmer, J.; Gleich, B.; Kanzenbach, J.; Schmidt, J. D.; Bontus, C.; Woywode, O.; Borgert, J.

    2011-03-01

    Magnetic Particle Imaging (MPI) is a high-potential new medical imaging modality that has been introduced in 2005. MPI uses the non-linear magnetization behavior of iron-oxide based nano-particles, named tracer, to perform quantitative measurements of their local concentration. Previous publications demonstrated the feasibility of real-time in vivo 3D imaging with clinical concentration of Resovist®. Given MPI's fast and sensitive imaging as well as its overall versatility, it has potential to support various medical applications spanning from diagnostics to therapy. As an example, ongoing research investigates the use of MPI in cardiovascular diagnostics for myocardial perfusion measurement. While previous publications reported results from experimental systems with limited bore size (3cm), this contribution presents first phantom and in vivo images acquired on the next hardware generation, an experimental system with an effective bore size of 12cm. The system is designed for pre-clinical studies and can capture image data from an extended field of view compared to the previous, experimental system. The contribution introduces concepts for the encoding of a larger field of view by means of additional magnetic fields, named focus-fields, and outlines the path to stitching of images from multiple focus field settings, called "multi-station reconstruction". To prove the feasibility of imaging of an extended field of view, volumetric images of a moving phantom as well as of a living rat were acquired.

  14. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    Science.gov (United States)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  15. Beaked Whales and Pilot Whales in the Alboran Sea SW Mediterranean

    Science.gov (United States)

    2011-09-30

    Wide Field-of-view (SeaWiFS) of satelite Orbview-2. Resolution: 0.1 º. Program NOAA CoastWatch. chldssum standard deviation of summer...chlorophyll concentration Derived from the sensor Sea-viewing Wide Field- of-view (SeaWiFS) of satelite Orbview-2. Resolution: 0.1 º. Program NOAA CoastWatch

  16. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  17. Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation

    Science.gov (United States)

    Finke, G.; Kujawińska, M.; Kozacki, T.; Zaperty, W.

    2016-09-01

    In this paper we propose a method which allows to overcome the basic functional problems in holographic displays with naked eye observation caused by delivering too small images visible in narrow viewing angles. The solution is based on combining the spatiotemporal multiplexing method with a 4f optical system. It enables to increase an aperture of a holographic display and extend the angular visual field of view. The applicability of the modified display is evidenced by Wigner distribution analysis of holographic imaging with spatiotemporal multiplexing method and by the experiments performed at the display demonstrator.

  18. A proposed increase in retinal field-of-view may lead to spatial shifts in images

    CERN Document Server

    Doshi, Rupak

    2010-01-01

    Visual information determines majority of our spatial behavior. The eye projects a 2-D image of the world on the retina. We demonstrate that when a monocular-like imaging system operates entirely with optically dense fluids, an increase in field-of-view (FOV) is observed compared to an experimental condition, where the ocular medium is optically neutral. Resulting spatial shifts in the retinal image towards the fovea complement the photoreceptor distribution pattern, incidentally revealing a new role for ocular fluids in the image space. Possible effects on the perceived egocentric object location are discussed.

  19. Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities.

    Science.gov (United States)

    Nakagawa, Wataru; Sun, Pang-Chen; Chen, Chyong-Hua; Fainman, Yeshaiahu

    2002-02-01

    We describe a novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure. We analyze the transmissivity of this type of filter for a range of wavelengths and in-plane incidence angles as a function of the defect's refractive index, the number of layers in the photonic-crystal reflectors, and the period of the defects and find that this structure diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.

  20. Population synthesis of RR Lyrae stars in the original $Kepler$ and $K2$ Fields of View

    CERN Document Server

    Hanyecz, Ottó

    2016-01-01

    It is interesting to ask what fraction of the total available RR Lyrae (RRL) sample that falls in the $Kepler$ and $K2$ Fields of View (FoV) is known or discovered. In order assess the completeness of our sample we compared the known RRL sample in the $Kepler$ and $K2$ fields with synthetic Galactic models. The Catalina Sky Survey RRL sample was used to calibrate our method. We found that a large number of faint RRL stars is missing from $Kepler$ and $K2$ fields.

  1. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber

    CERN Document Server

    Sivankutty, Siddharth; Bouwmans, Géraud; Kogan, Dani; Oron, Dan; Andresen, Esben Ravn; Rigneault, Hervé

    2016-01-01

    We investigate lensless endoscopy using coherent beam combining and aperiodic multicore fibers (MCF). We show that diffracted orders, inherent to MCF with periodically arranged cores, dramatically reduce the field of view (FoV) and that randomness in MCF core positions can increase the FoV up to the diffraction limit set by a single fiber core, while maintaining MCF experimental feasibility. We demonstrate experimentally pixelation-free lensless endoscopy imaging over a 120 micron FoV with an aperiodic MCF designed with widely spaced cores. We show that this system is suitable to perform beam scanning imaging by simply applying a tilt to the proximal wavefront.

  2. Range performance of the DARPA AWARE wide field-of-view visible imager.

    Science.gov (United States)

    Nichols, J M; Judd, K P; Olson, C C; Novak, K; Waterman, J R; Feller, S; McCain, S; Anderson, J; Brady, D

    2016-06-01

    In a prior paper, we described a new imaging architecture that addresses the need for wide field-of-view imaging combined with the resolution required to identify targets at long range. Over the last two years substantive improvements have been made to the system, both in terms of the size, weight, and power of the camera as well as to the optics and data management software. The result is an overall improvement in system performance, which we demonstrate via a maritime target identification experiment.

  3. Field of view of limitations in see-through HMD using geometric waveguides.

    Science.gov (United States)

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  4. Coordinating one hand with two eyes: optimizing for field of view in a pointing task.

    Science.gov (United States)

    Khan, Aarlenne Z; Crawford, J Douglas

    2003-02-01

    We previously found that subjects switched 'ocular dominance' as a function of horizontal gaze direction in a reaching task [Vision Res. 41 (14) (2001) 1743]. Here we extend these findings to show that when subjects pointed to targets across the horizontal binocular field, they aligned the fingertip with a vertical plane located between the eyes and the target. This eye-target plane gradually shifted from aligning with the left eye (leftward targets) to between the two eyes (intermediate targets) to the right eye (rightward targets). We suggest that this occurs to optimize eye-hand alignment towards the eye with the best overall field of view.

  5. RCT photometry and HCT spectroscopy of blazar candidates in the Kepler field of view

    Science.gov (United States)

    Carini, Michael T.; Goyal, A.; Jose, J.

    2014-01-01

    The results of photometric and spectroscopic monitoring of 9 blazar candidates in the Kepler field of view are presented. These sources were identified as blazar candidates based on their position in the so-called WISE blazar strip. Finding charts and comparison sequences were created using the NOMAD database. R band photometric monitoring was begun in spring 2013 with the Robotically Controlled Telescope(RCT), and spectroscopic observations of 7 of the sources were obtained with the Himalayan Chandra Telescope (HCT) in September, 2013. Light curves for all 9 sources and preliminary spectroscopic classifications for the 7 sources with spectra will be presented.

  6. Field-balanced adaptive optics error function for wide field-of-view space-based systems

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.

    2002-03-01

    Adaptive optics are regularly used in ground-based astronomical telescopes. These applications are characterized by a very narrow (approximately 1 arcmin) field of view. For economic reasons, commercial space-based earth-observing optical systems must have a field of view as large as possible. We develop a new error function that is an extension of conventional adaptive optics for wide field-of-view optical systems and show that this new error function enables diffraction-limited performance across a large field of view with only one deformable mirror. This new error function allows for reprogramming of aberration control algorithms for particular applications by the use of an addressable weighting function.

  7. On the operation of X-ray polarimeters with a large field of view

    CERN Document Server

    Muleri, Fabio

    2013-01-01

    The measurement of the linear polarization is one of the hot topics of High Energy Astrophysics. Gas detectors based on photoelectric effect have paved the way for the design of sensitive instruments and mission proposals based on them have been presented in the last few years in the energy range from about 2 keV to a few tens of keV. As well, a number of polarimeters based on Compton scattering are approved or discussed for launch on-board balloons or space satellites at higher energies. These instruments are typically dedicated to pointed observations with narrow field of view telescopes or collimators, but there are also projects aimed at the polarimetry of bright transient sources, like Soft Gamma Repeaters or the prompt emission of Gamma Ray Bursts. Given the erratic appearance of such events in the sky, these polarimeters have a large field of view to catch a reasonable number of them and, as a result, photons may impinge on the detector off-axis. This changes dramatically the response of the instrument...

  8. Large field-of-view range-gated laser imaging based on image fusion

    Science.gov (United States)

    Ren, Pengdao; Wang, Xinwei; Sun, Liang; You, Ruirong; Lei, Pingshun; Zhou, Yan

    2016-11-01

    Laser range-gated imaging has great potentials in remote night surveillance with far detection distance and high resolution, even if under bad weather conditions such as fog, snow and rain. However, the field of view (FOV) is smaller than large objects like buildings, towers and mountains, thus only parts of targets are observed in one single frame, so that it is difficult for targets identification. Apparently, large FOV is beneficial to solve the problem, but the detection range is not available due to low illumination density in a large field of illumination matching with the FOV. Therefore, a large field-of-view range-gated laser imaging is proposed based on image fusion in this paper. Especially an image fusion algorithm has been developed for low contrast images. First of all, an infrared laser range-gated system is established to acquire gate images with small FOV for three different scenarios at night. Then the proposed image fusion algorithm is used for generating panoramas for the three groups of images respectively. Compared with raw images directly obtained by the imaging system, the fused images have a larger FOV with more detail target information. The experimental results demonstrate that the proposed image fusion algorithm is effective to expand the FOV of range-gated imaging.

  9. Depolarization Ratio of Clouds Measured by Multiple-Field of view Multiple Scattering Polarization Lidar

    Science.gov (United States)

    Okamoto, Hajime; Sato, Kaori; Makino, Toshiyuki; Nishizawa, Tomoaki; Sugimoto, Nobuo; Jin, Yoshitaka; Shimizu, Atsushi

    2016-06-01

    We have developed the Multiple Field of view Multiple Scattering Polarization Lidar (MFMSPL) system for the study of optically thick low-level clouds. It has 8 telescopes; 4 telescopes for parallel channels and another 4 for perpendicular channels. The MFMSPL is the first lidar system that can measure depolarization ratio for optically thick clouds where multiple scattering is dominant. Field of view of each channel was 10mrad and was mounted with different angles ranging from 0 mrad (vertical) to 30mrad. And footprint size from the total FOV was achieved to be close to that of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar at the altitude of 1km in order to reproduce similar degree of multiple scattering effects as observed from space. The MFMSPL has started observations since June 2014 and has been continuously operated at National Institute for Environmental Studies (NIES) in Tsukuba, Japan. Observations proved expected performance such that measured depolarization ratio was comparable to the one observed by CALIPSO lidar.

  10. Face inversion and acquired prosopagnosia reduce the size of the perceptual field of view.

    Science.gov (United States)

    Van Belle, Goedele; Lefèvre, Philippe; Rossion, Bruno

    2015-03-01

    Using a gaze-contingent morphing approach, we asked human observers to choose one of two faces that best matched the identity of a target face: one face corresponded to the reference face's fixated part only (e.g., one eye), the other corresponded to the unfixated area of the reference face. The face corresponding to the fixated part was selected significantly more frequently in the inverted than in the upright orientation. This observation provides evidence that face inversion reduces an observer's perceptual field of view, even when both upright and inverted faces are displayed at full view and there is no performance difference between these conditions. It rules out an account of the drop of performance for inverted faces--one of the most robust effects in experimental psychology--in terms of a mere difference in local processing efficiency. A brain-damaged patient with pure prosopagnosia, viewing only upright faces, systematically selected the face corresponding to the fixated part, as if her perceptual field was reduced relative to normal observers. Altogether, these observations indicate that the absence of visual knowledge reduces the perceptual field of view, supporting an indirect view of visual perception.

  11. GAW - An Imaging Atmospheric Cherenkov Telescope with Large Field of View

    CERN Document Server

    Cusumano, G; Alberdi, A; Alvarez, M; Assis, P; Biondo, B; Bocchino, F; Brogueira, P; Caballero, J A; Carvajal, M; Castro-Tirado, A J; Catalano, O; Celi, F; Delgado, C; Di Cocco, G; Dominguez, A; Navas, J M Espino; Santo, M C Espirito; Gallardo, M I; García, J E; Giarrusso, S; Gómez, M; Gómez, J L; Gonçalves, P; Guerriero, M; La Barbera, A; La Rosa, G; Lozano, M; Maccarone, M C; Mangano, A; Martel, I; Massaro, E; Mineo, T; Moles, M; Pérez-Bernal, F; Peres-Torres, M A; Pimenta, M; Pina, A; Prada, F; Quesada, J M; Quintana, J M; Quintero, J R; Rodríguez, J; Russo, F; Sacco, B; Sanchez-Conde, M A; Segreto, A; Tome', B; Postigo, A de Ugarte; Vallania, P

    2007-01-01

    GAW, acronym for Gamma Air Watch, is a Research and Development experiment in the TeV range, whose main goal is to explore the feasibility of large field of view Imaging Atmospheric Cherenkov Telescopes. GAW is an array of three relatively small telescopes (2.13 m diameter) which differs from the existing and presently planned projects in two main features: the adoption of a refractive optics system as light collector and the use of single photoelectron counting as detector working mode. The optics system allows to achieve a large field of view (24x24 squared degrees) suitable for surveys of large sky regions. The single photoelectron counting mode in comparison with the charge integration mode improves the sensitivity by permitting also the reconstruction of events with a small number of collected Cherenkov photons. GAW, which is a collaboration effort of Research Institutes in Italy, Portugal and Spain, will be erected in the Calar Alto Observatory (Sierra de Los Filabres - Andalucia, Spain), at 2150 m a.s....

  12. High-resolution LCD projector for extra-wide-field-of-view head-up display

    Science.gov (United States)

    Brown, Robert D.; Modro, David H.; Quast, Gerhardt A.; Wood, Robert B.

    2003-09-01

    LCD projection-based cockpit displays are beginning to make entry into military and commercial aircraft. Customers for commercial Head-Up Displays (HUDs)(including airframe manufacturers) are now interested in the adaptation of the technology into existing and future HUD optical systems. LCD projection can improve mean-time-between-failure rates because the LCDs are very robust and the light sources can be replaced with scheduled maintenance by the customer without the need for re-calibration. LCD projectors promise to lower the cost of the HUD because the cost of these displays continues to drop while the cost of CRTs remain stable. LCD projectors provide the potential for multi-colors, higher brightness raster, and all-digital communication between the flight computer and display unit. Another potential benefit of LCD projection is the ability to increase field of view and viewing eyebox without exceeding existing power budgets or reducing display lifetime and reliability compared to the capabilities provided by CRTs today. This paper describes the performance requirements and improved performance of a third-generation LCD projection image source for use in a wide field of view head-up display (HUD) optical system. This paper will focus on new HUD requirements and the application of various technologies such as LCOS microdisplays, arc lamps, and rear-projection screens. Measured performance results are compared to the design requirements.

  13. The widest contiguous field of view at Dome C and Mount Graham

    CERN Document Server

    Stoesz, J; Lascaux, F; Hagelin, S

    2009-01-01

    The image quality from Ground-Layer Adaptive Optics (GLAO) can be gradually increased with decreased contiguous field of view. This trade-off is dependent on the vertical profile of the optical turbulence (Cn2 profiles). It is known that the accuracy of the vertical distribution measured by existing Cn2 profiling techniques is currently quite uncertain for wide field performance predictions 4 to 20 arcminutes. With assumed uncertainties in measurements from Generalized-SCIDAR (GS), SODAR plus MASS we quantify the impact of this uncertainty on the trade-off between field of view and image quality for photometry of science targets at the resolution limit. We use a point spread function (PSF) model defined analytically in the spatial frequency domain to compute the relevant photometry figure of merit at infrared wavelengths. Statistics of this PSF analysis on a database of Cn2 measurements are presented for Mt. Graham, Arizona and Dome C, Antarctica. This research is part of the activities of ForOT (3D Forecasti...

  14. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    Science.gov (United States)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  15. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    Science.gov (United States)

    2016-06-02

    is derived to facilitate use of secondary polarization. The model is supported by exper- imental MFOV lidar measurements carried out in a controlled ...Retrieval of droplet-size density distribution from multiple-field-of- view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of- view (MFOV) secondary-polarization lidar signals are used to

  16. Compressive imaging for difference image formation and wide-field-of-view target tracking

    Science.gov (United States)

    Shikhar

    2010-11-01

    Use of imaging systems for performing various situational awareness tasks in military and commercial settings has a long history. There is increasing recognition, however, that a much better job can be done by developing non-traditional optical systems that exploit the task-specific system aspects within the imager itself. In some cases, a direct consequence of this approach can be real-time data compression along with increased measurement fidelity of the task-specific features. In others, compression can potentially allow us to perform high-level tasks such as direct tracking using the compressed measurements without reconstructing the scene of interest. In this dissertation we present novel advancements in feature-specific (FS) imagers for large field-of-view surveillence, and estimation of temporal object-scene changes utilizing the compressive imaging paradigm. We develop these two ideas in parallel. In the first case we show a feature-specific (FS) imager that optically multiplexes multiple, encoded sub-fields of view onto a common focal plane. Sub-field encoding enables target tracking by creating a unique connection between target characteristics in superposition space and the target's true position in real space. This is accomplished without reconstructing a conventional image of the large field of view. System performance is evaluated in terms of two criteria: average decoding time and probability of decoding error. We study these performance criteria as a function of resolution in the encoding scheme and signal-to-noise ratio. We also include simulation and experimental results demonstrating our novel tracking method. In the second case we present a FS imager for estimating temporal changes in the object scene over time by quantifying these changes through a sequence of difference images. The difference images are estimated by taking compressive measurements of the scene. Our goals are twofold. First, to design the optimal sensing matrix for taking

  17. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.

    Science.gov (United States)

    López-Nicolás, Gonzalo; Gans, Nicholas R; Bhattacharya, Sourabh; Sagüés, Carlos; Guerrero, Josechu J; Hutchinson, Seth

    2010-08-01

    In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.

  18. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    Science.gov (United States)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  19. Large-field-of-view Chip-scale Talbot-grid-based Fluorescence Microscopy

    CERN Document Server

    Pang, Shuo; Kato, Mihoko; Sternberg, Paul W; Yang, Changhuei

    2012-01-01

    The fluorescence microscope is one of the most important tools in modern clinical diagnosis and biological science. However, its expense, size and limited field-of-view (FOV) are becoming bottlenecks in key applications such as large-scale phenotyping and low-resource-setting diagnostics. Here we report a low-cost, compact chip-scale fluorescence-imaging platform, termed the Fluorescence Talbot Microscopy (FTM), which utilizes the Talbot self-imaging effect to enable efficient fluorescence imaging over a large and directly-scalable FOV. The FTM prototype has a resolution of 1.2 microns and an FOV of 3.9 mm x 3.5 mm. We demonstrate the imaging capability of FTM on fluorescently labeled breast cancer cells (SK-BR-3) and HEK cells expressing green fluorescent protein.

  20. Plastic optical fiber for wide field-of-view optical wireless receiver

    Science.gov (United States)

    Fallah, Hoorieh; Sterckx, Karel; Saengudomlert, Poompat; Mohammed, Waleed S.

    2016-10-01

    This paper demonstrates a working indoor optical wireless link for smart environment applications. The system utilizes a wide field-of-view (FOV) optical wireless receiver through cleaving the tip of large core plastic optical fibers (POFs) attached to the detector. The quality of the optical link is quantified through bit error rate (BER) measurements. The experimental results show a wide FOV with the uncoded BER in the order of 10-3 for transmission distances up to 35 cm when using two POFs for signal collection. The distance can be improved further by increasing the number of fibers. The transmitted signal format and how the BER measurement is achieved are discussed at length. In addition, details are provided for the design of the electronics to establish the optical wireless link.

  1. PSF and field of view characteristics of imaging and nulling interferometers

    Science.gov (United States)

    Hénault, François

    2010-07-01

    In this communication are presented some complements to a recent paper entitled "Simple Fourier optics formalism for high angular resolution systems and nulling interferometry" [1], dealing with imaging and nulling capacities of a few types of multi-aperture optical systems. Herein the characteristics of such systems in terms of Point Spread Function (PSF) and Field of View (FoV) are derived from simple analytical expressions that are further evaluated numerically for various configurations. We consider successively the general cases of Fizeau and Michelson interferometers, and those of a monolithic pupil, nulling telescope, of a nulling, Sheared-Pupil Telescope (SPT), and of a sparse aperture, Axially Combined Interferometer (ACI). The analytical formalism also allows establishing the exact Object-Image relationships applicable to nulling PSTs or ACIs that are planned for future space missions searching for habitable extra-solar planets.

  2. PSF and field of view characteristics of imaging and nulling interferometers

    CERN Document Server

    Hénault, François

    2010-01-01

    In this communication are presented some complements to a recent paper entitled "Simple Fourier optics formalism for high angular resolution systems and nulling interferometry", dealing with imaging and nulling capacities of a few types of multi-aperture optical systems. Herein the characteristics of such systems in terms of Point Spread Function (PSF) and Field of View (FoV) are derived from simple analytical expressions that are further evaluated numerically for various configurations. We consider successively the general cases of Fizeau and Michelson interferometers, and those of a monolithic pupil, nulling telescope, of a nulling, Sheared-Pupil Telescope (SPT), and of a sparse aperture, Axially Combined Interferometer (ACI). The analytical formalism also allows establishing the exact Object-Image relationships applicable to nulling PSTs or ACIs that are planned for future space missions searching for habitable extra-solar planets.

  3. Optimal GEO lasercomm terminal field of view for LEO link support

    Science.gov (United States)

    Hindman, Charles W.; Hunt, Jeffrey P.; Engberg, Brian S.; Walchko, Kevin J.

    2006-02-01

    As alternatives to the traditional gimbaled terminal design, future satellite based laser communications terminals are envisioned that utilize a wide field of view or field of regard (WFOV/WFOR). This approach can be advantageous in situations requiring rapid switching between user terminals, support for multiple terminals simultaneously (via TDMA, SDMA or WDMA) or other non-standard mission requirements. However, a traditional gimbaled terminal has the capability to continuously track a single user over very large angles, such as the 18-20° spanned by a LEO satellite as seen from GEO. WFOV/WFOR designs face increasing cost and/or complexity issues with each incremental increase in angular coverage. The methodology and inputs for a trade study are presented here that attempts to maximize the available connectivity to a LEO satellite while minimizing cost and complexity metrics by choosing an optimal FOV/FOR size for a GEO terminal.

  4. Quantifying driver's field-of-view in tractors: methodology and case study.

    Science.gov (United States)

    Gilad, Issachar; Byran, Eyal

    2015-01-01

    When driving a car, the visual awareness is important for operating and controlling the vehicle. When operating a tractor, it is even more complex. This is because the driving is always accompanied with another task (e.g., plough) that demands constant changes of body postures, to achieve the needed Field-of-View (FoV). Therefore, the cockpit must be well designed to provide best FoV. Today, the driver's FoV is analyzed mostly by computer simulations of a cockpit model and a Digital Human Model (DHM) positioned inside. The outcome is an 'Eye view' that displays what the DHM 'sees'. This paper suggests a new approach that adds quantitative information to the current display; presented on three tractor models as case studies. Based on the results, the design can be modified. This may assist the engineer, to analyze, compare and improve the design, for better addressing the driver needs.

  5. Active control of acoustic field-of-view in a biosonar system.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    2011-09-01

    Full Text Available Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc. is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.

  6. Effect of age and pop out distracter on attended field of view.

    Science.gov (United States)

    Babu, Raiju J; Leat, Susan J; Irving, Elizabeth L

    2014-01-01

    To investigate the functional field of view (FFOV) of younger and older individuals using the attended field of view (AFOV), a method which allows for eye and head movement. The impact of a pop out distracter and a dual task on the FFOV measure was also investigated. Nine young adult (25±6 years) and 9 older participants (72±4 years) took part in the experiment. The AFOV test involved the binocular detection and localization of a white target (Landolt-C) in a field of 24 white rings (distracters). The further AFOV tests were modified to include the presence of a pop out distracter, a dual task condition, and a combination of the two. Older observers had lower viewing efficiency (log [1/presentation time]) in all conditions (pooled mean across conditions: older: 0.05±0.02; younger: 0.48±0.04) than the younger group. The addition of dual or a pop out distracter did not affect the older group (mean difference ∼104±150ms and ∼124±122ms respectively) but the additional pop out distracter reduced the efficiency of the younger group for targets near fixation (mean difference ∼68±35ms). Better viewing efficiency was observed in younger individuals compared to older individuals. Difficulty in disregarding irrelevant stimuli and thereby resorting to inefficient search strategy is proposed as the reason for the differences. The finding that both older and younger individuals are not affected significantly by the presence of the irrelevant pop out distracter has implications in situations such as driving or hazard avoidance. In such scenarios, search performance is likely not impaired beyond what is found with distracters (visual clutter) in the environment. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  7. Large field of view computed laminography with the asymmetric rotational scanning geometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    X-ray computed laminography(CL)is used in the fields of industrial inspection and medical imaging.It can provide the internal structure three-dimensional(3D)information of a region of the objects nondestructively.It is important to the clinical diagnosis and the quality control of flat objects like printed circuit boards,aircraft wings and satellite solar panels.With the restriction that the imaging region must be within the X-ray beam formed by the X-ray source and the detector,the imaging field of view of CL is limited by the size of detector.A new CL method with an asymmetric rotational cone-beam scanning geometry,called large field of view CL,is presented to overcome the existing disadvantage.It can extend the imaging region when the imaging spatial resolution keeps the same as that of the conventional CL.It can also improve the imaging spatial resolution when the imaging region keeps the same as that of the conventional CL.The asymmetric configuration can be achieved by offsetting the detector from the conventional symmetric configuration.It does not,however,require new detectors and X-ray source nor alter the scanning mechanical system.The filtered back-projection(FBP)reconstruction algorithm and the data truncation smoothing functions have been deduced to reconstruct the images directly from the data acquired with this asymmetric configuration.We performed numerical studies and experiments to demonstrate and validate the proposed approach. Results in these studies and experiments confirm that the proposed method can enlarge the imaging region and improve the spatial resolution.The proposed approach may find applications in the CL system with the rotational scanning geometry.

  8. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    Science.gov (United States)

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies. © 2015 The Royal Australian and New Zealand College of Radiologists.

  9. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    Science.gov (United States)

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  10. Sliding mode control based impact angle control guidance considering the seeker׳s field-of-view constraint.

    Science.gov (United States)

    Wang, Xingliang; Zhang, Youan; Wu, Huali

    2016-03-01

    The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations.

  11. A Method to Evaluate the Stimulation of a Real World Field of View by Means of a Spectroradiometric Analysis

    Directory of Open Access Journals (Sweden)

    Fabio Nardecchia

    2015-11-01

    Full Text Available Stimulation elicited by a real world field of view is related to the color, the intensity and the direction of the information reaching the eye: different spectral power distributions of light trigger different responses. An evaluation of the stimulation provided by the field of view can be performed by measuring the spectral radiance with a spectroradiometer and weighting this data with an efficiency curve. Different weights (physical, physiological and psychological can lead to different analyses and consequently to different results. The proposed method allows an overall and simplified evaluation of the field of view based on spectral and luminance measures and a script that processes the luminous information. The final aim of this approach is to provide further information about the light stimulation reaching the retina and to supply a qualitative evaluation of the field of view, allowing to know how much stimulation is coming from a certain area within the visual field depending on the type of surface, basing on spectral and directional information. This approach can have practical implications, allowing technicians and designers to take into consideration the possible visual fields, in order to properly shape the features of stimulation throughout the day, hence following a field of view-based dynamic design.

  12. SeaWiFS Deep Blue Aerosol Optical Depth and Angstrom Exponent Level 2 Data V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The SeaWiFS Deep Blue (SWDB) Level 2 Product contains data corresponding to a single SeaWiFS swath using Deep Blue algorithm. There are about 15 Level 2 data files...

  13. Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view

    Science.gov (United States)

    Ghosh, Shaon; Bloemen, Steven; Nelemans, Gijs; Groot, Paul J.; Price, Larry R.

    2016-08-01

    Aims: Binary neutron stars are among the most promising candidates for joint gravitational-wave and electromagnetic astronomy. The goal of this work is to investigate various observing strategies that telescopes with wide field of view might incorporate while searching for electromagnetic counterparts of gravitational-wave triggers. Methods: We examined various strategies of scanning the gravitational-wave sky localizations on the mock 2015-16 gravitational-wave events. First, we studied the performance of the sky coverage using a naive tiling system that completely covers a given confidence interval contour using a fixed grid. Then we propose the ranked-tiling strategy where we sample the localization in discrete two-dimensional intervals that are equivalent to the telescope's field of view and rank them based on their sample localizations. We then introduce an optimization of the grid by iterative sliding of the tiles. Next, we conducted tests for all the methods on a large sample of sky localizations that are expected in the first two years of operation of the Laser interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. We investigated the performance of the ranked-tiling strategy for telescope arrays and compared their performance against monolithic telescopes with a giant field of view. Finally, we studied the ability of optical counterpart detection by various types of telescopes. Results: Our analysis reveals that the ranked-tiling strategy improves the localization coverage over the contour-covering method. The improvement is more significant for telescopes with larger fields of view. We also find that while optimizing the position of the tiles significantly improves the coverage compared to contour-covering tiles. For ranked-tiles the same procedure leads to negligible improvement in the coverage of the sky localizations. We observed that distributing the field of view of the telescopes into arrays of multiple telescopes significantly

  14. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Science.gov (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  15. Research on field of view of optical receiving antenna based on indoor visible light communication system

    Science.gov (United States)

    Gao, Mingguang; Lan, Tian; Zhao, Tao; Zhang, Yilun; Cui, Zhenghua; Ni, Guoqiang

    2015-08-01

    Optical receiving antenna is usually positioned before the detector of an indoor visible light communication (VLC) system in order to collect more optical energy into the detector. Besides optical gain of the antenna, the field of view (FOV) plays also an important role to the performance of a VLC system. In this paper, the signal noise ratio (SNR) and inter-symbol interference (ISI) versus FOV of the antenna are simulated via Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) links within a room with a size of 5m × 5m × 3m. Results show that, the blind area appears while the FOV is less than 40 deg. and the SNR reduces as FOV increases and keeps small when FOV is more than 70 deg.. Furthermore, the average power of ISI rises with the increase of FOV, and the rising trend is relatively moderate when FOV is below 50 deg., while there is a rapid increase between 50 deg. and 70 deg. and finally tends to be stable after 70 deg. Therefore, it is practical to determine the FOV of the optical receiving antenna in the scope of 40 to 50 deg. based on the installment of LED lights on the ceiling here so as to avoid the blind area, attain high SNR, and reduce the influence of ISI. It is also worthwhile in practice to provide an identifiable evidence for the determination of FOV of the optical antenna.

  16. The cognitive implications of virtual locomotion with a restricted field of view

    Science.gov (United States)

    Marsh, William E.; Kelly, Jonathan W.; Dark, Veronica J.; Oliver, James H.

    2012-03-01

    A study was conducted to examine the impact, in terms of cognitive demands, of a restricted field of view (FOV) on semi-natural locomotion in virtual reality (VR). Participants were divided into two groups: high-FOV and low-FOV. They were asked to perform basic movements using a locomotion interface while simultaneously performing one of two memory tasks (spatial or verbal) or no memory task. The memory tasks were intended to simulate the competing demands when a user has primary tasks to perform while using an unnatural interface to move through the virtual world. Results show that participants remembered fewer spatial or verbal items when performing locomotion movements with a low FOV than with a high FOV. This equivalent verbal and spatial detriment may indicate that locomotion movements with a restricted FOV require additional general cognitive resources as opposed to spatial or verbal resource pools. This also emphasizes the importance of this research, as users of a system may allow primary task performance to suffer when performing locomotion. Movement start and completion times were also measured to examine resource requirements of specific aspects of movements. Understanding specific performance problems resulting from concurrent tasks can inform the design of systems.

  17. Large field-of-view wavefront control for deep brain imaging (Conference Presentation)

    Science.gov (United States)

    Park, Jung-Hoon; Cui, Meng

    2016-03-01

    The biggest obstacle for deep tissue imaging is the scattering of light due to the heterogeneous distribution of biological tissue. In this respect, multiphoton microscopy has an inherent advantage as the scattering is significantly reduced by the use of longer excitation wavelengths. However, as we go deeper into the brain, effects of scattering still accumulate resulting in a loss of resolution and increased background noise. Adaptive optics is an ideal tool of choice to correct for such distortions of the excitation wavefront; the incident light can be tuned to cancel out the wavefront distortion experienced while propagating into greater depths resulting in a diffraction limited focus at the depth of interest. However, the biggest limitation of adaptive optics for in vivo brain imaging is its limited corrected field-of-view (FOV). For typical multiphoton laser scanning microscopes, the wavefront corrector for adaptive optics is placed at the pupil plane. This means that a single correction wavefront is applied to the entire scanned FOV which results in inefficient correction as the correction is averaged over the entire FOV. In this work, we demonstrate a novel approach to measure and display different correction wavefronts over different segments of the FOV. The application of the different correction wavefronts for each segment is realized in parallel resulting in fast aberration corrected imaging over a large FOV for high resolution in vivo brain imaging.

  18. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography

    DEFF Research Database (Denmark)

    Noorkoiv, M; Stavnsbo, A; Aagaard, Per

    2010-01-01

    occasions, with ICC = 0.95 (CI = 0.80-0.99). The average absolute difference between L(f) measured by EFOV US and using linear extrapolation was 12.6 ± 8.1% [ICC = 0.76 (CI = -0.20-0.94)]; EFOV L(f) was always longer than extrapolated L(f). The relative error of measurement between L(f) measured by EFOV US......The present study examined the reliability and validity of in vivo vastus lateralis (VL) fascicle length (L(f)) assessment by extended field-of-view ultrasonography (EFOV US). Intraexperimenter and intersession reliability of EFOV US were tested. Further, L(f) measured from EFOV US images were...... compared to L(f) measured from static US images (6-cm FOV) where out-of-field fascicle portions were trigonometrically estimated (linear extrapolation). Finally, spatial accuracy of the EFOV technique was assessed by comparing L(f) measured on swine VL by EFOV US to actual measurements from digital...

