WorldWideScience

Sample records for field-ion microscope atom

  1. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  2. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed

  3. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  4. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  5. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  6. Atom-probe field-ion microscope for the study of the interaction of impurity atoms or alloying elements with defects

    International Nuclear Information System (INIS)

    Wagner, A.; Hall, T.M.; Seidman, D.N.

    1976-10-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) designed for the study of defects is described. This atom probe features: (1) a variable magnification internal-image-intensification system; (2) a liquid-helium goniometer stage; (3) a low-energy (less than or equal 3 keV) gas-ion gun for in-situ irradiations; (4) an ultra-high vacuum (approximately 3.10 -10 torr) chamber; (5) a high vacuum (approximately 10 -6 torr) specimen-exchange device; (6) a Chevron ion detector; and (7) an eight-channel digital timer with a +-10 nsec resolution for measuring the TOFs. The entire process of applying the evaporation pulse to the specimen, measuring the voltages, and analyzing the TOF data is controlled by a computer. With this system we can record and analyze 600 TOFmin. Results on unirradiated specimens of molybdenum, tungsten, W/25 at. % Re, Mo/1.0 at. % Ti, Mo/1.0 at. % Ti/0.08 at. % Zr and a special low swelling stainless steel alloy (LS1A) demonstrate the instrument's ability to quantitatively determine concentrations at the 5.10 -4 at fr level and to determine their spatial distribution with a resolution of a few angstroms

  7. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357

    International Nuclear Information System (INIS)

    Hall, T.M.; Wagner, A.; Berger, A.S.; Seidman, D.N.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10 -6 torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450 0 K. Specimens can also be irradiated in-situ with any low-energy (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s -1 . In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy

  8. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  9. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  10. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  11. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  12. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  13. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  14. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  15. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  16. Atom-probe field-ion-microscopy study of Fe-Ti alloys

    International Nuclear Information System (INIS)

    Pickering, H.W.; Kuk, Y.; Sakurai, T.

    1980-01-01

    A newly developed high-performance atom-probe (field ion microscope) was employed for the composition analysis of Fe-Ti alloys and their interactions with ambient gas, such as H 2 and O 2 . With a mass resolution (m/Δm) better than 2000 and a spatial resolution of a few A, all isotopes of Fe and Ti and their hydrides and other compounds are clearly resolved during the depth profile study. Some of our findings are: (1) Titanium segregated on the surface and grain boundaries upon heating (greater than or equal to 900 0 C), in the form of oxides, and (2) some Ti in the bulk forms clusters of various sizes with C, O, and/or N as nuclei

  17. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  18. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  19. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  20. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  1. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  2. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  3. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  4. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope

    International Nuclear Information System (INIS)

    Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter

    2011-01-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10 -10 mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  5. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  6. Field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1975-01-01

    A review is presented of field ion microscope applications in studies of point defect distribution in irradiated metals. FIM results on the primary state of radiation damage in neutron and ion-irradiated iridium and tungsten, at both room-temperature and 78 0 K, showed that it consists of: (1) isolated vacancies; (2) depleted zones; (3) compact vacancy clusters of voids; and (4) dislocation loops. The fraction of vacancies stored in the dislocation loops represented a small fraction of the total vacancy concentration; in the case of tungsten it was approximately 10 percent. These FIM observations provide a simple explanation of the low yield-factor, determined by transmission electron microscopy, for a number of ion-irradiated metals

  7. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  8. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  9. A field ion microscope study of the surface reaction of tungsten with n-octanol under an applied positive voltage: reaction conditions for the 'splitting' of (110) plane

    International Nuclear Information System (INIS)

    Terao, T.; Iwatsu, F.; Morikawa, H.

    1993-01-01

    Field ion microscopy is a powerful tool for the study of surface phenomena on an atomic scale, especially when they are crystal plane dependent, because the microscope shows many crystal planes of the sample tip simultaneously. Although a large number of FIM studies on vapor deposition, surface diffusion and surface reactions at a metal-gas interface have been reported, those on reactions at a metal-liquid interface are few. The authors have studied the corrosion or tungsten with aqueous solutions and found that water corroded the tungsten tips very severely to reduce the radius of curvature of the tip cap drastically. The reaction was so severe that it was not possible to trace it back to the very initial stages. They adopted, as a weaker reagent, one of the higher alcohols, n-octanol(C 8 H 17 OH), and found that it reacted with tungsten tips when an electrical pulse with a positive voltage between 5 and 10V was applied to the tip, giving very interesting field ion images in which the central (110) plane was divided into two parts located side by side across the [001] zone line. This means that some anisotropic surface reaction occurred which made a groove along the [001] zone line going through the (110) plane, usually the most stable plane chemically for bcc metals. They named this phenomenon 'splitting'. This reaction was less severe than that with water and some results on the morphology of the groove and on the reaction sequence have been reported. In the present paper more detailed reaction conditions which give rise to the splitting are described

  10. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  11. Atomic force microscope featuring an integrated optical microscope

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1992-01-01

    The atomic force microscope (AFM) is used to image the surface of both conductors and nonconductors. Biological specimens constitute a large group of nonconductors. A disadvantage of most AFM's is the fact that relatively large areas of the sample surface have to be scanned to pinpoint a biological

  12. Field-ion microscopy, MSC report No. 4691

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-03-01

    This short article discusses the elements of a basic field ion microscope (FIM), the physics of the processes of field ionization and field evaporation, the factors limiting atomic resolution, the principle features of an atom probe FIM and imaging atom-probe mass spectroscopy

  13. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  14. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  15. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  16. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  17. Field ion microscopy

    International Nuclear Information System (INIS)

    Ramanathan, D.

    1975-01-01

    The basic features of the Field-Ion Microscope (FIM) and the theory of image formation are explained. Design parameters of the FIM, factors limiting its resolution, interpretation of the image, etc are briefly outlined. Relative merits of the various imaging gases and the applications of the FIM are also covered. (K.B.)

  18. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  19. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  20. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  1. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  2. Chromosome structure investigated with the atomic force microscope

    NARCIS (Netherlands)

    de Grooth, B.G.; Putman, C.A.J.; Putman, Constant A.; van der Werf, Kees; van Hulst, N.F.; van Oort, G.; van Oort, Geeske; Greve, Jan; Manne, Srinivas

    1992-01-01

    We have developed an atomic force microscope (AFM) with an integrated optical microscope. The optical microscope consists of an inverted epi-illumination system that yields images in reflection or fluorescence of the sample. With this system it is possible to quickly locate an object of interest. A

  3. Atomic force microscope with integrated optical microscope for biological applications

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a

  4. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  5. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  6. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  7. Theory of a Quantum Scanning Microscope for Cold Atoms.

    Science.gov (United States)

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  8. A microscope for mapping-out in the atomic region

    International Nuclear Information System (INIS)

    1985-01-01

    The lastest development of the tunnel microscope is described, which enables the structure of individual atoms on various surfaces (gold, silicon, graphite) to be made visible in the sense of a topological profile of the surface. The technical features and operation of the microscope are described in detail. The use of 3 piezo-electric elements for vertical and horizontal positioning of the sensor tip gives an accuracy sufficient to exhibit the electron cloud forming the outer boundary of each atom. Images of gold, silicon, oxygen and carbon atoms have been produced and show structures previously unknown. Revolutionary spin-offs can be expected in various disciplines. (L.M.W.)

  9. Radical Chemistry and Charge Manipulation with an Atomic Force Microscope

    Science.gov (United States)

    Gross, Leo

    The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).

  10. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy

    International Nuclear Information System (INIS)

    Sha, G.; Cerezo, A.

    2004-01-01

    Full text: For high strength 7xxx series Al alloys, Zr is an important trace alloy element which is often added to optimise properties, having effects such as refining grain size, inhibiting recrystallization, and improving stress corrosion cracking resistance and quench sensitivity. In addition, it has been reported recently that Zr addition also has a significant influence on early stage ageing behaviour of a 7xxx series Al alloy. Zr equilibrium solubility in solid Al is extremely low. After solution or ageing treatment, most Zr is present as small spherical Ai 3 Zr dispersoids approximately 20 nm in diameter, distributed at grain boundaries as well as within the Al matrix. The crystallographic nature of intermetallic phase Al 3 Zr has been well studied in the literatures. So far, no direct measurement of the chemistry of the Al 3 Zr particles in 7xxx series Al alloys has been published. It is unclear if there is significant Zn, Mg or Cu included in the particles. In this research, 3DAP has been employed for the first time to investigate ionisation behaviour of Al 3 Zr particles and determine the chemistry of the particles in 7050 Al alloy. Using field ion microscopy, the local evaporation radius of the Al 3 Zr particle has been measured to be equivalent to 36 nm for a 10 kV tip, less than the equivalent tip radius for the Al matrix of ∼68 nm. Using the matrix Al evaporation field (19 V/nm) as a reference, this allows the evaporation field of Al 3 Zr to be calculated as 35 V/nm, the same as the field calculated for evaporation of Al as Al 2+ (35 V/nm), and that of Zr as Zr 3+ (35 V/nm). This result is consistent with Al 2+ and Zr 3+ being the main species observed in the mass spectrum during analysis of Al 3 Zr particles. Using 3DAP, the chemical compositions of Al 3 Zr particles are determined to be 64.8∼67.7 at% Al, 23.6∼24.8 at% Zr, 6.9∼9.1 at% Zn, 0.4∼0.7 at% Cu, 0.5∼1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Choice of specimen temperature of

  11. The Tunneling Microscope: A New Look at the Atomic World.

    Science.gov (United States)

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  12. Atomic force microscope characterization of a resonating nanocantilever

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Borrise, X.

    2003-01-01

    An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely...

  13. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  14. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Science.gov (United States)

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  15. Stitching Grid-wise Atomic Force Microscope Images

    DEFF Research Database (Denmark)

    Vestergaard, Mathias Zacho; Bengtson, Stefan Hein; Pedersen, Malte

    2016-01-01

    Atomic Force Microscopes (AFM) are able to capture images with a resolution in the nano metre scale. Due to this high resolution, the covered area per image is relatively small, which can be problematic when surveying a sample. A system able to stitch AFM images has been developed to solve this p...

  16. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  17. A combined scanning tunneling microscope-atomic layer deposition tool.

    Science.gov (United States)

    Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B

    2011-12-01

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

  18. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    Science.gov (United States)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  19. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  20. Manipulation and soldering of carbon nanotubes using atomic force microscope

    International Nuclear Information System (INIS)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-01-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong

  1. Microscopic description and simulation of ultracold atoms in optical resonators

    International Nuclear Information System (INIS)

    Niedenzu, W.

    2012-01-01

    Ultracold atoms in optical resonators are an ideal system to investigate the full quantum regime of light-matter interaction. Microscopic insight into the underlying processes can nowadays easily be obtained from numerical calculations, e.g. with Monte Carlo wave function simulations. In the first part we discuss cold atoms in ring resonators, where the modified boundary conditions significantly alter the dynamics as compared to the standing-wave case. Quantum jumps induce momentum correlations and entanglement between the particles. We observe strong non-classical motional correlations, cooling and entanglement heralded by single photon measurements. For deeply trapped particles the complex system Hamiltonian can be mapped onto a generic optomechanical model, allowing for analytical microscopic insight into the dynamics. The rates of cavity-mediated correlated heating and cooling processes are obtained by adiabatically eliminating the cavity field from the dynamics and can be directly related to the steady-state momentum correlation coefficient. The second part is devoted to cooling and self-organisation of a cold gas in a transversally pumped standing-wave resonator, in which the atoms are directly illuminated by a laser beam. Above a certain critical laser intensity the atoms order in a specific pattern, maximising light scattering into the cavity. The particles thus create and sustain their own trap. We derive a nonlinear Fokker-Planck equation for the one-particle distribution function describing the gas dynamics below and above threshold. This kinetic theory predicts dissipation-induced self-organisation and q-Gaussian velocity distributions in steady state. (author)

  2. An atomic force microscope nanoscalpel for nanolithography and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Burbridge, D J; Moskalenko, A V; Dudko, O; Gordeev, S N [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom); Yarova, P L; Smirnov, S V, E-mail: jdb28@bath.ac.u [Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY (United Kingdom)

    2009-11-04

    We present the fabrication of specialized nanotools, termed nanoscalpels, and their application for nanolithography and nanomechanical manipulation of biological objects. Fabricated nanoscalpels have the shape of a thin blade with the controlled thickness of 20-30 nm and width of 100-200 nm. They were fabricated using electron beam induced deposition at the apex of atomic force microscope probes and are hard enough for a single cut to penetrate a {approx}45 nm thick gold layer; and thus can be used for making narrow electrode gaps required for fabrication of nanoelectronic devices. As an atomic force microscope-based technique the nanoscalpel provides simultaneous control of the applied cutting force and the depth of the cut. Using mammalian cells as an example, we demonstrated their ability to make narrow incisions and measurements of local elastic and inelastic characteristics of a cell, making nanoscalpels also useful as a nanosurgical tool in cell biology. Therefore, we believe that the nanoscalpel could serve as an important tool for nanofabrication and nanosurgery on biological objects.

  3. Cold atoms in microscopic traps: from wires to chips

    International Nuclear Information System (INIS)

    Cassettari, D.

    2000-05-01

    This thesis reports on the experimental demonstration of magnetic guides, traps and beam splitters for neutral atoms using current carrying wires. A straight wire allows to create two basic guide configurations: the magnetic field generated by the wire alone produces a guide where atoms in a strong field seeking state perform orbits around the wire (Kepler guide); by adding an external magnetic field, atoms in a weak field seeking state are guided at the location where the external field and the field generated by the wire cancel out (side guide). Furthermore, bending the wire in various shapes allows to modify the side guide potential and hence to create a large variety of three dimensional traps. A relevant property of these potentials is that higher trapping gradients are obtained by decreasing the current flowing in the wires. As the trap is compressed, it also moves closer to the wire. This feature has allowed us to create microscopic potentials by using thin wires designed on a surface (atom chip) by means of high resolution microfabrication techniques. Wires mounted on a surface have the advantage of being more robust and able to sustain larger currents due to their thermal coupling with the substrate. In our experiment we have developed methods to load these traps and guides with laser cooled atoms. Our first investigations have been performed with free standing wires which we have used to study the Kepler guide, the side guide and a three dimensional Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled

  4. Digital phase-shifting atomic force microscope Moire method

    International Nuclear Information System (INIS)

    Liu Chiaming; Chen Lienwen

    2005-01-01

    In this study, the digital atomic force microscope (AFM) Moire method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moire patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2π. The principle of the digital AFM Moire method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement

  5. A subsurface add-on for standard atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G. J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J., E-mail: Rost@physics.leidenuniv.nl [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  6. A Novel Atomic Force Microscope with Multi-Mode Scanner

    International Nuclear Information System (INIS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology. (paper)

  7. Nanodot deposition and its application with atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zenglei, E-mail: liuzenglei@sia.cn; Jiao Niandong, E-mail: ndjiao@sia.cn [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China); Xu Ke [Shenyang Jianzhu University (China); Wang, Zhidong [Chiba Institute of Technology (Japan); Dong Zaili; Liu Lianqing [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China)

    2013-06-15

    Nanodot deposition using atomic force microscope (AFM) is investigated. To realize repeatable and precise deposition of nanodots, the detailed control method is discussed. The electric field between AFM tip and substrate is analyzed, and a convenient method to control tip-substrate separation is proposed. In experiments, two nanodot matrixes are fabricated and the heights of the nanodots are analyzed. Experimental results testify that the control method can lead to repeatable and precise fabrication of deposited nanodots. As an application of deposited nanodots, a carbon nanotube (CNT) is soldered on gold electrodes with deposited Au nanodots. After soldering, the contact resistances between the CNT and the electrodes decrease greatly. AFM-based nanodot deposition can be used to fabricate special nanopatterns; also it can be used to solder nanomaterials on substrates to improve the electrical connection, which has a promising future for nanodevice fabrication.