  19. Reduced field-of-view DTI segmentation of cervical spine tissue.

    Science.gov (United States)

    Tang, Lihua; Wen, Ying; Zhou, Zhenyu; von Deneen, Karen M; Huang, Dehui; Ma, Lin

    2013-11-01

    The number of diffusion tensor imaging (DTI) studies regarding the human spine has considerably increased and it is challenging because of the spine's small size and artifacts associated with the most commonly used clinical imaging method. A novel segmentation method based on the reduced field-of-view (rFOV) DTI dataset is presented in cervical spinal canal cerebrospinal fluid, spinal cord grey matter and white matter classification in both healthy volunteers and patients with neuromyelitis optica (NMO) and multiple sclerosis (MS). Due to each channel based on high resolution rFOV DTI images providing complementary information on spinal tissue segmentation, we want to choose a different contribution map from multiple channel images. Via principal component analysis (PCA) and a hybrid diffusion filter with a continuous switch applied on fourteen channel features, eigen maps can be obtained and used for tissue segmentation based on the Bayesian discrimination method. Relative to segmentation by a pair of expert readers, all of the automated segmentation results in the experiment fall in the good segmentation area and performed well, giving an average segmentation accuracy of about 0.852 for cervical spinal cord grey matter in terms of volume overlap. Furthermore, this has important applications in defining more accurate human spinal cord tissue maps when fusing structural data with diffusion data. rFOV DTI and the proposed automatic segmentation outperform traditional manual segmentation methods in classifying MR cervical spinal images and might be potentially helpful for detecting cervical spine diseases in NMO and MS.

  20. GAW - A very large field-of-view Imaging Atmospheric Cherenkov Telescope

    CERN Document Server

    Arruda, Luisa

    2010-01-01

    GAW (Gamma Air Watch) is a pathfinder experiment in the TeV range to test the feasibility of a new generation of Imaging Atmospheric Cherenkov Telescopes (IACT). It combines high flux sensitivity with large field-of-view (FoV=24deg x 24deg) using Fresnel lenses, stereoscopic observational approach and single-photon counting mode. This particular counting mode, in comparison with the usual charge integration one, allows the triggering of events with a smaller number of collected Cherenkov photons keeping a good signal/background separation. GAW is conceived as an array of three identical imaging telescopes with 2.13 m diameter placed at the vertices of an equilateral triangle of 80 m side. The telescope will be built at the Calar Alto Observatory site (Sierra de Los Filabres - Almeria Spain, 2168 m a.s.l.) and is a joint effort of research institutes in Italy, Portugal and Spain. The main characteristics of the experiment will be reported.

  1. Solving outside-axial-field-of-view scatter correction problem in PET via digital experimentation

    Science.gov (United States)

    Andreyev, Andriy; Zhu, Yang-Ming; Ye, Jinghan; Song, Xiyun; Hu, Zhiqiang

    2016-03-01

    Unaccounted scatter impact from unknown outside-axial-field-of-view (outside-AFOV) activity in PET is an important degrading factor for image quality and quantitation. Resource consuming and unpopular way to account for the outside- AFOV activity is to perform an additional PET/CT scan of adjacent regions. In this work we investigate a solution to the outside-AFOV scatter problem without performing a PET/CT scan of the adjacent regions. The main motivation for the proposed method is that the measured random corrected prompt (RCP) sinogram in the background region surrounding the measured object contains only scattered events, originating from both inside- and outside-AFOV activity. In this method, the scatter correction simulation searches through many randomly-chosen outside-AFOV activity estimates along with known inside-AFOV activity, generating a plethora of scatter distribution sinograms. This digital experimentation iterates until a decent match is found between a simulated scatter sinogram (that include supposed outside-AFOV activity) and the measured RCP sinogram in the background region. The combined scatter impact from inside- and outside-AFOV activity can then be used for scatter correction during final image reconstruction phase. Preliminary results using measured phantom data indicate successful phantom length estimate with the method, and, therefore, accurate outside-AFOV scatter estimate.

  2. Lateral Scanning Linnik Interferometry for Large Field of View and Fast Scanning: Wafer Bump Inspection

    Science.gov (United States)

    Kim, Min Y.; Veluvolu, Kalyana C.; Lee, Soon-Geul

    2011-07-01

    Wafer-level packaging is currently the major trend in semiconductor packaging for miniaturization and high-density integration. To ensure the package reliability, the wafer and substrate bumps utilized as connection junctions need to be in-line inspected as regards their top-height distribution, coplanarity, and volume uniformity. This article proposes a lateral scanning interferometric system for wafer bump shape inspection in three dimensions with a large field of view and fast inspection speed based on an optomechatronic system design. For multiple-peak interferogram from wafer bumps around a transparent film layer, two-step information extraction algorithms are suggested, including top surface profile and under-layer surface profile detection algorithms. The multiple-peak interferogram is acquired with variations of lateral position of the reference mirror by a piezoelectric transducer (PZT). A series of experiments is performed for representative wafer samples with solder and gold bumps, and the effectiveness of the proposed inspection system is verified from the test results.

  3. Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain.

    Science.gov (United States)

    Hernández-Andrés, J; Romero, J; Lee, R L

    2001-02-01

    As part of our ongoing research into the clear daytime sky's visible structure, we analyze over 1,500 skylight spectra measured during a seven-month period in Granada, Spain. We use spectral radiances measured within 3 degrees fields of view (FOV's) to define colorimetric characteristics along four sky meridians: the solar meridian and three meridians at azimuths of 45 degrees, 90 degrees, and 315 degrees relative to it. The resulting clear-sky chromaticities in 44 different view directions (1) are close to but do not coincide with the CIE daylight locus, (2) form V-shaped meridional chromaticity curves along it (as expected from theory), and (3) have correlated color temperatures (CCT's) ranging from 3,800 K to infinity K. We also routinely observe that sky color and luminance are asymmetric about the solar meridian, usually perceptibly so. A principal-components analysis shows that three vectors are required for accurate clear-sky colorimetry, whereas six are needed for spectral analyses.

  4. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  5. Characteristics of geometric distortion correction with increasing field-of-view in open-configuration MRI.

    Science.gov (United States)

    Hong, Cheolpyo; Lee, Dong-Hoon; Han, Bong Soo

    2014-07-01

    Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was<1 pixel with an FOV of 285mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340mm and~400mm compared with the FOV of 285mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view.

    Science.gov (United States)

    Chen, Min; Carass, Aaron; Oh, Jiwon; Nair, Govind; Pham, Dzung L; Reich, Daniel S; Prince, Jerry L

    2013-12-01

    Spinal cord segmentation is an important step in the analysis of neurological diseases such as multiple sclerosis. Several studies have shown correlations between disease progression and metrics relating to spinal cord atrophy and shape changes. Current practices primarily involve segmenting the spinal cord manually or semi-automatically, which can be inconsistent and time-consuming for large datasets. An automatic method that segments the spinal cord and cerebrospinal fluid from magnetic resonance images is presented. The method uses a deformable atlas and topology constraints to produce results that are robust to noise and artifacts. The method is designed to be easily extended to new data with different modalities, resolutions, and fields of view. Validation was performed on two distinct datasets. The first consists of magnetization transfer-prepared T2*-weighted gradient-echo MRI centered only on the cervical vertebrae (C1-C5). The second consists of T1-weighted MRI that covers both the cervical and portions of the thoracic vertebrae (C1-T4). Results were found to be highly accurate in comparison to manual segmentations. A pilot study was carried out to demonstrate the potential utility of this new method for research and clinical studies of multiple sclerosis.

  7. Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

    Institute of Scientific and Technical Information of China (English)

    李敬; 蔡聪波; 陈林; 陈颖; 屈小波; 蔡淑惠

    2015-01-01

    In many ultrafast imaging applications, the reduced field-of-view (rFOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporally-encoded (SPEN) method offers an inherent applicability to rFOV imaging. In this study, a flexible rFOV imaging method is presented and the superiority of the SPEN approach in rFOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For com-parison, the echo planar imaging (EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the rFOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest (ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.

  8. PSF Estimation of Space-Variant Ultra-Wide Field of View Imaging Systems

    Directory of Open Access Journals (Sweden)

    Petr Janout

    2017-02-01

    Full Text Available Ultra-wide-field of view (UWFOV imaging systems are affected by various aberrations, most of which are highly angle-dependent. A description of UWFOV imaging systems, such as microscopy optics, security camera systems and other special space-variant imaging systems, is a difficult task that can be achieved by estimating the Point Spread Function (PSF of the system. This paper proposes a novel method for modeling the space-variant PSF of an imaging system using the Zernike polynomials wavefront description. The PSF estimation algorithm is based on obtaining field-dependent expansion coefficients of the Zernike polynomials by fitting real image data of the analyzed imaging system using an iterative approach in an initial estimate of the fitting parameters to ensure convergence robustness. The method is promising as an alternative to the standard approach based on Shack–Hartmann interferometry, since the estimate of the aberration coefficients is processed directly in the image plane. This approach is tested on simulated and laboratory-acquired image data that generally show good agreement. The resulting data are compared with the results of other modeling methods. The proposed PSF estimation method provides around 5% accuracy of the optical system model.

  9. KIC 9406652: An Unusual Cataclysmic Variable in the Kepler Field of View

    CERN Document Server

    Gies, Douglas R; Howell, Steve B; Still, Martin D; Boyajian, Tabetha S; Hoekstra, Abe J; Jek, Kian J; LaCourse, Daryll; Winarski, Troy

    2013-01-01

    KIC 9406652 is a remarkable variable star in the Kepler field of view that shows both very rapid oscillations and long term outbursts in its light curve. We present an analysis of the light curve over quarters 1 to 15 and new spectroscopy that indicates that the object is a cataclysmic variable with an orbital period of 6.108 hours. However, an even stronger signal appears in the light curve periodogram for a shorter period of 5.753 hours, and we argue that this corresponds to the modulation of flux from the hot spot region in a tilted, precessing disk surrounding the white dwarf star. We present a preliminary orbital solution from radial velocity measurements of features from the accretion disk and the photosphere of the companion. We use a Doppler tomography algorithm to reconstruct the disk and companion spectra, and we also consider how these components contribute to the object's spectral energy distribution from ultraviolet to infrared wavelengths. This target offers us a remarkable opportunity to invest...

  10. Enhanced flight symbology for wide-field-of-view helmet-mounted displays

    Science.gov (United States)

    Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.

    2003-09-01

    A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.

  11. Modelling image profiles produced with a small field of view gamma camera with a single pinhole collimator

    Science.gov (United States)

    Bugby, S. L.; Lees, J. E.; Perkins, A. C.

    2012-11-01

    Gamma cameras making use of parallel-hole collimators have a long history in medical imaging. Pinhole collimators were used in the original gamma camera instruments and have been used more recently in dedicated organ specific systems, intraoperative instruments and for small animal imaging, providing higher resolution over a smaller field of view than the traditional large field of view systems. With the resurgence of interest in the use of pinhole collimators for small field of view (SOV) medical gamma cameras, it is important to be able to accurately determine their response under various conditions. Several analytical approaches to pinhole response have been reported in the literature including models of 3D pinhole imaging systems. Success has also been reported in the use of Monte Carlo simulations; however this approach can require significant time and computing power. This report describes a 2D model that was used to investigate some common problems in pinhole imaging, the variation in resolution over the field of view and the use of `point' sources for quantifying pinhole response.

  12. What is the minimum field of view required for efficient navigation?

    Science.gov (United States)

    Hassan, Shirin E; Hicks, John C; Lei, Hao; Turano, Kathleen A

    2007-07-01

    Critical points were computed to determine the minimum field of view (FOV) size required for efficient navigation. Navigation performance in 20 normally sighted subjects was assessed using an immersive virtual environment. Subjects were instructed to walk through a virtual forest to a target tree as quickly as possible without hitting any obstacles (trees, boulders, and holes). The navigation task was performed in three FOV and image contrast conditions under binocular, monocular, chromatic and achromatic viewing conditions. FOV was constricted to 10 degrees , 20 degrees and 40 degrees diameter and average image contrast was nominally high (11%), medium (6%) and low (3%). Navigation performance was scored as latency in walk initiation, walk time to reach goal and the number of obstacle contacts. The results revealed a linear relationship between log FOV and the two time measures, log latency and log walk time. The slopes of the linear regressions for log latency and log walk time ranged between -0.11 and -0.41. Critical points were computed from the non-linear relationships found between the number of obstacle contacts and FOV. The critical points for efficient navigation were FOVs of 32.1 degrees , 18.4 degrees and 10.9 degrees (diam.) for low, medium and high image contrast levels, respectively, highlighting the importance of contrast on the size of the FOV required for efficient navigation. Neither binocularity nor image chromaticity significantly affected navigation performance. The findings of this study have important implications in the design and prescription of head mounted displays intended to augment navigation performance.

  13. The CCAT-prime Extreme Field-of-View Submillimeter Telescope on Cerro Chajnantor

    Science.gov (United States)

    Koopman, Brian; Bertoldi, Frank; Chapman, Scott; Fich, Michel; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry L.; Murray, Norman W.; Niemack, Michael D.; Riechers, Dominik; Schilke, Peter; Stacey, Gordon J.; Stutzki, Juergen; CCAT-prime Collaboration

    2017-01-01

    CCAT-prime is a six meter aperture off-axis submillimeter telescope that we plan to build at 5600m elevation on Cerro Chajnantor in Chile. The CCAT-prime optics are based on a cross-Dragone design with high throughput and a wide field-of-view optimized to increase the mapping speed of next generation cosmic microwave background (CMB) observations. These characteristics make CCAT-prime an excellent platform for a wide range of next generation millimeter and submillimeter science goals, and a potential platform for CMB stage-IV measurements. Here we present the telescope design for CCAT-prime and review the science goals.Taking advantage of the high elevation site, the first generation instrument for CCAT-prime will measure seven different frequency bands from 350um to 3mm. These seven bands will enable precise measurements of the Sunyaev-Zel’dovich effects (SZE) by separating contributions from CMB, thermal SZE, kinetic SZE, bright submm galaxies, and radio sources with a goal of extracting the peculiar velocities from a large number of galaxy clusters. Additional science priorities for CCAT-prime include: Galactic Ecology studies of the dynamic intersteller medium by mapping the fine structure lines [CI], [CII] and [NII] as well as high-excitation CO lines at the shortest wavelength bands; high redshift intensity mapping of [CII] emission from star-forming galaxies that likely dominates cosmic reionization at z~5-9 to probe the Epoch of Reionization; and next generation CMB polarization measurements to constrain inflation and cosmological models. The CCAT-prime facility will further our understanding of astrophysical processes from moments after the Big Bang to the present-day evolution of the Milky Way.

  14. Adaptive field-of-view imaging for efficient receive beamforming in medical ultrasound imaging systems.

    Science.gov (United States)

    Agarwal, Anup; Yoo, Yang Mo; Schneider, Fabio Kurt; Kim, Yongmin

    2008-09-01

    Quadrature demodulation-based phase rotation beamforming (QD-PRBF) is commonly used to support dynamic receive focusing in medical ultrasound systems. However, it is computationally demanding since it requires two demodulation filters for each receive channel. To reduce the computational requirements of QD-PRBF, we have previously developed two-stage demodulation (TSD), which reduces the number of lowpass filters by performing demodulation filtering on summation signals. However, it suffers from image quality degradation due to aliasing at lower beamforming frequencies. To improve the performance of TSD-PRBF with reduced number of beamforming points, we propose a new adaptive field-of-view (AFOV) imaging method. In AFOV imaging, the beamforming frequency is adjusted depending on displayed FOV size and the center frequency of received signals. To study its impact on image quality, simulation was conducted using Field II, phantom data were acquired from a commercial ultrasound machine, and the image quality was quantified using spatial (i.e., axial and lateral) and contrast resolution. The developed beamformer (i.e., TSD-AFOV-PRBF) with 1024 beamforming points provided comparable image resolution to QD-PRBF for typical FOV sizes (e.g., 4.6% and 1.3% degradation in contrast resolution for 160 mm and 112 mm, respectively for a 3.5 MHz transducer). Furthermore, it reduced the number of operations by 86.8% compared to QD-PRBF. These results indicate that the developed TSD-AFOV-PRBF can lower the computational requirement for receive beamforming without significant image quality degradation.

  15. Impairing the useful field of view in natural scenes: Tunnel vision versus general interference.

    Science.gov (United States)

    Ringer, Ryan V; Throneburg, Zachary; Johnson, Aaron P; Kramer, Arthur F; Loschky, Lester C

    2016-01-01

    A fundamental issue in visual attention is the relationship between the useful field of view (UFOV), the region of visual space where information is encoded within a single fixation, and eccentricity. A common assumption is that impairing attentional resources reduces the size of the UFOV (i.e., tunnel vision). However, most research has not accounted for eccentricity-dependent changes in spatial resolution, potentially conflating fixed visual properties with flexible changes in visual attention. Williams (1988, 1989) argued that foveal loads are necessary to reduce the size of the UFOV, producing tunnel vision. Without a foveal load, it is argued that the attentional decrement is constant across the visual field (i.e., general interference). However, other research asserts that auditory working memory (WM) loads produce tunnel vision. To date, foveal versus auditory WM loads have not been compared to determine if they differentially change the size of the UFOV. In two experiments, we tested the effects of a foveal (rotated L vs. T discrimination) task and an auditory WM (N-back) task on an extrafoveal (Gabor) discrimination task. Gabor patches were scaled for size and processing time to produce equal performance across the visual field under single-task conditions, thus removing the confound of eccentricity-dependent differences in visual sensitivity. The results showed that although both foveal and auditory loads reduced Gabor orientation sensitivity, only the foveal load interacted with retinal eccentricity to produce tunnel vision, clearly demonstrating task-specific changes to the form of the UFOV. This has theoretical implications for understanding the UFOV.

  16. Automatic Processing of Chinese GF-1 Wide Field of View Images

    Science.gov (United States)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  17. Parallax error in long-axial field-of-view PET scanners—a simulation study

    Science.gov (United States)

    Schmall, Jeffrey P.; Karp, Joel S.; Werner, Matt; Surti, Suleman

    2016-07-01

    There is a growing interest in the design and construction of a PET scanner with a very long axial extent. One critical design challenge is the impact of the long axial extent on the scanner spatial resolution properties. In this work, we characterize the effect of parallax error in PET system designs having an axial field-of-view (FOV) of 198 cm (total-body PET scanner) using fully-3D Monte Carlo simulations. Two different scintillation materials were studied: LSO and LaBr3. The crystal size in both cases was 4  ×  4  ×  20 mm3. Several different depth-of-interaction (DOI) encoding techniques were investigated to characterize the improvement in spatial resolution when using a DOI capable detector. To measure spatial resolution we simulated point sources in a warm background in the center of the imaging FOV, where the effects of axial parallax are largest, and at several positions radially offset from the center. Using a line-of-response based ordered-subset expectation maximization reconstruction algorithm we found that the axial resolution in an LSO scanner degrades from 4.8 mm to 5.7 mm (full width at half max) at the center of the imaging FOV when extending the axial acceptance angle (α) from  ±12° (corresponding to an axial FOV of 18 cm) to the maximum of  ±67°—a similar result was obtained with LaBr3, in which the axial resolution degraded from 5.3 mm to 6.1 mm. For comparison we also measured the degradation due to radial parallax error in the transverse imaging FOV; the transverse resolution, averaging radial and tangential directions, of an LSO scanner was degraded from 4.9 mm to 7.7 mm, for a measurement at the center of the scanner compared to a measurement with a radial offset of 23 cm. Simulations of a DOI detector design improved the spatial resolution in all dimensions. The axial resolution in the LSO-based scanner, with α  =  ± 67°, was improved from 5.7 mm to 5.0 mm by

  18. Risk of small field of view in lumbar spine computed tomography for assumed lumbar disc herniation: beware contained aortic aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Marsman, J.W.P. [Gooi-Noord Hospital, Blaricum (Netherlands). Dept. of Radiology

    1995-05-01

    Among several other atypical clinical presentations, back and leg pain may ensue from a contained ruptured abdominal aortic aneurysm. The present case concerns a patient whose back and leg pain were primarily thought to be orthopaedic or neurologic in origin. Computed tomography with small field of view, performed for the detection of a possible lumbar disc herniation, only partially showed a paraspinal soft tissue mass. Subsequently, recognition of this mass as a contained ruptured aortic aneurysm was delayed. The literature is reviewed concerning comparable cases and it is concluded that computed tomograms performed for possible lumbar disc herniation should also be screened for paraspinal disease and consequently, the applied field of view should be large enough to include at least the paraspinal psoas regions. 25 refs., 1 tab., 2 figs.

  19. Initial feasibility testing of limited field of view magnetic resonance thermometry using a local cardiac radiofrequency coil.

    Science.gov (United States)

    Volland, Nelly A; Kholmovski, Eugene G; Parker, Dennis L; Hadley, J Rock

    2013-10-01

    The visualization of lesion formation in real time is one potential benefit of carrying out radiofrequency ablation under magnetic resonance (MR) guidance in the treatment of atrial fibrillation. MR thermometry has the potential to detect such lesions. However, performing MR thermometry during cardiac radiofrequency ablation requires high temporal and spatial resolution and a high signal-to-noise ratio. In this study, a local MR coil (2-cm diameter) was developed to investigate the feasibility of performing limited field of view MR thermometry with high accuracy and speed. The local MR coil allowed high-resolution (1 × 1 × 3 mm(3)) image acquisitions in 76.3 ms with a field of view 64 × 32 mm(2) during an open-chest animal experiment. This represents a 4-fold image acquisition acceleration and an 18-fold field of view reduction compared to that achieved using external MR coils. The signal sensitivity achieved using the local coil was over 20 times greater than that achievable using external coils with the same scan parameters. The local coil configuration provided fewer artifacts and sharper and more stable images. These results demonstrate that MR thermometry can be performed in the heart wall and that lesion formation can be observed during radiofrequency ablation procedures in a canine model. Copyright © 2012 Wiley Periodicals, Inc.

  20. Monte-Carlo scatter correction for cone-beam computed tomography with limited scan field-of-view

    Science.gov (United States)

    Bertram, Matthias; Sattel, Timo; Hohmann, Steffen; Wiegert, Jens

    2008-03-01

    In flat detector cone-beam computed tomography (CBCT), scattered radiation is a major source of image degradation, making accurate a posteriori scatter correction inevitable. A potential solution to this problem is provided by computerized scatter correction based on Monte-Carlo simulations. Using this technique, the detected distributions of X-ray scatter are estimated for various viewing directions using Monte-Carlo simulations of an intermediate reconstruction. However, as a major drawback, for standard CBCT geometries and with standard size flat detectors such as mounted on interventional C-arms, the scan field of view is too small to accommodate the human body without lateral truncations, and thus this technique cannot be readily applied. In this work, we present a novel method for constructing a model of the object in a laterally and possibly also axially extended field of view, which enables meaningful application of Monte-Carlo based scatter correction even in case of heavy truncations. Evaluation is based on simulations of a clinical CT data set of a human abdomen, which strongly exceeds the field of view of the simulated C-arm based CBCT imaging geometry. By using the proposed methodology, almost complete removal of scatter-caused inhomogeneities is demonstrated in reconstructed images.

  1. The relationship of GIMMS AVHRR NDVI, MODIS NDVI, SPOT NDVI and SeaWiFS NDVI for phenological analysis

    Science.gov (United States)

    Chai, J.; de Beurs, K.

    2010-12-01

    Normalized Difference Vegetation Index (NDVI) products derived from the NOAA AVHRR, MODIS, SPOT and SeaWiFS sensors are commonly used for Land Surface Phenology (LSP) analysis. NDVI data can be used to track green vegetation growth stages (emergence, growth, maturity, and harvest), which in turn can help us better monitor the impacts of climate change. However, NDVI products from different instruments vary in spatial resolution, temporal coverage and spectral range. As a result, multi-sensor NDVI products are rarely used in a single phenological study. Most studies that compare NDVI data with the object of extending available records, developed cross sensor translation equations. Instead, in this work, we aim to compare multi-sensor NDVI data by using phenological models. To understand the relationship of LSP derived measurements based on different NDVI datasets, we test two hypotheses: 1)Although there is dissimilarity in data construction, LSP measurements retrieved from NDVI time series from different sensors follow linear relationships if compared by eco-region. To prove this, we compared the Start of Season (SOS) and End of Season (EOS) as extracted from different sensors within the EPA eco-region framework and found that the LSP measurements follow a linear relationship. 2) A phenologically fitted geographic framework could better reflect the similarities among data sources in multi-sensor NDVI comparisons. We found that the EPA eco-region framework appropriately represents the distribution of SOS and EOS in selected areas but that modification of the currently existed eco-region and pheno-region systems could aid future multi-sensor NDVI LSP studies. Comparison and verification are carried out based on different phenological models (SOS, EOS and peak timing).

  2. [Methods for Reducing Laser Speckles to Achieve Even Illumination of the Microscope Field of View in Biophysical Studies].

    Science.gov (United States)

    Barsky, V E; Lysov, Yu P; Yegorov, E E; Yurasov, D A; Mamaev, D D; Yurasov, R A; Cherepanov, A V; Chudinov, A V; Smoldovskaya, O V; Arefieva, A S; Rubina, A Yu; Zasedatelev, A S

    2015-01-01

    The aim of this work was to compare different speckle reduction techniques. It was shown that the use of devices based on liquid crystals only leads to partial reduction of speckle contrast. In quantitative luminescent microscopy an application of the mechanical devices when a laser beam is spread within the field of view turned out to be more efficient. Laser speckle noise was virtually eliminated with the developed and manufactured mechanical device comprising a fiber optic ring light guide and the vibrator that permits movement of optical fiber ends towards the laser diode during measurements. The method developed for the analysis of microarrays was successfully applied to the problem of speckle reduction.

  3. Photoacoustic tomography with a high lateral resolution and a large field of view using a rectangular focused ultrasound transducer

    Science.gov (United States)

    Zhang, Shangyu; Cheng, Renxiang; Tao, Chao; Liu, Xiaojun

    2016-04-01

    The enlargement of the field of view (FOV) of a photoacoustic (PA) tomography (PAT) system and the improvement of its lateral resolution are often two conflicting goals. A rectangular focused transducer is proposed to solve this problem. An asymmetric geometry of the transducer results in its asymmetric characteristics of the ultrasound (US) field. Both simulation and experiments confirm that the rectangular focused transducer can improve the FOV and lateral resolution of PAT systems simultaneously. The US transducer proposed in this study has the potential to improve the performance of a PAT system for practical biomedical applications.

  4. Development of a multiple-field-of-view multiple-scattering polarization lidar: comparison with cloud radar.

    Science.gov (United States)

    Okamoto, Hajime; Sato, Kaori; Nishizawa, Tomoaki; Sugimoto, Nobuo; Makino, Toshiyuki; Jin, Yoshitaka; Shimizu, Atsushi; Takano, Toshiaki; Fujikawa, Masahiro

    2016-12-26

    We developed a multiple-field-of-view multiple-scattering polarization lidar (MFMSPL) to study the microphysics of optically thick clouds. Designed to measure enhanced backscattering and depolarization ratio comparable to space-borne lidar, the system consists of four sets of parallel and perpendicular channels mounted with different zenith angles. Depolarization ratios from water clouds were large as observed by MFMSPL compared to those observed by conventional lidar. Cloud top heights and depolarization ratios tended to be larger for outer MFMSPL channels than for vertically pointing channels. Co-located 95 GHz cloud radar and MFMSPL observations showed reasonable agreement at the observed cloud top height.

  5. Asymmetric masks for large field-of-view and high-energy X-ray phase contrast imaging

    Science.gov (United States)

    Endrizzi, M.; Astolfo, A.; Price, B.; Haig, I.; Olivo, A.

    2016-12-01

    We report on a large field of view, laboratory-based X-ray phase-contrast imaging setup. The method is based upon the asymmetric mask design that enables the retrieval of the absorption, refraction and scattering properties of the sample without the need to move any component of the imaging system. This can be thought of as a periodic repetition of a group of three (or more) apertures arranged in such a way that each laminar beam, defined by the apertures, produces a different illumination level when analysed with a standard periodic set of apertures. The sample is scanned through the imaging system, also removing possible aliasing problems that might arise from partial sample illumination when using the edge illumination technique. This approach preserves the incoherence and achromatic properties of edge illumination, removes the problems related to aliasing and it naturally adapts to those situations in clinical, industrial and security imaging where the image is acquired by scanning the sample relative to the imaging system. These concepts were implemented for a large field-of-view set of masks (20 cm × 1.5 cm and 15 cm × 1.2 cm), designed to work with a tungsten anode X-ray source operated up to 80-100 kVp, from which preliminary experimental results are presented.

  6. The inter-relationship between magnification, field of view and contrast reserve: the effect on reading performance.

    Science.gov (United States)

    Mohammed, Z; Dickinson, C M

    2000-11-01

    For the reading task, contrast reserve is defined as the ratio of the letter contrast of the printed letters, to the reader's contrast threshold. Acuity reserve is the ratio of the print size used for the reading task, to the reader's visual acuity. The effects of low contrast reserve on reading performance were investigated at various magnifications, ranging from 3x to 7.5x, with the field of view systematically controlled. Eye movements were recorded whilst normally sighted subjects read using the magnifiers. It was shown that with adequate contrast reserve, increasing the field of view improved the reading rate because of the resulting increase in forward saccade length. Conversely, reducing the contrast reserve slowed the reading rate by decreasing the length of forward saccades and increasing the mean fixation duration, suggesting that the perceptual span is reduced at low contrast reserve. This study also shows that when the contrast reserve is low, providing magnification higher than that required for letter recognition (that is, increasing the acuity reserve) will not improve the reading performance. Furthermore, even when the contrast reserve was high, reading rates were lower for the magnifications of 5x and higher, because increases in saccade length do not match those of the retinal image size at these magnifications.

  7. Monte-Carlo simulation of pinhole collimator of a small field of view gamma camera for small animal imaging

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; MA Wenyan; ZHU Yufeng; MA Hongguang; WU Yuelei; HU Huasi; ZHANG Boping; HUO Yonggang; LIU Silu; JIAN Bin; WANG Zhaomin

    2009-01-01

    Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collimator must keep a compromise between spatial resolution and sensitivity.In order to design a pinhole collimator with an optimized sensitivity and spatial resolution,the spatial resolution and the geometric sensitivity response as a function of the source to collimator distance has been obtained by means of Monte-Carlo simulation for a small field of view gamma camera with a pinhole collimator of various-hole diameters.The results show that the camera with pinhole of 1 mm,1.5 mm and 2 mm diameter has respectively spatial resolution of 1.5 mm,2.25 mm and 3 mm and geometric sensitivity of 0.016%,0.022% and 0.036%,while the source to collimator distance is 3 cm.We chose the pinhole collimator with hole diameter size of 1.2 mm for our the gamma camera designed based on the wade-off between sensitivity and resolution.

  8. Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR

    CERN Document Server

    Tasse, C; van Zwieten, J; van Diepen, Ger; Bhatnagar, S

    2012-01-01

    The aimed high sensitivities and large fields of view of the new generation of interferometers impose to reach high dynamic range of order $\\sim$1:$10^6$ to 1:$10^8$ in the case of the Square Kilometer Array. The main problem is the calibration and correction of the Direction Dependent Effects (DDE) that can affect the electro-magnetic field (antenna beams, ionosphere, Faraday rotation, etc.). As shown earlier the A-Projection is a fast and accurate algorithm that can potentially correct for any given DDE in the imaging step. With its very wide field of view, low operating frequency ($\\sim30-250$ MHz), long baselines, and complex station-dependent beam patterns, the Low Frequency Array (LOFAR) is certainly the most complex SKA precursor. In this paper we present a few implementations of A-Projection applied to LOFAR that can deal with non-unitary station beams and non-diagonal Mueller matrices. The algorithm is designed to correct for all the DDE, including individual antenna, projection of the dipoles on the...

  9. Tiling strategies for optical follow-up of gravitational wave triggers by wide field of view telescopes

    CERN Document Server

    Ghosh, Shaon; Nelemans, Gijs; Groot, Paul J; Price, Larry R

    2015-01-01

    The advanced LIGO and Virgo detectors scheduled to come online in the next two years will open up the much anticipated era of gravitational wave astronomy. Among the strongest contenders for the first detection are merging binary neutron stars, a fraction of which are also expected to produce observable electromagnetic signals in coincidence with the gravitational wave events. In this paper we investigate the strategy of using gravitational wave sky-localizations that we can expect to see in the first two years of the advanced detector era, to look for electromagnetic counterparts using wide field of view optical telescopes. The key to efficient observation of the gravitational wave sky-localizations is to obtain the optimal discretized approximation of the sky-localizations, where the coarseness of the discretization will depend on the field of view of the telescope. We examine various strategies of scanning these sky-localizations and propose the ranked-tiling strategy that we found to be the most effective...

  10. Normal CT morphology of the adrenal gland; Evaluation with thin-slice CT using a small field of view

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Eriko (Tokyo Women' s Medical Coll. (Japan))

    1993-11-01

    This study was performed to determine the normal morphology and dimensions of the adrenal gland by studying 111 normal individuals using thin-slice CT with a small field of view. All the adrenal glands were well demonstrated and the medial and lateral limbs were recognized in 95.4% of the right adrenal glands. The outer border of the gland was generally straight or concave, although the caudal surface was convex in 25% of right and 50% of left adrenal glands. The height, thickness, and width of the gland were measured at multiple levels on both sides, and the results were compared with those for atrophic glands (21 Cushing's syndrome patients) and hypertrophic glands (8 patients). Multivariate analysis showed that the best features distinguishing between normal and atrophy were the height at the midpoint on the left side and the thickness of the ridge on the right side. Normal and hypertrophic glands could be distinguished by the thickness of the median limb at its upper portion and lower portion on the right side. On the left side, the thickness at the upper portion, the thickness of the ridge, and that of the median limb at its midpoint were the distinguishing features. It was concluded that thin-slice CT using a small field of view can accurately assess adrenal morphology and thus is useful for evaluating atrophy and hypertrophy. (author).

  11. Field-of-view characteristics and resolution matching for the Global Precipitation Measurement (GPM) Microwave Imager (GMI)

    Science.gov (United States)

    Petty, Grant W.; Bennartz, Ralf

    2017-03-01

    Representative parameters of the scan geometry are empirically determined for the Global Precipitation Measurement (GPM) Microwave Imager (GMI). Effective fields of view (EFOVs) are computed for the GMI's 13 channels, taking into account the blurring effect of the measurement interval on the instantaneous fields of view (IFOVs). Using a Backus-Gilbert procedure, coefficients are derived that yield an approximate spatial match between synthetic EFOVs of different channels, using the 18.7 GHz channels as a target and with due consideration of the tradeoff between the quality of the fit and noise amplification and edge effects. Modest improvement in resolution is achieved for the 10.65 GHz channels, albeit with slight ringing in the vicinity of coastlines and other sharp brightness temperature gradients. For all other channels, resolution is coarsened to approximate the 18.7 GHz EFOV. It is shown that the resolution matching procedure reduces nonlinear correlations between channels in the presence of coastlines as well as enables the more efficient separation of large brightness temperature variations due to coastlines from the much smaller variations due to other geophysical variables. As a byproduct of this work, we report accurate EFOV resolutions as well as a self-consistent set of parameters for modeling the scan geometry of the GMI.

  12. SeaWiFS ocean color products and services at the NASA Goddard Distributed Active Archive Center (DAAC)

    Science.gov (United States)

    Farr, Rebecca A.; Kartan, Ravi; Li, Angela W.; Simmon, Robert B.

    1997-02-01

    SeaWiFS ocean color data will be archived at the Goddard DAAC in early 1997. The Goddard DAAC has been designated the primary archive for all SeaWiFS data. Almost all authorized SeaWiFS users will access SeaWiFS data via the Goddard DAAC Ocean Color Data and Resources web page. New interfaces and services are being developed by the Goddard DAAC Ocean Color Data Support Team on the Ocean Color website to support the SeaWiFS community following launch: A new SeaWiFS WWW Browser will allow users to browse and order SeaWiFS data via the Web. This Browser will incorporate all necessary elements for SeaWiFS data ordering, including password controls, subsetting, coincident search and visual browse. Users will also find SeaWiFS ancillary data, software routines, SeaWiFS data products specification, an order form for the SeaWIFS Technical Memoranda, as well as direct links to the 'Dear Colleague' letter and other documents and software on the SeaWiFS Project homepage. Other ocean color products available at he Goddard DAAC Ocean Color website include the following: New HDF versions of CZCS data files, including browse images and collection of regridded global composites designed for interdisciplinary study. New CZCS read and visualization software are available. A bibliography of ocean color research papers, several previously rare hardcopy documents, and a periodic ocean color newsletter are also available via the Web. The website also contains a collection of several new educational resources for ocean color educators and students. Being the main source of SeaWiFS data and consolidating ocean color data, documents, software, and points of contact form several other sources all at one convenient location, the Goddard DAAC hopes to become an important nexus for the entire global ocean color community. The Ocean Color Data and Resources webpage can be found at http://daac.gsfc.nasa.gov under 'ocean color'. Contact the Goddard DAAC Ocean Color Data Support Team about

  13. Lobster (Panulirus argus captures and their relation with environmental variables obtained by orbital sensors for Cuban waters (1997-2005

    Directory of Open Access Journals (Sweden)

    Regla Duthit Somoza

    2008-09-01

    Full Text Available Chlorophyll concentrations (Chl a data obtained from the Sea Viewing Wide Field of View Sensor (SeaWIFS ocean color monthly images, Sea Surface Temperature (SST pathfinder data obtained from the Advanced Very High Resolution Radiometer (AVHRR sensors, and lobster (Panulirus argus captures at the Cuban shelf were examined in order to analyze their spatial and temporal variability. A cross-correlation analysis was made between the standardized anomalies of the environmental variables (Chl a and SST and the standardized anomalies of lobster captures for each fishery zones for the period between 1997 and 2005. For the deep waters adjacent to the fishing zones it was not observed a clear Chl a seasonality and on average the lowest values occurred south of the Island. It is with the three years lag that Chl a had the greatest numbers of significant correlation coefficients for almost all fishing zones. However, the cross-correlation coefficients with SST showed higher values with 1,5 year lag at all zones. Since the two environmental variables obtained by satellite sensors (SST and Chl a influence the lobsters mainly during the planktonic life cycle, the cross-correlation with lobster captures begin to show significant indexes with lags of 1.5 years or more.Dados de captura da lagosta Panulirus argus na plataforma cubana foram comparados com concentrações de clorofila (Chl a e valores de Temperatura de Superfície do Mar (TSM obtidos pelos sensores Sea Viewing Wide Field of view Sensor (SeaWIFS e Advanced Very High Resolution Radiometer (AVHRR, respectivamente. Uma análise de correlação cruzada foi realizada entre as anomalias padronizadas das variáveis ambientais (Chl a e TSM e as anomalias padronizadas de capturas da lagosta para cada zona de pesca no período 1997-2005. Para as águas profundas adjacentes às zonas de pesca não foi observada uma sazonalidade evidente da Chl a. De forma geral, os menores valores de Chl a ocorreram ao sul da

  14. Design of freeform imaging systems with linear field-of-view using a construction and iteration process.

    Science.gov (United States)

    Yang, Tong; Zhu, Jun; Jin, Guofan

    2014-02-10

    In this paper, a design method based on a construction and iteration process is proposed for designing freeform imaging systems with linear field-of-view (FOV). The surface contours of the desired freeform surfaces in the tangential plane are firstly designed to control the tangential rays of multiple field angles and different pupil coordinates. Then, the image quality is improved with an iterative process. The design result can be taken as a good starting point for further optimization. A freeform off-axis scanning system is designed as an example of the proposed method. The convergence ability of the construction and iteration process to design a freeform system from initial planes is validated. The MTF of the design result is close to the diffraction limit and the scanning error is less than 1 μm. This result proves that good image quality and scanning linearity were achieved.

  15. Reduced field-of-view excitation using second-order gradients and spatial-spectral radiofrequency pulses.

    Science.gov (United States)

    Ma, Chao; Xu, Dan; King, Kevin F; Liang, Zhi-Pei

    2013-02-01

    The performance of multidimensional spatially selective radiofrequency (RF) pulses is often limited by their long duration. In this article, high-order, nonlinear gradients are exploited to reduce multidimensional RF pulse length. Specifically, by leveraging the multidimensional spatial dependence of second-order gradients, a two-dimensional spatial-spectral RF pulse is designed to achieve three-dimensional spatial selectivity, i.e., to excite a circular region-of-interest in a thin slice for reduced field-of-view imaging. Compared to conventional methods that use three-dimensional RF pulses and linear gradients, the proposed method requires only two-dimensional RF pulses, and thus can significantly shorten the RF pulses and/or improve excitation accuracy. The proposed method has been validated through Bloch equation simulations and phantom experiments on a commercial 3.0T MRI scanner.

  16. Real-time in vitro Fourier ptychographic microscopy for high resolution wide field of view phase imaging

    CERN Document Server

    Tian, Lei; Yeh, Li-Hao; Chen, Michael; Waller, Laura

    2015-01-01

    For centuries, microscopes have had to trade field of view (FOV) for resolution. Recently, a new computational imaging technique, termed Fourier ptychographic microscopy (FPM), circumvents this limit in order to capture gigapixel-scale images having both wide FOV and high resolution. FPM has enormous potential for revolutionizing biomedical microscopy; however, it has until now been limited to fixed samples, since acquisition time is on the order of minutes. Live biological samples are continuously evolving on multiple spatial and temporal scales, which can cause motion blur. Here, we present a Fast FPM method to achieve sub-second capture times for FPM results with 0.8 NA resolution across a 4x objective's FOV. We demonstrate the first FPM quantitative phase results for both growing and confluent in vitro cell cultures. Experiments capture real-time videos of HeLa and human mammary epithelial (MCF10A) cell division and migration and subcellular dynamical phenomena in adult rat neural stem cells.

  17. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

    Science.gov (United States)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles

    2016-09-01

    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  18. Fluorescent imaging over an ultra-large field-of-view of 532 cm2 using a flatbed scanner

    Science.gov (United States)

    Göröcs, Zoltán. S.; Ling, Yuye; Yu, Meng D.; Karahalios, Dimitri; Mogharabi, Kian; Lu, Kenny; Wei, Qingshan; Ozcan, Aydogan

    2014-03-01

    We introduce a fluorescent imaging method that is capable of detecting fluorescent micro-particles over an ultra-wide field of view of 19 cm × 28 cm using a modified flatbed scanner. We added a custom-designed absorbing emission filter, a computer controlled two dimensional LED array, and modified the driver of the scanner to maximize the sensitivity, exposure time, and gain for fluorescent detection of micro-objects. This high-throughput fluorescent imaging device used in conjunction with a microfluidic sample holder enables rapid screening of fluorescent micro-objects inside more than 2.2mL of optically dense media (i.e., whole blood) within 5 minutes. The device is sensitive enough to detect fluorescently labeled cells, and generates images that have an effective pixel count of 2.2 Giga-pixels.

  19. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion.

    Science.gov (United States)

    Bian, Yinxu; Li, Haifeng; Wang, Yifan; Zheng, Zhenrong; Liu, Xu

    2015-09-20

    This paper presents a distortion correction method for designing a wide field of view (FOV) lens for an imaging system. The lens is composed of two aspheric surfaces and several spheres. In the preliminary design, profiles of the aspheric surfaces can be obtained according to aplanatism, refraction law, and polynomial fitting methods, where the numeric computation, the differential geometry computation, and the polynomial fitting algorithm are stated in detail. Then the lens is optimized by the damped least squares method. Theoretically, this method cannot eliminate aberrations absolutely but can balance some kinds of aberrations to the image well. Furthermore, a projector lens with a wide FOV, low distortion, and low throw ratio [TR = (projection distance)/(image diagonal size)] is designed successfully by this method.

  20. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    Science.gov (United States)

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  1. Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR

    Science.gov (United States)

    Tasse, C.; van der Tol, S.; van Zwieten, J.; van Diepen, G.; Bhatnagar, S.

    2013-05-01

    The required high sensitivities and large fields of view of the new generation of radio interferometers impose high dynamic ranges, e.g., ~1:106 to 1:108 for the Square Kilometre Array (SKA). The main problem for achieving these high ranges is the calibration and correction of direction dependent effects (DDE) that can affect the electro-magnetic field (antenna beams, ionosphere, Faraday rotation, etc.). It has already been shown that the A-Projection is a fast and accurate algorithm that can potentially correct for any given DDE in the imaging step. With its very wide field of view, low operating frequency (~30-250 MHz), long baselines, and complex station-dependent beam patterns, the LOw Frequency ARray (LOFAR) is certainly the most complex SKA pathfinder instrument. In this paper we present a few implementations of the A-Projection in LOFAR which can deal nondiagonal Mueller matrices. The algorithm is designed to correct for all DDE, including individual antennas, projection of the dipoles on the sky, beam forming, and ionospheric effects. We describe a few important algorithmic optimizations related to LOFAR's architecture that allowed us to build a fast imager. Based on simulated datasets we show that A-Projection can dramatically improve the dynamic range for both phased array beams and ionospheric effects. However, certain problems associated with the calibration of DDE remain (especially ionospheric effects), and the effect of the algorithm on real LOFAR survey data still needs to be demonstrated. We will be able to use this algorithm to construct the deepest extragalactic surveys, comprising hundreds of days of integration.

  2. Afocal three-mirror anastigmat with zigzag optical axis for widened field of view and enlarged aperture

    Science.gov (United States)

    Li, Qi; Han, Lin; Jin, Yangming; Shen, Weimin

    2016-10-01

    In order to improve the detection accuracy and range of new generation of Forward Looking Infra-Red (FLIR) system for distant targets, its optical system, which usually consists of a fore afocal telescope and rear imaging lenses, is required to has wide spectral range, large entrance pupil aperture, and wide field of view (FOV). In this paper, a new afocal Three-Mirror Anastigmat (TMA) with widened field of view and high demagnification is suggested. Its mechanical structure remains coaxial, but it has zigzag optical axis through properly and slightly decentering and tilting of the three mirrors to avoid its secondary obscuration due to the third mirror as FOV increase. Compared with conventional off-axis TMA, the suggested zigzag-axis TMA is compact, easy-alignment and low-cost. The design method and optimum result of the suggested afocal TMA is presented. Its initial structural parameters are determined with its first-order relationship and primary aberration theory. Slight and proper decentration and tilt of each mirror is leaded in optimization so that its coaxial mechanical structure is held but attainable FOV and demagnification are respectively as wide and as high as possible. As an example, a 5.5-demagnification zigzag-axis afocal TMA with a wavelength range, an entrance pupil diameter, and FOV respectively from 3μm to 12μm, of 320mm, and 2×3.2 degrees and with a real exit pupil, is designed. Its imaging quality is diffraction limited. It is suitable for fore afocal telescope of the so-called third generation FLIR.

  3. Estimation of colored dissolved organic matter and salinity fields in case 2 waters using SeaWiFS: Examples from Florida Bay and Florida Shelf

    Indian Academy of Sciences (India)

    E J D'Sa; C Hu; F E Muller-Karger; K L Carder

    2002-09-01

    Estimates of water quality variables such as chlorophyll concentration (Chl), colored dissolved organic matter (CDOM), or salinity from satellite sensors are of great interest to resource managers monitoring coastal regions such as the Florida Bay and the Florida Shelf. However, accurate stimates of these variables using standard ocean color algorithms have been di#cult due to the complex nature of the light field in these environments. In this study, we process SeaWiFS satellite data using two recently developed algorithms; one for atmospheric correction and the other a semi-analytic bio-optical algorithm and compare the results with standard SeaWiFS algorithms. Overall, the two algorithms produced more realistic estimates of Chl and CDOM distributions in Florida Shelf and Bay waters. Estimates of surface salinity were obtained from the CDOM absorption field assuming a conservative mixing behavior of these waters. A comparison of SeaWiFS-derived Chl and CDOM absorption with field measurements in the Florida Bay indicated that although well correlated, CDOM was underestimated, while Chl was overestimated. Bottom reflectance appeared to affect these estimates at the shallow central Bay stations during the winter. These results demonstrate the need for new bio-optical algorithms or tuning of the parameters used in the bio-optical algorithm for local conditions encountered in the Bay.

  4. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  5. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  6. Is visual selective attention in deaf individuals enhanced or deficient? The case of the useful field of view.

    Directory of Open Access Journals (Sweden)

    Matthew W G Dye

    Full Text Available BACKGROUND: Early deafness leads to enhanced attention in the visual periphery. Yet, whether this enhancement confers advantages in everyday life remains unknown, as deaf individuals have been shown to be more distracted by irrelevant information in the periphery than their hearing peers. Here, we show that, in a complex attentional task, a performance advantage results for deaf individuals. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Useful Field of View (UFOV which requires central target identification concurrent with peripheral target localization in the presence of distractors - a divided, selective attention task. First, the comparison of deaf and hearing adults with or without sign language skills establishes that deafness and not sign language use drives UFOV enhancement. Second, UFOV performance was enhanced in deaf children, but only after 11 years of age. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that, following early auditory deprivation, visual attention resources toward the periphery slowly get augmented to eventually result in a clear behavioral advantage by pre-adolescence on a selective visual attention task.

  7. Predicting Motor Vehicle Collisions in a Driving Simulator in Young Adults Using the Useful Field of View Assessment

    Science.gov (United States)

    McManus, Benjamin; Cox, Molly K.; Vance, David E.; Stavrinos, Despina

    2015-01-01

    Objective Being involved in motor vehicle collisions is the leading cause of death in 1 to 34 year olds, and risk is particularly high in young adults. The Useful Field of View (UFOV) task, a cognitive measure of processing speed, divided attention, and selective attention, has been shown to be predictive of motor vehicle collisions in older adults, but its use as a predictor of driving performance in a young adult population has not been investigated. The present study examined whether UFOV was a predictive measure of motor vehicle collisions in a driving simulator in a young adult population. Method The 3-subtest version of UFOV (lower scores measured in milliseconds indicate better performance) was administered to 60 college students. Participants also completed an 11-mile simulated drive to provide driving performance metrics. Results Findings suggested that subtests 1 and 2 suffered from a ceiling effect. UFOV subtest 3 significantly predicted collisions in the simulated drive. Each 30 milliseconds slower on the subtest was associated with nearly a 10% increase in the risk of a simulated collision. Post-hoc analyses revealed a small partially mediating effect of subtest 3 on the relationship between driving experience and collisions. Conclusion The selective attention component of UFOV subtest 3 may be a predictive measure of crash involvement in a young adult population. Improvements in selective attention may be the underlying mechanism in how driving experience improves driving performance. PMID:25794266

  8. Ground and aircraft lidar measurements of sea salt and dust plumes with a small wide-field-of-view system

    Science.gov (United States)

    Porter, John N.

    2004-12-01

    A small portable lidar system was recently used to derive aerosol optical concentrations from ground and aircraft platforms. The mini lidar uses a telescope setup with a relatively wide field of view allowing for measurements from close in (~60 m range) with no near field correction. In order to account for the large dynamic range, a custom logarithmic amplifier is used. Lidar measurements have been made in Hawaii and examples will be shown. More recently the Lidar was mounted on an aircraft for an experiment in the United Arab Emirates. In this case, the Lidar system was used to looking up, forward and down. The Lidar measurements looking up and down provided vertical profiles of aerosol concentrations. The lidar looking forward were used to derive quantitative aerosol extinction values using an existing and a new approach. Preliminary examples of this UAE data are shown. Being able to model aerosol phase functions is important for both satellite and Lidar aerosol retrievals. Mie theory is adequate for spherical particles but complex aerosols such as dust and organics are more difficult to model. Here we discuss phase function measurements we have made with our ground based polar nephelometer for sea salt and more recently for dust in the United Arab Emirates.

  9. Intraoperative Scintigraphy Using a Large Field-of-View Portable Gamma Camera for Primary Hyperparathyroidism: Initial Experience

    Directory of Open Access Journals (Sweden)

    Nathan C. Hall

    2015-01-01

    Full Text Available Background. We investigated a novel technique, intraoperative 99 mTc-Sestamibi (MIBI imaging (neck and excised specimen (ES, using a large field-of-view portable gamma camera (LFOVGC, for expediting confirmation of MIBI-avid parathyroid adenoma removal. Methods. Twenty patients with MIBI-avid parathyroid adenomas were preoperatively administered MIBI and intraoperatively imaged prior to incision (neck and immediately following resection (neck and/or ES. Preoperative and intraoperative serum parathyroid hormone monitoring (IOPTH and pathology (path were also performed. Results. MIBI neck activity was absent and specimen activity was present in 13/20 with imaging after initial ES removal. In the remaining 7/20 cases, residual neck activity and/or absent ES activity prompted excision of additional tissue, ultimately leading to complete hyperfunctioning tissue excision. Postexcision LFOVGC ES imaging confirmed parathyroid adenoma resection 100% when postresection imaging qualitatively had activity (ES and/or no activity (neck. The mean ± SEM time saving using intraoperative LFOVGC data to confirm resection versus first IOPTH or path result would have been 22.0 ± 2 minutes (specimen imaging and 26.0 ± 3 minutes (neck imaging. Conclusion. Utilization of a novel real-time intraoperative LFOVGC imaging approach can provide confirmation of MIBI-avid parathyroid adenoma removal appreciably faster than IOPTH and/or path and may provide a valuable adjunct to parathyroid surgery.

  10. A future wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2017-01-01

    High-energy gamma-ray observations are an essential probe of cosmic-ray acceleration. Detection of the highest energies and the shortest timescales of variability are key motivations when designing the next generation of gamma-ray experiments. The Milagro experiment was the first-generation of gamma-ray detectors based on the water-Cherenkov technique, and demonstrated that it is possible to continuously monitor a large fraction of the TeV sky. The second-generation water-Cherenkov experiment, the High Altitude Water Cherenkov observatory, consists of an array of 300 water-Cherenkov detectors covering an area of 22,000 m2 at 4,100 m a.s.l. The larger effective area, the higher altitude, and the optical isolation of the detectors led to a 15-fold increase in sensitivity relative to Milagro. Instruments with a wide field of view and large duty cycle are capable of surveying the TeV sky, mapping the diffuse emission, detecting emission from extended regions, and observing transient events such as gamma ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the preliminary design of a third-generation water-Cherenkov observatory located at very high altitude in South America.

  11. The Kep-Cont Mission: Continuing the observation of high-amplitude variable stars in the Kepler field of view

    CERN Document Server

    Molnár, L; Kolenberg, K; Borkovits, T; Antoci, V; Vida, K; Ngeow, C C; Guzik, J A; Plachy, E; Castanheira, B

    2013-01-01

    As a response to the Kepler white paper call, we propose to keep Kepler pointing to its current field of view and continue observing thousands of large amplitude variables (Cepheid, RR Lyrae and delta Scuti stars among others) with high cadence in the Kep-Cont Mission. The degraded pointing stability will still allow observation of these stars with reasonable (better than millimag) precision. The Kep-Cont mission will allow studying the nonradial modes in Blazhko-modulated and first overtone RR Lyrae stars and will give a better view on the period jitter of the only Kepler Cepheid in the field. With continued continuous observation of the Kepler RR Lyrae sample we may get closer to the origin of the century-old Blazhko problem. Longer time-span may also uncover new dynamical effects like apsidal motion in eclipsing binaries. A continued mission will have the advantage of providing unprecedented, many-years-long homogeneous and continuous photometric data of the same targets. We investigate the pragmatic detai...

  12. Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study

    Science.gov (United States)

    Silbernagel, Karin Gravare; Shelley, Kristen; Powell, Stephen; Varrecchia, Shaun

    2016-01-01

    Summary Background Achilles tendon structural changes are common after injury and correlate with recovery of function. Having simple, inexpensive, yet valid and reliable measures of Achilles tendon structure are useful both in research and clinical. The purpose of this study was to perform reliability and validity measures of extended field of view (EFOV) ultrasound (US) imaging of the Achilles tendon. Methods eight cadavers (16 tendons) were used for the validation study to compare Achilles tendon length measurements from US images with actual measured length from dissected tendons. Nine healthy subjects (18 tendons) were included in the test-retest evaluation. Results the correlation between the US images and cadaveric measurements was excellent (ICC=0.895) for the length between calcaneus and the gastrocnemius and good (ICC=0.744) for the length between the calcaneus and the soleus. The between-limb reliability was excellent (ICC 0.886–0.940) for the tendon length measurements with standard error of measurements (SEM) of 0.64 cm for calcaneus to soleus and 0.67 cm for calcaneus to gastrocnemius. Between-day test-retest reliability was also excellent (ICC=0.898–0.944). Conclusion this study supports the use of EFOV US imaging as a reliable and valid method to determine Achilles tendon length and thickness, and using the uninjured limb for comparison. PMID:27331037

  13. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    Science.gov (United States)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  14. Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy.

    Science.gov (United States)

    Fahrbach, Florian O; Gurchenkov, Vasily; Alessandri, Kevin; Nassoy, Pierre; Rohrbach, Alexander

    2013-05-06

    One of main challenges in light-sheet microscopy is to design the light-sheet as extended and thin as possible--extended to cover a large field of view, thin to optimize resolution and contrast. However, a decrease of the beam's waist also decreases the illumination beam's depth of field. Here, we introduce a new kind of beam that we call sectioned Bessel beam. These beams can be generated by blocking opposite sections of the beam's angular spectrum. In combination with confocal-line detection the optical sectioning performance of the light-sheet can be decoupled from the depth of field of the illumination beam. By simulations and experiments we demonstrate that these beams exhibit self-reconstruction capabilities and penetration depths into thick scattering media equal to those of conventional Bessel beams. We applied sectioned Bessel beams to illuminate tumor multicellular spheroids and prove the increase in contrast. Sectioned Bessel beams turn out to be highly advantageous for the investigation of large strongly scattering samples in a light-sheet microscope.

  15. Does constraining field of view prevent extraction of geometric cues for humans during virtual-environment reorientation?

    Science.gov (United States)

    Sturz, Bradley R; Kilday, Zachary A; Bodily, Kent D

    2013-10-01

    Environment size has been shown to influence the reliance on local and global geometric cues during reorientation. Unless changes in environment size are produced by manipulating length and width proportionally, changes in environment size are confounded by the amount of the environment that is visible from a single vantage point. Yet, the influence of the amount of the environment that is visible from any single vantage point on the use of local and global geometric cues remains unknown. We manipulated the amount of an environment that was visually available to participants by manipulating field of view (FOV) in a virtual environment orientation task. Two groups of participants were trained in a trapezoid-shaped enclosure to find a location that was uniquely specified by both local and global geometric cues. One group (FOV 50°) had visually less of the environment available to them from any one perspective compared to another group (FOV 100°). Following training, we presented both groups with a control test along with three novel-shaped environments. Testing assessed the use of global geometry in isolation, in alignment with local geometry, or in conflict with local geometry. Results (confirmed by a follow-up experiment) indicated that constraining FOV prevented extraction of geometric properties and relationships of space and resulted in an inability to use either global or local geometric cues for reorientation.

  16. The irradiating field of view of imaging laser radar under fog conditions in a controlled laboratory environment

    Science.gov (United States)

    Song, Wen-Hua; Ghassemlooy, Zabih; Lai, Jian-Cheng; Yan, Wei; Wang, Chun-Yong; Li, Zhen-Hua

    2017-04-01

    This paper theoretically and experimentally investigates the performance of the imaging laser radar (ILR) system under the fog condition. Fog is generated and controlled homogeneously within a dedicated indoor atmospheric chamber. A physical model of the reflected laser pulses due to fog and a standard Lambertian target are developed to determine the width of each echo pulse for different fog concentrations. We show that there is a good agreement between the predicted and measured results for the width of backscattered return pulses. Based on experimental results an empirical model of the horizontal and vertical irradiating field of views (FOVs) of ILR under different visibilities is also developed. Consequently, a new model is proposed to predict the horizontal and vertical irradiating FOVs of ILR by using the width of the backscattered return pulse under different fog conditions. The reported results can be used to dynamically adjust the scanning interval based on the variation of the irradiating FOVs of laser radar and improve the precision of target ranging and imaging.

  17. A design study of a triple field of view 8-12 μm waveband airborne FLIR

    Science.gov (United States)

    Dikici, Atilla

    2011-04-01

    In this work, a design study of a three field-of-view (FOV) optical system for 8-12 μm imaging using a 288×4 focal plane array detector is presented. The detector pixel size is 25 μm×28 μm. The f/# of the detector is 1.76. In order to switch the FOVs, three different optical configurations are superimposed and all three configurations are optimized. The narrow and medium FOV switching is based on movement of the second negative lens of the afocal system, whereas the wide FOV is selected by inserting a mirror between the 4th and 5th lenses of the afocal system. By inserting a switching mirror, the objective part of the first configuration is blocked out; nevertheless the afocal of the wide FOV is activated. The imager part of the layout is common for all FOVs. Diffractive and aspheric surfaces are utilized to control chromatic and all other kinds of aberrations, reducing the total lens number. The final optical designs, together with their modulation transfer function (MTF) plots, are illustrated, exhibiting excellent performance in all three FOVs. More specifically, the paper emphasizes how the displacement of compensating lenses effect the MTF of the system and how automatic movements of the lenses are used to eliminate the defocusing problem under changing environmental conditions.

  18. Persistent observations of the Arctic from highly elliptical orbits using multispectral, wide field of view day-night imagers

    Science.gov (United States)

    Puschell, Jeffery J.; Johnson, David; Miller, Steven

    2014-09-01

    Persistent satellite observations are essential for monitoring and understanding Earth's environmentally sensitive and rapidly changing Arctic region. Compact wide-field-of-view imagers aboard satellites in Highly Elliptical Orbit (HEO) could stare at the Arctic and collect multispectral, high dynamic range visible and near-infrared imagery with sensitivity similar to that of the Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) in sun synchronous polar orbit. These HEO Day/Night Imagers (HDNIs) provide high contrast visible wavelength imagery through the long polar night. Their dynamic range -- extending from the brightest sunlit clouds, ice and snow to reflected moonlight from open water -- enables cloud, ice and sea surface discrimination even under very low light and low thermal contrast conditions. Rapidly refreshed HDNI data results in frequent updates to key environmental products such as cloud imagery and microphysical properties, ice and open water distribution (including real-time maps of where leads are opening and new ice is forming), vector ice motion and vector polar winds from cloud motion. The relatively small size of HDNIs makes them ideal for deployment as a hosted payload or as the primary payload onboard a small satellite.

  19. Use and validation of epithelial recognition and fields of view algorithms on virtual slides to guide TMA construction.

    Science.gov (United States)

    Barsky, Sanford; Gentchev, Lynda; Basu, Amitabha; Jimenez, Rafael; Boussaid, Kamel; Gholap, Abhi

    2009-11-01

    While tissue microarrays (TMAs) are a form of high-throughput screening, they presently still require manual construction and interpretation. Because of predicted increasing demand for TMAs, we investigated whether their construction could be automated. We created both epithelial recognition algorithms (ERAs) and field of view (FOV) algorithms that could analyze virtual slides and select the areas of highest cancer cell density in the tissue block for coring (algorithmic TMA) and compared these to the cores manually selected (manual TMA) from the same tissue blocks. We also constructed TMAs with TMAker, a robot guided by these algorithms (robotic TMA). We compared each of these TMAs to each other. Our imaging algorithms produced a grid of hundreds of FOVs, identified cancer cells in a stroma background and calculated the epithelial percentage (cancer cell density) in each FOV. Those with the highest percentages guided core selection and TMA construction. Algorithmic TMA and robotic TMA were overall approximately 50% greater in cancer cell density compared with Manual TMA. These observations held for breast, colon, and lung cancer TMAs. Our digital image algorithms were effective in automating TMA construction.

  20. A new wide field-of-view confocal imaging system and its applications in drug discovery and pathology

    Science.gov (United States)

    Li, Gang; Damaskinos, Savvas; Dixon, Arthur E.; Lee, Lucy E. J.

    2005-11-01

    Conventional widefield light microscopy and confocal scanning microscopy have been indispensable for pathology and drug discovery research. Clinical specimens from diseased tissues are examined, new drug candidates are tested on drug targets, and the morphological and molecular biological changes of cells and tissues are observed. High throughput screening of drug candidates requires highly efficient screening instruments. A standard biomedical slide is 1 by 3 inches (25.4 by 76.2 mm) in size. A typical tissue specimen is 10 mm in diameter. To form a high resolution image of the entire specimen, a conventional widefield light microscope must acquire a large number of small images of the specimen, and then tile them together, which is tedious, inefficient and error-prone. A patented new wide field-of-view confocal scanning laser imaging system has been developed for tissue imaging, which is capable of imaging an entire microscope slide without tiling. It is capable of operating in brightfield, reflection and epi-fluorescence imaging modes. Three (red, green and blue (RGB)) lasers are used to produce brightfield and reflection images, and to excite various fluorophores. This new confocal system makes examination of large biomedical specimens more efficient, and makes fluorescence examination of large specimens possible for the first time without tiling. Description of the new confocal technology and applications of the imaging system in pathology and drug discovery research, for example, imaging large tissue specimens, tissue microarrays, and zebrafish sections, are reported in this paper.

  1. Study on a prototype of the large dimensional refractive lens for the future large field-of-view IACT

    CERN Document Server

    Chen, T L; Gao, Q; Liu, C; Zhang, Y; Hu, H B; Cai, H; Zhang, X Y; Yang, H Y; Shi, Y; Danzengluobu,; Liu, M Y; Feng, Z Y; Feng, Y L; Guo, Y Q; Gou, Q B; Tian, Z; Xiao, Y X

    2015-01-01

    In gamma ray astronomy, the energy range from sub-100GeV to TeV is crucial due to where there is a gap between space experiments and ground-based ones. In addition, observations in this energy range are expected to provide more details about the high energy emission from GRBs,and thus to understand EBL. Based on the observation results and the related knowledge, scientists may be able to unveil the mysteries of galaxy formation and the evolution of early universe. One of the principal issues for next generation Imaging Atmospheric Cherenkov Telescopes (IACT) is to achieve larger field of view (FoV). In this work, we report a refractive water convex lens as light collector to test the feasibility of a new generation of IACT, and some preliminary test results on the optical properties (the focal length, spot size, transmittance, etc.) of a 0.9 m diameter water lens, the photodetectors and DAQ system of a prototype are presented and discussed.

  2. Field-of-View Requirements for Approach and Landing of V/STOL (Vertical/Short Take-Off and Landing) Aircraft.

    Science.gov (United States)

    1978-08-01

    orthogonal) coordinate of a point of regard in the field of view defined with respect to the point where the aircraft longitudinal body reference...and 1i except that the origin of FOVi , FOVui in the picture plane is where the aircraft longitudinal body reference axis inter- cepts the picture

  3. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    Science.gov (United States)

    Deschamps, P.-Y.; Frouin, R.

    1997-01-01

    The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.

  4. Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors

    Directory of Open Access Journals (Sweden)

    H. Senghor

    2017-07-01

    Full Text Available The impact of desert aerosols on climate, atmospheric processes, and the environment is still debated in the scientific community. The extent of their influence remains to be determined and particularly requires a better understanding of the variability of their distribution. In this work, we studied the variability of these aerosols in western Africa using different types of satellite observations. SeaWiFS (Sea-Viewing Wide Field-of-View Sensor and OMI (Ozone Monitoring Instrument data have been used to characterize the spatial distribution of mineral aerosols from their optical and physical properties over the period 2005–2010. In particular, we focused on the variability of the transition between continental western African and the eastern Atlantic Ocean. Data provided by the lidar scrolling CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization onboard the satellite CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations for the period 2007–2013 were then used to assess the seasonal variability of the vertical distribution of desert aerosols. We first obtained a good representation of aerosol optical depth (AOD and single-scattering albedo (SSA from the satellites SeaWiFS and OMI, respectively, in comparison with AERONET estimates, both above the continent and the ocean. Dust occurrence frequency is higher in spring and boreal summer. In spring, the highest occurrences are located between the surface and 3 km above sea level, while in summer the highest occurrences are between 2 and 5 km altitude. The vertical distribution given by CALIOP also highlights an abrupt change at the coast from spring to fall with a layer of desert aerosols confined in an atmospheric layer uplifted from the surface of the ocean. This uplift of the aerosol layer above the ocean contrasts with the winter season during which mineral aerosols are confined in the atmospheric boundary layer. Radiosondes at Dakar Weather Station (17.5

  5. Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors

    Science.gov (United States)

    Senghor, Habib; Machu, Éric; Hourdin, Frédéric; Thierno Gaye, Amadou

    2017-07-01

    The impact of desert aerosols on climate, atmospheric processes, and the environment is still debated in the scientific community. The extent of their influence remains to be determined and particularly requires a better understanding of the variability of their distribution. In this work, we studied the variability of these aerosols in western Africa using different types of satellite observations. SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) and OMI (Ozone Monitoring Instrument) data have been used to characterize the spatial distribution of mineral aerosols from their optical and physical properties over the period 2005-2010. In particular, we focused on the variability of the transition between continental western African and the eastern Atlantic Ocean. Data provided by the lidar scrolling CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) onboard the satellite CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) for the period 2007-2013 were then used to assess the seasonal variability of the vertical distribution of desert aerosols. We first obtained a good representation of aerosol optical depth (AOD) and single-scattering albedo (SSA) from the satellites SeaWiFS and OMI, respectively, in comparison with AERONET estimates, both above the continent and the ocean. Dust occurrence frequency is higher in spring and boreal summer. In spring, the highest occurrences are located between the surface and 3 km above sea level, while in summer the highest occurrences are between 2 and 5 km altitude. The vertical distribution given by CALIOP also highlights an abrupt change at the coast from spring to fall with a layer of desert aerosols confined in an atmospheric layer uplifted from the surface of the ocean. This uplift of the aerosol layer above the ocean contrasts with the winter season during which mineral aerosols are confined in the atmospheric boundary layer. Radiosondes at Dakar Weather Station (17.5° W, 14.74° N) provide

  6. Large field-of-view and depth-specific cortical microvascular imaging underlies regional differences in ischemic brain

    Science.gov (United States)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    Ability to non-invasively monitor and quantify of blood flow, blood vessel morphology, oxygenation and tissue morphology is important for improved diagnosis, treatment and management of various neurovascular disorders, e.g., stroke. Currently, no imaging technique is available that can satisfactorily extract these parameters from in vivo microcirculatory tissue beds, with large field of view and sufficient resolution at defined depth without any harm to the tissue. In order for more effective therapeutics, we need to determine the area of brain that is damaged but not yet dead after focal ischemia. Here we develop an integrated multi-functional imaging system, in which SDW-LSCI (synchronized dual wavelength laser speckle imaging) is used as a guiding tool for OMAG (optical microangiography) to investigate the fine detail of tissue hemodynamics, such as vessel flow, profile, and flow direction. We determine the utility of the integrated system for serial monitoring afore mentioned parameters in experimental stroke, middle cerebral artery occlusion (MCAO) in mice. For 90 min MCAO, onsite and 24 hours following reperfusion, we use SDW-LSCI to determine distinct flow and oxygenation variations for differentiation of the infarction, peri-infarct, reduced flow and contralateral regions. The blood volumes are quantifiable and distinct in afore mentioned regions. We also demonstrate the behaviors of flow and flow direction in the arterials connected to MCA play important role in the time course of MCAO. These achievements may improve our understanding of vascular involvement under pathologic and physiological conditions, and ultimately facilitate clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases, such as ischemic stroke.