  8. From atoms to steps: The microscopic origins of crystal evolution

    Science.gov (United States)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2014-07-01

    The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing a wide range of phenomena in surface physics. Typical crystal surfaces are slightly misoriented with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-like structures of steps separating terraces. Adsorbed atoms (adatoms), which are represented by a continuous density, diffuse on terraces, and steps move by absorbing or emitting these adatoms. Here we shed light on the microscopic origins of the BCF theory by deriving a simple, one-dimensional (1D) version of the theory from an atomistic, kinetic restricted solid-on-solid (KRSOS) model without external material deposition. We define the time-dependent adatom density and step position as appropriate ensemble averages in the KRSOS model, thereby exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal gas approximation applies to dilute gasses. We find conditions under which the surface remains in a low-density regime and discuss the microscopic origin of corrections to the BCF model.

  9. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well......-defined aspect ratio, this technique provides an excellent z-calibration standard for the atomic force microscope....

  10. An in-situ field ion microscope study of irradiated tungsten and tungsten alloys. II. The recovery behavior in Stages I and II: experimental results. Report No. 2347

    International Nuclear Information System (INIS)

    Wilson, K.L.; Seidman, D.N.

    1974-12-01

    The low temperature FIM isochronal annealing spectrum of four different purity levels of tungsten (resistivity ratios R of 5 . 10 4 , 1.5 . 10 4 , 50 and 15), irradiated in-situ with 30 keV W + ions to a dose of 5 . 10 12 ion cm -2 at 18 K, consisted of distinct recovery peaks at approximately 38, 50, 65 and 80 K with a small amount of recovery observed up to 120 K. The spectra were essentially identical between 18 and 120 K, but a fifth group of W specimens with approximately equal to 5 began to exhibit some deviations from the standard spectrum. This result indicates that the distribution of self-interstitial atoms (SIAs) produced by the ion irradiations in the W FIM tips was such that the SIA-SIA reaction dominated the recovery behavior. The isochronal peak width at half-maximum for the 38 K long-range SIA migration peak and the Stage II peaks in pure W were shown to be approximately equal to the value predicted by a diffusion model. The isochronal recovery spectra for W--0.5 at. per cent and 3 at. per cent Re alloys were radically different from the isochronal recovery spectra of pure W. For both W--Re alloys, the amount of recovery for the long-range migration peak was suppressed, and, for the 3 at. per cent Re alloy, it was almost eliminated. High-purity W (R = 5 . 10 4 ), doped with 50-100 appm carbon, showed a 20 per cent reduction in the amount of recovery observed for the long-range migration peak at 38 K. (U.S.)

  11. The atomic force microscope as a mechano–electrochemical pen

    Directory of Open Access Journals (Sweden)

    Christian Obermair

    2011-10-01

    Full Text Available We demonstrate a method that allows the controlled writing of metallic patterns on the nanometer scale using the tip of an atomic force microscope (AFM as a “mechano–electrochemical pen”. In contrast to previous experiments, no voltage is applied between the AFM tip and the sample surface. Instead, a passivated sample surface is activated locally due to lateral forces between the AFM tip and the sample surface. In this way, the area of tip–sample interaction is narrowly limited by the mechanical contact between tip and sample, and well-defined metallic patterns can be written reproducibly. Nanoscale structures and lines of copper were deposited, and the line widths ranged between 5 nm and 80 nm, depending on the deposition parameters. A procedure for the sequential writing of metallic nanostructures is introduced, based on the understanding of the passivation process. The mechanism of this mechano–electrochemical writing technique is investigated, and the processes of site-selective surface depassivation, deposition, dissolution and repassivation of electrochemically deposited nanoscale metallic islands are studied in detail.

  12. A new ion sensing deep atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  13. A more comprehensive modeling of atomic force microscope cantilever

    International Nuclear Information System (INIS)

    Mahdavi, M.H.; Farshidianfar, A.; Tahani, M.; Mahdavi, S.; Dalir, H.

    2008-01-01

    This paper focuses on the development of a complete model of an atomic force microscope (AFM) micro-cantilever beam, based on considering the effects of four major factors in modeling the cantilever. They are: rotary inertia and shear deformation of the beam and mass and rotary inertia of the tip. A method based on distributed-parameter modeling approach is proposed to solve the governing equations. The comparisons generally show a very good agreement between the present results and the results of other investigators. As expected, rotary inertia and shear deformation of the beam decrease resonance frequency especially at high ratio of cantilever thickness to its length, and it is relatively more pronounced for higher-order frequencies, than lower ones. Mass and rotary inertia of the tip have similar effects when the mass-ratio of the tip to the cantilever is high. Moreover, the influence of each of these four factors, thickness of the cantilever, density of the tip and inclination of the cantilever on the resonance frequencies has been investigated, separately. It is felt that this work might help the engineers in reducing AFM micro-cantilever design time, by providing insight into the effects of various parameters with the micro-cantilever.

  14. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    International Nuclear Information System (INIS)

    Wagner, Ryan; Raman, Arvind; Moon, Robert; Pratt, Jon; Shaw, Gordon

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7–20 GPa. A key result is that multiple replicates of force–distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  15. Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope

    Science.gov (United States)

    2017-09-14

    with a Light Field Microscope Gordon E. Lott Follow this and additional works at: https://scholar.afit.edu/etd Part of the Atomic, Molecular and......https://scholar.afit.edu/etd/774 THREE-DIMENSIONAL IMAGING OF COLD ATOMS IN A MAGNETO-OPTICAL TRAP WITH A LIGHT FIELD MICROSCOPE DISSERTATION Gordon E

  16. Microscopic kaonic-atom optical potential in finite nuclei with Λ(1405) and Σ(1385) resonances

    International Nuclear Information System (INIS)

    Mizoguchi, Masaki; Hirenzaki, Satoru; Toki, Hiroshi

    1994-01-01

    We derive kaonic-atom optical potentials in finite nuclei microscopically by taking into account the K - NΛ(1405) and K - NΣ(1385) interactions. Using the microscopic optical potentials we solve kaonic atoms with the Klein-Gordon equation in momentum space and obtain the kaonic-atom level shifts and the widths. The experimental data are reproduced well. We discuss also phenomenological optical potentials and compare them with the microscopic ones. In addition, we derive optical potentials in the local-density approximation with the use of the finite-matter kaon self-energy. We find a similarity with the microscopic optical potential derived with finite geometry. (orig.)

  17. Field ion microscope studies on thin films

    International Nuclear Information System (INIS)

    Cavaleru, A.; Scortaru, A.

    1976-01-01

    A review of the progress made in the last years in FIM application to thin film structure studies and adatom properties important in the nucleation stage of thin film growth: substrate binding and mobility of individual adatoms, behaviour of adatoms clusters is presented. (author)

  18. Nanoscans of piezoelectric activity using an atomic force microscope

    International Nuclear Information System (INIS)

    Zheng, Z.; Guy, I.L.; Butcher, K.S.A.; Tansley, T.L.

    2002-01-01

    Full text: Any crystal which lacks a centre of symmetry is piezoelectric. This includes all of the ferroelectric crystals used in photonics and virtually all compound semiconductors. Such crystals, when grown in thin film form invariably exist in a strained state and thus possess internal piezoelectric fields which can affect their electronic properties. A knowledge of the piezoelectric properties of such crystals is thus important in understanding how they behave in practical devices. It also provides a tool for analysing the crystal structure of such materials. Using an atomic force microscope (AFM) as a probe of piezoelectric activity allows the study of variations in crystal structure on a nanoscale. The AFM piezoelectric technique has been used by several groups to study structures of ceramic materials with large piezoelectric coefficients, intended for applications in piezoelectric actuators. In the AFM method, a driving signal of a few volts at a frequency well below the AFM tip resonance, is applied to a sample of the material mounted in the AFM. This voltage causes the sample dimensions to change in ways determined by the piezoelectric properties of the sample. The AFM signal thus contains the normal surface profile information and an additional component generated by the piezoelectric vibrations of the sample. A lockin amplifier is used to separate the piezoelectric signal from the normal AFM surface profile signal. The result is the simultaneous acquisition of the surface profile and a piezoelectric map of the surface of the material under study. We will present results showing the results of such measurements in materials such as lithium niobate and gallium nitride. These materials have piezoelectric coefficients which are much lower than those of materials to which the technique has normally been applied

  19. Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling

    Science.gov (United States)

    2017-09-01

    ARL-MR-0965 ● SEP 2017 US Army Research Laboratory Optimization of Easy Atomic Force Microscope (ezAFM) Controls for... Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling by Satwik Bisoi Science and...REPORT TYPE Memorandum Report 3. DATES COVERED (From - To) 2017 July 05–2017 August 18 4. TITLE AND SUBTITLE Optimization of Easy Atomic Force

  20. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S

    2006-01-01

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  1. High-speed atomic force microscope imaging: Adaptive multiloop mode

    Science.gov (United States)

    Ren, Juan; Zou, Qingze; Li, Bo; Lin, Zhiqun

    2014-07-01

    In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging is currently the most widely used imaging technique. The speed of TM imaging, however, is substantially (over an order of magnitude) lower than that of CM imaging, becoming the major bottleneck of this technique. Increasing the speed of TM imaging is challenging as a stable probe tapping on the sample surface must be maintained to preserve the image quality, whereas the probe tapping is rather sensitive to the sample topography variation. As a result, the increase of imaging speed can quickly lead to loss of the probe-sample contact and/or annihilation of the probe tapping, resulting in image distortion and/or sample deformation. The proposed adaptive multiloop mode (AMLM) imaging overcomes these limitations of TM imaging through the following three efforts integrated together: First, it is proposed to account for the variation of the TM deflection when quantifying the sample topography; second, an inner-outer feedback control loop to regulate the TM deflection is added on top of the tapping-feedback control loop to improve the sample topography tracking; and, third, an online iterative feedforward controller is augmented to the whole control system to further enhance the topography tracking, where the next-line sample topography is predicted and utilized to reduce the tracking error. The added feedback regulation of the TM deflection ensures the probe-sample interaction force remains near the minimum for maintaining a stable probe-sample interaction. The proposed AMLM imaging is tested and demonstrated by imaging a poly(tert-butyl acrylate) sample in experiments. The

  2. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-01-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  3. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  4. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope.

    Science.gov (United States)

    Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard

    2014-02-01

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  5. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  6. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    Science.gov (United States)

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  7. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  8. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  9. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  10. Harmonic and power balance tools for tapping-mode atomic force microscope

    International Nuclear Information System (INIS)

    Sebastian, A.; Salapaka, M. V.; Chen, D. J.; Cleveland, J. P.

    2001-01-01

    The atomic force microscope (AFM) is a powerful tool for investigating surfaces at atomic scales. Harmonic balance and power balance techniques are introduced to analyze the tapping-mode dynamics of the atomic force microscope. The harmonic balance perspective explains observations hitherto unexplained in the AFM literature. A nonconservative model for the cantilever - sample interaction is developed. The energy dissipation in the sample is studied and the resulting power balance equations combined with the harmonic balance equations are used to estimate the model parameters. Experimental results confirm that the harmonic and power balance tools can be used effectively to predict the behavior of the tapping cantilever. [copyright] 2001 American Institute of Physics

  11. Conductance of single atoms and molecules studied with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Neel, N; Kroeger, J; Limot, L; Berndt, R

    2007-01-01

    The conductance of single atoms and molecules is investigated with a low-temperature scanning tunnelling microscope. In a controlled and reproducible way, clean Ag(111) surfaces, individual silver atoms on Ag(111) as well as individual C 60 molecules adsorbed on Cu(100) are contacted with the tip of the microscope. Upon contact the conductance changes discontinuously in the case of the tip-surface junction while the tip-atom and tip-molecule junctions exhibit a continuous transition from the tunnelling to the contact regime

  12. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips.

    Science.gov (United States)

    Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M

    2017-01-01

    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  13. An Atomic Force Microscopical Study of the Synaptonemal Complex

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, C.A.J.; Dietrich, A.J.J.; de Grooth, B.G.; van Marle, J.; Heyting, C.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The chromosomal structure which is specific for meiosis, the synaptonemal complex (SC), plays a major role in chromosome pairing and the recombination of genetic material. The SC was studied using atomic force microscopy (AFM). The results of this study confirm the results of light and electron

  14. Computers in field ion microscopy

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Razinkova, T.L.; Sokolov, A.G.

    1980-01-01

    A review is presented of computer applications in field ion microscopy (FIM). The following topics are discussed in detail: (1) modeling field ion images in perfect crystals, (2) a general scheme of modeling, (3) modeling of the process of field evaporation, (4) crystal structure defects, (5) alloys, and (6) automation of FIM experiments and computer-assisted processing of real images. 146 references are given

  15. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers

    OpenAIRE

    Schneider, James; Dufrêne, Yves F.; Barger Jr., William R.; Lee, Gil U.

    2000-01-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures o...

  16. Microscopical description of isovector collective Osup(+) states in atomic nuclei

    International Nuclear Information System (INIS)

    Chekanov, N.A.

    1983-01-01

    A microscopical consistent description of isobar-analogue states and isovector monopole giant resonances is given in framework of the random-phase theory. The necessary one-particle basis, including the continuous spectrum, is determined by solution of the Hartree-Fock equations with the effective Skyrme-type interaction. An important feature of such a description is an automatical fulfilment of the consistency conditions relating the shell potential, nuclear density and the residual interaction. Effects due to Coulomb interaction in nuclei are investigated, such as the Coulomb shift energies, isospin admixtures to the ground state of the parent nucleus. Transition densities for the analogue states are obtained. Numerical calculations have been performed in the coordinate space for a number of neutron-rich nuclei

  17. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Alon; Goh, M. Cynthia [Department of Chemistry and Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto M5S 3H6 (Canada)

    2012-03-15

    A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

  18. Instrumentation at the National Center for Electron Microscopy: the Atomic Resolution Microscope

    International Nuclear Information System (INIS)

    Gronsky, R.; Thomas, G.

    1983-01-01

    The Atomic Resolution Microscope (ARM) is one of two unique high voltage electron microscopes at the Lawrence Berkeley Laboratory's National Center for Electron Microscopy (NCEM). The latest results from this new instrument which was manufactured by JEOL, Ltd. to the performance specifications of the NCEM, delivered in January of 1983, and soon to be open to access by the entire microscopy community are given. Details of its history and development are given and its performance specifications are reviewed

  19. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    Science.gov (United States)

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  20. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Balakirsky, Stephen B. [Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Fein, Aaron P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  1. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Celotta, Robert J.; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A.; Balakirsky, Stephen B.; Fein, Aaron P.

    2014-01-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach

  2. In situ electrochemical atomic force microscope study on graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, K.A.; Sato, Tomohiro; Asahina, Hitoshi; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-04-01

    Interest in the formation of the solid electrolyte interphase (SEI) film on graphite electrodes has increased recently in the quest to improve the performance of lithium-ion batteries. Topographic and frictional changes on the surface of a highly oriented pyrolytic graphite electrode in 1 M LiCiO{sub 4} ethylene carbonate/ethylmethyl carbonate (1:1) electrolyte were examined during charge and discharge by in situ electrochemical atomic force microscopy and friction force microscopy simultaneously in real-time. Solid electrolyte interphase film formation commenced at approximately 2 V vs. Li/Li{sup +} and stable film formation with an island-like morphology was observed below approximately 0.9 V vs. Li/Li{sup +}. Further experiments on a KS-44 graphite/polyvinylidene difluoride binder composite electrode showed similar phenomena.

  3. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  4. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    Science.gov (United States)

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  5. Attachment of carbon nanotubes to atomic force microscope probes

    International Nuclear Information System (INIS)

    Gibson, Christopher T.; Carnally, Stewart; Roberts, Clive J.

    2007-01-01

    In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20 nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM)

  6. Visualization of cytoskeletal elements by the atomic force microscope

    International Nuclear Information System (INIS)

    Berdyyeva, T.; Woodworth, C.D.; Sokolov, I.

    2005-01-01

    We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total 'volume' of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3D technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy

  7. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    G. Helas; M. O. Andreae

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  8. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  9. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  10. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  11. „New approaches to atomic force microscope lithography on silicon"

    DEFF Research Database (Denmark)

    Birkelund, Karen; Thomsen, Erik Vilain; Rasmussen, Jan Pihl

    1997-01-01

    We have investigated new approaches to the formation of conducting nanowires on crystalline silicon surfaces using atomic force microscope (AFM) lithography. To increase processing speed and reduce wear of the AFM tip, large-scale structures are formed with a direct laser write setup, while the AFM...

  12. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  13. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  14. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    Science.gov (United States)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  15. Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kishi, T.; Kasai, H.; Komori, F.; Okiji, A.

    2003-01-01

    We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length

  16. Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

    Directory of Open Access Journals (Sweden)

    Sumit Tewari

    2017-11-01

    Full Text Available Scanning tunneling microscopes (STM are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.

  17. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    Science.gov (United States)

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  18. Direct microscopic image and measurement of the atomization process of a port fuel injector

    International Nuclear Information System (INIS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-01-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin–Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin–Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter

  19. Direct microscopic image and measurement of the atomization process of a port fuel injector

    Science.gov (United States)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  20. A design for a subminiature, low energy scanning electron microscope with atomic resolution

    International Nuclear Information System (INIS)

    Eastham, D. A.; Edmondson, P.; Greene, S.; Donnelly, S.; Olsson, E.; Svensson, K.; Bleloch, A.

    2009-01-01

    We describe a type of scanning electron microscope that works by directly imaging the electron field-emission sites on a nanotip. Electrons are extracted from the nanotip through a nanoscale aperture, accelerated in a high electric field, and focused to a spot using a microscale Einzel lens. If the whole microscope (accelerating section and lens) and the focal length are both restricted in size to below 10 μm, then computer simulations show that the effects of aberration are extremely small and it is possible to have a system with approximately unit magnification at electron energies as low as 300 eV. Thus a typical emission site of 1 nm diameter will produce an image of the same size, and an atomic emission site will give a resolution of 0.1-0.2 nm (1-2 A). Also, because the beam is not allowed to expand beyond 100 nm in diameter, the depth of field is large and the contribution to the beam spot size from chromatic aberrations is less than 0.02 nm (0.2 A) for 500 eV electrons. Since it is now entirely possible to make stable atomic sized emitters (nanopyramids), it is expected that this instrument will have atomic resolution. Furthermore the brightness of the beam is determined only by the field emission and can be up to 1x10 6 times larger than in a typical (high energy) electron microscope. The advantages of this low energy, bright-beam electron microscope with atomic resolution are described and include the possibility of it being used to rapidly sequence the human genome from a single strand of DNA as well as being able to identify atomic species directly from the elastic scattering of electrons

  1. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  2. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...... writing, and to perform submicron modifications by AFM oxidation. The mask fabrication for a nanoscale suspended resonator bridge is used to illustrate the advantages of this combined technique for NEMS. (C) 1999 American Institute of Physics. [S0003-6951(99)00221-1]....

  3. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    Science.gov (United States)

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  4. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  5. Evaluation of the roughness of the surface of porcelain systems with the atomic force microscope

    International Nuclear Information System (INIS)

    Chavarria Rodriguez, Bernal

    2013-01-01

    The surface of a dental ceramic was evaluated and compared with an atomic force microscope after being treated with different systems of polishing. 14 identical ceramic Lava® Zirconia discs were used to test the different polishing systems. 3 polishing systems from different matrix houses were used to polish dental porcelain. The samples were evaluated quantitatively with an atomic force microscope in order to study the real effectiveness of each system, on the roughness average (Ra) and the maximum peak to valley roughness (Ry) of the ceramic surfaces. A considerable reduction of the surface roughness was obtained by applying different polishing systems on the surface of dental ceramics. Very reliable values of Ra and Ry were obtained by making measurements on the structure reproduced by the atomic force microscope. The advanced ceramics of zirconium oxide presented the best physical characteristics and low levels of surface roughness. A smoother surface was achieved with the application of polishing systems, thus demonstrating the reduction of the surface roughness of a dental ceramic [es

  6. Limits on visibility of single heavy atoms in the scanning transmission electron microscope: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.S.

    1979-01-01

    Theoretical calculations of the visibility of single heavy atoms on thin carbon substrates have predicted higher signal to noise ratios then experimentally observed. Six experimental measurements were performed to determine where the theory is inadequate, five to determine the absolute value of heavy atom scattering cross sections in practical units, and one to determine substrate noise in some practical units. The practical unit of measure was chosen to be the scattering power of one carbon atom as determined by an internal standard, Tobacco Mosaic Virus. Measurements were performed on the following targets on thin carbon substrates: single isolated uranium atoms; silicotungstate clusters; colloidal platinum particles; fd bacteriophage embedded in negative strain; and fd bacteriophage reacted with a known quantity of heavy atom reagent. These measurements suggest that the scattering power of one heavy atom is approximately 9 +- 4 carbon atom equivalents, instead of 15 to 24 predicted by theory. The same techniques were used to measure intensity fluctuations from area to area of a clean substrate. Substrate noise was found to be less than expected for squares of width less than 10A, but up to 2.5 times greater than expected for larger squares. These signal and noise measurements have been combined to give an empirical formula for calculating signal to noise ratios from specimen and microscope parameters.

  7. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    International Nuclear Information System (INIS)

    Rodrigues, M S; Dhez, O; Denmat, S Le; Felici, R; Comin, F; Chevrier, J

    2008-01-01

    The in situ combination of Scanning Probe Microscopies with X-ray microbeams adds a variety of new possibilities to the panoply of synchrotron radiation techniques. This paper describes an optics-free Atomic Force Microscope that can be directly installed on most of the synchrotron radiation end-stations for combined X-ray and atomic force microscopy experiments. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharp tip that gives the opportunity to measure the photons flux impinging on it, or to locally measure the absorption coefficient or the shape of the diffraction pattern. At the end an estimation of the limits of the various techniques presented is also discussed.

  8. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  9. A universal fluid cell for the imaging of biological specimens in the atomic force microscope.

    Science.gov (United States)

    Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles

    2013-04-01

    Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.

  10. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    Science.gov (United States)

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  11. A combined optical and atomic force microscope for live cell investigations

    Energy Technology Data Exchange (ETDEWEB)

    Madl, Josef [Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz (Austria); Rhode, Sebastian [Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz (Austria); Stangl, Herbert [Institute for Medical Chemistry, Medical University Vienna, Waehringerstr. 10, 1090 Vienna (Austria); Stockinger, Hannes [Department of Molecular Immunology, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, Lazarettgasse 19, 1090 Vienna (Austria); Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz (Austria); Schuetz, Gerhard J. [Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz (Austria); Kada, Gerald [Scientec, Mitterbauerweg 4, 4020 Linz (Austria)]. E-mail: gerald_kada@agilent.com

    2006-06-15

    We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ('receptor-positive sites') was significantly higher than that on sites lacking receptors.

  12. A combined optical and atomic force microscope for live cell investigations

    International Nuclear Information System (INIS)

    Madl, Josef; Rhode, Sebastian; Stangl, Herbert; Stockinger, Hannes; Hinterdorfer, Peter; Schuetz, Gerhard J.; Kada, Gerald

    2006-01-01

    We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ('receptor-positive sites') was significantly higher than that on sites lacking receptors

  13. MIDAS - an atomic force microscope for in-situ imaging of cometary dust particles

    International Nuclear Information System (INIS)

    Fehringer, H.M.; Ruedenauer, F.G.; Steiger, W.

    1997-02-01

    Comets are interesting bodies, since they are considered to consist of matter remaining in essentially unchanged chemistry from the presolar nebula. Investigation of cometary matter therefore permits to draw conclusion s with respect to the composition of presolar matter. The atomic force microscope MIDAS will be the first instrument to analyze, within ESA's ROSETTA-mission priestine cometary matter in the form of dust particles emitted by comet WIRTANEN during its perihelion in 2013. Within this project, a dust model has been developed, permitting estimation of dust collection times required for statistically significant imaging of cometary particles. The dynamics of dust collection has been developed and experimental dust collection surfaces have been produced making use of modem nanostructuring techniques. Mechanical properties of 3-dimensional piezo-control elements, which are an essential part of the MIDAS microscope, have been determined. (author)

  14. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    International Nuclear Information System (INIS)

    Iwata, F.; Ohashi, Y.; Ishisaki, I.; Picco, L.M.; Ushiki, T.

    2013-01-01

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed

  15. Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    Science.gov (United States)

    Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani

    2017-12-01

    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.

  16. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  17. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  18. On the calibration of rectangular atomic force microscope cantilevers modified by particle attachment and lamination

    International Nuclear Information System (INIS)

    Bowen, James; Zhang, Zhibing; Adams, Michael J; Cheneler, David; Ward, Michael C L; Walliman, Dominic; Arkless, Stuart G

    2010-01-01

    A simple but effective method for estimating the spring constant of commercially available atomic force microscope (AFM) cantilevers is presented, based on estimating the cantilever thickness from knowledge of its length, width, resonant frequency and the presence or absence of an added mass, such as a colloid probe at the cantilever apex, or a thin film of deposited material. The spring constant of the cantilever can then be estimated using standard equations for cantilever beams. The results are compared to spring constant calibration measurements performed using reference cantilevers. Additionally, the effect of the deposition of Cr and Ti thin films onto rectangular Si cantilevers is investigated

  19. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  20. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  1. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  2. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  3. High-speed force mapping on living cells with a small cantilever atomic force microscope

    International Nuclear Information System (INIS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-01-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed

  4. High-speed force mapping on living cells with a small cantilever atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E., E-mail: Tilman.Schaeffer@uni-tuebingen [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  5. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  6. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.

    Science.gov (United States)

    Inada, H; Su, D; Egerton, R F; Konno, M; Wu, L; Ciston, J; Wall, J; Zhu, Y

    2011-06-01

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Sader, John E. [Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Sanelli, Julian A.; Adamson, Brian D.; Bieske, Evan J. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Monty, Jason P.; Marusic, Ivan [Department of Mechanical Engineering, University of Melbourne, Victoria 3010 (Australia); Wei Xingzhan; Mulvaney, Paul [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Bio21 Institute, University of Melbourne, Victoria 3010 (Australia); Crawford, Simon A. [School of Botany, University of Melbourne, Victoria 3010 (Australia); Friend, James R. [Melbourne Centre for Nanofabrication, Clayton, Victoria 3800 (Australia); MicroNanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001 (Australia)

    2012-10-15

    The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

  8. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape

    International Nuclear Information System (INIS)

    Sader, John E.; Sanelli, Julian A.; Adamson, Brian D.; Bieske, Evan J.; Monty, Jason P.; Marusic, Ivan; Wei Xingzhan; Mulvaney, Paul; Crawford, Simon A.; Friend, James R.

    2012-01-01

    The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

  9. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.

    Science.gov (United States)

    Shih, Hua-Ju; Shih, Po-Jen

    2015-07-28

    Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.

  11. Indirect identification and compensation of lateral scanner resonances in atomic force microscopes

    International Nuclear Information System (INIS)

    Burns, D J; Youcef-Toumi, K; Fantner, G E

    2011-01-01

    Improving the imaging speed of atomic force microscopy (AFM) requires accurate nanopositioning at high speeds. However, high speed operation excites resonances in the AFM's mechanical scanner that can distort the image, and therefore typical users of commercial AFMs elect to operate microscopes at speeds below which scanner resonances are observed. Although traditional robust feedforward controllers and input shaping have proven effective at minimizing the influence of scanner distortions, the lack of direct measurement and use of model-based controllers have required disassembling the microscope to access lateral scanner motion with external sensors in order to perform a full system identification experiment, which places excessive demands on routine microscope operators. Further, since the lightly damped instrument dynamics often change from experiment to experiment, model-based controllers designed from offline system identification experiments must trade off high speed performance for robustness to modeling errors. This work represents a new way to automatically characterize the lateral scanner dynamics without addition of lateral sensors, and shape the commanded input signals in such a way that disturbing dynamics are not excited. Scanner coupling between the lateral and out-of-plane directions is exploited and used to build a minimal model of the scanner that is also sufficient to describe the nature of the distorting resonances. This model informs the design of an online input shaper used to suppress spectral components of the high speed command signals. The method presented is distinct from alternative approaches in that neither an information-complete system identification experiment nor microscope modification are required. Because the system identification is performed online immediately before imaging, no tradeoff of performance is required. This approach has enabled an increase in the scan rates of unmodified commercial AFMs from 1-4 lines s -1 to over

  12. Visualization of atomic distances at the 1MV electron microscope: first results obtained on the Grenoble 1MV microscope

    International Nuclear Information System (INIS)

    Bourret, A.

    1975-01-01

    Practical and theoretical conditions for obtaining high resolution lattice images are presented. The use of a high voltage electron microscope is particularly powerful to visualize distances smaller than 3A. A 2A resolution test on (200) gold planes has been carried out on the Grenoble 1MV microscope. It would be possible at this level to study the crystalline defects such as dislocations or grain boundaries [fr

  13. X-ray spectrum determination of elements with low atomic number with use of electron microscope

    International Nuclear Information System (INIS)

    Smirnov, V.N.