  7. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view

    Energy Technology Data Exchange (ETDEWEB)

    Lofthag-Hansen, Sara, E-mail: sara.lofthag-hansen@vgregion.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Clinic of Oral and Maxillofacial Radiology, Public Dental Health, Gothenburg (Sweden); Thilander-Klang, Anne, E-mail: anne.thilander-klang@vgregion.se [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Groendahl, Kerstin, E-mail: kerstin.grondahl@lj.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Oral and Maxillofacial Radiology, The Institute for Postgraduate Dental Education, Joenkoeping (Sweden)

    2011-11-15

    Aims: To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Materials and methods: Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm x 4 cm) and 3D Accuitomo FPD (FOVs 4 cm x 4 cm and 6 cm x 6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180{sup o} and 360{sup o} were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Results: Intra-observer agreement was good ({kappa}{sub w} = 0.76) and inter-observer agreement moderate ({kappa}{sub w} = 0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm x 4 cm, 6 cm x 6 cm followed by 3 cm x 4 cm. Conclusions: This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180{sup o} gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information.

  8. An enhanced reconstruction algorithm to extend CT scan field-of-view with z-axis consistency constraint.

    Science.gov (United States)

    Li, Baojun; Deng, Junjun; Lonn, Albert H; Hsieh, Jiang

    2012-10-01

    To further improve the image quality, in particularly, to suppress the boundary artifacts, in the extended scan field-of-view (SFOV) reconstruction. To combat projection truncation artifacts and to restore truncated objects outside the SFOV, an algorithm has previously been proposed based on fitting a partial water cylinder at the site of the truncation. Previous studies have shown this algorithm can simultaneously eliminate the truncation artifacts inside the SFOV and preserve the total amount of attenuation, owing to its emphasis on consistency conditions of the total attenuation in the parallel sampling geometry. Unfortunately, the water cylinder fitting parameters of this 2D algorithm are inclined to high noise fluctuation in the projection samples from image to image, causing anatomy boundaries artifacts, especially during helical scans with higher pitch (≥1.0). To suppress the boundary artifacts and further improve the image quality, the authors propose to use a roughness penalty function, based on the Huber regularization function, to reinforce the z-dimensional boundary consistency. Extensive phantom and clinical tests have been conducted to test the accuracy and robustness of the enhanced algorithm. Significant reduction in the boundary artifacts is observed in both phantom and clinical cases with the enhanced algorithm. The proposed algorithm also reduces the percent difference error between the horizontal and vertical diameters to well below 1%. It is also noticeable that the algorithm has improved CT number uniformity outside the SFOV compared to the original algorithm. The proposed algorithm is capable of suppressing boundary artifacts and improving the CT number uniformity outside the SFOV.

  9. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  10. Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views.

    Science.gov (United States)

    Codari, Marina; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Haiter Neto, Francisco; Jacobs, Reinhilde

    2017-04-22

    To objectively compare the influence of different cone-beam computed tomography (CBCT) devices, high-density materials and field of views (FOVs) on metal artifact expression. For this in vitro study, three customized acrylic resin phantoms containing high-density materials cylinders: titanium, copper-aluminum alloy and amalgam were scanned on three CBCT devices using high-resolution protocols, same voxel size (0.2 mm) and different FOVs. After fully automatic segmentation and image registration, the same region of interest was defined for the small and medium FOVs. The difference between the segmented and the real volume of the metal cylinders was assessed. Moreover for each segmented slice, the area difference between the segmented and the real axial section was determined. The artifacts on the background were measured as normalizing standard deviation of voxel values in the vicinity of the cylinder, in three different distances. Considerable differences were observed in volume measurements for all CBCTs devices and materials for both FOV sizes (up to 67%). The slice per slice area analysis indicated higher artifacts at the edges of the metal cylinder. Within the materials, amalgam and titanium had, respectively, the worst and best artifact expression in all the CBCT devices. Standard deviation values varied differently between the three distances in each device. Our in vitro study showed that different CBCT devices, high-density materials and FOV should be considered while evaluating CBCT images. More carefully, diagnosis conclusions should be drawn in images containing amalgam and copper-aluminum alloy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view.

    Science.gov (United States)

    Lofthag-Hansen, Sara; Thilander-Klang, Anne; Gröndahl, Kerstin

    2011-11-01

    To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm×4 cm) and 3D Accuitomo FPD (FOVs 4 cm×4 cm and 6 cm×6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180° and 360° were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Intra-observer agreement was good (κw=0.76) and inter-observer agreement moderate (κw=0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm×4 cm, 6 cm×6 cm followed by 3 cm×4 cm. This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180° gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. SeaWIFS Postlaunch Technical Report Series. Volume 13; The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM) Field Commissioning

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)

    2000-01-01

    This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.

  13. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters

    Institute of Scientific and Technical Information of China (English)

    HE Xianqiang; PAN Delu; MAO Zhihua

    2004-01-01

    A practical algorithm of atmospheric correction for turbid coastal and inland waters is provided. The present algorithm uses the property that the water-leaving radiance at 412 nm increases very little with the increasing of water turbidity. Thus, in very turbid coastal and inland waters, the radiance at 412 nm can be used to estimate the aerosol scattering radiance at 865 nm. The performance of the new algorithm is validated with simulation for several cases. It is found that the retrieved remotely sensed reflectance is usually with error less than 10% for the first six bands of SeaWiFS. This new algorithm is also tested under various atmospheric conditions in the Changjiang River Estuary and the Hangzhou Bay where the sediment concentration is very high and the standard SeaWiFS atmospheric correction algorithm creates a mask due to atmospheric correction failure. The result proves the efficiency of this simple algorithm in reducing the errors of the water-leaving radiance retrieving using SeaWiFS satellite data.

  14. Information-based self-organization of sensor nodes of a sensor network

    Science.gov (United States)

    Ko, Teresa H.; Berry, Nina M.

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  15. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Blumhagen, Jan O., E-mail: janole.blumhagen@siemens.com; Ladebeck, Ralf; Fenchel, Matthias [Magnetic Resonance, Siemens AG Healthcare Sector, Erlangen 91052 (Germany); Braun, Harald; Quick, Harald H. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91052 (Germany); Faul, David [Siemens Medical Solutions, New York, New York 10015 (United States); Scheffler, Klaus [MRC Department, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany and Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen 72076 (Germany)

    2014-02-15

    Purpose: In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B{sub 0}) inhomogeneities and gradient nonlinearities. Therefore, the MR-based human AC map may be truncated or geometrically distorted toward the edges of the FoV and, consequently, the PET reconstruction with MR-based AC may be biased. This is especially of impact laterally where the patient arms rest beside the body and are not fully considered. Methods: A method is proposed to extend the MR FoV by determining an optimal readout gradient field which locally compensates B{sub 0} inhomogeneities and gradient nonlinearities. This technique was used to reduce truncation in AC maps of 12 patients, and the impact on the PET quantification was analyzed and compared to truncated data without applying the FoV extension and additionally to an established approach of PET-based FoV extension. Results: The truncation artifacts in the MR-based AC maps were successfully reduced in all patients, and the mean body volume was thereby increased by 5.4%. In some cases large patient-dependent changes in SUV of up to 30% were observed in individual lesions when compared to the standard truncated attenuation map. Conclusions: The proposed technique successfully extends the MR FoV in MR-based attenuation correction and shows an improvement of PET quantification in whole-body MR/PET hybrid imaging. In comparison to the PET-based completion of the truncated body contour, the proposed method is also applicable to specialized PET tracers with little uptake in the arms and might

  16. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    Science.gov (United States)

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  17. Development and validation of a novel large field of view phantom and a software module for the quality assurance of geometric distortion in magnetic resonance imaging.

    Science.gov (United States)

    Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory

    2015-09-01

    To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this

  18. Estimation of chlorophyll-a concentration in the Zhujiang Estuary from SeaWiFS data

    Institute of Scientific and Technical Information of China (English)

    Chen Chuqun(陈楚群); Shi Ping(施平); Magnus Larson; Lennart Jonsson

    2002-01-01

    The chlorophyll-a concentration is generally overestimated for the southem China coastal waters if the default algorithm of the SeaDAS is employed. An algorithm is developed for retrieval of chlorophyll-a concentration in the Zhujiang Estuary, Guangdong Province, China, by using simulated reflectance data. The simulated reflectance is calculated corresponding to the SeaWiFS wavelength bands, via a general model by inputting measured water components, I.e., the suspended sediment,chlorophyll-a, and yellow substance (DOC) concentration data of 130 samples. Empirical relationships of the chlorophyll-a concentration to 240 different band combinations are investigated based on the simulated reflectance data, and the band combination, R5R6/R3R4, is found to be the optimum one for the development of an algorithm valid for the Zhujiang Estuary. This algorithm is then employed to determine the chlorophyll-a concentration from SeaWiFS data. The estimated concentrations have a better accuracy than those obtained from the SeaDAS default algorithm when comnpared with sea truth data. The new algorithm is demonstrated to work well and is used to derive a series of image maps of the chlorophyll-a concentration distribution for the Zhujiang Estuary and adjacent coastal areas.

  19. HawkEye: CubeSat SeaWiFS update

    Science.gov (United States)

    Schueler, Carl; Holmes, Alan

    2016-09-01

    The SeaHawk 3U CubeSat program is funded by the Gordon and Betty Moore Foundation of San Francisco, and managed by John Morrison of the University of North Carolina-Wilmington (UNC-W). Cloudland Instruments is developing HawkEye for SeaHawk. HawkEye is a multispectral ocean color imager of SeaWiFS quality with 120 meter nadir resolution from an orbit altitude of 540 km to provide observation of sub-mesoscale variability for insights into poorly understood mixing dynamics. 120 meter imagery improves ability, relative to SeaWiFS 1km resolution, to monitor fjords, estuaries, coral reefs and other near-shore environments where anthropogenic stresses are often most acute and where there are considerable security and commercial interests. The optics, filters, and arrays comprise a cube 10 cm on a side to fit a 3U CubeSat manufactured by ClydeSpace of Glasgow Scotland, and provide a 350 km swath cross-track.

  20. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  1. Algorithm of Restoring Field of View Lines Based on Multi-camera%多摄像机视野分界线恢复算法

    Institute of Scientific and Technical Information of China (English)

    薛翠红; 于洋; 粱艳; 于明

    2012-01-01

    In this paper, a kind of method about restoring multi-camera' field of view line is researched. Harris corner detection and homograph method should be done to restore the field of view line between the cameras. First, it extracts corner features in the image using Harris corner detection algorithm. Next the feature point matching is performed between the images' overlap region. Then the homograph is computed according to matching points between images. Finally the FOV lines are restored by the image boundary points and images' homograph. This method can restore the camerag field of view line, with accuracy and robustness.%研究了一种多摄像机的视野(Field of View,FOV)分界线恢复方法,利用Harris角点检测和单应矩阵的方法完成摄像机视野分界线恢复。用Harris角点检测算法提取图像中角点特征;在有重叠区域图像间进行特征点匹配,再根据匹配点计算图像间的单应矩阵;最后由图像的边界点及图像间的单应矩阵计算摄像机的FOV分界线。该方法能准确恢复摄像机的视野分界线,具有准确性和鲁棒性。

  2. Modeling and optimization of the antenna system with focal plane array for the new generation radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The model of the reflector antenna system with focal plane array, low-noise amplifier and beamformer is developed in the work. The beamformer strategy is suggested to reduce the receiving sensitivity ripple inside field of view of the telescope, while the sensitivity itself drops slightly (less than 10%). The system APERTIF (which is currently under development in Netherlands Institute For Radioastronomy, ASTRON) has been analyzed using developed model, and numerical results are presented. The obtained numerical results have been verified experimentally in anechoic chamber as well as on one of the dishes of the Westerbork Synthesis Radio Telescope (all measurements have been done in ASTRON).

  3. Combined large field-of-view MRA and time-resolved MRA of the lower extremities: Impact of acquisition order on image quality

    Energy Technology Data Exchange (ETDEWEB)

    Riffel, Philipp, E-mail: Philipp.Riffel@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Haneder, Stefan; Attenberger, Ulrike I. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Brade, Joachim [Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Schoenberg, Stefan O.; Michaely, Henrik J. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-10-15

    Purpose: Different approaches exist for hybrid MRA of the calf station. So far, the order of the acquisition of the focused calf MRA and the large field-of-view MRA has not been scientifically evaluated. Therefore the aim of this study was to evaluate if the quality of the combined large field-of-view MRA (CTM MR angiography) and time-resolved MRA with stochastic interleaved trajectories (TWIST MRA) depends on the order of acquisition of the two contrast-enhanced studies. Methods: In this retrospective study, 40 consecutive patients (mean age 68.1 ± 8.7 years, 29 male/11 female) who had undergone an MR angiographic protocol that consisted of CTM-MRA (TR/TE, 2.4/1.0 ms; 21° flip angle; isotropic resolution 1.2 mm; gadolinium dose, 0.07 mmol/kg) and TWIST-MRA (TR/TE 2.8/1.1; 20° flip angle; isotropic resolution 1.1 mm; temporal resolution 5.5 s, gadolinium dose, 0.03 mmol/kg), were included. In the first group (group 1) TWIST-MRA of the calf station was performed 1–2 min after CTM-MRA. In the second group (group 2) CTM-MRA was performed 1–2 min after TWIST-MRA of the calf station. The image quality of CTM-MRA and TWIST-MRA were evaluated by 2 two independent radiologists in consensus according to a 4-point Likert-like rating scale assessing overall image quality on a segmental basis. Venous overlay was assessed per examination. Results: In the CTM-MRA, 1360 segments were included in the assessment of image quality. CTM-MRA was diagnostic in 95% (1289/1360) of segments. There was a significant difference (p < 0.0001) between both groups with regard to the number of segments rated as excellent and moderate. The image quality was rated as excellent in group 1 in 80% (514/640 segments) and in group 2 in 67% (432/649), respectively (p < 0.0001). In contrast, the image quality was rated as moderate in the first group in 5% (33/640) and in the second group in 19% (121/649) respectively (p < 0.0001). The venous overlay was disturbing in 10% in group 1 and 20% in group

  4. A new field-of-view autotracking method based on back-projected ray image cross-correlation for online tomography reconstruction.

    Science.gov (United States)

    Tomonaga, Sachihiko; Baba, Misuzu; Baba, Norio

    2014-11-01

    In general, a tomogram cannot be observed immediately after the acquisition of a series of specimen tilt images, but is instead observed after the post-processing of the tilt series alignment, which often requires a substantial amount of time. Moreover, for general specimens, the automatic acquisition of the tilt series is difficult because field-of-view tracking frequently fails as the tilt angle or specimen thickness increases.In this study, we focus on the improvement of the field-of-view autotracking technique for the purpose of online tomography reconstruction and propose a new alternative technique [1,2]. The method we proposed uses a so-called 'back-projected ray image' instead of a specimen tilt image. The back-projected ray image is a cross-section image calculated from each projection image only during reconstruction. As a result of a study on 'ray images', the quality and accuracy of the cross-correlation between a pair of neighboring ray images among the tilt series were observed to be very high compared with those between a pair of projection images. We observed that a back projected ray image reliably cross-correlates with other neighboring ray images at the position of an existing three-dimensional object. The proposed method can therefore consistently track the field-of-view, overcoming the weakness of a conventional image-matching-based method. In addition, the present method is simple, and high speed processing is expected to be achieved because fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithms can be used.We applied this method to real specimens in online experiments using a TEM and thereby demonstrated its successful performance. Online autotracking experiments with thin-section samples were used to demonstrate the effectiveness of the proposed method. The field-of-view was automatically tracked with high accuracy through a tilt angle range. Furthermore, online tomograms were obtained immediately after the last

  5. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements.

    Science.gov (United States)

    Bisson, S E; Goldsmith, J E; Mitchell, M G

    1999-03-20

    We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

  6. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the Yakutsk extensive air shower array

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.A., E-mail: ivanov@ikfia.ysn.ru; Knurenko, S.P.; Krasilnikov, A.D.; Petrov, Z.E.; Pravdin, M.I.; Sleptsov, I.Ye.; Timofeev, L.V.

    2015-02-01

    The Yakutsk array group is developing a wide field-of-view Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed, assembled, and tested to demonstrate the feasibility of the conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the already existing Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  7. Development and validation of a real-time reduced field of view imaging driven by automated needle detection for MRI-guided interventions

    Science.gov (United States)

    Görlitz, Roland A.; Tokuda, Junichi; Hoge, Scott W.; Chu, Renxin; Panych, Lawrence P.; Tempany, Clare; Hata, Nobuhiko

    2010-02-01

    Automatic tracking and scan plane control in MRI-guided therapy is an active area of research. However, there has been little research on tracking needles without the use of external markers. Current methods also do not account for possible needle bending, because the tip does not get tracked explicitly. In this paper, we present a preliminary method to track a biopsy needle in real-time MR images based on its visible susceptibility artifact and automatically adjust the next scan plane in a closed loop to keep the needle's tip in the field of view. The images were acquired with a Single Shot Fast Spin Echo (SSFSE) sequence combined with a reduced field of view (rFOV) technique using 2D RF pulses, which allows a reduction in scan time without compromising spatial resolution. The needle tracking software was implemented as a plug-in module for open-source medical image visualization software 3D Slicer to display the current scan plane with the highlighted needle. Tests using a gel phantom and an ex vivo tissue sample are reported and evaluated in respect to performance and accuracy. The results proved that the method allows an image update rate of one frame per second with a root mean squared error within 4 mm. The proposed method may therefore be feasible in MRI-guided targeted therapy, such as prostate biopsies.

  8. The effect of metal artifacts on the identification of vertical root fractures using different fields of view in cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Haghanifar, Sina; Madani, Zahrasadat; Bijani, Ali; Nabavi, Zeynab Sadat [Babol University of Medical Science, Babol (Iran, Islamic Republic of)

    2015-09-15

    The aim of this study was to investigate the effects of metal artifacts on the accurate diagnosis of root fractures using cone-beam computed tomography (CBCT) images with large and small/limited fields of view (FOVs). Forty extracted molar and premolar teeth were collected. Access canals were made in all teeth using a rotary system. In half of the teeth, fractures were created by the application of mild pressure with a hammer. The teeth were then randomly put into a wax rim on an acryl base designed in the shape of a mandible. CBCT scans were obtained using a Newtom 5G system with FOVs of 18 cm×16 cm and 6 cm×6 cm. A metal pin was then placed into each tooth, and CBCT imaging was again performed using the same fields of view. All scans were evaluated by two oral and maxillofacial radiologists. The specificity, sensitivity, positive predictive value, negative predictive value, and likelihood ratios (positive and negative) were calculated. The maximum levels of sensitivity and specificity (100% and 100%, respectively) were observed in small volume CBCT scans of teeth without pins. The highest negative predictive value was found in the small-volume group without pins, whereas the positive predictive value was 100% in all groups except the large-volume group with pins.

  9. Large field-of-view asymmetric masks for high-energy x-ray phase imaging with standard x-ray tube

    Science.gov (United States)

    Endrizzi, M.; Astolfo, A.; Price, B.; Haig, I.; Olivo, A.

    2016-09-01

    We report on a new approach to large field-of-view laboratory-based X-ray phase-contrast imaging. The method is based upon the asymmetric mask design that enables the retrieval of the absorption, refraction and ultra-small- angle scattering properties of the sample without the need to move any component of the imaging system. The sample is scanned through the imaging system, which also removes possible aliasing problems that might arise from partial sample illumination when using the edge illumination technique. This concept can be extended to any desired number of apertures providing, at the same time, intensity projections at complementary illumination conditions. Experimental data simultaneously acquired at seven different illumination fractions are presented along with the results obtained from a numerical model that incorporates the actual detector performance. The ultimate shape of the illumination function is shown to be significantly dependent on these detector-specific characteristics. Based on this concept, a large field-of-view system was designed, which is also capable to cope with relatively high (100 kVp) X-ray energies. The imaging system obtained in this way, where the asymmetric mask design enables the data to be collected without moving any element of the instrumentation, adapts particularly well to those situations in medical, industrial and security imaging where the sample has to be scanned through the system.

  10. Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition

    Institute of Scientific and Technical Information of China (English)

    Wei Gong; Jun Li; Feiyue Mao; Jinye Zhang

    2011-01-01

    @@ Although the empirical mode decomposition (EMD) method is an effective tool for noise reduction in lidar signals, evaluating the effectiveness of the denoising method is difficult.A dual-field-of-view lidar for observing atmospheric aerosols is described.The backscattering signals obtained from two channels have different signal-to-noise ratios (SNRs).The performance of noise reduction can be investigated by comparing the high SNR signal and the denoised low SNR signal without a simulation experiment.%Although the empirical mode decomposition (EMD) method is an effective tool for noise reduction in lidar signals, evaluating the effectiveness of the denoising method is difficult. A dual-field-of-view lidar for observing atmospheric aerosols is described. The backscattering signals obtained from two channels have different signal-to-noise ratios (SNRs). The performance of noise reduction can be investigated by comparing the high SNR signal and the denoised low SNR signal without a simulation experiment. With this approach, the signal and noise are extracted to one intrinsic mode function (IMF) by the EMD-based denolsing; thus, the threshold method is applied to the IMFs. Experimental results show that the improved threshold method can effectively perform noise reduction while preserving useful sudden-change information.

  11. High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)

    2001-01-01

    A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.

  12. Genetic modulation of training and transfer in older adults:BDNF Val66Met polymorphism is associated with wider useful field of view

    Directory of Open Access Journals (Sweden)

    Lorenza S Colzato

    2011-09-01

    Full Text Available Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF, an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline and post-training measures of attentional processes (divided and selective attention were acquired by means of the Useful Field of View (UFOV task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects.

  13. Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit

    CERN Document Server

    Schaub, Michael T; Yaliraki, Sophia N; Barahona, Mauricio

    2011-01-01

    Recently, there has been a surge of interest in community detection algorithms for complex networks. The proposed algorithms are based on a variety of heuristics, some with a long history, for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms proceed by maximizing a particular objective function, thereby finding the `right' split into communities. Although a thorough comparative analysis of these algorithms is still lacking, there has also been an effort to design random graph models with known community structure against which the performance of different algorithms can be benchmarked. However, such benchmarks normally impose not only a known community structure but also a clique-like random structure for the communities which may differ significantly from those found in real networks. We show here that popular community detection methods are affected by a restricted `field-of-view' limit, an intrinsic upper scale that does not allow them to detect c...

  14. Development of a Large Field-of-View PIV System for Rotorcraft Testing in the 14- x 22-Foot Subsonic Tunnel

    Science.gov (United States)

    Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Harris, Jerome; Allan, Brian; Wong, Oliver; Mace, W. Derry

    2009-01-01

    A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.

  15. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2017-03-01

    In the development of electronic holographic displays with a wide field of view, one issue is the realization of 1-μm-pitch spatial light modulators (SLMs) using liquid crystal on silicon (LCOS) techniques. We clarified that it is necessary to suppress not only the leakage of fringe electric fields from adjacent pixels but also the effect of elastic forces in the liquid crystal to achieve full-phase modulation (2π) in individual pixels. We proposed a novel LCOS-SLM with a dielectric shield wall structure, and achieved driving of individual 1-μm-pitch pixels. We also investigated the optimum values for width and dielectric constant of the wall structure when enlarging the area that can modulate light in the pixels. These results contribute to the design of 1-μm-pitch LCOS-SLM devices for wide-viewing-angle holographic displays.

  16. Data analysis methods for a small field-of-view combined scintimammography/digital X-ray system in breast lesion management

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, D. E-mail: kieper@jlab.org; Green, T.D.; Hoefer, R.; Keppel, C.; Wymer, D.C.; Weisenberger, A.G.; Welch, B

    2003-01-21

    Recently, a multidisciplinary research collaboration began a clinical study employing a dual modality, small field-of-view breast imaging system. The system, comprised of a mini gamma camera and digital X-ray detector, was designed to examine the possible clinical advantages of dual modality breast imaging in the management of patients with suspicious findings (BIRADS 3-5) from a screening mammogram. In addition, dynamic time-resolution studies of radiotracer uptake and washout were evaluated for their value in differentiation of lesion type. This preliminary report focuses on the development and implementation of these techniques and presents patient data as evidence of their effectiveness. The results of this study indicate that applying these techniques may significantly improve the diagnostic value of scintimammography by increasing specificity to 97.7% by differentiation of true positive and false positive lesions.

  17. Data analysis methods for a small field-of-view combined scintimammography/digital X-ray system in breast lesion management

    Science.gov (United States)

    Kieper, D.; Green, T. D.; Hoefer, R.; Keppel, C.; Wymer, D. C.; Weisenberger, A. G.; Welch, B.

    2003-01-01

    Recently, a multidisciplinary research collaboration began a clinical study employing a dual modality, small field-of-view breast imaging system. The system, comprised of a mini gamma camera and digital X-ray detector, was designed to examine the possible clinical advantages of dual modality breast imaging in the management of patients with suspicious findings (BIRADS 3-5) from a screening mammogram. In addition, dynamic time-resolution studies of radiotracer uptake and washout were evaluated for their value in differentiation of lesion type. This preliminary report focuses on the development and implementation of these techniques and presents patient data as evidence of their effectiveness. The results of this study indicate that applying these techniques may significantly improve the diagnostic value of scintimammography by increasing specificity to 97.7% by differentiation of true positive and false positive lesions.

  18. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  19. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Maomao, E-mail: gemaomao@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Zhang, Li, E-mail: lizhang@ynu.edu.cn [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Chen, Yingtao [Department of Physics, Yunnan University, Kunming 650091 (China); Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang [Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2016-05-21

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  20. Photomultiplier tube selection for the Wide Field of view Cherenkov/fluorescence Telescope Array of the Large High Altitude Air Shower Observatory

    Science.gov (United States)

    Ge, Maomao; Zhang, Li; Chen, Yingtao; Cao, Zhen; Zhang, Shoushan; Wang, Chong; Bi, Baiyang

    2016-05-01

    For the purpose of selecting the most suitable photomultiplier tubes (PMTs) for the Wide Field of view Cherenkov/fluorescence Telescope Array (WFCTA), we have performed extensive tests on seven models of 25.4 mm PMTs: Hamamatsu R1924A and R7899, Beijing Hamamatsu CR303, CR332A and CR364, and HZC Photonics XP3102 and XP3182. A dedicated test system has been developed to measure the PMT characteristics such as single photo-electron spectrum, gain, linearity, and spatial uniformity of anode output. The XP3182 and CR364 (R7899) tubes both meet the pivotal requirement due to their superior pulse linearity. The PMT test system, techniques used for these measurements, and their results are also reported.

  1. Metrology of Wide Field of View Nano-Thickness Foils' Homogeneity by Conventional and Phase Contrast Soft X-ray Imaging

    Science.gov (United States)

    Faenov, Anatoly; Pikuz, Tatiana; Fukuda, Yuji; Kando, Masaki; Kotaki, Hideyuki; Homma, Takayuki; Kawase, Keigo; Skobelev, Igor; Gasilov, Sergei; Kawachi, Tetsuya; Daido, Hiroyuki; Tajima, Toshiki; Kato, Yoshiaki; Bulanov, Sergei

    2010-06-01

    A tabletop ultra-bright, debris-free femtosecond-laser-driven cluster-based plasma soft X-ray source, which emits more than 1012 photons/(sr·pulse) in the spectral range 1-10 nm within a 4π sr solid angle was developed. Using such source in combination with a high dynamic range LiF crystal soft X-ray detector allows obtaining contact and propagation-based phase-contrast images of nanostructures with 700 nm spatial resolutions in a wide field of view. It was demonstrated that the high precision of used techniques enable distinguishing inhomogeneity of measured intensities of ultrathin foils in the order of ±3%. All of this opens a new approach for PBPC imaging and metrology of full areas of free-standing or mesh-supported nano-thickness foils, or other nanostructures.

  2. Metrology of Wide Field of View Nano-Thickness Foils’ Homogeneity by Conventional and Phase Contrast Soft X-ray Imaging

    Science.gov (United States)

    Anatoly Faenov,; Tatiana Pikuz,; Yuji Fukuda,; Masaki Kando,; Hideyuki Kotaki,; Takayuki Homma,; Keigo Kawase,; Igor Skobelev,; Sergei Gasilov,; Tetsuya Kawachi,; Hiroyuki Daido,; Toshiki Tajima,; Yoshiaki Kato,; Sergei Bulanov,

    2010-06-01

    A tabletop ultra-bright, debris-free femtosecond-laser-driven cluster-based plasma soft X-ray source, which emits more than 1012 photons/(sr\\cdotpulse) in the spectral range 1-10 nm within a 4π sr solid angle was developed. Using such source in combination with a high dynamic range LiF crystal soft X-ray detector allows obtaining contact and propagation-based phase-contrast images of nanostructures with 700 nm spatial resolutions in a wide field of view. It was demonstrated that the high precision of used techniques enable distinguishing inhomogeneity of measured intensities of ultrathin foils in the order of ± 3%. All of this opens a new approach for PBPC imaging and metrology of full areas of free-standing or mesh-supported nano-thickness foils, or other nanostructures.

  3. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.

    Science.gov (United States)

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-07-11

    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm.

  4. Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit.

    Science.gov (United States)

    Schaub, Michael T; Delvenne, Jean-Charles; Yaliraki, Sophia N; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the 'right' split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted 'field-of-view' limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a

  5. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    Science.gov (United States)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  6. Data fusion in multi sensor platforms for wide-area perception

    NARCIS (Netherlands)

    Polychronopoulos, A.; Floudas, N.; Amditis, A.; Bank, D.; Broek, S.P. van den

    2006-01-01

    there is a strong belief that the improvement of preventive safety applications and the extension of their operative range will be achieved by the deployment of multiple sensors with wide fields of view (FOV). The paper contributes to the solution of the problem and introduces distributed sensor dat

  7. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010

    Science.gov (United States)

    Hsu, N. C.; Gautam, R.; Sayer, A. M.; Bettenhausen, C.; Li, C.; Jeong, M. J.; Tsay, S.-C.; Holben, B. N.

    2012-09-01

    Both sensor calibration and satellite retrieval algorithm play an important role in the ability to determine accurately long-term trends from satellite data. Owing to the unprecedented accuracy and long-term stability of its radiometric calibration, SeaWiFS measurements exhibit minimal uncertainty with respect to sensor calibration. In this study, we take advantage of this well-calibrated set of measurements by applying a newly-developed aerosol optical depth (AOD) retrieval algorithm over land and ocean to investigate the distribution of AOD, and to identify emerging patterns and trends in global and regional aerosol loading during its 13-yr mission. Our correlation analysis between climatic indices (such as ENSO) and AOD suggests strong relationships for Saharan dust export as well as biomass-burning activity in the tropics, associated with large-scale feedbacks. The results also indicate that the averaged AOD trend over global ocean is weakly positive from 1998 to 2010 and comparable to that observed by MODIS but opposite in sign to that observed by AVHRR during overlapping years. On regional scales, distinct tendencies are found for different regions associated with natural and anthropogenic aerosol emission and transport. For example, large upward trends are found over the Arabian Peninsula that indicate a strengthening of the seasonal cycle of dust emission and transport processes over the whole region as well as over downwind oceanic regions. In contrast, a negative-neutral tendency is observed over the desert/arid Saharan region as well as in the associated dust outflow over the north Atlantic. Additionally, we found decreasing trends over the eastern US and Europe, and increasing trends over countries such as China and India that are experiencing rapid economic development. In general, these results are consistent with those derived from ground-based AERONET measurements.

  8. The First SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-1)

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Claustre, Herve; Ras, Josephine; VanHeukelem, Laurie; Berthon, Jean-Francois; Targa, Cristina; vanderLinde, Dirk; Barlow, Ray; Sessions, Heather

    2001-01-01

    Four laboratories, which had contributed to various aspects of SeaWiFS calibration and validation activities, participated in the first SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-1): Horn Point Laboratory (USA), the Joint Research Centre (Italy), the Laboratoire de Physique et Chimie Marines (France), and the Marine and Coastal Management group (South Africa). The analyses of the data are presented in Chapter 1 and the individual methods of the four groups are presented in Chapters 2-5. The average (or overall) conclusions of the round-robin are derived from 12 in situ stations occupied during a cruise in the Mediterranean Sea, although, only 11 stations are used in the analyses. The data set is composed of 12 replicates taken during each sampling opportunity with 3 replicates going to each of the 4 laboratories. The average (or overall) results from the intercomparison of 15 pigments or pigment associations are as follows (in some cases, data subsets that exclude pigments which were not analyzed by all the laboratories, or that had unusually large variances, are used to exclude a variety of problematic pigments): a) the accuracy of the four methods in determining the concentration of total chlorophyll a is 7.9%, (one method did not separate mono- and divinyl chlorophyll a, and if the samples containing significant divinyl chlorophyll a concentrations are ignored, the four methods have an accuracy of 6.7%); b) the accuracy in determining the full set of pigments is 19.1%; c) there is a reduction in accuracy of approximately - 12.2% for every decade (factor of 10) decrease in concentration (based on a data subset); d) the precision of the four methods using a subset data is 8.617( 6.2% for an edited subset); e) the repeatability of the four methods using the subset data is 9.2% (7.2%; for an edited subset, and f) the reproducibility of the four methods using the subset data is 21.31% (15.0% for an edited subset).