    1982-01-01

    Separate assemblies of a commercial analytical electron microscope-microanalyzer EMMA-2 have been modified to study objects, containing elements with the atomic number Z=5-9, in particular: 1) the range of changing the accelerating voltages is expanded to be in the range of 25 down to 10 kV with 5 kV interval. 2) image intensifier using microchannel plate MKP-40-19 is applied; 3) for elements of carbon, oxygen, boron, nitrogen type a unit with flow-type proportional counter is used. The sensitivity of carbon- and oxygen determination in carbides and oxides is 0.15-0.3% at the measurement time of 100 s. Results of microanalysis of the particles of B 2 O 3 , Al 2 O 3 , SiO 2 , Fe 2 O 3 , Fe 3 C, WC for the contents of oxygen and carbon are presented

  14. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.

    Science.gov (United States)

    Kim, Kwangyoon; Park, Jun-Young; Kim, K B; Lee, Naesung; Seo, Yongho

    2014-01-01

    A quartz tuning fork was used instead of cantilever as a force sensor for the atomic force microscope. A tungsten tip was made by electrochemical etching from a wire of 50 µm diameter. In order to have mechanical stability of the tuning fork, it was attached on an alumina plate. The tungsten tip was attached on the inside end of a prong of a tuning fork. The phase shift was used as a feedback signal to control the distance between the tip and sample, and the amplitude was kept constant using a lock-in amplifier and a homemade automatic gain controller. Due to the mechanical stability, the sensor shows a high quality factor (∼10(3)), and the image quality obtained with this sensor was equivalent to that of the cantilever-based AFM. © 2014 Wiley Periodicals, Inc.

  15. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  16. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  17. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  18. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    International Nuclear Information System (INIS)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K; Mishra, Bud

    2008-01-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing

  19. Reduced order dynamic model for polysaccharides molecule attached to an atomic force microscope

    International Nuclear Information System (INIS)

    Tang Deman; Li Aiqin; Attar, Peter; Dowell, Earl H.

    2004-01-01

    A dynamic analysis and numerical simulation has been conducted of a polysaccharides molecular structure (a ten (10) single-α-D-glucose molecule chain) connected to a moving atomic force microscope (AFM). Sinusoidal base excitation of the AFM cantilevered beam is considered. First a linearized perturbation model is constructed for the complex polysaccharides molecular structure. Then reduced order (dynamic) models based upon a proper orthogonal decomposition (POD) technique are constructed using global modes for both the linearized perturbation model and for the full nonlinear model. The agreement between the original and reduced order models (ROM/POD) is very good even when only a few global modes are included in the ROM for either the linear case or for the nonlinear case. The computational advantage of the reduced order model is clear from the results presented

  20. Immobilization method of yeast cells for intermittent contact mode imaging using the atomic force microscope

    International Nuclear Information System (INIS)

    De, Tathagata; Chettoor, Antony M.; Agarwal, Pranav; Salapaka, Murti V.; Nettikadan, Saju

    2010-01-01

    The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells (Kasas and Ikai, 1995), (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells.

  1. Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination.

    Science.gov (United States)

    Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K

    2009-10-30

    The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.

  2. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  3. In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes

    International Nuclear Information System (INIS)

    Sangyuenyongpipat, S.; Yu, L.D.; Brown, I.G.; Seprom, C.; Vilaithong, T.

    2007-01-01

    A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar + ions at energy 25 keV and fluence1-2 x 10 15 ions/cm 2 , revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work

  4. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  5. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  6. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    Science.gov (United States)

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-11-01

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  8. Direct observation of phase transition of GeSbTe thin films by Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang Fei [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang Rui; Geng Lei; Tong Liang; Xu Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su Weining; Yu Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma Zhongyuan; Chen Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2012-10-01

    Graphical abstract: Nano-sized marks on GST thin film were fabricated using Conductive-AFM (Atomic Force Microscope). The AFM morphology images show that the marks are ablated at the center and a raised ring surrounding it. Highlights: Black-Right-Pointing-Pointer Microstructure of GeSbTe thin films was characterized by XRD and AFM. Black-Right-Pointing-Pointer Annealing and applying electrical field can induce crystallization on thin film. Black-Right-Pointing-Pointer Conductive-AFM was used to modify the surface of GeSbTe thin film. - Abstract: GeSbTe (GST) thin films were deposited on quartz substrates using electron beam evaporation system and then annealed in nitrogen atmosphere at different temperatures, ranging from 20 Degree-Sign C to 300 Degree-Sign C. X-ray diffraction (XRD) and Atomic Force microscope (AFM) measurements were used to characterize the as-deposited and post-annealed thin films. Annealing treatment was found to induce changes on microstructure, surface roughness and grain size, indicating that with the increase of annealing temperature, the amorphous GST films first changed to face-centered-cubic (fcc) phase and then the stable hexagonal (hex) phase. Meanwhile, conductive-AFM (C-AFM) was used to produce crystallized GST dots on thin films. I-V spectroscopy results show that GST films can switch from amorphous state to crystalline state at threshold voltage. After switching, I-V curve exhibits ohmic characteristic, which is usually observed in crystallized GST films. By applying repeated I-V spectroscopies on the thin films, crystallized nuclei were observed. As the times of I-V spectroscopies increases, the area of written dots increases, and the center of the mark begin to ablate. The AFM images show that the shape of marks is an ablated center with a raised ring surrounding it.

  9. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly

    International Nuclear Information System (INIS)

    Xie Hui; Haliyo, Dogan Sinan; Regnier, Stephane

    2009-01-01

    A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.

  10. A concept for automated nanoscale atomic force microscope (AFM) measurements using a priori knowledge

    International Nuclear Information System (INIS)

    Recknagel, C; Rothe, H

    2009-01-01

    The nanometer coordinate measuring machine (NCMM) is developed for comparatively fast large area scans with high resolution. The system combines a metrological atomic force microscope (AFM) with a precise positioning system. The sample is moved under the probe system via the positioning system achieving a scan range of 25 × 25 × 5 mm 3 with a resolution of 0.1 nm. A concept for AFM measurements using a priori knowledge is implemented. The a priori knowledge is generated through measurements with a white light interferometer and the use of CAD data. Dimensional markup language is used as a transfer and target format for a priori knowledge and measurement data. Using the a priori knowledge and template matching algorithms combined with the optical microscope of the NCMM, the region of interest can automatically be identified. In the next step the automatic measurement of the part coordinate system and the measurement elements with the AFM sensor of the NCMM is done. The automatic measurement involves intelligent measurement strategies, which are adapted to specific geometries of the measurement feature to reduce measurement time and drift effects

  11. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hund, Markus; Herold, Hans

    2007-01-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film

  12. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    International Nuclear Information System (INIS)

    Evans, J.; Chapman, S.

    2014-01-01

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided

  13. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  14. Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.

    Science.gov (United States)

    Zhu, Y; Inada, H; Nakamura, K; Wall, J

    2009-10-01

    Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.

  15. Observations of fission-tracks in zircons by atomic force microscope

    International Nuclear Information System (INIS)

    Ohishi, Shinnosuke; Hasebe, Noriko

    2012-01-01

    The fission-track (FT) method is a dating technique based on the observation of damage (tracks) by spontaneous fission of 238 U left in a mineral. The date is calculated from the track density and the uranium concentration in the mineral. This is possible because the number of tracks is a function of uranium concentration and time since the start of track accumulation. Usually, the number of tracks is counted under an optical microscope after etching (chemical expansion of a track). However, as FT density per unit area rises, it becomes difficult to count the number of tracks. This is due to the fact that FTs overlap one another and are unable to be readily distinguished. This research examines the potential of atomic force microscope (AFM) for FT dating using zircons, which are likely to show higher FT density than other minerals due to their high U concentrations. To obtain an AFM image for a sample prepared for FT dating, removing the static electricity of the sample is essential to avoid an unexpected movement of the cantilever. A grain should be wider than about 30 μm to bring the cantilever on the mineral surface. Polishing with a fine grained compound is very important. There is not much difference in sharpness between images by AC mode (scanning with vibrating cantilever at a constant cycle) and Contact mode (scanning with the cantilever always in close contact with the surface). To confirm how tracks can be identified with the AFM, an AFM image was compared with an image obtained with the optical microscope. When change in the number of tracks and their shapes were observed through stepwise etching, the track expanded as the etching time increased. In addition, the etching rate was slower for large tracks than those for small tracks. This implied that the AFM can be used to observe etching of zircons with different degrees of nuclear fission damage. A track that could not be seen with the optical microscope due to insufficient etching could be observed by

  16. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  17. The structure of cometary dust - first results from the MIDAS Atomic Force Microscope onboard Rosetta

    Science.gov (United States)

    Bentley, M. S.; Torkar, K.; Romstedt, J.

    2014-12-01

    A decade after launch the European Space Agency's Rosetta spacecraft has finally arrived at comet 67P/Churyumov-Gerasimenko. Unlike previous cometary missions, Rosetta is not a flyby, limited to taking a snapshot of the comet at a single heliocentric distance. Instead, Rosetta intercepted the comet prior to the onset of major activity and will chart its evolution during its perihelion passage and beyond. Such a unique mission requires a unique payload; as well as the more typical remote sensing instruments, Rosetta also carries sensors to sample in situ the gas and dust environment. One of these instruments is MIDAS, an atomic force microscope designed to collect dust and image it in three dimensions with nanometre resolution. Equipped with an array of sharp tips, four of which are magnetised to allow magnetic force microscopy, MIDAS exposes targets to the incident flux after which they are moved to the microscope for analysis. As well as extending coverage of the dust size distribution down to the finest particles, MIDAS has the unique capability to determine the shape of pristine particles - to determine, for example, if they are compact or fluffy, and to look for features which may be diagnostic of their formation environment or evolution. The magnetic mode lets MIDAS probe samples for magnetic material and to map its location if present. Having been operating almost continuously after hibernation imaging empty targets before exposure, the first exposures were performed when Rosetta entered 30 km bound orbits. The first MIDAS images and analyses of collected dust grains are presented here.

  18. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  19. Reconstruction of the Tip-Surface Interaction Potential by Analysis of the Brownian Motion of an Atomic Force Microscope Tip

    NARCIS (Netherlands)

    Willemsen, O.H.; Kuipers, L.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    2000-01-01

    The thermal movement of an atomic force microscope (AFM) tip is used to reconstruct the tip-surface interaction potential. If a tip is brought into the vicinity of a surface, its movement is governed by the sum of the harmonic cantilever potential and the tip-surface interaction potential. By

  20. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

    Directory of Open Access Journals (Sweden)

    Christian Obermair

    2012-12-01

    Full Text Available We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale.

  1. Tapping mode imaging and measurements with an inverted atomic force microscope.

    Science.gov (United States)

    Chan, Sandra S F; Green, John-Bruce D

    2006-07-18

    This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.

  2. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Xing, Xiaobo [Chemistry Department, Jinan University, Guangzhou 510632 (China); Zhao, Hongxia [Chemistry Department, Jinan University, Guangzhou 510632 (China); Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510090 (China); Chen, Yong [Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Xun [Chemistry Department, Jinan University, Guangzhou 510632 (China); Ma, Shuyuan [Chemistry Department, Jinan University, Guangzhou 510632 (China); The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Ye, Hongyan [Chemistry Department, Jinan University, Guangzhou 510632 (China); Cai, Jiye, E-mail: tjycai@jnu.edu.cn [Chemistry Department, Jinan University, Guangzhou 510632 (China)

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  3. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    Science.gov (United States)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  4. Mechanically modulated dewetting by atomic force microscope for micro- and nano- droplet array fabrication.

    Science.gov (United States)

    Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung

    2014-10-06

    Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.

  5. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    Science.gov (United States)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  6. Atomic force microscope cantilever as an encoding sensor for real-time displacement measurement

    International Nuclear Information System (INIS)

    Chen, Xiaomei; Koenders, Ludger; Wolff, Helmut; Haertig, Frank; Schilling, Meinhard

    2010-01-01

    A tuning fork-based atomic force microscope cantilever has been investigated for application as an encoding sensor for real-time displacement measurement. The algorithm used to encode the displacement is based on the direct count of the integer pitches of a known grating, and the calculation of the fractional parts of a pitch at the beginning and during displacement. A cross-correlation technique has been adopted and applied to the real-time signal filtering process for the determination of the pitch during scanning by using a half sinusoidal waveform template. For the first investigation, a 1D sinusoidal grating with the pitch of 300 nm is used. The repeatability of displacement measurements over a distance of 70 µm is better than 2.2 nm. As the first application, the real-time displacement of a scanning stage is measured by the new encoding principle as it is moved in an open-loop mode and closed-loop mode based on its built-in capacitance sensor

  7. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  8. Characterization of the photocurrents generated by the laser of atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Iglesias, Vanessa [International Iberian Nanotechnology Laboratory, 4715-330 Braga (Portugal); Lewis, David [Nanonics Imaging, Har Hotzvim, Jerusalem 91487 (Israel); Niu, Jiebin; Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Hofer, Alexander; Frammelsberger, Werner; Benstetter, Guenther [Deggendorf Institute of Technology, Edlmairstr. 6+8, 94469 Deggendorf (Germany); Scheuermann, Andrew; McIntyre, Paul C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-08-15

    The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

  9. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    International Nuclear Information System (INIS)

    Jin, Hua; Xing, Xiaobo; Zhao, Hongxia; Chen, Yong; Huang, Xun; Ma, Shuyuan; Ye, Hongyan; Cai, Jiye

    2010-01-01

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  10. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    Science.gov (United States)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  11. An in vitro atomic force microscopic study of commercially available dental luting materials.

    Science.gov (United States)

    Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic

    2013-09-01

    The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.

  12. AN INTELLIGENT NEURO-FUZZY TERMINAL SLIDING MODE CONTROL METHOD WITH APPLICATION TO ATOMIC FORCE MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Seied Yasser Nikoo

    2016-11-01

    Full Text Available In this paper, a neuro-fuzzy fast terminal sliding mode control method is proposed for controlling a class of nonlinear systems with bounded uncertainties and disturbances. In this method, a nonlinear terminal sliding surface is firstly designed. Then, this sliding surface is considered as input for an adaptive neuro-fuzzy inference system which is the main controller. A proportinal-integral-derivative controller is also used to asist the neuro-fuzzy controller in order to improve the performance of the system at the begining stage of control operation. In addition, bee algorithm is used in this paper to update the weights of neuro-fuzzy system as well as the parameters of the proportinal-integral-derivative controller. The proposed control scheme is simulated for vibration control in a model of atomic force microscope system and the results are compared with conventional sliding mode controllers. The simulation results show that the chattering effect in the proposed controller is decreased in comparison with the sliding mode and the terminal sliding mode controllers. Also, the method provides the advantages of fast convergence and low model dependency compared to the conventional methods.

  13. Atomic Force Microscope Imaging of the Aggregation of Mouse Immunoglobulin G Molecules

    Directory of Open Access Journals (Sweden)

    Ke Xia

    2003-01-01

    Full Text Available Mouse immunoglobulin G (Ig G1 and the mixture of Ig G1 and Ig G2 deposited on mica were imaged with an atomic force microscope at room temperature and ambient pressure. At a concentration around 1.0mg/L, the molecules were well dispersed. 2~3 days after sample preparation, both Ig G1 and the mixture could self- assemble into different shapes and further form some types of local-ordered toroidal aggregations (monotoroidal, intercrossed toroidal, concentric toroidal, etc.. The number of monomers was not identical in the different toroidal aggregations but in a same circle, the shapes of polymer self-assembled by several monomolecules were found to be almost the same. There was difference between the aggregation behavior of Ig G1 and the mixture. The mechanism of Ig G molecule aggregation was ascribed to the “Y” shape and loops structure of Ig G molecule.