  9. Wide field of view computed tomography and mid carpal instability: The value of the sagittal radius–lunate–capitate axis – Preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Repse, Stephen E., E-mail: stephrep@gmail.com [Department of Diagnostic Imaging, Monash Health, VIC (Australia); Koulouris, George, E-mail: GeorgeK@melbourneradiology.com.au [Melbourne Radiology Clinic, Ground Floor, 3-6/100 Victoria Parade, East Melbourne, VIC (Australia); Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, WA (Australia); Troupis, John M., E-mail: john.troupis@gmail.com [Department of Diagnostic Imaging & Monash Cardiovascular Research Centre, Monash Health and Department of Biomedical Radiation Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC (Australia)

    2015-05-15

    Highlights: • Unique insight into the assessment of mid carpal instability. • 4D CT using sagittal reconstructions along the radius–lunate–capitate axis. • 4D CT observations of vacuum phenomenon, trigger lunate and capitate subluxation. • Earlier recognition of mid carpal instability. - Abstract: Purpose: Dynamic four dimensional (4D) computed tomography (CT) has recently emerged as a practical method for evaluating complex functional abnormality of joints. We retrospectively analysed 4D CT studies undertaken as part of the clinical management of hand and wrist symptoms. We present our initial experience of 4D CT in the assessment of functional abnormalities of the wrist in a group of patients with mid carpal instability (MCI), specifically carpal instability non-dissociative. We aim to highlight unique features in assessment of the radius–lunate–capitate (RLC) axis which allows insight and understanding of abnormalities in function, not just morphology, which may be contributing to symptoms. Materials and methods: Wide field of view multi-detector CT scanner (320 slices, 0.5 mm detector thickness) was used to acquire bilateral continuous motion assessment in hand flexion and extension. A maximum z-axis coverage of 16 cm was available for each acquisition, and a large field of view (FOV) was used. Due to the volume acquisition during motion, reconstructions at multiple time points were undertaken. Dynamic and anatomically targeted multi-planar-reconstructions (MPRs) were then used to establish the kinematic functionality of the joint. Results: Our initial cohort of 20 patients was reviewed. Three findings were identified which were present either in isolation or in combination. These are vacuum phenomenon, triggering of the lunate and capitate subluxation. We provide 4D CT representations of each and highlight features considered of clinical importance and their significance. We also briefly discuss how the current classifications of dynamic wrist

  10. TU-C-12A-05: Repeatability Study of Reduced Field-Of-View Diffusion-Weighted MRI On Human Thyroid Gland

    Energy Technology Data Exchange (ETDEWEB)

    Shukla-Dave, A; Lu, Y; Hatzoglou, V; Stambuk, H; Mazaheri, Y [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Banerjee, S; Shankaranarayanan, A [GE Healthcare, Menlo Park, California (United States); Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: To investigate the repeatability of reduced field-of-view diffusion-weighted imaging (rFOV DWI) in quantifying apparent diffusion coefficients (ADCs) for human thyroid glands in a clinical setting. Methods: Nine healthy human volunteers were enrolled and underwent 3T MRI exams. For each volunteer, 3 longitudinal exams (2 weeks apart) with 2 repetitive sessions within each exam, including rFOV and conventional full field-of-view (fFOV) DWI scans, were performed. In the acquired DWI images, a fixed-size region of interest (ROI; diameter=8mm) was placed on thyroid glands to calculate ADC. ADC was calculated using a monoexponential function with a noise correction scheme. The repeatability of ADC was assessed by using coefficient variation (CV) across sessions or exams, which was defined to be: r = 1-CV, 0 < r < 1, where CV=STD/m, STD is the standard deviation of ADC, and m is the average of ADC across sessions or exams. An experienced radiologist assessed and scored rFOV and fFOV DW images based on image characteristics (1, nondiagnostic; 2, poor; 3, satisfactory; 4, good; and 5, excellent).Analysis of variance (ANOVA) was performed to compare ADC values, CV of ADC, repeatability of ADC across sessions and exams, and radiologic scores between rFOV and fFOV DWI techniques. Results: There was no significant difference in ADC values across sessions and exams either in rFOV or fFOV DWI. The average CVs of both rFOV and fFOV DWI were less than 13%. The repeatability of ADC measurement between rFOV and fFOV DWI was not significantly different. The overall image quality was significantly higher with rFOV DWI than with fFOV DWI. Conclusion: This study suggested that ADCs from both rFOV and fFOV DWI were repeatable, but rFOV DWI had superior imaging quality for human thyroid glands in a clinical setting.

  11. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Science.gov (United States)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  12. Mirror-concentrator for space telescope with wide field of view and "high" angular resolution for observation of ultrahigh energy cosmic rays and other atmospheric flashes

    Science.gov (United States)

    Sharakin, Sergey A.; Khrenov, Boris A.; Klimov, Pavel A.; Panasyuk, Mikhail I.; Potanin, Sergey A.; Yashin, Ivan V.

    2012-09-01

    Idea of ultrahigh cosmic rays (UHECR) measurement from satellites was suggested by Linsley in 1981 and since has being developed into projects of cosmic rays telescopes for International Space Station (ISS): JEM-EUSO - to be installed on the Japanese experimental module and KLYPVE - on the Russian ISS segment. A series of space-based detectors for measurements of background phenomena in those telescopes were developed in Russia (Universitetsky-Tatiana, Universitetsky-Tatiana-2 , Chibis satellites). The satellite Lomonosov with UHECR detector TUS on its board will be launched in 2013. TUS contains multi-channel photo receiver and Fresnel-type mirror manufactured with use of special multi-layer carbon plastic technology in RSC “Energia". In this paper one and two component optical systems with 360 cm entrance diameter and 400 cm focal distance for wide angle detector KLYPVE are studied. In one component case using generalized Davies-Cotton systems (Fresnel-type mirror with ellipsoidal gross surface) it is possible to obtain 8-10° field of view (FoV) with focal spot size less than pixel size equal to 15 x 15 mm. In two component system (parabolic mirror and a Fresnel lens, mounted close to photo receiver) it is possible to increase FoV up to 10-12° and significantly simplify the primary mirror construction.

  13. Spectroscopic determination of the fundamental parameters of 66 B-type stars in the field-of-view of the CoRoT satellite

    CERN Document Server

    Lefever, K; Morel, T; Aerts, C; Decin, L; Briquet, M

    2009-01-01

    We aim to determine the fundamental parameters of a sample of B stars with apparent visual magnitudes below 8 in the field-of-view of the CoRoT space mission, from high-resolution spectroscopy. We developed an automatic procedure for the spectroscopic analysis of B-type stars with winds, based on an extensive grid of FASTWIND model atmospheres. We use the equivalent widths and/or the line profile shapes of continuum normalized hydrogen, helium and silicon line profiles to determine the fundamental properties of these stars in an automated way. After thorough tests, both on synthetic datasets and on very high-quality, high-resolution spectra of B stars for which we already had accurate values of their physical properties from alternative analyses, we applied our method to 66 B-type stars contained in the ground-based archive of the CoRoT space mission. We discuss the statistical properties of the sample and compare them with those predicted by evolutionary models of B stars. Our spectroscopic results provide a...

  14. Effects of Inboard Horizontal Field of View Display Limitations on Pilot Path Control During Total In-Flight Simulator (TIFS) Flight Test

    Science.gov (United States)

    Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.

    1999-01-01

    A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.

  15. Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation

    Directory of Open Access Journals (Sweden)

    Whitney Susan L

    2004-12-01

    Full Text Available Abstract Background Wide field of view virtual environments offer some unique features that may be beneficial for use in vestibular rehabilitation. For one, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. However, wide FOV devices also have been found to result in greater simulator sickness. Before a wide FOV device can be used in a clinical setting, its safety must be demonstrated. Methods Symptoms of simulator sickness were recorded by 9 healthy adult subjects after they performed gaze shifting tasks to locate targets superimposed on an optic flow background. Subjects performed 8 trials of gaze shifting on each of the six separate visits. Results The incidence of symptoms of simulator sickness while subjects performed gaze shifts in an optic flow environment was lower than the average reported incidence for flight simulators. The incidence was greater during the first visit compared with subsequent visits. Furthermore, the incidence showed an increasing trend over the 8 trials. Conclusion The performance of head unrestrained gaze shifts in a wide FOV optic flow environment is tolerated well by healthy subjects. This finding provides rationale for testing these environments in people with vestibular disorders, and supports the concept of using wide FOV virtual reality for vestibular rehabilitation.

  16. High-resolution diffusion tensor imaging of the human pons with a reduced field-of-view, multishot, variable-density, spiral acquisition at 3 T.

    Science.gov (United States)

    Karampinos, Dimitrios C; Van, Anh T; Olivero, William C; Georgiadis, John G; Sutton, Bradley P

    2009-10-01

    Diffusion tensor imaging of localized anatomic regions, such as brainstem, cervical spinal cord, and optic nerve, is challenging because of the existence of significant susceptibility differences, severe physiologic motion in the surrounding tissues, and the need for high spatial resolution to resolve the underlying complex neuroarchitecture. The aim of the methodology presented here is to achieve high-resolution diffusion tensor imaging in localized regions of the central nervous system that is motion insensitive and immune to susceptibility while acquiring a set of two-dimensional images with more than six diffusion encoding directions within a reasonable total scan time. We accomplish this aim by implementing self-navigated, multishot, variable-density, spiral encoding with outer volume suppression. We establish scan protocols for achieving equal signal-to-noise ratio at 1.2 mm and 0.8 mm in-plane resolution for reduced field-of-view diffusion tensor imaging of the brainstem. In vivo application of the technique on the human pons of three subjects shows a clear delineation of the multiple local neural tracts. By comparing scans acquired with varying in-plane resolution but with constant signal-to-noise ratio, we demonstrate that increasing the resolution and reducing the partial volume effect result in higher fractional anisotropy values for the corticospinal tracts. (c) 2009 Wiley-Liss, Inc.

  17. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    Science.gov (United States)

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm(2). The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm(2)). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  18. Real-time display with large field of view on fourier domain optical coherence tomography at 1310 nm wavelength for dermatology

    Science.gov (United States)

    Xiao, Qing; Hou, Jue; Fu, Ling

    2012-06-01

    A Fourier domain optical coherence tomography (OCT) system with 1310 nm light was demonstrated to study inflammatory human skin and the skin coated with a moisturizer in vivo. By using a graphics processing unit (GPU), the display rate could reach 20 frames/s with 1000 A-scans contained in one image. The field of view (FOV) of the cross-sectional image is 7 mm in the lateral direction and the penetration depth is ˜1 mm in skin. The result shows that, in inflammatory skin, the epidermis became thicker and had a decreased scattering; furthermore, the region of the severe lesion present an uneven thickness of the epidermis compared with the peripheral area. For the result of a finger tip coated with the moisturizer, the antireflection effect was significant and the stratum corneum became more transparent. In this letter, we demonstrated that real-time display with a large FOV could enable screening of a large tissue area; thereby increasing the dermatologic diagnostic potential of the method by permitting a comparison of the lesion and the normal peripheral region.

  19. SeaWiFS satellite monitoring of oil spill impact on primary production in the Galápagos Marine Reserve.

    Science.gov (United States)

    Banks, Stuart

    2003-01-01

    Near daily satellite monitoring of ocean colour using sea viewing wide angle of field viewing sensor (SeaWiFS) allowed the oceanic and near coastal chlorophyll-a distributions to be followed across the Galápagos Marine Reserve (GMR) from space. In the aftermath of the Jessica spill early indications suggested that, compared to the three preceding years 1998-2000, local chlorophyll concentrations over January 2001 were elevated across the Galápagos Marine Reserve [Biological Impacts of the Jessica Oil Spill on the Galápagos Environment: Preliminary Report. Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador, 2001]. At the time of the spill the central and eastern extent of the archipelago was experiencing a spatially extensive moderate bloom event (0.5-2.5 mgm(-3) chl-a) extending over the central islands, including the source of the spill and areas of known impact such as the islands of Santa Fé, eastern Santa Cruz and Floreana directly in the advection path.Further investigation shows that chlorophyll across the affected regions of western San Cristóbal, Santa Fé, southeast Santa Cruz, eastern Floreana and eastern Isabela declined in the week directly following the spill event, yet rose in the successive month to levels analogous to preceding years. Although there may have been a localised effect of the spill upon near coast phytoplankton primary production in the short term, the observed variance in the weeks following the spill was not significant in comparison to the normal high variation between years and within the El Niño/Southern Oscillation signal.

  20. Comparison of SeaWiFS and MODIS time series of inherent optical properties for the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    F. Mélin

    2011-05-01

    Full Text Available Time series of inherent optical properties (IOPs derived from SeaWiFS and MODIS are compared for the Adriatic Sea. The IOPs are outputs of the Quasi-Analytical Algorithm and include total absorption a, phytoplankton absorption aph, absorption associated with colored detrital material (CDM acdm, and particle backscattering coefficient bbp. The average root-mean square difference Δ computed for log-transformed distributions decreases for $a$ from 0.084 at 412 nm to 0.052 at 490 nm, is higher for aph(443 (0.149 than for acdm(443 (0.071, and is approximately 0.165 for bbp at various wavelengths. The SeaWiFS a at 443 and 490 nm, aph at 443 nm and bbp are on average higher than the MODIS counterparts. Statistics show significant variations in space and time. There is an overall increasing gradient for Δ associated with the absorption terms from the open southern and central Adriatic to the northwest part of the basin, and a reversed gradient for the particulate backscattering coefficient. For time series analysis, only a(412 and acdm(443 currently present an unbiased continuity bridging the SeaWiFS and MODIS periods for the Adriatic Sea.

  1. Rarity of isolated pulmonary embolism and acute aortic syndrome occurring outside of the field of view of dedicated coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwa Yeon; Song, In Sup (Dept. of Diagnostic Radiology Chung-Ang Univ. College of Medicine, Seoul (Korea, Republic of)); Yoo, Seung Min; Rho, Ji Young (Dept. of Diagnostic Radiology CHA Medical Univ. Hospital, Bundang (Korea, Republic of)), email: smyoo68@hanmail.net; Moon, Jae Youn; Kim, In Jai; Lim, Sang Wook; Sung, Jung Hoon; Cha, Dong Hun (Dept. of Cardiology CHA Medical Univ. Hospital, Bundang (Korea, Republic of)); White, Charles S. (Dept. of Diagnostic Radiology Univ. of Maryland, Baltimore (United States))

    2011-05-15

    Background Although triple rule-out CT angiography (TRO) to simultaneously evaluate acute coronary syndrome (ACS), pulmonary embolism (PE), and acute aortic syndrome (AAS) is increasingly used in many institutions, TRO is inevitably associated with increased radiation exposure due to extended z-axis coverage compared with dedicated coronary CT angiography (DCTA). Purpose To determine the frequency of exclusion of findings of AAS, PE, and significant incidental non-cardiac pathology that may be the cause of acute chest pain when using a restricted DCTA field of view (FOV). Material and Methods We retrospectively reviewed CT images and charts of 103 patients with acute PE and 50 patients with AAS. Either non-ECG gated dedicated pulmonary or aortic CT angiography was performed using 16- or 64-slice multidetector CT (MDCT). We analyzed the incidence of isolated PE, AAS, or significant non-cardiac pathology outside of DCTA FOV (i.e. from tracheal carina to the base of heart). Results There were two cases of isolated PE (2/103, 1.9%) excluded from the FOV of DCTA. One case of PE was isolated to the subsegmental pulmonary artery in the posterior segment of the right upper lobe. In the second case, pulmonary embolism in the left main pulmonary artery was located out of the FOV of DCTA because the left main pulmonary artery was retracted upwardly by fibrotic scar in the left upper lobe due to prior tuberculosis. There was no case of AAS and significant non-cardiac pathology excluded from the FOV of DCTA. AAS (n = 50) consisted of penetrating atherosclerotic ulcer (n = 7), intramural hematoma (n = 5) and aortic dissection (n = 38). Conclusion As isolated PE, AAS, and significant non-cardiac pathology outside of the DCTA FOV rarely occur, DCTA may replace TRO in the evaluation of patients with non-specific acute chest pain and a low pre-test probability of PE or aortic dissection

  2. The effect of activity outside the direct field of view in a 3D-only whole-body positron tomograph

    Science.gov (United States)

    Spinks, T. J.; Miller, M. P.; Bailey, D. L.; Bloomfield, P. M.; Livieratos, L.; Jones, T.

    1998-04-01

    The ECAT EXACT3D (CTI/Siemens 966) 3D-only PET tomograph has unprecedented sensitivity due to the large BGO (bismuth germanate) detector volume. However, the consequences of a large (23.4 cm) axial field-of-view (FOV) and the need for a patient port diameter to accommodate body scanning make the device more sensitive to photons arising from activity outside the direct (coincidence) FOV. This leads to relatively higher deadtime and an increased registration of random and scatter (true) coincidences. The purpose of this study is to determine the influence of activity outside the FOV on (i) noise-equivalent counts (NEC) and (ii) the performance of a `model-based' scatter correction algorithm, and to investigate the effect of side shielding additional to that supplied with the tomograph. Annular shielding designed for brain scanning increased the NEC for blood flow (43/4/017/img1.gif" ALIGN="MIDDLE"/>O) measurement (integrated over 120 s) by up to 25%. For 43/4/017/img2.gif" ALIGN="MIDDLE"/> tracer studies, the increase is less than 5% over 120 min. Purpose-built additional body shielding, made to conform to the shape of a volunteer, reduced the randoms count rate in a heart blood flow measurement (43/4/017/img1.gif" ALIGN="MIDDLE"/>O) by about 30%. After scatter correction the discrepancy between ROI count ratios for compartments within the 20 cm diameter `Utah' phantom differed by less than 5% from true (sampled) activity concentration ratios. This was so with or without activity outside the FOV and with or without additional side shielding. Count rate performance is thus improved by extra shielding but more improvement is seen in head than in body scanning. Measurement of heart blood flow using bolus injections of 43/4/017/img1.gif" ALIGN="MIDDLE"/>O would benefit from the use of detectors with lower deadtime and superior timing resolution such as LSO (lutetium oxyorthosilicate).

  3. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX

    Directory of Open Access Journals (Sweden)

    Ajay Basavanhally

    2011-01-01

    Full Text Available In this paper, we attempt to quantify the prognostic information embedded in multi-parametric histologic biopsy images to predict disease aggressiveness in estrogen receptor-positive (ER+ breast cancers (BCa. The novel methodological contribution is in the use of a multi-field-of-view (multi-FOV framework for integrating image-based information from differently stained histopathology slides. The multi-FOV approach involves a fixed image resolution while simultaneously integrating image descriptors from many FOVs corresponding to different sizes. For each study, the corresponding risk score (high scores reflecting aggressive disease and vice versa, predicted by a molecular assay (Oncotype DX, is available and serves as the surrogate ground truth for long-term patient outcome. Using the risk scores, a trained classifier is used to identify disease aggressiveness for each FOV size. The predictions for each FOV are then combined to yield the final prediction of disease aggressiveness (good, intermediate, or poor outcome. Independent multi-FOV classifiers are constructed for (1 50 image features describing the spatial arrangement of cancer nuclei (via Voronoi diagram, Delaunay triangulation, and minimum spanning tree graphs in H and E stained histopathology and (2 one image feature describing the vascular density in CD34 IHC stained histopathology. In a cohort of 29 patients, the multi-FOV classifiers obtained by combining information from the H and E and CD34 IHC stained channels were able to distinguish low- and high-risk patients with an accuracy of 0.91 ± 0.02 and a positive predictive value of 0.94 ± 0.10, suggesting that a purely image-based assay could potentially replace more expensive molecular assays for making disease prognostic predictions.

  4. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX.

    Science.gov (United States)

    Basavanhally, Ajay; Feldman, Michael; Shih, Natalie; Mies, Carolyn; Tomaszewski, John; Ganesan, Shridar; Madabhushi, Anant

    2011-01-01

    In this paper, we attempt to quantify the prognostic information embedded in multi-parametric histologic biopsy images to predict disease aggressiveness in estrogen receptor-positive (ER+) breast cancers (BCa). The novel methodological contribution is in the use of a multi-field-of-view (multi-FOV) framework for integrating image-based information from differently stained histopathology slides. The multi-FOV approach involves a fixed image resolution while simultaneously integrating image descriptors from many FOVs corresponding to different sizes. For each study, the corresponding risk score (high scores reflecting aggressive disease and vice versa), predicted by a molecular assay (Oncotype DX), is available and serves as the surrogate ground truth for long-term patient outcome. Using the risk scores, a trained classifier is used to identify disease aggressiveness for each FOV size. The predictions for each FOV are then combined to yield the final prediction of disease aggressiveness (good, intermediate, or poor outcome). Independent multi-FOV classifiers are constructed for (1) 50 image features describing the spatial arrangement of cancer nuclei (via Voronoi diagram, Delaunay triangulation, and minimum spanning tree graphs) in H and E stained histopathology and (2) one image feature describing the vascular density in CD34 IHC stained histopathology. In a cohort of 29 patients, the multi-FOV classifiers obtained by combining information from the H and E and CD34 IHC stained channels were able to distinguish low- and high-risk patients with an accuracy of 0.91 ± 0.02 and a positive predictive value of 0.94 ± 0.10, suggesting that a purely image-based assay could potentially replace more expensive molecular assays for making disease prognostic predictions.

  5. Truly simultaneous SS-OCT of the anterior and posterior human eye with full anterior chamber and 50° retinal field of views (Conference Presentation)

    Science.gov (United States)

    McNabb, Ryan P.; Viehland, Christian; Keller, Brenton; Vann, Robin R.; Izatt, Joseph A.; Kuo, Anthony N.

    2017-02-01

    Optical coherence tomography (OCT) has revolutionized clinical observation of the eye and is an indispensable part of the modern ophthalmic practice. Unlike many other ophthalmic imaging techniques, OCT provides three-dimensional information about the imaged eye. However, conventional clinical OCT systems image only the anterior or the posterior eye during a single acquisition. Newer OCT systems have begun to image both during the same acquisition but with compromises such as limited field of view in the posterior eye or requiring rapid switching between the anterior and posterior eye during the scan. We describe here the development and demonstration of an OCT system with truly simultaneous imaging of both the anterior and posterior eye capable of imaging the full anterior chamber width and 50° on the retina (macula, optic nerve, and arcades). The whole eye OCT system was developed using custom optics and optomechanics. Polarization was utilized to separate the imaging channels. We utilized a 200kHz swept-source laser (Axsun Technologies) centered at 1040±50nm of bandwidth. The clock signal generated by the laser was interpolated 4x to generate 5504 samples per laser sweep. With the whole eye OCT system, we simultaneously acquired anterior and posterior segments with repeated B-scans as well as three-dimensional volumes from seven healthy volunteers (other than refractive error). On three of these volunteers, whole eye OCT and partial coherence interferometry (LenStar PCI, Haag-Streit) were used to measure axial eye length. We measured a mean repeatability of ±47µm with whole eye OCT and a mean difference from PCI of -68µm.

  6. The temperatures of Giordano Bruno crater observed by the Diviner Lunar Radiometer Experiment: Application of an effective field of view model for a point-based data set

    Science.gov (United States)

    Williams, J.-P.; Sefton-Nash, E.; Paige, D. A.

    2016-07-01

    Point based planetary datasets are typically stored as discrete records that represent an infinitesimal location on the target body. Instrumental effects and spacecraft motion during integration time can cause single points to inadequately represent the total area on the target that contributes to an observation. Production of mapped data products from these data for scientific analysis proceeds by binning points onto rectangular grids. Empty bins occur where data coverage is insufficient relative to grid resolution, a common problem at high latitudes in cylindrical projections, and remedial interpolation can lead to high uncertainty areas and artifacts in maps. To address such issues and make better use of available data, we present a method to calculate the ground-projected effective field of view (EFOV) for point-based datasets, using knowledge of instrumental characteristics and observation geometry. We apply this approach to data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment, a visible to far-infrared multispectral radiometer which acquires radiometric measurements of reflected visible and emitted infrared radiation of the Moon in 9 spectral channels between 0.35 and 400 μm. Analysis of gridded radiance from crater Giordano Bruno, a 22 km diameter rayed crater, is used to demonstrate our gridding procedure. Diviner data, with such processing, reveals details of the surface that are seen in the high-resolution LRO Camera NAC images. Brightness temperatures and anisothermality observed in Diviner's IR channels show the thermophysical properties of the crater ejecta to be very heterogeneous indicative of minimal mechanical disruption by micrometeoroid impacts consistent with a very young (<10 Ma) formation age as the lunar surface becomes rapidly homogenized over time. This heterogeneity has implications for crater-count studies as regions of high anisothermality are characterized by large blocks of material and lower crater

  7. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.

    Science.gov (United States)

    Foley, Nicholas C; Grossberg, Stephen; Mingolla, Ennio

    2012-08-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of

  8. Spatially selective 2D RF inner field of view (iFOV diffusion kurtosis imaging (DKI of the pediatric spinal cord

    Directory of Open Access Journals (Sweden)

    Chris J. Conklin

    2016-01-01

    Full Text Available Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS; namely in the form of Diffusion Weighted Imaging (DWI and Diffusion Tensor Imaging (DTI. While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI:5. Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01 and radial kurtosis (p < 0.01 between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation

  9. Effect of Object Position in Cone Beam Computed Tomography Field of View for Detection of Root Fractures in Teeth with Intra-Canal Posts

    Directory of Open Access Journals (Sweden)

    Valizadeh

    2015-10-01

    Full Text Available Background Vertical root fracture (VRF is a common problem in endodontically treated teeth. Due to its poor prognosis, a reliable technique must be used to make an accurate diagnosis. Cone beam computed tomography (CBCT has been recently introduced for maxillofacial imaging. Despite the high diagnostic value of this method, metal artifacts resulting from intra-canal posts still make the detection of VRFs challenging. Objectives This study aimed to assess the effect of object position in the field of view (FOV of CBCT on detection of VRFs in teeth with intra-canal posts. Materials and Methods The crowns of 60 extracted premolar teeth were cut at the level of cementoenamel junction (CEJ. Root canals were filled with gutta-percha and filling of the coronal 2/3 of the root canals was subsequently removed to fabricate intra-canal cast posts. The teeth were randomly divided into two groups of 30. Fracture was induced in group one using an Instron machine. Group two was considered as the control group with no fracture. All teeth were then randomly positioned and scanned in five different positions starting at the center of the FOV as well as right, left anterior and posterior relative to the center (3, 9, 12, and 6 O’clock via the New Tom VGI CBCT unit. Two observers evaluated images for VRFs. Sensitivity and specificity of fracture diagnosis in each position was calculated in comparison with the gold standard. Wilcoxon test was used for data analysis. Results Considering deterministic and probabilistic diagnostic parameters, probabilistic sensitivity was similar in all positions; but probabilistic specificity of the center position (65.1% was significantly higher than that of 6 and 12 O’clock positions. Considering the deterministic diagnostic parameters, the overall sensitivity and specificity values decreased in all positions in FOV, but sensitivity of the center position of FOV was significantly higher than that of other positions; specificity

  10. Study and Design on Freeform Surface Compound Eye with Large Field of View%大视场自由曲面复眼设计研究

    Institute of Scientific and Technical Information of China (English)

    范阳; 张红霞; 宋乐; 贾大功

    2014-01-01

    The ommatidia arranged at the edge have great off-axis aberrations in artificial compound eye structure with wide Field of View (FOV) and small volume. A new compound eye structure is presented, where the ommatidia are designed as freeform prisms. With the light passing through the freeform surface and folding in the ommatidium, the off-axis aberrations are well corrected. Therefore, the image quality of the ommatidia arranged at the edge is improved, and the FOV of the structure is enlarged. To image 180° FOV, this structure contains 5 groups of ommatidia with a particular FOV correspondingly. The model of each group is designed and the ray trace is completed based on the optical simulation software codeV. The results demonstrate that the compound eyes structure has high image quality for the entire 180° FOV. On the one hand, the modulation transformation function MTF is greater than 0.2 at the frequency of 100lp/mm, and on the other hand, the distortion is less than 30%.%在大视场小体积的人造复眼结构中,倾斜的边缘子眼成像时存在较大的轴外像差。提出一种复眼结构,利用光线在子眼中的折转与自由曲面矫正像差,提高了边缘子眼的成像质量,进而增大了复眼结构的视场角。设计出5组子眼对180°视场成像,每组对应特定的视场范围。利用光学仿真软件CodeV对5组子眼分别做了光学仿真,得到了各组子眼的像差曲线,光学传递函数 MTF 曲线。结果表明,在整个180°视场范围内,频率为100 lp/mm时,MTF值均大于0.2,畸变在30%以内,复眼具有良好的成像质量。

  11. The effect of activity outside the field of view on image quality for a 3D LSO-based whole body PET/CT scanner.

    Science.gov (United States)

    Matheoud, R; Secco, C; Della Monica, P; Leva, L; Sacchetti, G; Inglese, E; Brambilla, M

    2009-10-07

    The purpose of this study was to quantify the influence of outside field of view (FOV) activity concentration (A(c)(,out)) on the noise equivalent count rate (NECR), scatter fraction (SF) and image quality of a 3D LSO whole-body PET/CT scanner. The contrast-to-noise ratio (CNR) was the figure of merit used to characterize the image quality of PET scans. A modified International Electrotechnical Commission (IEC) phantom was used to obtain SF and counting rates similar to those found in average patients. A scatter phantom was positioned at the end of the modified IEC phantom to simulate an activity that extends beyond the scanner. The modified IEC phantom was filled with (18)F (11 kBq mL(-1)) and the spherical targets, with internal diameter (ID) ranging from 10 to 37 mm, had a target-to-background ratio of 10. PET images were acquired with background activity concentrations into the FOV (A(c)(,bkg)) about 11, 9.2, 6.6, 5.2 and 3.5 kBq mL(-1). The emission scan duration (ESD) was set to 1, 2, 3 and 4 min. The tube inside the scatter phantom was filled with activities to provide A(c)(,out) in the whole scatter phantom of zero, half, unity, twofold and fourfold the one of the modified IEC phantom. Plots of CNR versus the various parameters are provided. Multiple linear regression was employed to study the effects of A(c)(,out) on CNR, adjusted for the presence of variables (sphere ID, A(c)(,bkg) and ESD) related to CNR. The presence of outside FOV activity at the same concentration as the one inside the FOV reduces peak NECR of 30%. The increase in SF is marginal (1.2%). CNR diminishes significantly with increasing outside FOV activity, in the range explored. ESD and A(c)(,out) have a similar weight in accounting for CNR variance. Thus, an experimental law that adjusts the scan duration to the outside FOV activity can be devised. Recovery of CNR loss due to an elevated A(c)(,out) activity seems feasible by modulating the ESD in individual bed positions according to A(c)(,out).

  12. Reduced Field-of-View Diffusion-Weighted Imaging of the Lumbosacral Enlargement: A Pilot In Vivo Study of the Healthy Spinal Cord at 3T

    Science.gov (United States)

    Grussu, Francesco; Louka, Polymnia; Prados, Ferran; Samson, Rebecca S.; Battiston, Marco; Altmann, Daniel R.; Ourselin, Sebastien; Miller, David H.; Gandini Wheeler-Kingshott, Claudia A. M.

    2016-01-01

    Diffusion tensor imaging (DTI) has recently started to be adopted into clinical investigations of spinal cord (SC) diseases. However, DTI applications to the lower SC are limited due to a number of technical challenges, related mainly to the even smaller size of the SC structure at this level, its position relative to the receiver coil elements and the effects of motion during data acquisition. Developing methods to overcome these problems would offer new means to gain further insights into microstructural changes of neurological conditions involving the lower SC, and in turn could help explain symptoms such as bladder and sexual dysfunction. In this work, the feasibility of obtaining grey and white matter (GM/WM) DTI indices such as axial/radial/mean diffusivity (AD/RD/MD) and fractional anisotropy (FA) within the lumbosacral enlargement (LSE) was investigated using a reduced field-of-view (rFOV) single-shot echo-planar imaging (ss-EPI) acquisition in 14 healthy participants using a clinical 3T MR system. The scan-rescan reproducibility of the measurements was assessed by calculating the percentage coefficient of variation (%COV). Mean FA was higher in WM compared to GM (0.58 and 0.4 in WM and GM respectively), AD and MD were higher in WM compared to GM (1.66 μm2ms-1 and 0.94 μm2ms-1 in WM and 1.2 μm2ms-1 and 0.82 μm2ms-1 in GM for AD and MD respectively) and RD was lower in WM compared to GM (0.58 μm2ms-1 and 0.63 μm2ms-1 respectively). The scan-rescan %COV was lower than 10% in all cases with the highest values observed for FA and the lowest for MD. This pilot study demonstrates that it is possible to obtain reliable tissue-specific estimation of DTI indices within the LSE using a rFOV ss-EPI acquisition. The DTI acquisition and analysis protocol presented here is clinically feasible and may be used in future investigations of neurological conditions implicating the lower SC. PMID:27741303

  13. Optical technologies for space sensor

    Science.gov (United States)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  14. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  15. Optical Design of Spaceborne Shortwave Infrared Imaging Spectrometer with Wide Field of View%星载大视场短波红外成像光谱仪光学设计

    Institute of Scientific and Technical Information of China (English)

    薛庆生; 林冠宇; 宋克非

    2011-01-01

    Based on the requirements of shotwave infrared imaging spectrometer with wide field of view,considering the restrictive off-the-shelf detectors, a split field of view (FOV) method was developed. The principle of split field of view was analyzed. A spaceborne shortwave infrared imaging spectrometer with wide field of view was designed using the method. The imaging spectrometer are composed of a 11.42°telecentric off-axis three-mirror anastigmatic telescope and two offner convex grating spectral imaging system. Ray tracing, optimization and analyzing were performed by CODE V and ZEMAX software. The analyzed results demonstrate that the modulation transfer function for different spectral band is more than 0.7 which satisfies the pre-designed requirement.%根据大视场短波红外成像光谱仪的要求,考虑到市售探测器的限制,提出了视场分离的方法,分析了视场分离方法的原理.利用此方法设计了一个星载大视场短波红外成像光谱仪光学系统,该系统由11.42°远心离轴三反消像散前置望远系统和2个Offner凸面光栅光谱成像系统组成,运用光学设计软件CODE V和ZEMAX对成像光谱仪光学系统进行了光线追迹和优化,并对设计结果进行了分析,分析结果表明,光学系统在各个谱段的光学传递函数均达到0.7以上,完全满足设计指标要求.

  16. Reduced field-of -view diffusion-weighted magnetic resonance imaging of the pancreas: Comparison with conventional single-shot echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Lee, Jeong Min; Yoon, Jeong Hee; Jang, Jin Young; Kim, Sun Whe; Ryu, Ji Kon; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, Erlangen (Germany)

    2015-12-15

    To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) diffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm{sup 2}) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm{sup 2}). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm{sup 2} and 2.81 ± 0.64 at b = 400 s/mm{sup 2}), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm{sup 2} and 3.15 ± 0.79 at b = 400 s/mm{sup 2}), IQ score (8.51 ± 2.05 at b = 0 s/mm{sup 2} and 8.79 ± 1.60 at b = 400 s/mm{sup 2}), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm{sup 2} and 2.56 ± 0.47 at b = 500 s/mm{sup 2}; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm{sup 2} and 2.89 ± 0.86 at b = 500 s/mm{sup 2}; IQ score, 7.13 ± 1.83 at b = 0 s/mm{sup 2} and 8.17 ± 1.31 at b = 500 s/mm{sup 2}; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm{sup 2} (full FOV DWI, 2.41 ± 0.63) (p

  17. A novel Region of Interest (ROI) imaging technique for biplane imaging in interventional suites: high-resolution small field-of-view imaging in the frontal plane and dose-reduced, large field-of-view standard-resolution imaging in the lateral plane

    Science.gov (United States)

    Swetadri Vasan, Setlur Nagesh; Ionita, C.; Bednarek, D. R.; Rudin, Stephen

    2014-03-01

    Endovascular-Image-Guided-Interventional (EIGI) treatment of neuro-vascular conditions such as aneurysms, stenosed arteries, and vessel thrombosis make use of treatment devices such as stents, coils, and balloons which have very small feature sizes, 10's of microns to a few 100's of microns, and hence demand a high resolution imaging system. The current state-of-the-art flat panel detector (FPD) has about a 200-um pixel size with the Nyquist of 2.5 lp/mm. For higher-resolution imaging a charge-coupled device (CCD) based Micro-Angio - Fluoroscope (MAF-CCD) with a pixel size of 35um (Nyquist of 11 lp/mm) was developed and previously reported. Although the detector addresses the high resolution needs, the Field-Of-View (FOV) is limited to 3.5 cm x 3.5 cm, which is much smaller than current FPDs. During the use of the MAF-CCD for delicate parts of the intervention, it may be desirable to have real-time monitoring outside the MAF FOV with a low dose, and lower, but acceptable, quality image. To address this need, a novel imaging technique for biplane imaging systems has been developed, using an MAFCCD in the frontal plane and a dose-reduced standard large FOV imager in the lateral plane. The dose reduction is achieved by using a combination of ROI fluoroscopy and spatially different temporal filtering, a technique that has been previously presented. In order to evaluate this technique, a simulation using images acquired during an actual EIGI treatment on a patient, followed by an actual implementation on phantoms is presented.

  18. Structure of phytoplankton (Continuous Plankton Recorder and SeaWiFS and impact of climate in the Northwest Atlantic Shelves

    Directory of Open Access Journals (Sweden)

    S. C. Leterme

    2007-01-01

    Full Text Available All marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS, and Sea Surface Temperature (SST are used to complement the Continuous Plankton Recorder (CPR survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W and Argentia (Newfoundland; 47° N, 54° W over the period 1995–1998. Over this period, we examined physical structures (i.e. SST and SSH and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance.

  19. Structure of phytoplankton (Continuous Plankton Recorder and SeaWiFS and impact of climate in the Northwest Atlantic Shelves

    Directory of Open Access Journals (Sweden)

    S. C. Leterme

    2006-10-01

    Full Text Available All marine organisms are affected to some extent by the movement and thermal properties of oceanic currents. However phytoplankton, because of its small size is most directly coupled to the physical environment. The intense hydrodynamic activity observed in the Northwest Atlantic Shelves Province makes this region especially intriguing from the point of view of physical-biological interactions. In the present work, remote sensed data of Sea Surface Height (SSH anomalies, Sea-surface chlorophyll a concentrations (SeaWiFS, and Sea Surface Temperature (SST are used to complement the Continuous Plankton Recorder (CPR survey that continuously sampled a route between Norfolk (Virginia, USA; 39° N, 71° W and Argentia (Newfoundland; 47° N, 54° W over the period 1995–1998. Over this period, we examined physical structures (i.e. SST and SSH and climatic forcing associated with space-time phytoplankton structure. Along this route, the phytoplankton structures were mainly impacted by the changes in surface flow along the Scotian Shelf rather than significantly influenced by the mesoscale features of the Gulf Stream. These changes in water mass circulation caused a drop in temperature and salinity along the Scotian Shelf that induced changes in phytoplankton and zooplankton abundance.

  20. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    Directory of Open Access Journals (Sweden)

    Hendrik J. van der Woerd

    2015-10-01

    Full Text Available The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10 of narrow (≈10 nm bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α. Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.

  1. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    Science.gov (United States)

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  2. Object Matching Across Multiple Non-overlapping Fields of View Using Fuzzy Logic%基于模糊逻辑的多相机非重叠场景的物体匹配

    Institute of Scientific and Technical Information of China (English)

    LOKE Yuan Ren; KUMAR Pankaj; RANGANATH Surendra; 黄为民

    2006-01-01

    An approach based on fuzzy logic for matching both articulated and non-articulated objects across multiple non-overlapping field of views (FoVs) from multiple cameras is proposed.We call it fuzzy logic matching algorithm (FLMA). The approach uses the information of object motion, shape and camera topology for matching objects across camera views. The motion and shape information of targets are obtained by tracking them using a combination of ConDensation and CAMShift tracking algorithms. The information of camera topology is obtained and used by calculating the projective transformation of each view with the common ground plane. The algorithm is suitable for tracking non-rigid objects with both linear and non-linear motion. We show videos of tracking objects across multiple cameras based on FLMA. From our experiments, the system is able to correctly match the targets across views with a high accuracy.

  3. The accuracy of linear measurements of maxillary and mandibular edentulous sites in cone-beam computed tomography images with different fields of view and voxel sizes under simulated clinical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Rumpa; Ramesh, Aruna; Pagni, Sarah [Tufts University School of Dental Medicine, Boston (United States)

    2016-06-15

    The objective of this study was to investigate the effect of varying resolutions of cone-beam computed tomography images on the accuracy of linear measurements of edentulous areas in human cadaver heads. Intact cadaver heads were used to simulate a clinical situation. Fiduciary markers were placed in the edentulous areas of 4 intact embalmed cadaver heads. The heads were scanned with two different CBCT units using a large field of view (13 cm×16 cm) and small field of view (5 cm×8 cm) at varying voxel sizes (0.3 mm, 0.2 mm, and 0.16 mm). The ground truth was established with digital caliper measurements. The imaging measurements were then compared with caliper measurements to determine accuracy. The Wilcoxon signed rank test revealed no statistically significant difference between the medians of the physical measurements obtained with calipers and the medians of the CBCT measurements. A comparison of accuracy among the different imaging protocols revealed no significant differences as determined by the Friedman test. The intraclass correlation coefficient was 0.961, indicating excellent reproducibility. Inter-observer variability was determined graphically with a Bland-Altman plot and by calculating the intraclass correlation coefficient. The Bland-Altman plot indicated very good reproducibility for smaller measurements but larger discrepancies with larger measurements. The CBCT-based linear measurements in the edentulous sites using different voxel sizes and FOVs are accurate compared with the direct caliper measurements of these sites. Higher resolution CBCT images with smaller voxel size did not result in greater accuracy of the linear measurements.

  4. Optical Design of Spaceborne High Resolution Hyperspectral Imagers with Wide Field of View%星载高分辨力、大视场高光谱成像仪光学设计

    Institute of Scientific and Technical Information of China (English)

    薛庆生

    2011-01-01

    根据高分辨力,大视场的要求,考虑到市售探测器的限制,提出了视场分离分光的方法,分析了视场分离分光的原理.利用此方法设计了一个星载高分辨力、大视场高光谱成像仪光学系统,该系统由11.42°远心离轴三反消像散(TMA)望远系统和2个Offner凸面光栅光谱成像系统组成,运用光学设计软件CODE V对高光谱成像仪光学系统进行了光线追迹和优化,并对设计结果进行了分析,分析结果表明,光学系统在各个谱段的光学传递函数均达到0.7以上,完全满足设计指标要求.%Based on the requirements of high resolution and wide field of view, considering the restrictive off-tlhe-shelf detectors, the design method of split Field of View (FOV) is developed. The principle of split FOV is analyzed. A spaceborne high resolution hyperspectral imager with wide FOV is designed using the method. The hyperspectral imager are composed of a 11.42° telecentric off-axis Three-Mirror Anastigmatic (TMA) telescope and two Offner convex grating spectral imaging system. Ray tracing, optimization and analyzing are performed by CODE V software. The analyzed results demonstrate that the Modulation Transfer Function (MTF) for different spectral band is more than 0.7, which satisfies the pre-designed requirement.

  5. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  6. Shortest Paths With Side Sensors

    CERN Document Server

    Salaris, Paolo; Bicchi, Antonio

    2011-01-01

    We present a complete characterization of shortest paths to a goal position for a vehicle with unicycle kinematics and a limited range sensor, constantly keeping a given landmark in sight. Previous work on this subject studied the optimal paths in case of a frontal, symmetrically limited Field--Of--View (FOV). In this paper we provide a generalization to the case of arbitrary FOVs, including the case that the direction of motion is not an axis of symmetry for the FOV, and even that it is not contained in the FOV. The provided solution is of particular relevance to applications using side-scanning, such as e.g. in underwater sonar-based surveying and navigation.

  7. Infrared Non-Contact Head Sensor for Control of Wheelchair Movements

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie; Garcia, Juan Carlos

    2005-01-01

    that the field of view is not limited. Tests on a wheelchair have shown that the system is functioning in real life, and that the vehicle can be driven at normal speeds in a simple and natural way. The behaviour of the sensor and the generated commands are fully programable, so it can be adapted easily to other......This paper presents a new human-machine interface for controlling a wheelchair by head movements. The position of the head is determined by use of infrared sensors, with no parts attached to the head of the user. The placement of the infrared sensors are behind the head of the user, so...

  8. Modeling a Sensor to Improve Its Efficacy

    Directory of Open Access Journals (Sweden)

    Nabin K. Malakar

    2013-01-01

    Full Text Available Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a spatially distributed region within its field of view weighted by its spatial sensitivity function (SSF. We demonstrate that by incorporating an accurate model of the light sensor SSF into the likelihood function of a Bayesian inference engine, an autonomous system can make improved inferences about its surroundings. The method presented here is data based, fairly general, and made with plug-and-play in mind so that it could be implemented in similar problems.

  9. Modeling a Sensor to Improve its Efficacy

    CERN Document Server

    Malakar, N K; Knuth, K H

    2013-01-01

    Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a spatially distributed region within its field of view weighted by its Spatial Sensitivity Function (SSF). We demonstrate that by incorporating an accurate model of the light sensor SSF into the likelihood function of a Bayesian inference engine, an autonomous system can make improved inferences about its surroundings. The method presented here is data-based, fairly general, and made with plu...

  10. Multi-Sensor Aerosol Products Sampling System

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  11. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    Science.gov (United States)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  12. Triple rule-out CT angiography protocol with restricting field of view for detection of pulmonary thromboembolism and aortic dissection in emergency department patients: simulation of modified CT protocol for reducing radiation dose.

    Science.gov (United States)

    Kim, Hyun Su; Kim, Sung Mok; Cha, Min Jae; Kim, Yoo Na; Kim, Hae Jin; Choi, Jin-Ho; Choe, Yeon Hyeon

    2017-05-01

    Background Triple rule-out computed tomography (TRO CT) is a CT protocol designed to simultaneously evaluate the coronary, aorta, and pulmonary arteries. Purpose To evaluate potential diagnostic performance of TRO CT with restricted volume coverage for detection of pulmonary thromboembolism (PTE) and aortic dissection (AD). Material and Methods This study included 1224 consecutive patients with acute chest pain who visited the emergency department and underwent TRO CT using a 128-slice dual-source CT. Image data were reconstructed according to the display field of view (DFOV) of coronary CT angiography (CCTA) and TRO CT protocols in each patient. The presence of PTE and AD was evaluated by independent observers in each DFOV. The radiation dose was calculated to evaluate the potential benefits by restricting z-axis coverage to cardiac scan range instead of the whole thorax. Results Among all patients, 22 cases with PTE (1.9%) and nine cases with AD (0.8%) were found. Except for one PTE case, all cases were detected on both DFOV of TRO CT and CCTA. Mean effective dose for evaluation of entire thorax and cardiac scan coverage were 5.9 ± 1.1 mSv and 3.5 ± 0.7 mSv, respectively. Conclusion Isolated PTE and AD outside the CCTA DFOV rarely occur. Therefore, modified TRO CT protocol using cardiac scan coverage can be adopted to detect PTE and AD with reduced radiation dose.

  13. Novel online sensor technology for continuous monitoring of milk coagulation and whey separation in cheesemaking.

    Science.gov (United States)

    Fagan, Colette C; Castillo, Manuel; Payne, Fred A; O'Donnell, Colm P; Leedy, Megan; O'Callaghan, Donal J

    2007-10-31

    The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.

  14. Description of a Photoelectric Rotating Slit Elevation and Azimuth Sensor.

    Science.gov (United States)

    Brown, H E; Brown, P B; Goodson, D W; Cope, J D

    1966-06-01

    The Photoelectric Rotating Slit Elevation and Azimuth Sensor (PERSEAS) measures the azimuth and elevation of the line of sight to a target reflecting or emitting radiation in the 0.4- tol.1-micro portion of the spectrum. Angular field of view is 360 degrees in azimuth and 30 degrees in elevation. Eight stationary lenses are used with rotating fiber-optics slits and silicon photodiode detectors to produce electrical pulses which are time related to target angular coordinates. Data rate is one line-of-sight measurement per 2.5 msec. Accuracy is better than 1 mrad.

  15. Interfaz Hombre-Máquina mediante un Sensor de Posición sin contacto por Infrarojos

    DEFF Research Database (Denmark)

    García García, Juan Carlos; Christensen, Henrik Vie; Mazo Quintas, Manuel

    2005-01-01

    of the user, so that the field of view is not limited. Tests on a wheelchair have shown that the system is functioning in real life, and that the vehicle can be driven at normal speeds in a simple and natural way. The behaviour of the sensor and the generated commands are fully programmable, so it can......This paper presents a new human-machine interface that has been successfully applied in driving an advanced powered wheelchair. The position of the head is determined by use of infrared sensors, with no parts attached to the head of the user. The placement of the infrared sensors is behind the head...

  16. 超长焦距红外双视场光学系统设计%Design of infrared optical system with super-long focal length and dual field-of-view

    Institute of Scientific and Technical Information of China (English)

    白玉琢; 木锐; 马琳; 贾钰超; 普群雁; 薛经纬

    2014-01-01

    设计了一种超长焦距中波红外双视场光学系统,该系统采用二次成像结构,通过透镜轴向移动实现变焦功能。设计结果表明,该系统可以实现超长焦距600~150 mm的变焦功能,且中心视场在探测器特征频率20 lp/mm处的光学传递函数值高于0.5,接近衍射极限,能够很好地满足军事侦察对远距离目标同时搜索和瞄准的要求。%A mid-wavelength infrared optical system with super-long focal length and dual field-of-view is de-signed in this paper .Based on the re-image configuration , this system can realize the zoom by axial motion of a lens along the optical axis .The design results show that this system realizes the zoom with a super-long focal length of 600-1 500 mm, and the MTF of the central view is more than 0.5 at the characteristic frequency of 20 lp/mm of detector , which shows its optical performance approximates to the diffraction limit .This system can meet the requirement of military investigation for seeking and aiming at target in a long distance .

  17. Influence of field of view alignment on division of time polarimetry accuracy%视场重合程度对分时偏振测量精度的影响

    Institute of Scientific and Technical Information of China (English)

    王羿; 洪津; 骆冬根; 胡亚东; 汪方斌; 李志伟

    2015-01-01

    Nearly all polarization measurement suffers from field of view (FOV) misalignment. FOV misalignment would result in discrepancy between the polarization measurement to the target and actual polarization information, named artificial polarization. Instrument and the platform (plane or satellite) movement are the main factors resulting in FOV misalignment of division of time polarization measurement. First of all, the principle of polarization measurement was discussed. The reason of FOV alignment influencing on polarimetry accuracy was described. Then the method on measurement on FOV alignment was proposed on reviewing and summarizing domestic and international current research. After that, factors on influence of FOV alignment space borne and the compensate effect were analyzed in detail. Finally, the discussion on a imaging Polarimeter was shown. Results indicate that FOV misalignment caused by satellite is decreased after compensation. Polarimetry accuracy was increased.%视场不完全重合是偏振测量的共性问题。视场不重合导致对目标探测时获取的偏振信息与真实的偏振信息存在差异,即产生伪偏振。造成分时偏振测量视场不重合的主要因素由两方面构成:仪器自身和仪器所搭载平台(飞机或卫星)的运动状态。首先介绍了偏振测量的基本原理,提出了视场重合程度影响偏振测量精度的原因;其次,结合国内外研究现状,提出了视场不重合的度量方法;再次,重点分析了星载背景下影响视场不重合的因素以及改进措施;最后以某星载偏振成像仪为例给出了分析结果并讨论。结果表明:采取补偿措施后由卫星平台造成的视场不重合程度远小于采取补偿前,仪器偏振测量精度得到了提高。

  18. Interference visibility of wide-field-of-view polarization interference imaging spetrometer%宽场偏振干涉成像光谱仪的调制度研究

    Institute of Scientific and Technical Information of China (English)

    吴海英; 张三喜; 王维强; 张伟光; 张玉伦

    2014-01-01

    干涉成像光谱技术是一种集双光束干涉技术、二维成像技术以及高分辨率光谱技术于一体的高新遥感探测技术,常用来进行监视、识别和探测各种民用和军事目标。基于双折射晶体的宽场偏振型干涉成像光谱仪是该技术中的一种典型代表,组成其系统的偏光元件的性能是决定其成像质量和光谱复原精度的关键因素。论文考虑元件偏振误差和延迟误差对光路传播的影响,采用偏振追迹法推导出了系统干涉调制度的理论表达式,给出了其随入射角、入射波长、入射方位角以及元件偏振化方向和相位延迟量的变化特性,并定量分析了其允差范围。这为基于偏光器件成像光谱仪的系统设计、高光谱复原以及工程实践提供了重要的理论指导和技术支持。%Interference imaging spectroscopy (IIS) is a novel high technology integrated by the two-beam interference technique, 2D imaging technique and spectroscopy with high resolution. The wide-field-of-view polarized type is an attractive scheme in IIS. It employs polarized components to realize interference and thus the image quality and spectrum reconstruction are principally determined by the characteristics of these polarization components. In this work, theoretical analysis of the interference visibility was performed by considering the polarization deviations and the retardation deviation of elements. The theoretical expression of interference visibility was deduced by polarization tracing method. The varying characteristics of interference visibility with incident angle, wavelength, azimuth angle, polarization direction and phase retardation were presented and the permissible deviation was quantitatively analyzed. This work would provide suggestions for system design, hyperspectral reconstruction and engineering practice of spectrometers composed of polarization components.

  19. WE-G-BRD-01: A Data-Driven 4D-MRI Motion Model to Estimate Full Field-Of-View Abdominal Motion From 2D Image Navigators During MR-Linac Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis; Lagendijk, JJW; Berg, CAT van den [University Medical Center Utrecht, Utrecht (Netherlands)

    2015-06-15

    Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-series consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large volume

  20. Biomimetic optical sensor for aerospace applications

    Science.gov (United States)

    Frost, Susan A.; Gorospe, George E.; Wright, Cameron H. G.; Barrett, Steven F.

    2015-05-01

    We report on a fiber optic sensor based on the physiological aspects of the eye and vision-related neural layers of the common housefly (Musca domestica) that has been developed and built for aerospace applications. The intent of the research is to reproduce select features from the fly's vision system that are desirable in image processing, including high functionality in low-light and low-contrast environments, sensitivity to motion, compact size, lightweight, and low power and computation requirements. The fly uses a combination of overlapping photoreceptor responses that are well approximated by Gaussian distributions and neural superposition to detect image features, such as object motion, to a much higher degree than just the photoreceptor density would imply. The Gaussian overlap in the biomimetic sensor comes from the front-end optical design, and the neural superposition is accomplished by subsequently combining the signals using analog electronics. The fly eye sensor is being developed to perform real-time tracking of a target on a flexible aircraft wing experiencing bending and torsion loads during flight. We report on results of laboratory experiments using the fly eye sensor to sense a target moving across its field of view.

  1. Future electro-optical sensors and processing in urban operations

    Science.gov (United States)

    Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan

    2013-10-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and

  2. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  3. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-02-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties

  4. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-07-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain

  5. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  6. Multi-sensor Aerosol Products Sampling System (MAPSS

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2012-05-01

    Full Text Available Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS, which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient of aerosol products from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  7. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    Science.gov (United States)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  8. 超大视场红外鱼眼告警系统的成像响应特性分析%Imaging response characteristics analysis of ultra-wide field of view infrared fish-eye warning system

    Institute of Scientific and Technical Information of China (English)

    周玉龙; 王永仲

    2011-01-01

    超大视场红外鱼眼告警系统具有凝视半球空域,实时感知来自空中不同方向威胁的独特优点,在未来战争中必将有着广泛的应用.而对超大视场红外鱼眼告警系统的成像响应特性进行分析有助于解决其在应用中所出现的问题.对系统的温度响应特性、时间响应特性以及像面照度进行了分析,结果表明,在相同的环境温度下,系统的温度响应特性是线性的,且随着时间的推移系统的输出逐渐变大,在约70 min以后趋于稳定;当环境温度升高时,系统输出也相应变大,说明系统存在着能量漂移.通过对实验结果的进一步分析,结果表明,这种能量漂移是环境温度和系统的自热效应共同作用的结果.通过对同一目标不同位置处的灰度值进行分析,发现灰度值相对标准偏差仅为2.26%,说明不同位置处目标的灰度值几乎是相等的,从而表明系统的像面照度是均匀的,这与随后的理论分析相一致.对于超大视场红外鱼眼告警系统的算法设计方面具有重要的参考价值.%The ultra-wide field of view(UWFV)infrared fish-eye warning system has the ability of staring hemisphere space so that it can sense the threats from different directions at real time,which makes it be widely used in the future modern wars.It will be helpful in solving the problems in practical application to analyze the thermal imaging response characteristics of UWFV infrared fish-eye warning system.In this paper,the thermal imaging response characteristics including temperature response,time response and image illumination were analyzed respectively for UWFV infrared fish-eye warning system.It was found that under the same ambient temperature condition,the system temperature response was linear.With the process of time,the system output became bigger gradually,and it tended to be a fixed value after about 70 minutes.When the ambient temperature got higher,the system output was also

  9. Optimization of self-directed target coverage in wireless multimedia sensor network.

    Science.gov (United States)

    Yang, Yang; Wang, Yufei; Pi, Dechang; Wang, Ruchuan

    2014-01-01

    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset.

  10. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  11. Multiplatform information-based sensor management: an inverted UAV demonstration

    Science.gov (United States)

    Kreucher, Chris; Wegrzyn, John; Beauvais, Michel; Conti, Ralph

    2007-04-01

    This paper describes an experimental demonstration of a distributed, decentralized, low communication sensor management algorithm. We first review the mathematics surrounding the method, which includes a novel combination of particle filtering for predictive density estimation and information theory for maximizing information flow. Earlier work has shown the utility via Monte Carlo simulations. Here we present a laboratory demonstration to illustrate the utility and to provide a stepping stone toward full-up implementation. To that end, we describe an inverted Unmanned Aerial Vehicle (UAV) test-bed developed by The General Dynamics Advanced Information Systems (GDAIS) Michigan Research and Development Center (MRDC) to facilitate and promote the maturation of the research algorithm into an operational, field-able system. Using a modular design with wheeled robots as surrogates to UAVs, we illustrate how the method is able to detect and track moving targets over a large surveillance region by tasking a collection of limited field of view sensors.

  12. Image quality vs. sensitivity: fundamental sensor system engineering

    Science.gov (United States)

    Schueler, Carl F.

    2008-08-01

    This paper focuses on the fundamental system engineering tradeoff driving almost all remote sensing design efforts, affecting complexity, cost, performance, schedule, and risk: image quality vs. sensitivity. This single trade encompasses every aspect of performance, including radiometric accuracy, dynamic range and precision, as well as spatial, spectral, and temporal coverage and resolution. This single trade also encompasses every aspect of design, including mass, dimensions, power, orbit selection, spacecraft interface, sensor and spacecraft functional trades, pointing or scanning architecture, sensor architecture (e.g., field-of-view, optical form, aperture, f/#, material properties), electronics, mechanical and thermal properties. The relationship between image quality and sensitivity is introduced based on the concepts of modulation transfer function (MTF) and signal-to-noise ratio (SNR) with examples to illustrate the balance to be achieved by the system architect to optimize cost, complexity, performance and risk relative to end-user requirements.

  13. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  14. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  15. The Sixth SeaWiFS/SIMBIOS Intercalibration Round-Robin Experiment (SIRREX-6)

    Science.gov (United States)

    Riley, Thomas; Bailey, Sean

    1998-01-01

    For the sixth Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-6), NASA personnel carried the same four Satlantic in-water radiometers to nine separate laboratories and calibrated them. Two of the sensors were seven-channel radiance heads and two were seven-channel irradiance heads. The calibration and data reduction procedures used at each site followed that laboratory's normal procedures. The reference lamps normally used for the calibration of these types of instruments by the various laboratories were also used for this experiment. NASA personnel processed the data to produce calibration parameters from the various laboratories

  16. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas

    Science.gov (United States)

    Kopelevich, O. V.; Burenkov, V. I.; Ershova, S. V.; Sheberstov, S. V.; Evdoshenko, M. A.

    2004-05-01

    We report the results of our study of spatial and temporal variability of the bio-optical characteristics in the Barents, Black and Caspian seas derived from SeaWiFS data in 1998-2001. The modified bio-optical algorithms were used to derive chlorophyll concentration, particle backscattering, and yellow substance absorption coefficients. The mean monthly distributions of the above characteristics were constructed, and variations of their monthly means in the different regions were analyzed. No significant correlation was found between the variations of chlorophyll concentration in open parts of the basins and the coastal regions with river run-off, suggesting no direct effect of the processes in the coastal zone on bio-productivity in the open parts. Of particular interest is the sharp increase of chlorophyll concentration and particle backscattering found in the Middle and Southern Caspian in July-August 2001, perhaps the result of invasion of the ctenophore, Mnemiopsis leidyi. That event as well as the suspected coccolithophorid bloom in the Middle Barents in July-August needs field evidence.

  17. Stray light test station for measuring point source transmission and thermal background of visible and infrared sensors

    Science.gov (United States)

    Peterson, Gary L.

    2008-08-01

    Breault Research Organization has designed and built a stray light test station. The station measures the point source transmission and background thermal irradiance of visible and infrared sensors. Two beam expanders, including a large 0.89 meter spherical mirror, expand and collimate light from laser sources at 0.658 and 10.6 µm. The large mirror is mounted on a gimbal to illuminate sensors at off-axis angles from 0° to 10°, and azimuths from 0° to 180°. Sensors with apertures as large as 0.3 meters can be tested with the existing facility. The large mirror is placed within a vacuum chamber so cryogenic infrared sensors can be tested in a vacuum environment. A dark cryogenic cold plate can be translated into the field of view of a sensor to measure its background thermal irradiance.

  18. Free space optical sensor network for fixed infrastructure sensing

    Science.gov (United States)

    Agrawal, Navik; Milner, Stuart D.; Davis, Christopher C.

    2009-08-01

    Free space optical (FSO) links for indoor sensor networks can provide data rates that can range from bits/s to hundreds of Mb/s. In addition, they offer physical security, and in contrast with omnidirectional RF networks, they avoid interference with other electronic systems. These features are advantageous for communication over short distances in fixed infrastructure sensor networks. In this paper the system architecture for a fixed infrastructure FSO sensor network is presented. The system includes a network of small, low power (mW), sensor systems, or "motes," that transmit data optically to a central "cluster head," which controls the network traffic of all the motes and can aggregate the sensor information. The cluster head is designed with multiple vertical cavity surface emitting lasers oriented in different directions and controlled to diverge at 12º in order to provide signal coverage over a wide field of view. Both the cluster head and motes form a local area network. Our system design focuses on low-power wireless motes that can maintain successful communication over distances up to a few meters without having to use stringent optical alignment techniques, and our network design focuses on controlling mote sleep cycles for energy efficiency. This paper presents the design as well as the experimental link and optical communications performance of a prototype FSO-based sensor network.

  19. Differences in glance behavior between drivers using a rearview camera, parking sensor system, both technologies, or no technology during low-speed parking maneuvers.

    Science.gov (United States)

    Kidd, David G; McCartt, Anne T

    2016-02-01

    This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which

  20. Preliminary study on the orbit cross-calibration of CMODIS by Sea WiFS

    Institute of Scientific and Technical Information of China (English)

    PAN Delu; HE Xianqiang; MAO Tianming

    2003-01-01

    China launched its third spaceship SZ-3 in March, 2002 on which the main remote sensor is the Chinese moderate imaging spectra radiometer (CMODIS). In this paper the properties of CMODIS are firstly introduced briefly. Then, the theory and algorithm of cross-calibration for CMODIS ocean color channels by the sea-viewing wide field-of-view sensor (SeaWiFS) data are discussed in detail. The total radiance (TOA) of four quasi-synchronized crossing ocean areas simulated by SeaWiFS and measured by CMODIS are compared and the calibration coefficients are derived from the relationship between them. Finally, the in-situ water leaving radiance data are used to validate the calibration results. The results show that the cross-calibration method could provide reasonable precision for ocean color measurement.

  1. IDENTIFICATION OF OCEANOGRAPHIC PARAMETERS FOR DETERMINING PELAGIC TUNA FISHING GROUND IN THE NORTH PAPUA WATERS USING MULTI-SENSOR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    VlNCENTIUS SlREGAR

    2006-01-01

    Full Text Available The North Papua waters as one of the important fi shing grounds in the world contribute approximately 75% of world production of pelagic tunas. These fishing grounds are still determined by hunting method. This method is time consuming and costly. However, in many areas determination of fishing ground using satellited data lias been applied by detecting the important oceanographic parameter of the presence of fish schooling such as, sea surface temperature and chlorophyl. Mostly these parameters are used integrat edly. The aim of this study is to assess the important oceanographic parameters detected from mu lti-sensor satellites (NO AA/AVHRR, Seawifs and Topex Poisedon for determining fishing ground of pelagic tunas in the North Papua waters at east season. The parameters include Sea Surface Temperature (STT, chlorophyl-a and currents. The ava ilability of data from optic sensor (Seawifs: chl-a and AVHRR: Thermal is limited by the presence of cloud cover. In that case, Topex Poseidon satellite data can be used to provide the currents data. The integration of data from multi-sensors increases the availability of the oceanographic parameters for prediction of the potential fishing zones in the study area.

  2. Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, Maksym; Ichoku, Charles

    2012-01-01

    Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.

  3. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  4. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  5. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  6. The Moon as a photometric calibration standard for microwave sensors

    Science.gov (United States)

    Burgdorf, Martin; Buehler, Stefan A.; Lang, Theresa; Michel, Simon; Hans, Imke

    2016-08-01

    Instruments on satellites for Earth observation on polar orbits usually employ a two-point calibration technique, in which deep space and an onboard calibration target provide two reference flux levels. As the direction of the deep-space view is in general close to the celestial equator, the Moon sometimes moves through the field of view and introduces an unwelcome additional signal. One can take advantage of this intrusion, however, by using the Moon as a third flux standard, and this has actually been done for checking the lifetime stability of sensors operating at visible wavelengths. As the disk-integrated thermal emission of the Moon is less well known than its reflected sunlight, this concept can in the microwave range only be used for stability checks and intercalibration. An estimate of the frequency of appearances of the Moon in the deep-space view, a description of the limiting factors of the measurement accuracy and models of the Moon's brightness, and a discussion of the benefits from complementing the naturally occurring appearances of the Moon with dedicated spacecraft maneuvers show that it would be possible to detect photometric lifetime drifts of a few percent with just two measurements. The pointing accuracy is the most crucial factor for the value of this method. Planning such observations in advance would be particularly beneficial, because it allows observing the Moon at well-defined phase angles and putting it at the center of the field of view. A constant phase angle eliminates the need for a model of the Moon's brightness when checking the stability of an instrument. With increasing spatial resolution of future microwave sensors another question arises, viz. to what extent foreground emission from objects other than the Moon will contaminate the flux entering the deep-space view, which is supposed to originate exclusively in the cosmic microwave background. We conclude that even the brightest discreet sources have flux densities below the

  7. Study on the Seasonal Variation of the Suspended Sediment Distribution and Transportation in the East China Seas Based on SeaWiFS Data

    Institute of Scientific and Technical Information of China (English)

    WANG Wenjuan; JIANG Wensheng

    2008-01-01

    The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from theretrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006.The seasonal variation and spatial distribution of thesuspended sediment concentration in the study area were investigated.It was found that the suspended sediment distribution presentsapparent spatial characteristics and seasonal variations,which are mainly affected by the resuspension and transportation of the sus-pended sediment in the study area.The concentration of suspended sediment is high inshore and low offshore,and river mouths aregenerally high concentration areas.The suspended sediment covers a much wider area in winter than in summer,and for the samesite the concentration is generally higher in winter.In the Yellow and East China Seas the suspended sediment spreads farther to theopen sea in winter than in summer,and May and October are the transitional periods of the extension.Winds,waves,currents,ther-mocline,halocline,pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factorsfor the distribution pattern.If the 10mg L-1 contour line is taken as an indicator,it appears that the transportation of suspended sedi-ment can hardly reach 124°00'E in summer or 126°00'E in winter,which is due to the obstruction of the Taiwan Warm Current andthe Kuroshio Current in the southern Yellow Sea and the East China Sea.

  8. Detection of novel algal blooms of Raphidophytes in the Eastern North Sea with satellite images of MOS and SeaWiFS

    Science.gov (United States)

    Lu, Douding; Goebel, Jeanette; Hetscher, Matthias; Horstmann, U.; Davidov, Alexander

    2003-05-01

    Since 1998 unusual algal blooms of different toxic Raphidophyte species have been observed during April and beginning of May in the northeastern part of the North Sea including the Skagerrak as well as in the Kattegatt region. The algal blooms of Raphidophytes took place after the spring bloom, which normally occurs in this area during March, but before the anually reoccurring bloom of Phaeocystis, which usually is observed during May, when water temperatures exceed 15°C. The Raphidophyte blooms were mainly represented by two different Chattonella species and by Heterosigma akashiwo. The toxic algal blooms which have been identified in 1998, 2000 and 2001 can appear with maximum cell numbers of 24 mill. Cells/l (Backe-Hansen, 1999) and Chlorophyll values up to 80 μg/l. Satellite images of MOS and SeaWiFs show the beginning of the blooms west of Jutland (Denmark) apparently were advected with the Jutland current towards the northeast. Later, the Raphidophyte blooms were observed along the Swedish and Norwegian west coast and extended along the Norwegian south coast up to 6°East, following the extensions of the Baltic current. The causative species of blooms, Chattonella sp., has shown strong phototactic behavior. In addition to 19'-butanoyloxyfucoxanthin, the Chattonella sp. contains three kind of carotenoids which other species do not have. Thus, the observations from microscopy and pigment profile from HPLC suggest that this species in the German Bight should be considered as a new HAB species. The reoccurrence of Chattonella blooms may indicate the response of algae to some kind of environmental change in the North Sea. Determination of the extend and the advection of toxic microalgae blooms as well as predictions through satellite remote sensing in the coastal areas of Denmark, Sweden and southern Norway, is also of great economic importance for the extensive mariculture ventures in this region, which repeatedly have suffered from the effects of toxic algal

  9. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    Science.gov (United States)

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging.

  10. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    Science.gov (United States)

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  11. An autonomous sensor module based on a legacy CCTV camera

    Science.gov (United States)

    Kent, P. J.; Faulkner, D. A. A.; Marshall, G. F.

    2016-10-01

    A UK MoD funded programme into autonomous sensors arrays (SAPIENT) has been developing new, highly capable sensor modules together with a scalable modular architecture for control and communication. As part of this system there is a desire to also utilise existing legacy sensors. The paper reports upon the development of a SAPIENT-compliant sensor module using a legacy Close-Circuit Television (CCTV) pan-tilt-zoom (PTZ) camera. The PTZ camera sensor provides three modes of operation. In the first mode, the camera is automatically slewed to acquire imagery of a specified scene area, e.g. to provide "eyes-on" confirmation for a human operator or for forensic purposes. In the second mode, the camera is directed to monitor an area of interest, with zoom level automatically optimized for human detection at the appropriate range. Open source algorithms (using OpenCV) are used to automatically detect pedestrians; their real world positions are estimated and communicated back to the SAPIENT central fusion system. In the third mode of operation a "follow" mode is implemented where the camera maintains the detected person within the camera field-of-view without requiring an end-user to directly control the camera with a joystick.