  14. Photo-assisted local oxidation of GaN using an atomic force microscope

    International Nuclear Information System (INIS)

    Hwang, J S; Hu, Z S; Lu, T Y; Chen, L W; Chen, S W; Lin, T Y; Hsiao, C-L; Chen, K-H; Chen, L-C

    2006-01-01

    This paper introduces a photo-assisted atomic force microscope (AFM) local oxidation technique which is capable of producing highly smooth oxide patterns with heights reaching several tens of nanometres on both n- and p-types of GaN (and in principle on most semiconductors) without the use of chemicals. The novel methodology relies on UV illumination of the surface of the substrate during conventional AFM local oxidation. A low 1.2 V threshold voltage for n-type GaN was obtained, which can be explained by UV photo-generation of excess electron-hole pairs in the substrate near the junction, thereby reducing the electric field required to drive carrier flow through the tip-sample Schottky barrier. It was demonstrated that the presence or absence of light alone was sufficient to switch the growth of the oxide on or off. The photo-assisted AFM oxidation technique is of immediate interest to the semiconductor industry for the fabrication of GaN-based complementary metal-oxide-semiconductor devices and nanodevices, improves chances for AFM-type data storage, and presents new degrees of freedom for process control technique

  15. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ampere A., E-mail: ampere.tseng@asu.edu [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Kuo, Chung-Feng Jeffrey; Jou, Shyankay [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Nishimura, Shinya; Shirakashi, Jun-ichi [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan)

    2011-09-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  16. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    International Nuclear Information System (INIS)

    Tseng, Ampere A.; Kuo, Chung-Feng Jeffrey; Jou, Shyankay; Nishimura, Shinya; Shirakashi, Jun-ichi

    2011-01-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  17. Nonlinear vibration of rectangular atomic force microscope cantilevers by considering the Hertzian contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, A., E-mail: a_sadeghi@srbiau.ac.ir [Islamic Azad Univ., Dept. of Mechanical and Aerospace Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Zohoor, H. [Sharif Univ. of Technology, Center of Excellence in Design, Robotics and Automation, Tehran (Iran, Islamic Republic of); The Academy of Sciences if I.R. Iran (Iran, Islamic Republic of)

    2010-05-15

    The nonlinear flexural vibration for a rectangular atomic force microscope cantilever is investigated by using Timoshenko beam theory. In this paper, the normal and tangential tip-sample interaction forces are found from a Hertzian contact model and the effects of the contact position, normal and lateral contact stiffness, tip height, thickness of the beam, and the angle between the cantilever and the sample surface on the nonlinear frequency to linear frequency ratio are studied. The differential quadrature method is employed to solve the nonlinear differential equations of motion. The results show that softening behavior is seen for most cases and by increasing the normal contact stiffness, the frequency ratio increases for the first mode, but for the second mode, the situation is reversed. The nonlinear-frequency to linear-frequency ratio increases by increasing the Timoshenko beam parameter, but decreases by increasing the contact position for constant amplitude for the first and second modes. For the first mode, the frequency ratio decreases by increasing both of the lateral contact stiffness and the tip height, but increases by increasing the angle α between the cantilever and sample surface. (author)

  18. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    Science.gov (United States)

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    International Nuclear Information System (INIS)

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  20. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  1. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  2. Molecular Dynamics Analyses on Microscopic Contact Angle - Effect of Wall Atom Configuration

    International Nuclear Information System (INIS)

    Takahiro Ito; Yosuke Hirata; Yutaka Kukita

    2006-01-01

    Boiling or condensing phenomena of liquid on the solid surface is greatly affected by the wetting condition of the liquid to the solid. Although the contact angle is one of the most important parameter to represent the wetting condition, the behavior of the contact angle is not understood well, especially in the dynamic condition. In this study we made molecular dynamics simulations to investigate the microscopic contact angle behavior under several conditions on the numerical density of the wall atoms. In the analyses, when the number density of the wall is lower, the changing rate of the dynamics contact angles for the variation of ΔV was higher than those for the case where the wall density is higher. This is mainly due to the crystallization of the fluid near the wall and subsequent decrease in the slip between the fluid and the wall. The analyses also show that the static contact angle decreases with increase in the number density of the wall. This was mainly induced by the increase in the number density of the wall itself. (authors)

  3. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope.

    Science.gov (United States)

    Obermair, Christian; Kress, Marina; Wagner, Andreas; Schimmel, Thomas

    2012-01-01

    We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a "mechano-electrochemical pen", locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, "write", "read", "delete" and "re-write", were successfully demonstrated on the nanometer scale.

  4. A compact atomic force-scanning tunneling microscope for studying microelectronics and environmental aerosols

    International Nuclear Information System (INIS)

    Chen, G.

    1996-06-01

    This dissertation describes the characteristics and the construction of a compact atomic force/scanning tunneling microscope (AFM/STM). The basics and the method of preparing a tunneling junction between a chemically etched tunneling tip and a micro-manufactured cantilever is outlined by analyzing the forces between tunneling tip and cantilever as well as between force-sensing tip and sample surfaces. To our best knowledge this instrument is the first one using a commercial cantilever with only one piezoelectric tube carrying the whole tunneling sensor. The feedback control system has been optimized after a careful analysis of the electronic loop characteristics. The mode of operation has been determined by analyzing the dynamic characteristics of the scan heads and by investigating the time characteristics of the data acquisition system. The vibration isolation system has been calibrated by analyzing the characteristics of the damping setup and the stiffness of the scan head. The calculated results agree well with the measured ones. Also, a software package for data acquisition and real time display as well as for image processing and three-dimensional visualization has been developed. With this home-made software package, the images can be processed by means of a convolution filter, a Wiener filter and other 2-D FFT filters, and can be displayed in different ways. Atomic resolution images of highly oriented pyrolytic graphite (HOPG) and graphite surfaces have been obtained in AFM and STM mode. New theoretical explanations have been given for the observed anomalous STM and AFM images of graphite by calculating the asymmetric distribution of quantum conductance and tip-surface forces on a graphite surface. This not only resolved the theoretical puzzles of STM and AFM of graphite, but also revealed the relation between atomic force microscopy and scanning tunneling microscopy of graphite. Applications of STM and AFM to micro-electronic devices have been investigated

  5. Atomic-level studies of superconducting YBa2Cu3O/sub 7-x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The transmission electron microscope, field ion microscope, and imaging atom-probe mass spectrometer have been used to examine the structure and composition of field-emitter ''tips'' prepared from hot-pressed samples of YBa 2 Cu 3 O/sub 7-x/. Transmission electron microscope images of the tip apex clearly show periodic defect structures which are interpreted as twins boundaries. Field ion microscope images reveal the structure of the samples in atomic resolution and indicate that the material can be field evaporated in a uniform, layer-by-layer fashion. Imaging atom-probe mass spectra contain signals corresponding to all of the constituent elements with intensities fairly consistent with the 1-2-3 ratio of the metals, but highly deficient in oxygen

  6. Difficulties in fitting the thermal response of atomic force microscope cantilevers for stiffness calibration

    International Nuclear Information System (INIS)

    Cole, D G

    2008-01-01

    This paper discusses the difficulties of calibrating atomic force microscope (AFM) cantilevers, in particular the effect calibrating under light fluid-loading (in air) and under heavy fluid-loading (in water) has on the ability to use thermal motion response to fit model parameters that are used to determine cantilever stiffness. For the light fluid-loading case, the resonant frequency and quality factor can easily be used to determine stiffness. The extension of this approach to the heavy fluid-loading case is troublesome due to the low quality factor (high damping) caused by fluid-loading. Simple calibration formulae are difficult to realize, and the best approach is often to curve-fit the thermal response, using the parameters of natural frequency and mass ratio so that the curve-fit's response is within some acceptable tolerance of the actual thermal response. The parameters can then be used to calculate the cantilever stiffness. However, the process of curve-fitting can lead to erroneous results unless suitable care is taken. A feedback model of the fluid–structure interaction between the unloaded cantilever and the hydrodynamic drag provides a framework for fitting a modeled thermal response to a measured response and for evaluating the parametric uncertainty of the fit. The cases of uncertainty in the natural frequency, the mass ratio, and combined uncertainty are presented and the implications for system identification and stiffness calibration using curve-fitting techniques are discussed. Finally, considerations and recommendations for the calibration of AFM cantilevers are given in light of the results of this paper

  7. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  8. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope

    International Nuclear Information System (INIS)

    Barkley, Sarice S.; Cannara, Rachel J.; Deng Zhao; Gates, Richard S.; Reitsma, Mark G.

    2012-01-01

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5% or less, but with precision limited to about 15%, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≅ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  9. Atomic force microscopic neutron-induced alpha-autoradiography for boron imaging in detailed cellular histology

    International Nuclear Information System (INIS)

    Amemiya, K.; Takahashi, H.; Fujita, K.; Nakazawa, M.; Yanagie, H.; Eriguchi, M.; Nakagawa, Y.; Sakurai, Y.

    2006-01-01

    The information on subcellular microdistribution of 10 B compounds a cell is significant to evaluate the efficacy of boron neutron capture therapy (BNCT) because the damage brought by the released alpha/lithium particles is highly localized along their path, and radiation sensitivity is quite different among each cell organelles. In neutron-induced alpha-autoradiography (NIAR) technique, 10 B can be measured as tracks for the energetic charged particles from 10 B(n, alpha) 7 Li reactions in solid state track detectors. To perform the NIAR at intracellular structure level for research of 10 B uptake and/or microdosimetry in BNCT, we have developed high-resolution NIAR method with an atomic force microscope (AFM). AFM has been used for analyses of biological specimens such as proteins, DNAs and surface of living cells have, however, intracellular detailed histology of cells has been hardly resolved with AFM since flat surface of sectioned tissue has quite less topographical contrast among each organelle. In our new sample preparation method using UV processing, materials that absorb UV in a semi-thin section are selectively eroded and vaporized by UV exposure, and then fine relief for cellular organelles such as mitochondria, endoplasmic reticulum, filament structure and so on reveals on flat surface of the section, which can be observed with an AFM. The imaging resolution was comparable to TEM imaging of cells. This new method provides fast and cost-effective observation of histological sections with an AFM. Combining this method with NIAR technique, intracellular boron mapping would be possible. (author)

  10. X-ray holographic microscopy using the atomic-force microscope

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.J.; Lindaas, S.

    1993-09-01

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach

  11. Capillary microscopic observation on the superficial minute vessels of atomic bomb survivors, Hiroshima, 1972--1973

    International Nuclear Information System (INIS)

    Tsuya, A.; Wakano, Y.; Otake, M.; Dock, D.S.

    1977-01-01

    Microscopic and photographic studies were conducted in 1972 to 1973 at the Atomic Bomb Casualty Commission (ABCC) in Hiroshima on the morphology of superficial blood vessels of A-bomb survivors to determine whether the somatic effects of radiation still existed 30 yr after the A-bomb. Control curves representing the relationship between age and score values assigned to morphological changes of the minute blood vessels of the fingernail fold, labial mucosa, and lingual mucosa, which could be regarded as an index of aging, were obtained. These were compared with similar curves obtained from A-bomb survivors with the aim of evaluating the effect of radiation on the aging process of these vessels. The late somatic effects of irradiation which were demonstrated 10 yr after the A-bomb in a previous study (1956 to 1957) were found to persist in the current study (1972 to 1973) conducted 30 yr after the A-bomb, though not as pronounced as in the earlier study. A significant effect was observed only in the nail fold of those exposed to 100 rad or more under the age of 10 at the time of bomb (ATB). A statistically significant difference was not observed with labial and lingual mucosae because the number of cases available for score evaluation was small, but a trend was observed for abnormalities of these two sites to be higher in frequency in the group exposed to 100 rad or more under the age of 10 ATB than that of the control group. No significant difference was observed between the control and exposed with regard to radiation effect on the aging process using the relationship of score values to age as an index of aging

  12. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  13. Theoretical study of the effect of probe shape on adhesion force between probe and substrate in atomic force microscope experiment

    OpenAIRE

    Yang, Li; Hu, Junhui; Kong, Lingjiang

    2017-01-01

    The quantitative description of adhesion force dependence on the probe shapes are of importance in many scientific and industrial fields. In order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment, we performed a theoretical study of the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity. We found that the combined action of the triple point and the Kelvin radius guiding th...

  14. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible "3He/10 T cryostat

    International Nuclear Information System (INIS)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped "3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  15. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A., E-mail: aschwarz@physnet.uni-hamburg.de; Wiesendanger, R. [Department of Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany)

    2016-07-15

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  16. Functionalization of gold and nanocrystalline diamond atomic force microscope tips for single molecule force spectroscopy

    Science.gov (United States)

    Drew, Michael E.

    The atomic force microscope (AFM) has fueled interest in nanotechnology because of its ability to image surfaces at the nanometer level and act as a molecular force sensor. Functionalization of the surface of an AFM tip surface in a stable, controlled manner expands the capabilities of the AFM and enables additional applications in the fields of single molecule force spectroscopy and nanolithography. Two AFM tip functionalizations are described: the assembly of tripodal molecular tips onto gold AFM tips and the photochemical attachment of terminal alkenes to nanocrystalline diamond (NCD) AFM tips. Two separate tripodal molecules with different linker lengths and a monopodal molecule terminated with biotin were synthesized to attach to a gold AFM tip for single molecule force spectroscopy. The immobilization of these molecules was examined by contact angle measurements, spectroscopic ellipsometry, infrared, and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. All three molecules displayed rupture forces that agreed with previously reported values for the biotin--avidin rupture. The tripodal molecular tip displayed narrower distribution in their force histograms than the monopodal molecular tip. The performance of the tripodal molecular tip was compared to the monopodal molecular tip in single molecule force spectroscopy studies. Over repeated measurements, the distribution of forces for the monopodal molecular tip shifted to lower forces, whereas the distribution for the tripodal molecular tip remained constant throughout. Loading rate dependence and control experiments further indicated that the rupture forces of the tripod molecular tips were specific to the biotin--NeutrAvidin interaction. The second functionalization method used the photochemical attachment of undecylenic acid to NCD AFM tips. The photochemical attachment of undecylenic acid to hydrogen-terminated NCD wafer surfaces was investigated by contact angle measurements, x

  17. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  18. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  19. Corrosion initiation of stainless steel in HCl solution studied using electrochemical noise and in-situ atomic force microscope

    International Nuclear Information System (INIS)

    Li Yan; Hu Ronggang; Wang Jingrun; Huang Yongxia; Lin Changjian

    2009-01-01

    An in-situ atomic force microscope (AFM), optical microscope and electrochemical noise (ECN) techniques were applied to the investigation of corrosion initiations in an early stage of 1Cr18Ni9Ti stainless steel immersed in 0.5 M HCl solution. The electrochemical current noise data has been analyzed using discrete wavelet transform (DWT). For the first time, the origin of wavelet coefficients is discussed based on the correlation between the evolution of the energy distribution plot (EDP) of wavelet coefficients and topographic changes. It is found that the occurrence of initiation of metastable pitting at susceptive sites is resulted from the reductive breakdown of passive film of stainless steel in the diluted HCL solution. The coefficients d 4 -d 6 are originated from metastable pitting, d 7 represents the formation and growth of stable pitting while d 8 corresponds to the general corrosion.

  20. An atomic resolution scanning tunneling microscope that applies external tensile stress and strain in an ultrahigh vacuum

    International Nuclear Information System (INIS)

    Fujita, D; Kitahara, M; Onishi, K; Sagisaka, K

    2008-01-01

    We have developed an ultrahigh vacuum scanning tunneling microscope with an in situ external stress application capability in order to determine the effects of stress and strain on surface atomistic structures. It is necessary to understand these effects because controlling them will be a key technology that will very likely be used in future nanometer-scale fabrication processes. We used our microscope to demonstrate atomic resolution imaging under external tensile stress and strain on the surfaces of wafers of Si(111) and Si(001). We also successfully observed domain redistribution induced by applying uniaxial stress at an elevated temperature on the surface of a wafer of vicinal Si(100). We confirmed that domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. This suggests that it may be feasible to fabricate single domain surfaces in a process that controls surface stress and strain

  1. Structural analysis of radiation-induced chromosome aberrations by atomic force microscope (AFM) before and after Giemsa staining

    International Nuclear Information System (INIS)

    Murakami, M.; Kanda, R.; Minamihisamatsu, M.; Hayata, I.

    2003-01-01

    Full text: We have studied structures of chromosome aberration induced by ionizing radiation by an atomic force microscope (AFM). The AFM could visualize the fine structure of chromosomes on Giemsa stained or unstained samples, although it was difficult to visualize unstained chromosomes by light microscope. The height data of chromosomes obtained by AFM provided useful information to describe detailed structure of chromatid gaps induced by heavy ion irradiation. A fibrous structure was observed on the unstained chromosome and these structures were considered to be the 30nm fibers on the chromosome. These types of structures were observed in the gaps as well as on surface of the chromosome. Further more, other types of chromosome aberration induced by ionizing radiation visualized by AFM will be presented

  2. Direct observation of X-ray induced atomic motion using scanning tunneling microscope combined with synchrotron radiation.

    Science.gov (United States)

    Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu

    2011-04-01

    X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.

  3. Topotactic changes on η-Mo4O11 caused by biased atomic force microscope tip and cw-laser

    Science.gov (United States)

    Borovšak, Miloš; Šutar, Petra; Goreshnik, Evgeny; Mihailovic, Dragan

    2015-11-01

    We present topotactic changes on Mo4O11 crystals induced by a biased atomic force microscope tip and continuous laser. The transformation does not change the topography of the samples, while the surface potential shows remarkable changes on areas where the biased AFM tip was applied. No structural changes were observed by Raman spectroscopy, but AFM scans revealed changes to surface potential due to laser illumination. The observed phenomenon could be potentially useful for memristive memory devices considering the fact that properties of other molybdenum oxides vary from metallic to insulators.

  4. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  5. Ageing effects on polymeric track detectors: studies of etched tracks at nano size scale using atomic force microscope

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Fragoso, R.; Vazquez L, C.; Saad, A. F.; El-Namrouty, A. A.; Fujii, M.

    2012-01-01

    Among several different techniques to analyze material surface, the use of Atomic Force Microscope is one of the finest method. As we know, the sensitivity to detect energetic ions is extremely affected during the storage time and conditions of the polymeric material used as a nuclear track detector. On the basis of the surface analysis of several track detector materials, we examined the detection sensitivity of these detectors exposed to alpha particles. The preliminary results revealed that the ageing effect on its sensitivity is very strong, that need to be considered on the routine applications or research experiments. The results are consistent with the experimental data in the literature. (Author)

  6. Direct characterization of spin-transfer switching of nano-scale magnetic tunnel junctions using a conductive atomic force microscope

    International Nuclear Information System (INIS)

    Lee, Jia-Mou; Yang, Dong-Chin; Lee, Ching-Ming; Ye, Lin-Xiu; Chang, Yao-Jen; Wu, Te-ho; Lee, Yen-Chi; Wu, Jong-Ching

    2013-01-01

    We present an alternative method of spin-transfer-induced magnetization switching for magnetic tunnel junctions (MTJs) using a conductive atomic force microscope (CAFM) with pulsed current. The nominal MTJ cells' dimensions were 200 × 400 nm 2 . The AFM probes were coated with a Pt layer via sputtering to withstand up to several milliamperes. The pulsed current measurements, with pulse duration varying from 5 to 300 ms, revealed a magnetoresistance ratio of up to 120%, and an estimated intrinsic switching current density, based on the thermal activation model, of 3.94 MA cm −2 . This method demonstrates the potential skill to characterize nanometre-scale magnetic devices. (paper)

  7. Photo induced multiple fragmentation of atoms and molecules: Dynamics of Coulombic many-particle systems studied with the COLTRIMS reaction microscope

    International Nuclear Information System (INIS)

    Czasch, A.; Schmidt, L.Ph.H.; Jahnke, T.; Weber, Th.; Jagutzki, O.; Schoessler, S.; Schoeffler, M.S.; Doerner, R.; Schmidt-Boecking, H.

    2005-01-01

    Many-particle dynamics in atomic and molecular physics has been investigated by using the COLTRIMS reaction microscope. The COLTRIMS technique visualizes photon and ion induced many-particle fragmentation processes in the eV and milli-eV regime. It reveals the complete momentum pattern in atomic and molecular many-particle reactions comparable to the bubble chamber in nuclear physics

  8. AFM (Atomic force microscope and its use in studying the surface

    Directory of Open Access Journals (Sweden)

    Škvarla Jiří

    1996-06-01

    Full Text Available The paper summarizes the present knowledge about the use of AFM in the mineral processing research. First, the development and fundamentals of the AFM imaging are presented in relation to other imaging techniques (especially STM, Scanning tunneling microscope. Further, the role of the sensing tip-surface interactions is mentioned. Finally, the surface force measurements in the AFM force calibration mode are diskussed.

  9. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  10. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope.

    Science.gov (United States)

    Schouteden, Koen; Lauwaet, Koen; Janssens, Ewald; Barcaro, Giovanni; Fortunelli, Alessandro; Van Haesendonck, Chris; Lievens, Peter

    2014-02-21

    Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by high-resolution scanning tunneling microscopy (STM) using a Cl functionalized STM tip that can be obtained on the NaCl surface. More generally, use of a functionalized STM tip may allow for systematic atomic structure determination with STM of nanoparticles that are deposited on metal surfaces.

  11. Influence of atomic force microscope tip-sample interaction on the study of scaling behavior

    NARCIS (Netherlands)

    Aue, J.; de Hosson, J.T.M.

    1997-01-01

    Images acquired with atomic force microscopy are based on tip-sample interaction. It is shown that using scanning probe techniques for determining scaling parameters of a surface leads to an underestimate of the actual scaling dimension, due to the dilation of tip and surface. How much we

  12. Neutron-induced {sup 63}Ni activity and microscopic observation of copper samples exposed to the Hiroshima atomic bomb

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi, E-mail: shizuma@hiroshima-u.ac.jp [Quantum Energy Applications, Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Endo, Satoru [Quantum Energy Applications, Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Shinozaki, Kenji [Materials Joining Science and Engineering, Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Fukushima, Hiroshi [Materials Physics, Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)

    2013-05-01

    Fast neutron activation data for {sup 63}Ni in copper samples exposed to the Hiroshima atomic bomb are important in evaluating neutron doses to the survivors. Up to until now, accelerator mass spectrometry and liquid scintillation counting methods have been applied in {sup 63}Ni measurements and data were accumulated within 1500 m from the hypocenter. The slope of the activation curve versus distance shows reasonable agreement with the calculation result, however, data near the hypocenter are scarce. In the present work, two copper samples obtained from the Atomic bomb dome (155 m from the hypocenter) and the Bank of Japan building (392 m) were utilized in {sup 63}Ni beta-ray measurement with a Si surface barrier detector. Additionally, microscopic observation of the metal surfaces was performed for the first time. Only upper limit of {sup 63}Ni production was obtained for copper sample of the Atomic bomb dome. The result of the {sup 63}Ni measurement for Bank of Japan building show reasonable agreement with the AMS measurement and to fast neutron activation calculations based on the Dosimetry System 2002 (DS02) neutrons.

  13. Origins of phase contrast in the atomic force microscope in liquids

    OpenAIRE

    Melcher, John; Carrasco, Carolina; Xu, Xianfan; Carrascosa, Jose L; Gomez-Herrero, Julio; Jose de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft mic...

  14. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    Science.gov (United States)

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  15. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  16. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    Science.gov (United States)

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope

    International Nuclear Information System (INIS)

    Bai Yong-Qiang; Zhu Xing; Wu Jun-Zheng; Bai Wen-Guang

    2011-01-01

    The pore structure of sandstone in an oil reservoir is investigated using atomic force microscopy (AFM). At nanoscale resolution, AFM images of sandstone show us the fine structure. The real height data of images display the three-dimensional space structure of sandstone effectively. The three-dimensional analysis results show that the AFM images of sandstone have unique characteristics that, like fingerprints, can identify different structural properties of sandstones. The results demonstrate that AFM is an effective method used to represent original sandstone in petroleum reservoirs, and may help geologists to appreciate the sandstone in oil reservoirs fully. (general)

  18. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  19. Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps

    International Nuclear Information System (INIS)

    Yavuz, D.D.; Kulatunga, P.B.; Urban, E.; Johnson, T.A.; Proite, N.; Henage, T.; Walker, T.G.; Saffman, M.

    2006-01-01

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87 Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 μm at the level of 10 -3 . Ramsey spectroscopy is used to measure a dephasing time of 870 μs, which is ≅5000 times longer than the time for a π/2 pulse

  20. Note: Fabrication of a fast-response and user-friendly environmental chamber for atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Han, Tingting; Song, Xiaoxue; Pan, Chengbin; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano & Soft Materials, Soochow University, Collaborative Innovation Center of Suzhou Nano Science & Technology, 199 Ren-Ai Road, Suzhou 215123 (China)

    2015-10-15

    The atomic force microscope is one of the most widespread tools in science, but many suppliers do not provide a competitive solution to make experiments in controlled atmospheres. Here, we provide a solution to this problem by fabricating a fast-response and user-friendly environmental chamber. We corroborate the correct functioning of the chamber by studying the formation of local anodic oxidation on a silicon sample (biased under opposite polarities), an effect that can be suppressed by measuring in a dry nitrogen atmosphere. The usefulness of this chamber goes beyond the example here presented, and it could be used in many other fields of science, including physics, mechanics, microelectronics, nanotechnology, medicine, and biology.

  1. An atomic force microscope for the study of the effects of tip sample interactions on dimensional metrology

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger; Wolff, Helmut

    2007-02-01

    An atomic force microscope (AFM) has been developed for studying interactions between the AFM tip and the sample. Such interactions need to be taken into account when making quantitative measurements. The microscope reported here has both the conventional beam deflection system and a fibre optical interferometer for measuring the movement of the cantilever. Both can be simultaneously used so as to not only servo control the tip movements, but also detect residual movement of the cantilever. Additionally, a high-resolution homodyne differential optical interferometer is used to measure the vertical displacement between the cantilever holder and the sample, thereby providing traceability for vertical height measurements. The instrument is compatible with an x-ray interferometer, thereby facilitating high resolution one-dimensional scans in the X-direction whose metrology is based on the silicon d220 lattice spacing (0.192 nm). This paper concentrates on the first stage of the instrument's development and presents some preliminary results validating the instrument's performance and showing its potential.

  2. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Adachi, Makoto; Hashimoto, Shigetaka [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-10-07

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  3. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    Science.gov (United States)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-11-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability.

  4. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    International Nuclear Information System (INIS)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-01-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability. (paper)

  5. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    Science.gov (United States)

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  6. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    Science.gov (United States)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  7. Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K

    2011-07-15

    Pressure sensitive adhesive (PSA), such as those used in packaging and adhesive tapes, are very often encountered in forensic investigations. In criminal activities, packaging tapes may be used for sealing packets containing drugs, explosive devices, or questioned documents, while adhesive and electrical tapes are used occasionally in kidnapping cases. In this work, the potential of using atomic force microscopy (AFM) in both imaging and force mapping (FM) modes to derive additional analytical information from PSAs is demonstrated. AFM has been used to illustrate differences in the ultrastructural and nanomechanical properties of three visually distinguishable commercial PSAs to first test the feasibility of using this technique. Subsequently, AFM was used to detect nanoscopic differences between three visually indistinguishable PSAs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Humidity-dependent bacterial cells functional morphometry investigations using atomic force microscope.

    Science.gov (United States)

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH

  9. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  10. Origins of phase contrast in the atomic force microscope in liquids.

    Science.gov (United States)

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  11. Quantifying Hydrostatic Pressure in Plant Cells by Using Indentation with an Atomic Force Microscope

    Science.gov (United States)

    Beauzamy, Léna; Derr, Julien; Boudaoud, Arezki

    2015-01-01

    Plant cell growth depends on a delicate balance between an inner drive—the hydrostatic pressure known as turgor—and an outer restraint—the polymeric wall that surrounds a cell. The classical technique to measure turgor in a single cell, the pressure probe, is intrusive and cannot be applied to small cells. In order to overcome these limitations, we developed a method that combines quantification of topography, nanoindentation force measurements, and an interpretation using a published mechanical model for the pointlike loading of thin elastic shells. We used atomic force microscopy to estimate the elastic properties of the cell wall and turgor pressure from a single force-depth curve. We applied this method to onion epidermal peels and quantified the response to changes in osmolality of the bathing solution. Overall our approach is accessible and enables a straightforward estimation of the hydrostatic pressure inside a walled cell. PMID:25992723

  12. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  13. Capillary microscopic observations on the superficial minute vessels of atomic bomb survivors, Hiroshima 1972-73

    International Nuclear Information System (INIS)

    Tsuya, Akira; Wakano, Yoichi; Otake, Masanori; Dock, D.S.

    1978-04-01

    Microscopic and photographic studies were conducted in 1972-73 at ABCC in Hiroshima on the morphology of superficial blood vessels of A-bomb survivors to determine whether the somatic effects of radiation still existed 30 years after the A-bomb. Control curves representing the relationship between age and score values assigned to morphological changes of the minute blood vessels of the fingernail fold, labial mucosa, and lingual mucosa, which could be regarded as an index of aging, were obtained. These were compared with similar curves obtained from A-bomb survivors with the aim of evaluating the effect of radiation on the aging process of these vessels. The late somatic effects of irradiation which were demonstrated 10 years after the A-bomb in a previous study (1956-57) were found to persist in the current study (1972-73) conducted 30 years after the A-bomb though not as pronounced as in the earlier study. A significant effect was observed only in the fingernail fold of those exposed to 100 rad or more under the age of 10 at the time of the bomb. A statistically significant difference was not observed for labial mucosa and lingual mucosa because the number of cases available for scoring was small, but a trend was observed for abnormalities of these two sites to be higher in frequency in the 100+ rad group under the age of 10 ATB than that of the control group. No significant difference was observed between the control and exposed with regard to radiation effect on the aging process using the relationship of score values to age as an index of aging. This is in accord with results of studies of A-bomb survivors which suggested that radiation induces life shortening attributable primarily to cancers, but not a general acceleration of the aging phenomenon. (author)

  14. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    Science.gov (United States)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  15. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.