  12. OPART: an intelligent sensor dedicated to ground robotics

    Science.gov (United States)

    Dalgalarrondo, Andre; Luzeaux, Dominique; Hoffmann, Patrik W.

    2001-09-01

    We present an intelligent sensor, consisting in 2 CCDs with different field of view sharing the same optical motion, which can be controlled independently or not in their horizontal, vertical and rotational axis, and are connected in a closed loop to image processing resources. The goal of such a sensor is to be a testbed of image processing algorithms in real conditions. It illustrates the active perception paradigm and is used for autonomous navigation and target detection/tracking missions. Such a sensor has to meet many requirements : it is designed to be easily mounted on a standard tracked or wheeled military vehicle evolving in offroad conditions. Due to the rather wide range of missions UGVs may be involved in and to the computing cost of image processing, its computing resources have to be reprogrammable, of great power (real-time constraints), modular at the software level as well as at the hardware level and able to communicate with other systems. First, the paper details the mechanical, electronical and software design of the whole sensor. Then, we explain its functioning, the constraints due to its parallel processing architecture, the image processing algorithms that have been implemented for it and their current uses and performances. Finally, we describe experiments conducted on tracked and wheeled vehicles and conclude on the future development and use of this sensor for unmanned ground vehicles.

  13. Design of optics for compact star sensors

    Science.gov (United States)

    Xu, Minyi; Shi, Rongbao; Shen, Weimin

    2016-10-01

    In order to adapt to small size and low cost space platform such as mini-satellites, this paper studies the design of optics for compact star sensor. At first, the relationship between limiting magnitude and optical system specifications which includes field of view and entrance pupil diameter is analyzed, based on its Pyramid identification algorithm and signal-to-noise ratio requirement. The specifications corresponding to different limiting magnitude can be obtained after the detector is selected, and both of the complexity of optical lens and the size of baffle can be estimated. Then the range of the limiting magnitude can be determined for the miniaturization of the optical system. Taking STAR1000 CMOS detector as an example, the compact design of the optical system can be realized when the limiting magnitude is in the interval of 4.9Mv 5.5Mv. At last, the lens and baffle of a CMOS compact star sensor is optimally designed, of which length and weight is respectively 124 millimeters and 300 grams.

  14. Sensor Compendium

    CERN Document Server

    Artuso, M; Bolla, G; Bortoletto, D; Caberera, B; Carlstrom, J E; Chang, C L; Cooper, W; Da Via, C; Demarteau, M; Fast, J; Frisch, H; Garcia-Sciveres, M; Golwala, S; Haber, C; Hall, J; Hoppe, E; Irwin, K D; Kagan, H; Kenney, C; Lee, A T; Lynn, D; Orrell, J; Pyle, M; Rusack, R; Sadrozinski, H; Sanchez, M C; Seiden, A; Trischuk, W; Vavra, J; Wetstein, M; Zhu, R-Y

    2013-01-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future ...

  15. Fly eye based sensor model and animation using matlab - biomed 2011.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F; Wright, Cameron H G

    2011-01-01

    A new optical sensor based on the common house fly, Musca domestica, has been under development for some time at the University of Wyoming. Each sensor consists of a series of photodiodes with overlapping Gaussian field of views. The photodiodes share a common facet lens. This type of sensor provides higher movement detection and resolution than can be obtained in current charged-couple detector (CCD) arrays that are commonly used in digital imaging systems. The purpose of this research is to aid in the application and development of the fly based sensor by creating a MATLAB simulation tool to model and study the response signals from various input stimuli. In particular, the sensor detection capability and limits for line, edge and pulse stimuli will be modeled, and analyzed. Increased knowledge of the detection characteristics and limits of this type of sensor will provide insight and guidance to determine possible sensor applications. The signal analysis makes use of the Gaussian profiles that are created in MATLAB. A user-selectable input signal can be applied, while observing the output signal. The information is animated, and plotted for study and analysis. This interactive MATLAB model is a powerful tool to help understand the complex interactions of the optical signals. This sensor configuration has a variety of applications in wheelchair odometry, power line detection by unmanned aerial systems (AES), high speed railroad line inspection, and remote building monitoring.

  16. Laser-based sensors for oil spill remote sensing

    Science.gov (United States)

    Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.

    1997-07-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology

  17. Wind Sensor

    OpenAIRE

    Li, Jiaoyang; Ni, Jiqin

    2014-01-01

    Wind measurement is needed in many practical and scientific research situations. Some specific applications require to precisely measuring both wind direction and wind speed at the same time. Current commercial sensors for wind direction and wind speed measurement usually use ultrasonic technology and the sensors are very expensive (> $1500). In addition, the sensors are large in dimension and cannot measure airflow patterns in high spatial resolution. Therefore new and low cost wind speed an...

  18. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  19. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  20. Carbon cyclist

    Science.gov (United States)

    Showstack, Randy

    A satellite launched in early August as part of NASA's Mission to Planet Earth could dramatically increase understanding of how carbon cycles through the Earth's biosphere and living organisms and how this process influences global climate. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) will measure the color of the oceans with a radiometer to determine the concentration of chlorophyll found in oceanic phytoplankton. The single-celled plants, at the base of food chains around the world, remove carbon dioxide from seawater through photosynthesis, which allows oceans to absorb more carbon dioxide from the atmosphere.

  1. An event-driven phytoplankton bloom in southern Lake Michigan observed by satellite.

    Energy Technology Data Exchange (ETDEWEB)

    Lesht, B. M.; Stroud, J. R.; McCormick, M. J.; Fahnenstiel, G. L.; Stein, M. L.; Welty, L. J.; Leshkevich, G. A.; Environmental Research; Univ. of Chicago; Great Lakes Research Lab.

    2002-04-15

    Sea-viewing Wide Field-of-View Sensor (SeaWiFS) images from June 1998 show a surprising early summer phytoplankton bloom in southern Lake Michigan that accounted for approximately 25% of the lake's annual gross offshore algal primary production. By combining the satellite imagery with in situ measurements of water temperature and wind velocity we show that the bloom was triggered by a brief wind event that was sufficient to cause substantial vertical mixing even though the lake was already stratified. We conclude that episodic events can have significant effects on the biological state of large lakes and should be included in biogeochemical process models.

  2. Decadal Changes in Global Ocean Chlorophyll

    Science.gov (United States)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  3. 2 pi-Steradian, Energetic-Ion Sensor

    CERN Document Server

    Mitchell, Donald G

    2010-01-01

    Because energetic particles populate both planetary magnetospheres and interplanetary space in significant quantities, energetic-ion sensors have been flown since the beginning of the space age. Early sensors were solid-state detector (SSD) telescopes, with conical fields of view, often swept through a circle by virtue of the spin motion of the spacecraft (e.g., IMP 7 and 8, ISEE 1 and 2). In the 1980s and 1990s, foil/microchannel plate (MCP) time-of-flight (TOF) measurements were added to the energy measurement provided by the SSD (eg, AMPTE/CCE MEPA, Geotail EPIC/ICS, Galileo EPD). The resulting energy and velocity uniquely identified ion mass. More recently, we have developed a 2-D fan acceptance angle sensor that includes both energy and TOF. When mounted on a spinning spacecraft, this 160^\\circ x 12^\\circ FOV sweeps out nearly 4\\pi steradians in one spin. This sensor, dubbed the "hockey puck" for its shape, is currently in flight on MESSENGER (EPS) and New Horizons Pluto (PEPPSI).Increasingly, energetic-...

  4. Red/near-infrared reflectance sensor system for detecting plants

    Science.gov (United States)

    Von Bargen, Kenneth; Meyer, George E.; Mortensen, David A.; Merritt, Steven J.; Woebbecke, David M.

    1993-05-01

    Growing plants, soil types, and surfaces and residues on a soil surface have distinct natural light reflectances. These reflectance characteristics have been determined using current spectroradiometry technology. Detection of plants is possible based upon the distinct reflectance characteristics of plants, soil, and residues. An optical plant reflectance sensor was developed which utilizes a pair of red and near infrared sensitive photodetectors to measure the radiancy from the plant and soil. Another pair of sensors measures radiancy from a highly radiant reference surface to accommodate varying intensities of the natural light. The ratio of the target and reference radiancies is the target reflectance. Optical filters were used to select the spectral bandwidth sensitivities for the red and NIR photodetectors. The reflectance values were digitized for incorporation into a normalized difference index in order to provide a stronger indication that a live plant is present within the field of view of the sensor. This sensor system was combined with a microcontroller for activating a solenoid controlled spray nozzle on a single unit prototype spot agricultural sprayer.

  5. An omnidirectional 3D sensor with line laser scanning

    Science.gov (United States)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  6. Chemical sensors

    Science.gov (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  7. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  8. Smart Sensors

    Science.gov (United States)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  9. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  10. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  11. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  12. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor

    CERN Document Server

    Li, Jiang; Paudel, Hari; Barankov, Roman; Bifano, Thomas; Mertz, Jerome

    2015-01-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and proof of concept experimental demonstrations.

  13. The LINC-NIRVANA high layer wavefront sensor laboratory experiment: progress report

    Science.gov (United States)

    Zhang, Xianyu; Conrad, Albert R.; Meschke, Daniel; Bertram, Thomas; Herbst, Thomas M.; Arcidiacono, Carmelo; Bizenberger, Peter; Gaessler, Wolfgang; Schreiber, Laura; Ragazzoni, Roberto; Kuerster, Martin; De Bonis, Fulvio; Mohr, Lars; Farinato, Jacopo; Diolaiti, Emiliano; Rix, Hans-Walter; Rao, Changhui; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Brangier, Matthieu

    2012-07-01

    LINC-NIRVANA is a near infrared interferometric imager with a pair of layer-oriented multi-conjugate adaptive optics systems (ground layer and high layer) for the Large Binocular Telescope. To prepare for the commissioning of LINC-NIRVANA, we have integrated the high layer wavefront sensor and its associated deformable mirror (a Xinetics-349) in a laboratory, located at Max Planck Institute for Astronomy, in Heidelberg, Germany. Together with a telescope simulator, which includes a rotating field and phase screens that introduce the effects of the atmosphere, we tested the acquisition of multiple guide stars, calibrating the system with the push-pull method, and characterizing the wavefront sensor together with the deformable mirror. We have closed the AO loop with up to 200 Zernike modes and with multiple guide stars. The AO correction demonstrated that uniform correction can be achieved in a large field of view. We report the current status and results of the experiment.

  14. On-site calibration of line-structured light vision sensor in complex light environments.

    Science.gov (United States)

    Liu, Zhen; Li, Xiaojing; Yin, Yang

    2015-11-16

    A novel calibration method for the line-structured light vision sensor that only requires the image of the light stripe on the target using a movable parallel cylinder target is proposed in this paper. The corresponding equations between two ellipses obtained from the intersection of the light stripe and the target and their projected images are established according to the perspective projection transformation, and the light plane equation is solved based on the constraint conditions that the minor axis of the ellipse is equal to the diameter of the cylinder. In the physical experiment, the field of view of the line-structured light vision sensor is about 500 mm × 400 mm, and the measurement distance is about 700 mm. A calibration accuracy of 0.07 mm is achieved using the proposed method, which is comparable to that when planar targets are used.

  15. Vibrissa Sensor

    Science.gov (United States)

    2016-09-30

    Docket No. 300119 1 of 11 VIBRISSA SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention provides a... measured as strain. [0009] Thus, there is a need for a sensor utilizing a vibrissa that can detect dynamic and high frequency movement of the

  16. Vibration sensors

    Science.gov (United States)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  17. Studies of prototype DEPFET sensors for the wide field imager of Athena

    Science.gov (United States)

    Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Bianchi, Davide; Koch, Anna; Meidinger, Norbert; Müller-Seidlitz, Johannes; Ott, Sabine; Porro, Matteo

    2016-07-01

    The Wide Field Imager of the Athena telescope will combine an excellent spectroscopic performance and high count rate capability with a large field of view. For these purposes, its focal plane consists of two complementary detectors, using DEPFET active pixel sensors. One is the high count rate detector with a small field of view, which has to be operated with a readout speed of 80 μs per frame. In contrast, the large area detector will cover a large field of view and has to be read out with a frame rate four identical active pixel arrays, consisting of 512 x 512 pixels, each. Since a column parallel readout will be used, 512 pixels are connected to one single channel of a readout ASIC. The readout will be accomplished by either sensing a voltage step on the source node or a change of the transistor drain current. The former so-called source follower mode requires long settling times - proportional to the load capacitances - but can cope with local inhomogeneities. Alternatively, the latter so-called drain current mode provides a fast readout - independent to the load capacitance - but implicates a higher sensitivity on local variations of the DEPFETs bias currents. Both modes are implemented in the VERITAS 2.1 readout ASIC and were studied with 64 x 64 pixels arrays. Drain current devices could be operated with significantly smaller settling times but suffer from a slightly increased noise at similar shaping times in comparison to the source follower ones. By using an optimized timing with dedicated settling and shaping times, the devices of both modes feature a comparable spectral performance.

  18. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo

    2016-06-01

    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  19. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    Science.gov (United States)

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-06-03

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  20. Performance characteristics of a submarine panoramic infrared imaging sensor

    Science.gov (United States)

    Nichols, J. M.; Waterman, J. R.; Menon, Raghu; Devitt, John

    2010-04-01

    A high-resolution mid-wave infrared panoramic periscope sensor system has been developed. The sensor includes a catadioptric optical system that provides a 360° horizontal azimuth by -10° to +30° elevation field of view without requiring moving components (e.g. rotating mirrors). The focal plane is a 2048 x 2048, 15μm pitch InSb detector operating at 80K. An on-board thermo-electric reference source allows for real-time nonuniformity correction using the two-point correction method. The entire system (detector-dewar assembly, cooler, electronics and optics) is packaged to fit in an 8" high, 6.5" diameter volume. This work describes both the system optics and electronics and presents sample imagery. We also discuss the sensor's radiometric performance, quantified by the NEDT, as a function of key system parameters. The ability of the system to resolve targets as a function of imaged spatial frequency is also presented.

  1. MEMS sensor technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhuangde

    2012-01-01

    Since 1992 the author has led research group in Xi'an Jiaotong University to investigate and develop microelectro mechanical systems (MEMS) sensors, including pressure sensor, acceleration sensor, gas sensor, viscosity & density sensor, polymerase chain reaction (PCR) chip and integrated sensor etc. This paper introduces the technologies and research results related to MEMS sensors we achieved in the last 20 years.

  2. An information potential approach for tracking and surveilling multiple moving targets using mobile sensor agents

    Science.gov (United States)

    Lu, W.; Zhang, G.; Ferrari, S.; Fierro, R.; Palunko, I.

    2011-05-01

    The problem of surveilling moving targets using mobile sensor agents (MSAs) is applicable to a variety of fields, including environmental monitoring, security, and manufacturing. Several authors have shown that the performance of a mobile sensor can be greatly improved by planning its motion and control strategies based on its sensing objectives. This paper presents an information potential approach for computing the MSAs' motion plans and control inputs based on the feedback from a modified particle filter used for tracking moving targets. The modified particle filter, as presented in this paper implements a new sampling method (based on supporting intervals of density functions), which accounts for the latest sensor measurements and adapts, accordingly, a mixture representation of the probability density functions (PDFs) for the target motion. It is assumed that the target motion can be modeled as a semi-Markov jump process, and that the PDFs of the Markov parameters can be updated based on real-time sensor measurements by a centralized processing unit or MSAs supervisor. Subsequently, the MSAs supervisor computes an information potential function that is communicated to the sensors, and used to determine their individual feedback control inputs, such that sensors with bounded field-of-view (FOV) can follow and surveil the target over time.

  3. Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask

    Directory of Open Access Journals (Sweden)

    Zheng You

    2011-10-01

    Full Text Available Nowadays sun sensors are being more widely used in satellites to determine the sunray orientation, thus development of a new version of sun sensor with lighter mass, lower power consumption and smaller size it of considerable interest. This paper introduces such a novel digital sun sensor, which is composed of a micro-electro-mechanical system (MEMS mask with an N-shaped slit as well as a single linear array charge-coupled device (CCD. The sun sensor can achieve the measurement of two-axis sunray angles according to the three sun spot images on the CCD formed by sun light illumination through the mask. Given the CCD glass layer, an iterative algorithm is established to correct the refraction error. Thus, system resolution, update rate and other characteristics are improved based on the model simulation and system design. The test of sun sensor prototype is carried out on a three-axis rotating platform with a sun simulator. The test results show that the field of view (FOV is ±60° × ±60° and the accuracy is 0.08 degrees of arc (3σ in the whole FOV. Since the power consumption of the prototype is only 300 mW and the update rate is 14 Hz, the novel digital sun sensor can be applied broadly in micro/nano-satellites, even pico-satellites.

  4. Validation of Carbon Flux and Related Products for SIMBIOS: The CARIACO Continental Margin Time Series and the Orinoco River Plume. Chapter 15

    Science.gov (United States)

    Muller-Karger, Frank; Hu, Chuanmin; Akl, John P.; Varela, Ramon

    2001-01-01

    Between 1997 and 2000, this Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) investigation collected bio-optical measurements in the Southeastern Caribbean Sea and the tropical western Atlantic to help understand the color of coastal and continental shelf waters. Specifically, bio-optical data were collected to complement an oceanographic time series maintained within the Cariaco Basin, a site affected by seasonal coastal upwelling. Bio-optical data were also collected within the plume of the Orinoco River during seasonal extremes in discharge. This program focused on providing data to the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and SIMBIOS Projects for validating SeaWiFS products. The data are unique in that they provide a substantial number of observations on repeated seasonal cycles for the SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) bio-optical database. An important aspect of this SIMBIOS investigation was a focus on proper interpretation of ocean color remote sensing data from coastal and continental shelf environments. With this goal in mind, ocean color satellite data from a variety and locations and from different satellite sensors were examined to understand spatial and temporal variability in pigment concentrations, and also to conduct an in-depth study of current atmospheric correction and bio-optical algorithms.

  5. 薄层小视野高分辨MRI结合DCE-MRI对卵巢肿瘤的诊断价值%Diagnostic value of high resolution MRI using thin-section and small field of view technique combined with DCE-MRI in ovarian tumor

    Institute of Scientific and Technical Information of China (English)

    金兴兴; 岳巍; 韩东明; 闫瑞芳; 孟楠; 翟战胜

    2016-01-01

    目的:探讨薄层小视野高分辨 MRI结合DCE-MRI对卵巢肿瘤的临床诊断价值。方法:51例经超声检出的卵巢肿块患者,均行盆腔MRI平扫、病变区薄层小视野高分辨MRI和DCE-MRI。分析卵巢肿瘤的影像学表现,并与手术病理结果进行对照,比较三种检查方法对卵巢肿瘤的诊断准确性。结果:51例患者共检出57个病灶。常规 MRI、薄层高分辨 MRI对卵巢肿块的定性诊断准确率分别为85.96%(49/57)和96.49%(55/57),差异有统计学意义(P<0.05)。常规MRI和薄层高分辨 MRI分别结合DCE-MRI检查的诊断符合率为92.98%(53/57)和100%(57/57),差异有统计学意义(P<0.05)。常规结合薄层高分辨MRI与常规结合DCE-MRI检查对卵巢肿块的定性诊断准确率的差异无统计学意义(P>0.05)。结论:薄层小视野高分辨 MRI 对卵巢肿瘤的诊断具有重要临床价值,薄层小视野高分辨 MRI 结合 DCE-MRI可以明显提高卵巢肿瘤的定性诊断准确性,但薄层高分辨 MRI尚不能取代DCE-MRI。%Objective:To explore the diagnostic value of high resolution MRI (HR-MRI)using thin-section and small field of view technique combined with DCE-MRI in ovarian tumor.Methods:5 1 patients with ovarian mass detected by ultra-sound underwent routine pelvic MRI scan,high resolution MRI using thin-section and small field of view technique in the re-gion of lesions and DCE-MRI examination.The imaging characteristics of ovarian tumors were analyzed and correlated with postoperative pathology,and the diagnostic accuracy of the three methods of scanning were compared.Results:In the 51 pa-tients,57 ovarian tumors were found,the accuracy of characteristic diagnosis of routine MRI was 87.71% (49/57),and that of HR-MRI was 96.49% (55/57),there were statistical difference between the two methods (P0.05).Conclusion:High resolution MRI (HR-MRI)using thin-section and small field

  6. 大视场宽谱段高分辨率分波段机载紫外-可见光成像光谱仪设计%Design of Airborne Dual Channel Ultraviolet-Visible Imaging Spectrometer with Large Field of View,Wide Spectrum, and High Resolution

    Institute of Scientific and Technical Information of China (English)

    郝爱花; 胡炳樑; 白加光; 李立波; 于涛; 李思远

    2013-01-01

    紫外-可见光(200~500 nm )成像光谱仪是空间遥感的重要组成部分,本文基于机载紫外-可见成像光谱仪的特殊性和实际应用要求,提出了一种采用面阵CCD的摆扫式成像光谱仪,这样既克服了传统线阵CCD摆扫式成像光谱仪空间分辨率低的缺点,同时又弥补了推扫式成像光谱仪视场范围有限的缺点,能够满足大视场、宽谱段、高分辨率成像光谱仪的应用要求;此外,考虑400~500 nm波段中200~250 nm波段二级光谱的影响和<290 nm的短波区和>310 nm的长波区两个波段相差3个数量级的辐射波动,采用了分波段、分系统的方式独立进行消杂光光谱成像。在系统结构设计方面,本着高性能、低成本的设计理念,选用了两镜同心系统作为望远系统,Czerny-T urner平面光栅结构作为成像光谱仪系统的光学设计方案;设计了一种不使用任何辅助光学元件,全部采用球面镜结构的成像光谱仪。整个系统结构简单、紧凑,性能优良,可行性好。全谱段、全视场调制传递函数值在0.6以上。%The ultraviolet-visible (UV-Vis 200~500 nm) imaging spectrometer is an important part of space remote sensing . Based on special requirements and practical application of the airborne UV-VIS spectrometer ,a kind of scanning imaging spec-trometer using area array CCD is proposed ,which can meet the application requirements of large field of view ,wide spectrum and high resolution .It overcomes low spatial resolution of traditional line array CCD scanning imaging spectrometer ,and limited field of view of the pushbroom imaging spectrometer .In addition ,dual channel was designed to reduce stray light .400~500 nm band includes two order spectrum for 200~250 nm band ,and variation of radiance from earth between the shorter wavelength (310 nm) is above three orders of magnitude .In the structure design of the system , the imaging spectrometer is

  7. High Resolution Wide Field of View Stereographic Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overarching challenge of tele-presence is to provide an environment to the human operator that is sufficiently familiar that the interface itself does not become...

  8. Internal and external fields of view affect cybersickness

    NARCIS (Netherlands)

    Emmerik, M.L. van; Vries, S.C. de; Bos, J.E.

    2011-01-01

    People playing computer games sometimes experience a form of visually induced motion sickness called cybersickness. This phenomenon poses a problem for the entertainment market as well as the practice of training, where serious gaming is gaining acceptance as a new way of training. Although cybersic

  9. Flight Simulator: Field of View Utilized in Performing Tactical Maneuvers.

    Science.gov (United States)

    1988-04-01

    were taken in the Simulator for Air-to-Air Combat (SAAC) and the Advanced Simulator for Pilot Training ( ASPT ). During the air-to-ground data collection...ground maneuvers were performed In the Advanced Simulator for Pilot Training ( ASPT ). The data collected provided an estimate of the FOV dimensions that a...tactical maneuvers were conducted in the AFHIRL ASPT located at Williams AFB. The ASPT had a fully instrumnted F-16 cockpit. The g-cueing was available

  10. Field of View Requirements for Carrier Landing Training

    Science.gov (United States)

    1980-06-01

    Pilot Training ( ASPT ) at Williams Air Force Base. The visual image for the simulation was provided by a data base which crea&.ed the aircraft carrier...USS Forrestal (CVA-59) in the ASPT computer-image-generation systor.m. The pilots in these three groups’ were trained under different conditions. Two...Advanced Simalator for Pilot Training ( ASPT ) would be ideal for this effort, and later, Lt Col Samuel T. Hannan and Capt Ricky A. Perry were assigned

  11. Electronically Steerable Antennas with Panoramic Scan Field of View Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronically steerable antennas are key to effective radio transmission at millimeter-wave frequencies. To enable communication with rovers, robots, EVA...

  12. Resolution of ultramicroscopy and field of view analysis.

    Directory of Open Access Journals (Sweden)

    Ulrich Leischner

    Full Text Available In a recent publication we described a microscopical technique called Ultramicroscopy, combined with a histological procedure that makes biological samples transparent. With this combination we can gather three-dimensional image data of large biological samples. Here we present the theoretical analysis of the z-resolution. By analyzing the cross-section of the illuminating sheet of light we derive resolution values according to the Rayleigh-criterion. Next we investigate the resolution adjacent to the focal point of the illumination beam, analyze throughout what extend the illumination beam is of acceptable sharpness and investigate the resolution improvements caused by the objective lens. Finally we conclude with a useful rule for the sampling rates. These findings are of practical importance for researchers working with Ultramicroscopy to decide on adequate sampling rates. They are also necessary to modify deconvolution techniques to gain further image improvements.

  13. Camera relative orientation in large field of view

    Science.gov (United States)

    Wang, Jun; Dong, Mingli; Li, Wei; Sun, Peng

    2016-01-01

    A new relative orientation w local parameter optimization method of the essential matrix for the large scale close range photogrammetry is presented in this paper to improve the accuracy and stability of the measurement system. For the matched images, according to the closed-loop polynomial algorithm, the essential matrix is initialized, and an iterative algorithm based on local parameter optimization is proposed. Then the relative exterior orientation parameters are solved from the essential matrix, and only one correct solution is determined by the Cheirality constraints. The orientation experiment of the expandable truss microwave antenna profile measurement is carried out to verify the accuracy and reliability of the new method. Compared with the traditional methods, this new method has minimum projection error and the least iterations, and it will play a key role in the performance improvement of the whole system.

  14. Vignetting and Field of View with the KAMRA Corneal Inlay

    Directory of Open Access Journals (Sweden)

    Achim Langenbucher

    2013-01-01

    Full Text Available Purpose. To evaluate the effect of the KAMRA corneal inlay on the retinal image brightness in the peripheral visual field. Methods. A KAMRA inlay was “implanted” into a theoretical eye model in a corneal depth of 200 microns. Corneal radius was varied to a steep, normal, and flat (7.37, 7.77, and 8.17 mm version keeping the proportion of anterior to posterior radius constant. Pupil size was varied from 2.0 to 5.0 mm. Image brightness was determined for field angles from −70° to 70° with and without KAMRA and proportion of light attenuation was recorded. Results. In our parameter space, the attenuation in brightness ranges in between 0 and 60%. The attenuation in brightness is not affected by corneal shape. For large field angles where the incident ray bundle is passing through the peripheral cornea, brightness is not affected. For combinations of small pupil sizes (2.0 and 2.5 mm and field angles of 20–40°, up to 60% of light may be blocked with the KAMRA. Conclusion. For combinations of pupil sizes and field angles, the attenuation of image brightness reaches levels up to 60%. Our theoretical findings have to be clinically validated with detailed investigation of this vignetting effect.

  15. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  16. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  17. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  18. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  19. Sensor planning method for visual tracking in 3D camera networks

    Institute of Scientific and Technical Information of China (English)

    Anlong Ming; and Xin Chen

    2014-01-01

    Most sensors or cameras discussed in the sensor net-work community are usual y 3D homogeneous, even though their 2D coverage areas in the ground plane are heterogeneous. Mean-while, observed objects of camera networks are usual y simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with differ-ent height and action radiuses, but also the observed objects are with 3D features (i.e., height). This paper presents a sensor plan-ning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and de-tect people traversing a region. The problem of sensor planning consists of three issues: (i) how to model the 3D heterogeneous cameras;(i ) how to rank the visibility, which ensures that the object of interest is visible in a camera’s field of view;(i i) how to reconfi-gure the 3D viewing orientations of the cameras. This paper stud-ies the geometric properties of 3D heterogeneous camera net-works and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Final y, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strate-gies.

  20. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground‐based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well‐suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory‐ oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego‐motion makes use of the Fourier‐Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real‐world data from a vehicle moving at 30 km/h over a 2.5 km course.

  1. Optical flows method for lightweight agile remote sensor design and instrumentation

    Science.gov (United States)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to

  2. Pressure sensor

    Science.gov (United States)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  3. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  4. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  5. Bio-inspired visual ego-rotation sensor for MAVs.

    Science.gov (United States)

    Plett, Johannes; Bahl, Armin; Buss, Martin; Kühnlenz, Kolja; Borst, Alexander

    2012-01-01

    Flies are capable of extraordinary flight maneuvers at very high speeds largely due to their highly elaborate visual system. In this work we present a fly-inspired FPGA based sensor system able to visually sense rotations around different body axes, for use on board micro aerial vehicles (MAVs). Rotation sensing is performed analogously to the fly's VS cell network using zero-crossing detection. An additional key feature of our system is the ease of adding new functionalities akin to the different tasks attributed to the fly's lobula plate tangential cell network, such as object avoidance or collision detection. Our implementation consists of a modified eneo SC-MVC01 SmartCam module and a custom built circuit board, weighing less than 200 g and consuming less than 4 W while featuring 57,600 individual two-dimensional elementary motion detectors, a 185° field of view and a frame rate of 350 frames per second. This makes our sensor system compact in terms of size, weight and power requirements for easy incorporation into MAV platforms, while autonomously performing all sensing and processing on-board and in real time.

  6. Colorimetric plasmon resonance microfluidics on nanohole array sensors

    Directory of Open Access Journals (Sweden)

    Austin Hsiao

    2015-09-01

    Full Text Available We present the label-free colorimetric visualization in microfluidics using plasmon resonance on a large-area and over a wide field-of-view (>100 mm2 nanohole array device called nanoLycurgus Cup Array (nanoLCA. We demonstrate the spectral detection and colorimetric sensing of static solutions of different concentrations of glycerol–water confined in parallel microfluidic channels integrated with nanoLCA. Taking advantage of the large sensor area and the colorimetric sensing capability of nanoLCA, we visualize in real-time the modulation of two immiscible solutions (water and oil, generated with integrated flow-focus microfluidics, in a label-free manner. Finite Element Method (FEM based simulation tool (COMSOL was used to verify the droplet formation in the microfluidics. Finite Difference Time Domain (FDTD electromagnetic simulation was used to identify the resonance modes of the plasmonic sensor. Finally, we demonstrate the real-time monitoring of streptavidin–biotin biomolecular interaction with the plasmonic biosensor.

  7. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  8. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  9. Thermal flow micro sensors

    OpenAIRE

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow sensors and time of flight flow sensors. Anemometers may comprise several heaters and temperature sensors and from a geometric point of view are similar sometimes for calorimetric flow sensors. We fi...

  10. Application of conformal optical design in star sensor

    Science.gov (United States)

    Li, Yan; Li, Lin; Huang, Yifan; Liu, Jiaguo

    2008-03-01

    Star sensor is a special high accuracy photoelectric instrument. It is often used in navigation of aircraft, cruise missiles, and ballistic missiles, so the imaging quality of the optical system in a star senor is very important. The spherical windows with a small impact to imaging performance are usually used in traditional star sensors. However, the spherical surfaces are not ideal aerodynamic surfaces and would cause problems such as high drag. In this paper the conformal window whose outer shape is neither spherical nor flat is used in a star sensor. Unfortunately, the conformal shape introduces amounts of aberration which may lead to low imaging resolution. The various correctors can be used to eliminate the aberrations, for example, the fixed corrector, the arch, Zernike wedges, and the deformable mirror. The fixed corrector method is selected to decrease aberrations from the conformal window in this paper. The surface of the conformal window in the star senor is described as the Von Karman equation. The field of view is 17.6°×13.5°, and the size of the CCD pixel is 6.45 um×6.45um. The optical design program ZEMAX is used to design this system. After the optimization, under the max frequency of 77.52lp/mm, the MFT can almost achieve 30%. The design results show that the aerodynamic requirements can be satisfied by the application of the conformal window in the star sensor, and the aberrations can be corrected by proper ways.

  11. fMRI-compatible registration of jaw movements using a fiber-optic bend sensor

    Directory of Open Access Journals (Sweden)

    Peter Sörös

    2010-03-01

    Full Text Available A functional magnetic resonance imaging (fMRI-compatible fiber-optic bend sensor was investigated to assess whether the device could be used effectively to monitor opening and closing of the jaw during an fMRI experiment at 3 T. In contrast to surface electromyography, a bend sensor fixed to the chin of the participant is fast and easy to use and is not affected by strong electromagnetic fields. Bend sensor recordings are characterized by high validity (compared with concurrent video recordings of mouth opening and high reliability (comparing 2 independent measurements. The results of this study indicate that a bend sensor is able to record the opening and closing of the jaw associated with different overt speech conditions (producing the utterances /a/, /pa/, /pataka/ and the opening of the mouth without speech production. Data post-processing such as filtering was not necessary. There are several potential applications for bend sensor recordings of speech-related jaw movements. First, bend sensor recordings are a valuable tool to assess behavioral performance, such as response latencies, accuracies, and completion times, which is particularly important in children, seniors, or patients with various neurological or psychiatric conditions. Second, the timing information provided by bend sensor data may improve the predicted hemodynamic response that is used for fMRI analysis based on the general linear model (GLM. Third, bend sensor recordings may be included in GLM analyses not for statistical contrast purposes, but as a covariate of no interest, accounting for part of the data variance to model fMRI artifacts due to motion outside the field of view.

  12. fMRI-Compatible Registration of Jaw Movements Using a Fiber-Optic Bend Sensor

    Science.gov (United States)

    Sörös, Peter; MacIntosh, Bradley J.; Tam, Fred; Graham, Simon J.