    Science.gov (United States)

    Abbasi, Mohammad

    2018-04-01

    The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    International Nuclear Information System (INIS)

    Xu, Rong-Guang; Leng, Yongsheng

    2016-01-01

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  17. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 (United States)

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  18. The neon gas field ion source-a first characterization of neon nanomachining properties

    International Nuclear Information System (INIS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F.H.M.

    2011-01-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008 ). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010 ). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998 ). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  19. Nucleation and growth characterization by field-ion microscopy

    International Nuclear Information System (INIS)

    Inal, O.T.; Scherer, A.

    1985-01-01

    Field-ion microscopy affords atomic resolution and thus is ideally suited for studies involving the nucleation and growth of overlayers on the conical field-emission end forms. The added capability of filed-assisted removal of atomic layers gives this technique a unique three-dimensional capability which is invaluable for the controlled removal of atomic layers and delineation of the depth information. The description of the transition from overlayer to substrate is afforded by a change in the ratio of best image to field evaporation voltages (BIV/FEV). Since the adatom layers are necessarily quite thin (>20 nm) a careful characterization in an SEM and the associated energy dispersive x-ray analysis (EDAX) is certainly worthwhile. The modes of deposition utilized in the studies to be presented include in-situ vapor deposition, electroless (cementation) and electrodeposition of metallic and oxide overgrowths. In-situ vapor deposition allows for imaging-coating-reimaging practice without the introduction of artifacts on these small substrate surfaces quite prone to air of humidity induced etching and alteration. Vapor deposition thus affords the only means of full recovery of the imaging surface at thin coverages. The extent of the coverage can be increased by in-situ tip heating and through reduced misfit between the two species of concern. Although electrolytic or electroless depositions afford much thicker overgrowths, the contact of the field-emission end form with an aqueous medium results in a chemical dissolution that increases with the increasing pH of the solution. The recovered surface is a new surface generated through this etching but still containing the imaging features of the substrate and thus is quite easy to distinguish

  20. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  1. Topotactic changes on η-Mo4O11 caused by biased atomic force microscope tip and cw-laser

    International Nuclear Information System (INIS)

    Borovšak, Miloš; Šutar, Petra; Goreshnik, Evgeny; Mihailovic, Dragan

    2015-01-01

    Highlights: • We report influencing electronic properties of η-Mo 4 O 11 . • With the biased AFM tip we induce the surface potential changes on η-Mo 4 O 11 . • We used cw-laser to induced similar effect on surface potential on η-Mo 4 O 11 . • We do not influence the surface and topography of the samples. • No change in topography of samples indicates the topotactic transformation. - Abstract: We present topotactic changes on Mo 4 O 11 crystals induced by a biased atomic force microscope tip and continuous laser. The transformation does not change the topography of the samples, while the surface potential shows remarkable changes on areas where the biased AFM tip was applied. No structural changes were observed by Raman spectroscopy, but AFM scans revealed changes to surface potential due to laser illumination. The observed phenomenon could be potentially useful for memristive memory devices considering the fact that properties of other molybdenum oxides vary from metallic to insulators.

  2. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    Energy Technology Data Exchange (ETDEWEB)

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal, E-mail: michal.borkovec@unige.ch [Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1205 Geneva (Switzerland); Popescu, Mihail N. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  3. Implementing and Quantifying the Shape-Memory Effect of Single Polymeric Micro/Nanowires with an Atomic Force Microscope.

    Science.gov (United States)

    Fang, Liang; Gould, Oliver E C; Lysyakova, Liudmila; Jiang, Yi; Sauter, Tilman; Frank, Oliver; Becker, Tino; Schossig, Michael; Kratz, Karl; Lendlein, Andreas

    2018-04-23

    The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σ max,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    Science.gov (United States)

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  5. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  6. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  7. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  8. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  9. The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes.

    Science.gov (United States)

    Khare, H S; Burris, D L

    2013-05-01

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS2 to demonstrate the technique. Carbon and single crystal MoS2 had friction coefficients of μ = 0.20 ± 0.04 and μ = 0.006 ± 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS2 had a friction coefficient of μ = 0.005 ± 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  10. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  11. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    Science.gov (United States)

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  13. Developments of saddle field ion sources and their applications

    International Nuclear Information System (INIS)

    Abdelrahman, M.M.; Helal, A.G.

    2009-01-01

    Ion sources should have different performance parameters according to the various applications for which they are used, ranging from ion beam production to high energy ion implanters. There are many kinds of ion sources, which produce different ion beams with different characteristics. This paper deals with the developments and applications of some saddle field ion sources which were designed and constructed in our lab. Theory of operation and types of saddle field ion sources are discussed in details. Some experimental results are given. The saddle field ion sources operate at low gas pressure and require neither magnetic field nor filament. This type of ion sources is used for many different applications as ion beam machining, sputtering, cleaning and profiling for surface analysis etc

  14. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    Science.gov (United States)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  15. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  16. Atomic-resolution studies of In2O3-ZnO compounds on aberration-corrected electron microscopes

    International Nuclear Information System (INIS)

    Yu, Wentao

    2009-01-01

    In this work, the characteristic inversion domain microstructures of In 2 O 3 (ZnO) m (m=30) compounds were investigated by TEM methods. At bright-atom contrast condition, atomically resolved HR-TEM images of In 2 O 3 (ZnO) 30 were successfully acquired in [1 anti 100] zone axis of ZnO, with projected metal columns of ∝1.6 A well resolved. From contrast maxima in the TEM images, local lattice distortions at the pyramidal inversion domain boundaries were observed for the first time. Lattice displacements and the strain field in two-dimensions were visualized and measured using the 'DALI' algorithm. Atomically resolved single shot and focal series images of In 2 O 3 (ZnO) 30 were achieved in both zone axes of ZnO, [1 anti 100] and [2 anti 1 anti 10], respectively. The electron waves at the exit-plane were successfully reconstructed using the software package 'TrueImage'. Finally, a three dimensional atomic structure model for the pyramidal IDB was proposed, with an In distribution of 10%, 20%, 40%, 20% and 10% of In contents over 5 atom columns along basal planes, respectively. Through a detailed structural study of In 2 O 3 (ZnO) m compounds by using phase-contrast and Z-contrast imaging at atomic resolution, In 3+ atoms are determined with trigonal bi-pyramidal co-ordination and are distributed at the pyramidal IDBs. (orig.)

  17. Bringing light into the nano-world: What can you do with an atomic force microscope on top of your synchrotron radiation sample holder?

    International Nuclear Information System (INIS)

    Rodrigues, Mario Manuel Silveira

    2009-01-01

    This thesis had as a major objective to combine scanning probe microscopy in particular, atomic force microscopy with synchrotron light spectroscopies. The combination of these two types of spectroscopies is meant to be in-situ and in real time. Thus this thesis aimed at introducing new types of experimental techniques suitable for the investigation of nano-sized materials. The proposed new instrumentation, would provide chemical-specific contrast at unprecedented lateral resolution of up to 10-40 nanometers, thus overcoming existing limitations of the two families of spectroscopy methods and opening a wide range of research opportunities and challenges. For the purpose of combining these techniques an atomic force microscope was developed. The atomic force microscope (AFM) was developed around a quartz tuning fork crystal which was used as the sensor with which atomic forces are detected. The developed AFM was then used in several beam lines with essentially two different purposes. A first goal was to do spectroscopy, such as the measurement of an absorption edge, locally with the tip of the AFM. Such measurements were indeed done, but the lateral resolution is still dominated by the X-ray beam size rather than by the tip apex shape. The AFM tip was also used to measure Bragg peaks from crystals with sizes on the nanometer scale. A second goal was to use the AFM as an instrument to mechanical interact with nano-sized systems while the X-ray beam was used to probe changes in the lattice parameter of the studied systems. Thus the AFM tip was used to elastically indent a SiGe crystal while diffraction was simultaneously measured. It was possible to observe shifts of the Bragg peak as a consequence of the applied pressure. The in-situ combination of AFM with synchrotron light permitted, in this way, to measure the Young modulus of a crystal at the nano-scale without any kind of adjustable parameter. (author)

  18. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  19. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  20. Atomic force microscope visualization of lipid bilayer degradation due to action of phospholipase A(2) and Humicola lanuginosa lipase

    DEFF Research Database (Denmark)

    Balashev, Konstantin; DiNardo, N. John; Callisen, Thomas H.

    2007-01-01

    An important application of liquid cell Atomic Force Microscopy (AFM) is the study of enzyme structure and behaviour in organized molecular media that mimic in-vivo systems. In this study we demonstrate the use of AFM as a tool to study the kinetics of lipolytic enzyme reactions occurring...... activation, and enzyme reaction rates. (c) 2006 Elsevier B.V. All rights reserved....

  1. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  2. Preliminary experiments with a cusp-field ion source

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; O'Hagan, J.B.

    1980-12-01

    Preliminary experiments with a cusp field ion source have been completed. Measurements were made of the total ion current and mass and energy distributions as a function of source operating conditions and cusp field geometry. These experiments have indicated that a cusp field source may be used in the Sandia Neutron Generator for Cancer Therapy and may permit the incorporation of a simplified unpumped accelerator design. Suggestions for future work are briefly outlined

  3. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  4. Optimal thickness of a monocrystal line object in atomic plane visualization on its image in a high-resolution electron microscope

    International Nuclear Information System (INIS)

    Grishina, T.A.; Sviridova, V.Yu.

    1983-01-01

    Theoretical and experimental investigation of the influence of the FCC-lattice crystal (gold, nickel) thickness on conditions of visulization of atomic plane projections (APP) on the crystal image in a transmission high-resolution electron microscope (THREM) is reported. Results of electron diffraction theory are used for theoretical investigation. Calculation analysis of the influence of the monocrystal thickness and orientation on conitions of visualization of APP and atomic columns in monocrystal images formed in THREM in multibeam regimes with inclined and axial illumination is conducted. It is shown that, to visualize the atomic column projections in a crystal image formed in the multibeam regime with axial illumination, optimal are the thicknesses from 0.1 xisub(min) to 0.25 xisub(min) and at some object orientations also the thicknesses from 0.8 xisub(min) to 0.9 xisub(min), where xisub(min) is the extinction length minimum for the given orientation. It is shown that, to realize the ultimate resolutions in multibeam regimes both with inclined and axial illumination the optimal thickness of the object is 0.63 xisub(min). Satisfactory coincidence of theoretical and experimental data is obtained

  5. Atomic resolution imaging of YAlO{sub 3}: Ce in the chromatic and spherical aberration corrected PICO electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Lei [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Barthel, Juri [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen (Germany); Jia, Chun-Lin [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Urban, Knut W., E-mail: k.urban@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich, (Germany); School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-05-15

    Highlights: • First time resolution of 57 pm atom separations by HRTEM with 200 keV electrons. • Quantification of the image spread by absolute matching of experiment and simulation. • An information limit of 52 pm is deduced from the determined image spread. • Substantial deviations from the bulk structure are observed for the ultra-thin sample. - Abstract: The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200 kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

  6. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  7. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  8. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  9. Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors

    International Nuclear Information System (INIS)

    Silva, E C C M; Vliet, K J van

    2006-01-01

    The atomic force microscope is used increasingly to investigate the mechanical properties of materials via sample displacement under an applied force. However, both the extent of forces attainable and the accuracy of those forces measurements are significantly limited by the optical lever configuration that is commonly used to infer nanoscale deflection of the cantilever. We present a robust and general approach to characterize and compensate for the nonlinearity of the position-sensitive optical device via data processing, requiring no modification of existing instrumentation. We demonstrate that application of this approach reduced the maximum systematic error on the gradient of a force-displacement response from 50% to 5%, and doubled the calibrated force application range. Finally, we outline an experimental protocol that optimizes the use of the quasi-linear range of the most commonly available optical feedback configurations and also accounts for the residual systematic error, allowing the user to benefit from the full detection range of these indirect force sensors

  10. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  11. Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd2O3:Eu3+ nanorods

    International Nuclear Information System (INIS)

    Macedo, Andreia G; Ananias, Duarte; Andre, Paulo S; Ferreira, Rute A sa; Carlos, Luis D; Kholkin, Andrei L; Rocha, J

    2008-01-01

    An atomic force microscopy (AFM) tip has been coated with photoluminescent Eu 3+ -doped Gd 2 O 3 nanorods using a dielectrophoresis technique, which preserves the red emission of the nanorods (quantum yield 0.47). The performance of the modified tips has been tested by using them for regular topography imaging in tapping and contact modes. Both a regular AFM standard grid and a patterned surface (of an organic-inorganic methacrylate Zr-based oxo-cluster and poly(oxyethylene)/siloxane hybrid) have been used. Similar depth values have been measured using a conventional silicon tip and the nanorod-modified tip. The tips before and after use exhibit similar SEM images and photoluminescence spectra and, thus, seem to be stable under working conditions. These tips should find applications in scanning near-field optical microscopy and other scanning techniques

  12. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film

    Energy Technology Data Exchange (ETDEWEB)

    Thanawan, S. [Institute of Science and Technology for Research and Development, Mahidol University, Salaya, Nakhon Pathom 73170 (Thailand)], E-mail: ststw@mahidol.ac.th; Radabutra, S.; Thamasirianunt, P.; Amornsakchai, T.; Suchiva, K. [Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom 73170 (Thailand)

    2009-01-15

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  13. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film.

    Science.gov (United States)

    Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K

    2009-01-01

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  14. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, M.E. [Departamento de Ingenieria Mecatronica, Escuela de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)]. E-mail: elena.sanchez@anahuac.mx; Islas Bernal, I.F. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Rivera, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Ortiz Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510, Mexico, D.F. (Mexico); Alvarez Bada, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico D.F. (Mexico)

    2007-05-07

    ({mu}-Cyano)(phthalocyaninato)metal(III) [PcMCN]{sub n} species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]{sub n} complexes provided conductive films with an electrical conductivity of 1 x 10{sup -6} {omega}{sup -1} cm{sup -1} at 298 K.

  15. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    International Nuclear Information System (INIS)

    Sanchez Vergara, M.E.; Islas Bernal, I.F.; Rivera, M.; Ortiz Rebollo, A.; Alvarez Bada, J.R.

    2007-01-01

    (μ-Cyano)(phthalocyaninato)metal(III) [PcMCN] n species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN] n complexes provided conductive films with an electrical conductivity of 1 x 10 -6 Ω -1 cm -1 at 298 K

  16. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I.; Careaga Houck, A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); AlGhamdi, J. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Department of Chemistry, College of Science, University of Dammam, Dammam (Saudi Arabia); Youcef-Toumi, K. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-01-15

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. - Highlights: • High-speed AFM imaging is extended to large lateral and vertical scan ranges. • A general multi-actuation approach to atomic force microscopy is presented. • A high-speed AFM is designed and implemented based on the proposed method. • Multi-actuator control is designed auxiliary to a PID unit to maintain flexibility. • Influence of calcite crystal structure on dissolution is visualized in video form.