    2009-01-01

    A functional magnetic resonance imaging (fMRI)-compatible fiber-optic bend sensor was investigated to assess whether the device could be used effectively to monitor opening and closing of the jaw during an fMRI experiment at 3 T. In contrast to surface electromyography, a bend sensor fixed to the chin of the participant is fast and easy to use and is not affected by strong electromagnetic fields. Bend sensor recordings are characterized by high validity (compared with concurrent video recordings of mouth opening) and high reliability (comparing two independent measurements). The results of this study indicate that a bend sensor is able to record the opening and closing of the jaw associated with different overt speech conditions (producing the utterances /a/, /pa/, /pataka/) and the opening of the mouth without speech production. Data post-processing such as filtering was not necessary. There are several potential applications for bend sensor recordings of speech-related jaw movements. First, bend sensor recordings are a valuable tool to assess behavioral performance, such as response latencies, accuracies, and completion times, which is particularly important in children, seniors, or patients with various neurological or psychiatric conditions. Second, the timing information provided by bend sensor data may improve the predicted hemodynamic response that is used for fMRI analysis based on the general linear model (GLM). Third, bend sensor recordings may be included in GLM analyses not for statistical contrast purposes, but as a covariate of no interest, accounting for part of the data variance to model fMRI artifacts due to motion outside the field of view. PMID:20463865

  13. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  14. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    CERN Document Server

    Basden, A G; Bharmal, N A; Bitenc, U; Brangier, M; Buey, T; Butterley, T; Cano, D; Chemla, F; Clark, P; Cohen, M; Conan, J -M; de Cos, F J; Dickson, C; Dipper, N A; Dunlop, C N; Feautrier, P; Fusco, T; Gach, J L; Gendron, E; Geng, D; Goodsell, S J; Gratadour, D; Greenaway, A H; Guesalaga, A; Guzman, C D; Henry, D; Holck, D; Hubert, Z; Huet, J M; Kellerer, A; Kulcsar, C; Laporte, P; Roux, B Le; Looker, N; Longmore, A J; Marteaud, M; Martin, O; Meimon, S; Morel, C; Morris, T J; Myers, R M; Osborn, J; Perret, D; Petit, C; Raynaud, H; Reeves, A P; Rousset, G; Lasheras, F Sanchez; Rodriguez, M Sanchez; Santos, J D; Sevin, A; Sivo, G; Stadler, E; Stobie, B; Talbot, G; Todd, S; Vidal, F; Younger, E J

    2016-01-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  15. A multi-object detection and tracking method in wireless video sensor networks

    Science.gov (United States)

    Chu, Zheng; Zhang, Jing; Zhuo, Li

    2012-04-01

    Most multi-object detection and tracking techniques suffer from the well-known "multi-object occlusion" problem. The abundant nodes of wireless video sensor networks (WVSNs) can be utilized to solve the problem, and the video nodes in WVSN have limited calculation capability and energy. In order to achieve effective multi-object tracking using WVSN, the main contributions of our proposed method are that: (1) the limits of field of view (FOV) of every video nodes are utilized to establish the consistent labeling of the objects in different views. (2) Mobile Agent is employed to communicate among network nodes, so the objects are assigned correct labels after multi-object occlusion. The performance of the approach has been demonstrated on real-world and the experimental results show that the proposed method is effective for resolving multi-object occlusions and meets the requirement of WVSN.

  16. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Science.gov (United States)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  17. Microcantilever sensor

    Science.gov (United States)

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  18. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  19. End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.

    Science.gov (United States)

    Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars

    2011-09-01

    LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.

  20. First laboratory results with the LINC-NIRVANA high layer wavefront sensor

    Science.gov (United States)

    Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R.; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M.; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano

    2011-08-01

    In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV.

  1. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays

    Science.gov (United States)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Suria, Ateeq J.; Chapin, Caitlin A.; Senesky, Debbie G.

    2016-09-01

    A miniature sensor for detecting the orientation of incident ultraviolet light was microfabricated using gallium nitride (GaN)-on-sapphire substrates and semi-transparent interdigitated gold electrodes for sun sensing applications. The individual metal-semiconductor-metal photodetector elements were shown to have a stable and repeatable response with a high sensitivity (photocurrent-to-dark current ratio (PDCR) = 2.4 at -1 V bias) and a high responsivity (3200 A/W at -1 V bias) under ultraviolet (365 nm) illumination. The 3 × 3 GaN-on-sapphire ultraviolet photodetector array was integrated with a gold aperture to realize a miniature sun sensor (1.35 mm × 1.35 mm) capable of determining incident light angles with a ±45° field of view. Using a simple comparative figure of merit algorithm, measurement of incident light angles of 0° and 45° was quantitatively and qualitatively (visually) demonstrated by the sun sensor, supporting the use of GaN-based sun sensors for orientation, navigation, and tracking of the sun within the harsh environment of space.

  2. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  3. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  4. DNA and RNA sensor

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; LIN; Lin; ZHAO; Hong; JIANG; Long

    2005-01-01

    This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

  5. Advances in wireless sensors and sensor networks

    CERN Document Server

    Mukhopadhyay, Subhas Chandra; Leung, Henry

    2010-01-01

    Written by experts, this book illustrates and collects recent advances in wireless sensors and sensor networks. It provides clever support for scientists, students and researchers in order to stimulate exchange and discussions for further developments.

  6. Satellite Attitude Determination with Low-Cost Sensors

    Science.gov (United States)

    Springmann, John C.

    This dissertation contributes design and data processing techniques to maximize the accuracy of low-cost attitude determination systems while removing pre-flight calibration requirements. This enables rapid development of small spacecraft to perform increasingly complex missions. The focus of this work is magnetometers and sun sensors, which are the two most common types of attitude sensors. Magnetometer measurements are degraded by the magnetic fields of nearby electronics, which traditionally limit their utility on satellites unless a boom is used to provide physical separation between the magnetometer and the satellite. This dissertation presents an on-orbit, attitude-independent method for magnetometer calibration that mitigates the effect of nearby electronics. With this method, magnetometers can be placed anywhere within the spacecraft, and as demonstrated through application to flight data, the accuracy of the integrated magnetometer is reduced to nearly that of the stand-alone magnetometer. Photodiodes are light sensors that can be used for sun sensing. An individual photodiode provides a measurement of a single sun vector component, and since orthogonal photodiodes do not provide sufficient coverage due to photodiode field-of-view limitations, there is a tradeoff between photodiode orientation and sun sensing angular accuracy. This dissertation presents a design method to optimize the photodiode configuration for sun sensing, which is also generally applicable to directional sensors. Additionally, an on-orbit calibration method is developed to estimate the photodiode scale factors and orientation, which are critical for accurate sun sensing. Combined, these methods allow a magnetometer to be placed anywhere within a spacecraft and provide an optimal design technique for photodiode placement. On-orbit calibration methods are formulated for both types of sensors that correct the sensor errors on-orbit without requiring pre-flight calibration. The calibration

  7. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  8. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  9. Development and validation of the AFIT scene and sensor emulator for testing (ASSET)

    Science.gov (United States)

    Young, Shannon R.; Steward, Bryan J.; Gross, Kevin C.

    2017-05-01

    ASSET is a physics-based model used to generate synthetic data sets of wide field of view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. It was developed to meet the need for applications where precise knowledge of the underlying truth is required but is impractical to obtain for real sensors. For example, due to accelerating advances in imaging technology, the volume of data available from WFOV EO/IR sensors has drastically increased over the past several decades, and as a result, there is a need for fast, robust, automatic detection and tracking algorithms. Evaluation of these algorithms is difficult for objects that traverse a wide area (100-10,000 km) because obtaining accurate truth for the full object trajectory often requires costly instrumentation. Additionally, tracking and detection algorithms perform differently depending on factors such as the object kinematics, environment, and sensor configuration. A variety of truth data sets spanning these parameters are needed for thorough testing, which is often cost prohibitive. The use of synthetic data sets for algorithm development allows for full control of scene parameters with full knowledge of truth. However, in order for analysis using synthetic data to be meaningful, the data must be truly representative of real sensor collections. ASSET aims to provide a means of generating such representative data sets for WFOV sensors operating in the visible through thermal infrared. The work reported here describes the ASSET model, as well as provides validation results from comparisons to laboratory imagers and satellite data (e.g. Landsat-8).

  10. Temporal Variations in the Photosynthetic Biosphere

    Science.gov (United States)

    Behrenfeld, Michael; Randerson, James; McClain, Charles; Feldman, Gene; Los, Sietse; Tucker, Compton; Falkowski, Paul; Field, Christopher; Frouin, Robert; Esaias, Wayne; hide

    2000-01-01

    In this report, we describe results from the first three years of global Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) ocean chlorophyll and land plant measurements. This time period covered the end of one of the largest El Nino events in the past century and a strong La Nina. During this transition, terrestrial plant photosynthesis exhibited only a small change, whereas a significant increase in oceanic photosynthesis was observed. Latitudinal distributions of ocean production indicated that this increase in photosynthesis during the La Nina was distributed in the equatorial belt as well as in high production areas. The analysis also illustrated the large 'missing bloom' in ocean phytoplankton in the southern ocean. While land photosynthesis remained fairly steady during the third year of SeaWiFS measurements, ocean phytoplankton production continued to increase, albeit at a lower rate than from 1997 to 1999. Our results represent the first quantification of interannual variability in global scale ocean productivity. Significant Findings: An increase in ocean production during the first three years of the SeaWiFS mission; a strong hemispheric difference in the latitudinal distribution of ocean photosynthesis.

  11. Wireless ferroelectric resonating sensor.

    Science.gov (United States)

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  12. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  13. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  14. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    Science.gov (United States)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  15. Sensor sentinel computing device

    Science.gov (United States)

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  16. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM Techniques

    Directory of Open Access Journals (Sweden)

    Kamarulzaman Kamarudin

    2014-12-01

    Full Text Available This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM techniques (i.e., Gmapping and Hector SLAM using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS. The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect’s depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  17. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    Science.gov (United States)

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  18. PATRICIA, a powerful Cherenkov telescope camera concept based on Geiger-mode-APD light sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Eckart [MPI fuer Physik, Muenchen (Germany); Wagner, Robert [MPI fuer Physik, Muenchen (Germany); Excellence Cluster Universe, Garching (Germany)

    2012-07-01

    We present a concept for a new powerful camera for the 23-m diameter large-size Cherenkov telescopes for the CTA observatory. It is equally suited for any other imaging Cherenkov telescope. PATRICIA (Powerful Atmospheric Telescope Camera for RecordIng Cherenkov LIght with g-Apds) is based on Geiger-mode avalanche photodiodes (G-APD) as light sensors. The camera is split in a sensor plane and both the readout and trigger electronics of the telescope array located in a central container. Analog signals will be transmitted by optical fibers to a readout container. The thin pizzabox-like camera with a 4.5-degree field of view and 0.1-degree pixels will weigh less than a ton and has a considerably lower wind resistance compared to a conventional PMT camera. The camera requires below 1 kW power and simple cooling by Peltier elements is possible. The key light sensor element will be a multi-element G-APD structure of hexagonal shape and 5 sqcm active area, replacing nearly 1:1 the current PMT design. The sensitivity will be at least 1.5 times superior compared to currently proposed PMTs. Importantly, the camera can work at full moonshine, allowing a gain of at least 30-40% in observation time. About 1-2 years of development time is needed.

  19. Spatial Search Techniques for Mobile 3D Queries in Sensor Web Environments

    Directory of Open Access Journals (Sweden)

    James D. Carswell

    2013-03-01

    Full Text Available Developing mobile geo-information systems for sensor web applications involves technologies that can access linked geographical and semantically related Internet information. Additionally, in tomorrow’s Web 4.0 world, it is envisioned that trillions of inexpensive micro-sensors placed throughout the environment will also become available for discovery based on their unique geo-referenced IP address. Exploring these enormous volumes of disparate heterogeneous data on today’s location and orientation aware smartphones requires context-aware smart applications and services that can deal with “information overload”. 3DQ (Three Dimensional Query is our novel mobile spatial interaction (MSI prototype that acts as a next-generation base for human interaction within such geospatial sensor web environments/urban landscapes. It filters information using “Hidden Query Removal” functionality that intelligently refines the search space by calculating the geometry of a three dimensional visibility shape (Vista space at a user’s current location. This 3D shape then becomes the query “window” in a spatial database for retrieving information on only those objects visible within a user’s actual 3D field-of-view. 3DQ reduces information overload and serves to heighten situation awareness on constrained commercial off-the-shelf devices by providing visibility space searching as a mobile web service. The effects of variations in mobile spatial search techniques in terms of query speed vs. accuracy are evaluated and presented in this paper.

  20. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    Science.gov (United States)

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  1. Can you see me now? Sensor positioning for automated and persistent surveillance.

    Science.gov (United States)

    Yao, Yi; Chen, Chung-Hao; Abidi, Besma; Page, David; Koschan, Andreas; Abidi, Mongi

    2010-02-01

    Most existing camera placement algorithms focus on coverage and/or visibility analysis, which ensures that the object of interest is visible in the camera's field of view (FOV). However, visibility, which is a fundamental requirement of object tracking, is insufficient for automated persistent surveillance. In such applications, a continuous consistently labeled trajectory of the same object should be maintained across different camera views. Therefore, a sufficient uniform overlap between the cameras' FOVs should be secured so that camera handoff can successfully and automatically be executed before the object of interest becomes untraceable or unidentifiable. In this paper, we propose sensor-planning methods that improve existing algorithms by adding handoff rate analysis. Observation measures are designed for various types of cameras so that the proposed sensor-planning algorithm is general and applicable to scenarios with different types of cameras. The proposed sensor-planning algorithm preserves necessary uniform overlapped FOVs between adjacent cameras for an optimal balance between coverage and handoff success rate. In addition, special considerations such as resolution and frontal-view requirements are addressed using two approaches: 1) direct constraint and 2) adaptive weights. The resulting camera placement is compared with a reference algorithm published by Erdem and Sclaroff. Significantly improved handoff success rates and frontal-view percentages are illustrated via experiments using indoor and outdoor floor plans of various scales.

  2. Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    Science.gov (United States)

    Chin, Gordon; Sagdeev, R.; Milikh, G.

    2011-01-01

    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.

  3. Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set

    Science.gov (United States)

    Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping

    1997-01-01

    A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged

  4. Study on Marine Application Potentiality of CMODIS/SZ-3

    Institute of Scientific and Technical Information of China (English)

    PanDelu; WangDifeng; HeXianqian

    2004-01-01

    The third spaceship SZ-3 of China was launched in March 2002, in which the payload is Chinese moderate imaging spectra radiometer (CMODIS) . In this paper, first, the properties and characteristics of CMODIS are briefly introduced; second, the quality and availahility are evaluated by means of the Complex signal noise ratio (CSNR) which is simulated theoretically; third, the received CMODIS data are compared with the Sea wide field-of-view sensor (SeaWiFS) / SeaSTAR data to understand the accuracy of radiance measurement by CMODIS;finally, the remote sensing products of ocean color and temperature are mapped by CMODIS to study its marine application potentiality. The results show that CMODIS has its latent capability for the application of marine environment detection, the management and protection of marine resources, and the national rights and interests. Meanwhile some suggestions are proposed to modify the next generation sensor on the Chinese spaceship.

  5. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  6. Smart Sensor Systems

    Science.gov (United States)

    Hunter, G. W.; Stetter, J. R.; Hesketh, P. J.; Liu, C. C.

    Sensors and sensor systems are vital to our awareness of our surroundings and provide safety, security, and surveillance, as well as enable monitoring of our health and environment. A transformative advance in the field of sensor technology has been the development of "Smart Sensor Systems". The definition of a Smart Sensor may vary, but typically at a minimum a Smart Sensor is the combination of a sensing element with processing capabilities provided by a microprocessor. That is, Smart Sensors are basic sensing elements with embedded intelligence. The sensor signal is fed to the microprocessor, which processes the data and provides an informative output to an external user. A more expansive view of a Smart Sensor System, which is used in this article, is illustrated in Fig. 19.1: a complete self-contained sensor system that includes the capabilities for logging, processing with a model of sensor response and other data, self-contained power, and an ability to transmit or display informative data to an outside user. The fundamental idea of a smart sensor is that the integration of silicon microprocessors with sensor technology cannot only provide interpretive power and customized outputs, but also significantly improve sensor system performance and capabilities.

  7. Ubiquitous Sensor Network for Chemical Sensors

    Institute of Scientific and Technical Information of China (English)

    Wan-Young Chung; Risto Myllylae

    2006-01-01

    Wireless sensor networks have been identified as one of the most important technologies for the 21st century. Recent advances in micro sensor fabrication technology and wireless communication technology enable the practical deployment of large-scale, low-power, inexpensive sensor networks. Such an approach offers an advantage over traditional sensing methods in many ways: large-scale, dense deployment not only extends spatial coverage and achieves higher resolution, but also increases the system's fault-tolerance and robustness. Moreover, the ad-hoc nature of wireless sensor networks makes them even more attractive for military and other risk-associated applications, such as environmental observation and habitat monitoring.

  8. 一种有撞击角和视场角约束的运动目标的偏置比例导引算法%A Biased Proportional Guidance Algorithm for Moving Target with Impact Angle and Field-of-View Constraints

    Institute of Scientific and Technical Information of China (English)

    黄诘; 张友安; 刘永新

    2016-01-01

    A indirect impact angle control based method with biased proportional guidance is proposed for a moving target in this paper.The concept of collision triangle which satisfies impact angle constraint is defined,and then the guidance law with the form of biased proportional guidance is given.According to the Collision triangle desired bias term integral,both two-phases method and one-phase method for calculating the bias term are designed,where the former does not need to compute time-to-go and the latter can attack a maneuvering target.Considering the field-of-view angle and acceleration constraints,three-phase bias-shaping method is proposed for the biased proportional guidance to satisfy these constraint conditions and the impact angle desired integral of bias term.In order to attack the maneuvering target,the bias term is real-time updated on-line by considering the current states of the missile and the target.Finally,numerical simulation for attacking moving and maneuvering targets is used to demonstrate the effectiveness of the proposed algorithm.%针对以一定角度攻击运动目标问题,提出一种采用偏置比例导引的间接撞击角度控制方法。定义满足攻击角度约束的碰撞三角形概念,在这基础上给出了具有偏置比例导引形式的制导律。根据碰撞三角形要求的偏置项积分值设计两阶段和一阶段这两种计算偏置项的方法,其中两阶段方法不需要计算剩余时间,而一阶段方法能够攻击机动目标。考虑视场角和过载等约束条件限制,对偏置项进行三阶段改进,使导弹在满足这些约束条件的同时满足撞击角要求的偏置项积分值。为了适应机动目标的情况,考虑当前时刻导弹和目标运动信息,在线地偏置项进行实时更新。最后对运动目标和机动目标两种情况进行了仿真实验,验证了本文方法的有效性。

  9. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    Science.gov (United States)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  10. Visibility of children behind 2010-2013 model year passenger vehicles using glances, mirrors, and backup cameras and parking sensors.

    Science.gov (United States)

    Kidd, David G; Brethwaite, Andrew

    2014-05-01

    This study identified the areas behind vehicles where younger and older children are not visible and measured the extent to which vehicle technologies improve visibility. Rear visibility of targets simulating the heights of a 12-15-month-old, a 30-36-month-old, and a 60-72-month-old child was assessed in 21 2010-2013 model year passenger vehicles with a backup camera or a backup camera plus parking sensor system. The average blind zone for a 12-15-month-old was twice as large as it was for a 60-72-month-old. Large SUVs had the worst rear visibility and small cars had the best. Increases in rear visibility provided by backup cameras were larger than the non-visible areas detected by parking sensors, but parking sensors detected objects in areas near the rear of the vehicle that were not visible in the camera or other fields of view. Overall, backup cameras and backup cameras plus parking sensors reduced the blind zone by around 90 percent on average and have the potential to prevent backover crashes if drivers use the technology appropriately.

  11. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  12. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    Sensor networks are being widely deployed for measurement, detection and surveillance applications. In these new applications, users issue long-running queries over a combination of stored data and sensor data. Most existing applications rely on a centralized system for collecting sensor data....... These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...

  13. Sensors for Process Control

    Science.gov (United States)

    Tschulena, G.

    1988-01-01

    Sensors are one of the key elements for the automation in the manufacturing and process technology. The sensor field is presently within a restructuring process, directed to a stronger utilization of solid state technologies. This restructuring is governed by the utilization of solid state physical effects, by the use of reproducible fabrication techniques, and by the market driving forces. The state of the art of sensors in modern fabrication techniques will be demonstrated in examples, namely for sensors in silicon technology, in thin film technology and in thick film/screen printing technology. Some important physical and technological problems to be solved for the development of new and advanced sensor families will be outlined. Sensor development is strongly directed to the minaturization of devices and to the integration of different sensors to multisensors, as well as the integration between sensors and microelectronics.

  14. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  15. Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor

    Directory of Open Access Journals (Sweden)

    José Dorado

    2013-10-01

    Full Text Available In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L. P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements, actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75. Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

  16. A software package for evaluating the performance of a star sensor operation

    Science.gov (United States)

    Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; K., Nirmal; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2017-01-01

    We have developed a low-cost off-the-shelf component star sensor (StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.

  17. Discriminating crop, weeds and soil surface with a terrestrial LIDAR sensor.

    Science.gov (United States)

    Andújar, Dionisio; Rueda-Ayala, Victor; Moreno, Hugo; Rosell-Polo, Joan Ramón; Escolá, Alexandre; Valero, Constantino; Gerhards, Roland; Fernández-Quintanilla, César; Dorado, José; Griepentrog, Hans-Werner

    2013-10-29

    In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12-14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

  18. A software package for evaluating the performance of a star sensor operation

    Science.gov (United States)

    Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2017-02-01

    We have developed a low-cost off-the-shelf component star sensor ( StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.

  19. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  20. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  1. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  2. Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data

    Science.gov (United States)

    Li, Zuchuan; Li, Lin; Song, Kaishan; Cassar, Nicolas

    2013-03-01

    Through its influence on the structure of pelagic ecosystems, phytoplankton size distribution (pico-, nano-, and micro-plankton) is believed to play a key role in "the biological pump." In this paper, an algorithm is proposed to estimate phytoplankton size fractions (PSF) for micro-, nano-, and pico-plankton (fm, fn, and fp, respectively) from the spectral features of remote-sensing data. From remote-sensing reflectance spectrum (Rrs(λ)), the algorithm constructs four types of spectral features: a normalized Rrs(λ), band ratios, continuum-removed spectra, and spectral curvatures. Using support vector machine recursive feature elimination, the algorithm ranks the constructed spectral features and Rrs(λ) according to their sensitivities to PSF which is then regressed against the sensitive spectral features through support vector regression. The algorithm is validated with (1) simulated Rrs(λ) and PSF, and (2) Rrs(λ) obtained by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and PSF determined from High-Performance Liquid Chromatography (HPLC) pigments. The validation results show the overall effectiveness of the algorithm in estimating PSF, with R2 of (1) 0.938 (fm) for the simulated SeaWiFS data set; and (2) 0.617 (fm), 0.475 (fn), and 0.587 (fp) for the SeaWiFS satellite data set. The validation results also indicate that continuum-removed spectra and spectral curvatures are the dominant spectral features sensitive to PSF with their wavelengths mainly centered on the pigment-absorption domain. Global spatial distributions of fm, fn, and fp were mapped with monthly SeaWiFS images. Overall, their biogeographical distributions are consistent with our current understanding that pico-plankton account for a large proportion of total phytoplankton biomass in oligotrophic regions, nano-plankton in transitional areas, and micro-plankton in high-productivity regions.

  3. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow se

  4. Sensors for Entertainment

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  5. Environmental Sensor Networks

    OpenAIRE

    Martinez, Kirk; Hart, Jane; Ong, Royan

    2004-01-01

    Sensor networks for the natural environment require an understanding of earth science, combined with sensor, communications and computer technology. We discuss the evolution from data logging to sensor networks, describe our research from a glacial environment and highlight future challenges in this field.

  6. Optical waveguide sensors

    NARCIS (Netherlands)

    Fluitman, J.; Popma, Th.

    1986-01-01

    An overview of the field of optical waveguide sensors is presented. Some emphasis is laid on the development of a single scheme under which the diversity of sensor principles can be arranged. First three types of sensors are distinguished: intrinsic, extrinsic and active. Next, two steps are disting

  7. Sensors and actuators, Twente

    NARCIS (Netherlands)

    Bergveld, P.

    1989-01-01

    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  8. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  9. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  10. Rotorwash wind sensor evaluation

    Science.gov (United States)

    Meyerhoff, Curtis L.; Lake, Robert E.; Gordge, Dennis N.

    1993-08-01

    This project's purpose was to assess and document the ability of the Qualimetrics, Inc. model 2132 wind sensor (a cup and vane type sensor) to measure a rotor wash flow field as compared to the TSI, Inc. model 204D ion beam deflection sensor. The tests concentrated on the sensor's ability to capture dynamic characteristics of a helicopter rotor wash flow field. The project was conducted from April to November 1992 and consisted of quantitative laboratory and field testing. The laboratory testing included 9.5 hours of wind tunnel test time, subjecting each sensor to three step input tests at velocities of 20 knots, 50 knots, and 80 knots. Field test data were collected during one hour of SH-60B helicopter hover time at heights of 15 and 25 feet above ground level at distances of 35 and 70 feet from the wind sensors. Aircraft gross weights ranged between 19,600 and 20,500 pounds. All field test data were obtained in ambient wind conditions of approximately 8 knots at 40 degrees relative to the aircraft nose, -40 feet pressure altitude in an ambient temperature of 85 F. Laboratory data analysis indicates the model 2132 cup and vane sensor's time constant values were significantly higher than those of the model 204D ion beam sensor and varied relative to wind tunnel velocity settings. This indicates the model 2132 sensor's ability to accurately capture oscillations in a dynamic flow field is significantly less than the model 204D sensor. The model 2132 sensor did detect periodic or pulsating velocity magnitudes, but failed to capture significant oscillations as compared to the model 204D sensor. Comparative analysis of all field test event data indicate the model 2132 sensor only detected frequencies below 1.5 Hz and only captured an average of 46 percent of the model 204D sensor's maximum amplitude pulse values that were below 1.5 Hz. The model 2132 sensor's inability to capture many of the maximum pulse amplitudes is evidence of the sensor's limited capability to

  11. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  12. Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags

    Science.gov (United States)

    Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.

    2009-01-01

    The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature

  13. Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors

    Science.gov (United States)

    Hu, Yun-peng; Huang, Jian-yu; Chen, Lei

    2017-04-01

    Many space-based visible observation strategies based on Low Earth Orbit (LEO) satellites for observing Geosynchronous Orbit (GEO) objects were proposed previously. However, there were few studies about other beyond-LEO objects (Geostationary Transfer Orbit (GTO) objects, Medium Earth Orbit (MEO) objects, and Molniya objects). In this paper, a space-based visible observation strategy is proposed for observing GEO objects, GTO objects, MEO objects (especially global navigation satellites), and Molniya objects simultaneously to get more orbital data, using an earth-oriented equatorial LEO satellite with three sensors. This work is focused on the pointing geometry. Brightness of observed objects and sensitivity of sensors are assumed under the relative ideal conditions. First, the distribution characteristics of these beyond-LEO objects are discussed. And in order to observe global navigation satellites efficiently, joint regions formed by the track superposition of two adjacent orbits in a constellation are proposed. To offset the influence of the earth shadow and constraint of sun-target-observer angle, two sensors pointing inside of the equatorial plane are used to observe GEO and GTO objects. The installation angle of the third sensor is optimized to obtain a relative high coverage rate for observing global navigation satellites and Molniya objects based on joint regions. Finally, the coverage rate, the number of observations, and observation duration under different sensors with different field of views (FOVs) are compared and analyzed respectively.

  14. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target type......, size) into the association logic. This requires a more general association logic, in which both the physical position parameters and the target attributes can be used simultaneously. Although, the data fusion from a number of sensors could provide better and reliable estimation but abundance...... processing units for same type of multiple sensors, typically radar in our case....

  15. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  16. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  17. Online Distributed Sensor Selection

    CERN Document Server

    Golovin, Daniel; Krause, Andreas

    2010-01-01

    A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observatio...

  18. Silicon force sensor

    Science.gov (United States)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  19. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  20. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  1. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    Science.gov (United States)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  2. Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Paritosh Pande

    2016-01-01

    Full Text Available Hand-held optical coherence tomography (OCT imaging probes offer flexibility to image sites that are otherwise challenging to access. While the majority of hand-held imaging probes utilize galvanometer- or MEMS-scanning mirrors to transversely scan the imaging beam, these probes are commonly limited to lateral fields-of-view (FOV of only a few millimeters. The use of a freehand manually scanned probe can significantly increase the lateral FOV. However, using the traditional fixed-rate triggering scheme for data acquisition in a manually scanned probe results in imaging artifacts due to variations in the scan velocity of the imaging probe. These artifacts result in a structurally inaccurate image of the sample. In this paper, we present a sensor-based manual scanning technique for OCT imaging, where real-time feedback from an optical motion sensor is used to trigger data acquisition. This technique is able to circumvent the problem of motion artifacts during manual scanning by adaptively altering the trigger rate based on the instantaneous scan velocity, enabling OCT imaging over a large lateral FOV. The feasibility of the proposed technique is demonstrated by imaging several biological and nonbiological samples.

  3. Autonomous Mobile Robot Locomotion by Multifunctional Use of Wide Angle Fovea Sensor

    Science.gov (United States)

    Shimizu, Sota

    The wide-angle fovea (WAF) sensor comprises a specially made wide-angle fovea lens and a commercially available CCD/CMOS camera with photosensitive elements of uniform size. The sensor realizes a 120-degree-wide field of view (FOV) and high magnification in the central FOV without increasing the number of pixels per image. This paper focuses on the multifunctional use of an input image with space-variant spatial resolution that enables an autonomous mobile robot to avoid obstacles during locomotion. In order to use the WAF-input image efficiently, image processing for central vision, i.e., detection of 3D obstacles, and image processing for peripheral vision, i.e., self-localization of the mobile robot, are performed simultaneously and cooperatively. The comparison of the simulation results of spatial resolutions of the WAF lens and a pinhole camera (PHC) lens shows that the WAF lens can be used for depth measurement in the central FOV and self-localization in the peripheral FOV by the parallel stereo method and the two-parallel-line algorithm, respectively. The results obtained by the WAF lens are more accurate than those obtained by the PHC lens. Autonomous locomotion of the mobile robot has been demonstrated by performing two obstacle avoidance experiments.

  4. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; Porter, F. S.; Sadleir, J. E.; Smith, Stephen J.; Figueroa-Feliciano, Enectali

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  5. Design and Analysis of a Single—Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs

    Directory of Open Access Journals (Sweden)

    Carlos Jaramillo

    2016-02-01

    Full Text Available We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo vision system applied to Micro Aerial Vehicles (MAVs. The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration. We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads. The theoretical single viewpoint (SVP constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion. We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  6. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  7. Sensor Management for Tracking in Sensor Networks

    CERN Document Server

    Fuemmeler, Jason A; Veeravalli, Venugopal V

    2010-01-01

    We study the problem of tracking an object moving through a network of wireless sensors. In order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their sleep duration. It is assumed that an asleep sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. Having sleeping sensors in the network could result in degraded tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an extension to our previous work in this area [1], we consider generalized models for object movement, object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error regime, the g...

  8. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  9. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude

    Science.gov (United States)

    Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank

    2017-05-01

    Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.

  10. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM Data in Coastal Case 2 Waters

    Directory of Open Access Journals (Sweden)

    Sherwin Ladner

    2012-06-01

    Full Text Available The Ocean Color Monitor (OCM provides radiance measurements in eight visible and near-infrared bands, similar to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS but with higher spatial resolution. For small- to moderate-sized coastal lakes and estuaries, where the 1 × 1 km spatial resolution of SeaWiFS is inadequate, the OCM provides a good alternative because of its higher spatial resolution (240 × 360 m and an exact repeat coverage of every two days. This paper describes a detailed step-by-step atmospheric correction procedure for OCM data applicable to coastal Case 2 waters. This development was necessary as accurate results could not be obtained for our Case 2 water study area in coastal Louisiana with OCM data by using existing atmospheric correction software packages. In addition, since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was developed. The results of our combined vicarious calibration and atmospheric correction procedure for OCM data were compared with the results from the SeaWiFS Data Analysis System (SeaDAS software package outputs for SeaWiFS and OCM data. For Case 1 waters, our results matched closely with SeaDAS results. For Case 2 waters, our results demonstrated closure with in situ radiometric measurements, while SeaDAS produced negative normalized water leaving radiance (nLw and remote sensing reflectance (Rrs. In summary, our procedure resulted in valid nLw and Rrs values for Case 2 waters using OCM data, providing a reliable method for retrieving useful nLw and Rrs values which can be used to develop ocean color algorithms for in-water substances (e.g., pigments, suspended sediments, chromophoric dissolved organic matter, etc. at relatively high spatial resolution in regions where

  11. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  12. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    Directory of Open Access Journals (Sweden)

    Serhan O Isikman

    Full Text Available We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2. This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total. Furthermore, by changing the illumination angle (e.g., ± 50° and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3 across a sample volume of ~5 mm(3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  13. Combining structured light and ladar for pose tracking in THz sensor management

    Science.gov (United States)

    Engström, Philip; Axelsson, Maria; Karlsson, Mikael

    2013-05-01

    Stand-off 3D THz imaging to detect concealed treats is currently under development. The technology can provide high resolution 3D range data of a passing subject showing layers of clothes and if there are concealed items. However, because it is a scanning sensor technology with a narrow field of view, the subjects pose and position need to be accurately tracked in real time to focus the system and map the imaged THz data to specific body parts. Structured light is a technique to obtain 3D range information. It is, for example, used in the Microsoft Kinect for pose tracking of game players in real time. We demonstrate how structured light can contribute to a THz sensor management system and track subjects in real time. The main advantage of structured light is its simplicity, the disadvantages are the sensitivity to lighting conditions and material properties as well as a relatively low accuracy. Time of flight laser scanning is a technique that complements structured light well, the accuracy is usually much higher and it is less sensitive to lighting conditions. We show that by combining the techniques it is possible to create a robust real time pose tracking system for THz sensor management. We present a concept system based on the Microsoft Kinect and a SICK LMS-511 laser scanner. The laser scanner is used for 2D tracking of the subjects, this tracking is then used to initialize and validate the Microsoft Kinect pose tracking. We have evaluated the sensors individually in both static and dynamic scenes and present their advantages and drawbacks.

  14. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  15. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    The Sensor Technology Center A/S (STC) in co-operation with Risoe National Laboratory has carried out a sensor technology foresight in order to strengthen a strategic outlook on sensor technology. The technology foresight (with a timeframe of 2000 to2015) has been performed in the period October...... 2000 - September 2001. The conclusions of the sensor technology report are based on 1) a scanning of existing forward looking literature on sensor technology, 2) a number of workshops with Danish andinternational participants and 3) an international survey with 174 respondents. Half of the respondents...... came from universities and other research institutes, and approximately one-third came from industry. The study has analysed six types of sensors(covering 13 sub-types) and, in addition, a number of systemic issues. All three sources of information indicate the same pattern regarding future...

  16. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    is required, such as taking a blood sample, mailing it to a lab, where it is analysed and the result returned by mail. Due to the continuing size and cost reduction of electronic equipment, future medical sensors will be much smaller, cheaper and often disposable. Furthermore, integration of these sensors...... with the electronic health record (EHR) IT-systems will save a lot of work (and human errors), as the sensor readings will be directly recorded in the patient’s records by the sensors themselves, rather than by a transcription performed by a busy clinician. Although this development has been going on for at least...... a decade, most sensors are still quite big, heavy and difficult to operate, and a lot of research is revolving around minimising the instruments and making them easier to use. Several research experiments have demonstrated the utility of such sensors, but few of these experiments consider security...

  17. Intelligent Sensors Security

    Directory of Open Access Journals (Sweden)

    Andrzej Bialas

    2010-01-01

    Full Text Available The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408 used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC related security design patterns and to improve the effectiveness of the sensor development process.

  18. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  19. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  20. Intelligent Sensors Security

    Science.gov (United States)

    Bialas, Andrzej

    2010-01-01

    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571