  17. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  18. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head.

    Science.gov (United States)

    Hwu, E-T; Illers, H; Wang, W-M; Hwang, I-S; Jusko, L; Danzebrink, H-U

    2012-01-01

    In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use. Furthermore, the optical head is capable of measuring sub-atomic displacements of high-frequency AFM probes with a sub-micron laser spot (~570 nm, FWHM) and a high-working bandwidth (80 MHz). Nevertheless, conventional DVD optical heads suffer from signal drift problems. In a previous setup, signal drifts of even thousands of nanometers had been measured. With the anti-drift and auto-alignment mechanism, the signal drift is compensated by actuating a voice coil motor of the DVD optical head. A nearly zero signal drift was achieved. Additional benefits of this mechanism are automatic cantilever alignment and simplified design.

  19. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  20. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  1. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  2. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    International Nuclear Information System (INIS)

    Bach, P.W.

    1981-01-01

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  3. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    Science.gov (United States)

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  4. The scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salvan, F.

    1986-01-01

    A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr

  5. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  6. Field desorption and field ion surface studies of samples exposed to the plasmas of PLT and ISX

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Panitz, J.A.

    1978-01-01

    Modifications to the surface of field-ion specimens exposed to plasma discharges in PLT and ISX determined by Imaging Probe, Field Ion Microscope, and Transmission Electron Microscope analysis have in the past shown several consistent features. Surface films consisting primarily of limiter material with trapped plasma and impurity species have been found to reside on samples with direct line of sight exposure to the plasma during the discharges. Control specimens placed in the tokamak, but shielded from the plasma, on the other hand, remained free of deposits. When exposed to only high power plasma discharges, samples placed at the wall position in PLT and ISX have survived the exposures with no evidence of damage or implantation. In this paper we describe the results of a recent exposure in PLT in which for the first time samples of stainless steel were included for High-Field Surface Analysis. Tokamak operating conditions, including stainless-steel limiters, titanium gettering between discharges, and the occurrence of a disruption, also distinguished this exposure from those carried out previously. Surprisingly, even with stainless-steel limiters, carbon films were found to be deposited on the samples at a rate

  7. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chiu, C.H.; Hong, I.T.; Tung, H.C. [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chien, F.S.-S. [Department of Physics, Tunghai University, 1727, Sec. 4, Xitun Dist., Taiwan Boulevard, Taichung 407, Taiwan, ROC (China)

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  8. Topotactic changes on η-Mo{sub 4}O{sub 11} caused by biased atomic force microscope tip and cw-laser

    Energy Technology Data Exchange (ETDEWEB)

    Borovšak, Miloš, E-mail: milos.borovsak@ijs.si [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Faculty for Mathematics and Physics, Jadranska ulica 19, 1000 Ljubljana (Slovenia); Šutar, Petra; Goreshnik, Evgeny [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mihailovic, Dragan [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2015-11-01

    Highlights: • We report influencing electronic properties of η-Mo{sub 4}O{sub 11}. • With the biased AFM tip we induce the surface potential changes on η-Mo{sub 4}O{sub 11}. • We used cw-laser to induced similar effect on surface potential on η-Mo{sub 4}O{sub 11}. • We do not influence the surface and topography of the samples. • No change in topography of samples indicates the topotactic transformation. - Abstract: We present topotactic changes on Mo{sub 4}O{sub 11} crystals induced by a biased atomic force microscope tip and continuous laser. The transformation does not change the topography of the samples, while the surface potential shows remarkable changes on areas where the biased AFM tip was applied. No structural changes were observed by Raman spectroscopy, but AFM scans revealed changes to surface potential due to laser illumination. The observed phenomenon could be potentially useful for memristive memory devices considering the fact that properties of other molybdenum oxides vary from metallic to insulators.

  9. An Atomic Force Microscope Study Revealed Two Mechanisms in the Effect of Anticancer Drugs on Rate-Dependent Young's Modulus of Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Juan Ren

    Full Text Available Mechanical properties of cells have been recognized as a biomarker for cellular cytoskeletal organization. As chemical treatments lead to cell cytoskeletal rearrangements, thereby, modifications of cellular mechanical properties, investigating cellular mechanical property variations provides insightful knowledge to effects of chemical treatments on cancer cells. In this study, the effects of eight different anticancer drugs on the mechanical properties of human prostate cancer cell (PC-3 are investigated using a recently developed control-based nanoindentation measurement (CNM protocol on atomic force microscope (AFM. The CNM protocol overcomes the limits of other existing methods to in-liquid nanoindentation measurement of live cells on AFM, particularly for measuring mechanical properties of live cells. The Young's modulus of PC-3 cells treated by the eight drugs was measured by varying force loading rates over three orders of magnitude, and compared to the values of the control. The results showed that the Young's modulus of the PC-3 cells increased substantially by the eight drugs tested, and became much more pronounced as the force load rate increased. Moreover, two distinct trends were clearly expressed, where under the treatment of Disulfiram, paclitaxel, and MK-2206, the exponent coefficient of the frequency- modulus function remained almost unchanged, while with Celebrex, BAY, Totamine, TPA, and Vaproic acid, the exponential rate was significantly increased.

  10. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components

    International Nuclear Information System (INIS)

    Moreno-Flores, Susana; Toca-Herrera, Jose Luis; Benitez, Rafael; Vivanco, Maria dM

    2010-01-01

    In this work we present a unified method to study the mechanical properties of cells using the atomic force microscope. Stress relaxation and creep compliance measurements permitted us to determine, the relaxation times, the Young moduli and the viscosity of breast cancer cells (MCF-7). The results show that the mechanical behaviour of MCF-7 cells responds to a two-layered model of similar elasticity but differing viscosity. Treatment of MCF-7 cells with an actin-depolymerising agent results in an overall decrease in both cell elasticity and viscosity, however to a different extent for each layer. The layer that undergoes the smaller decrease (36-38%) is assigned to the cell membrane/cortex while the layer that experiences the larger decrease (70-80%) is attributed to the cell cytoplasm. The combination of the method presented in this work, together with the approach based on stress relaxation microscopy (Moreno-Flores et al 2010 J. Biomech. 43 349-54), constitutes a unique AFM-based experimental framework to study cell mechanics. This methodology can also be extended to study the mechanical properties of biomaterials in general.

  11. Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m

    International Nuclear Information System (INIS)

    Cumpson, Peter J.; Hedley, John; Clifford, Charles A.; Chen Xinyong; Allen, Stephanie

    2004-01-01

    Calibration of atomic force microscope (AFM) cantilevers is necessary for the measurement of nano-newton and pico-newton forces, which are critical to analytical application of AFM in the analysis of polymer surfaces, biological structures and organic molecules. Previously we have described microfabricated array of reference spring (MARS) devices for AFM cantilever spring-constant calibration. Hitherto, these have been limited to the calibration of AFM cantilevers above 0.03 N/m, although they can be used to calibrate cantilevers of lower stiffness with reduced accuracy. Below this limit MARS devices similar to the designs hitherto described would be fragile and difficult to manufacture with reasonable yield. In this work we describe a device we call torsional MARS. This is a large-area torsional mechanical resonator, manufactured by bulk micromachining of a 'silicon-on-insulator' wafer. By measuring its torsional oscillation accurately in vacuum we can deduce its torsional spring constant. The torsional reference spring spans the range of spring constant (from 4 down to 0.01 N/m) that is important in biological AFM, allowing even the most compliant AFM cantilever to be calibrated easily and rapidly

  12. Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T5 alloy using nanoindenter and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-06-15

    The nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in squeeze-cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. In addition, the eutectic region showed lower pile-up and higher elastic recovery than the primary Al region. The aging responses of the eutectic regions in the squeeze-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. As the aging time increased, acicular Si particles in the eutectic regions gradually came to a fine structure. Both Vickers hardness (H {sub V}) and indentation (H {sub IT}) test results showed almost the same trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  13. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development.

    Science.gov (United States)

    Nakamura, Eiichi

    2017-06-20

    A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules

  14. Field ion microscopy study of depleted zones in tungsten after proton irradiation

    International Nuclear Information System (INIS)

    Farnum, D.J.; Sommer, W.F.; Inal, O.T.; Yu, J.

    1986-01-01

    Depleted zones in tungsten, that resulted from medium-energy proton irradiations, were studied using the Field Ion Microscope (FIM). The shapes and sizes of depleted zones is an important aspect of basic radiation damage. These data can be compared to models that have been suggested as well as aid development of new models. These depleted volumes are of interest not only for an understanding of basic radiation effects, but also because they affect material properties and can act as nucleation sites for voids or gas bubbles. Depleted zones were produced in annealed tungsten wires by irradiation with 600 to 800 MeV protons at the Los Alamos Meson Physics Facility. The defects observed in the irradiated samples included vacancies, depleted zones, grain boundaries, and dislocations. Single vacancies were the most commonly observed defect. Of the samples ''imaged,'' over 50 depleted zones were found within the area of high resolution in the area between the prominent [112] poles in a [110] oriented sample. The number of layers photographed in each sample was dependent upon the initial shape of the tip and ranged from 60 to 200 [110] sequential layers

  15. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    Science.gov (United States)

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  16. Atomic structures and compositions of internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. (Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering); Merkle, K.L. (Argonne National Lab., IL (United States))

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l brace}111{r brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l brace}222{r brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l brace}111{r brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert bar}O{vert bar}Mg{hor ellipsis} and not Cu{vert bar}Mg{vert bar}O{hor ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l brace}111{r brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  17. Discontinuous precipitation in a Ni-In alloy studied by analytical field ion microscopy

    International Nuclear Information System (INIS)

    Geber, G.P.; Kirchheim, R.

    1997-01-01

    Discontinuous precipitation (DP) in a Ni-7.5 at.% In alloy has been studied by means of atom probe field ion microscopy (APFIM). The morphology of the lamellar microstructure and the growth kinetics of the decomposition reaction have been investigated by optical and scanning electron microscopy (LM, SEM). A back polishing method has been developed to prepare APFIM specimens in a systematic manner for transmission electron microscopy (TEM), in order to obtain a definite inclination of different interfaces in the tip apex for subsequent analysis of their chemical composition. APFIM results of the Ni- and In-concentration across the interfaces are presented. Based on the APFIM results it is possible to distinguish between the theoretical description of the concentration profiles given by the models of Cahn and Hillert. It is shown by both FIM images and concentration depth profiles that the α/β-interface has a thickness of about 0.5 nm. In addition it is shown for the first time that the concentration across a β-lamella is not constant. This experimental finding was used to develop a generalization of Cahn's model on discontinuous precipitation including the solute flux within the interface between β and the parent phase α 0

  18. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    International Nuclear Information System (INIS)

    Korayem, M. H.; Khaksar, H.; Taheri, M.

    2013-01-01

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of

  19. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  20. Direct determination of a radiation-damage profile with atomic resolution in ion-irradiated platinum. MSC report No. 5030

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1983-05-01

    The field-ion microscope (FIM) technique has been employed to determine directly a radiation damage profile, with atomic resolution, in a platinum specimen which had been irradiated at 80 0 K with 20-keV Kr + ions to a fluence of 5 x 10 12 cm - 2 . It is shown that the microscopic spatial-vacancy distribution (radiation-damage profile) is directly related to the elastically-deposited-energy profile. The experimentally constructed radiation-damage profile is compared with a theoretical damage profile - calculated employing the TRIM Monte Carlo code - and excellent agreement is obtained between the two, thus demonstrating that it is possible to go directly from a microscopic spatial distribution of vacancies to a continuous radiation-damage profile

  1. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  2. Atomic force microscope and scanning tunneling microscope studies of superlattices and density waves in Fe doped NbSe2, TaSe2, TaS2 and in NbSe3 doped with Fe, Co, Cr, and V

    International Nuclear Information System (INIS)

    Coleman, R.V.; Dai, Z.; Gong, Y.; Slough, C.G.; Xue, Q.

    1994-01-01

    Results of atomic force microscope (AFM) and scanning tunneling microscope (STM) studies of superlattices and long-range modulations induced by impurities in transition metal chalcogenides are presented. Superlattices formed by Fe intercalation into the van der Waals gaps of 2H--NbSe 2 , 2H--TaSe 2 and 2H--TaS 2 show ordered occupation of the octahedral holes and STM spectroscopy shows density-wave energy gaps existing in the antiferromagnetic phases. In NbSe 3 , interstitial impurities such as Fe, Co, Cr, and V induce long-range modulated structures that can be detected at room temperature with AFM scans. These modulations modify the charge-density wave structure forming at low temperature and STM spectroscopy has been used to measure these changes

  3. Atomic-resolution studies of In{sub 2}O{sub 3}-ZnO compounds on aberration-corrected electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wentao

    2009-10-23

    In this work, the characteristic inversion domain microstructures of In{sub 2}O{sub 3}(ZnO){sub m} (m=30) compounds were investigated by TEM methods. At bright-atom contrast condition, atomically resolved HR-TEM images of In{sub 2}O{sub 3}(ZnO){sub 30} were successfully acquired in [1 anti 100] zone axis of ZnO, with projected metal columns of {proportional_to}1.6 A well resolved. From contrast maxima in the TEM images, local lattice distortions at the pyramidal inversion domain boundaries were observed for the first time. Lattice displacements and the strain field in two-dimensions were visualized and measured using the 'DALI' algorithm. Atomically resolved single shot and focal series images of In{sub 2}O{sub 3}(ZnO){sub 30} were achieved in both zone axes of ZnO, [1 anti 100] and [2 anti 1 anti 10], respectively. The electron waves at the exit-plane were successfully reconstructed using the software package 'TrueImage'. Finally, a three dimensional atomic structure model for the pyramidal IDB was proposed, with an In distribution of 10%, 20%, 40%, 20% and 10% of In contents over 5 atom columns along basal planes, respectively. Through a detailed structural study of In{sub 2}O{sub 3}(ZnO){sub m} compounds by using phase-contrast and Z-contrast imaging at atomic resolution, In{sup 3+} atoms are determined with trigonal bi-pyramidal co-ordination and are distributed at the pyramidal IDBs. (orig.)

  4. Microscopic Polyangiitis

    Science.gov (United States)

    ... body, specifically the feet, lower legs and, in bed-ridden patients, the buttocks. The skin findings of cutaneous ... that are in contact with the lungs’ microscopic air sacs – the condition may quickly pose a threat ...

  5. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  6. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  7. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  8. A microscopic description of the S-wave πN-scattering lengths and the (pπ-)-atom lifetime in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Rusetskij, A.G.

    1989-01-01

    The S-wave πN-scattering lengths and the (pπ - )-atom lifetime are in the quark confinement model. Nucleon is treated as a quark-diquark system. The fulfillment of the Weinberg-Tomozawa relations is checked. The agreement is achieved with the experiment and with the results obtained within other approaches. 32 refs.; 5 figs.; 2 tabs

  9. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo; Li, Ming-yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S.

    2016-01-01

    spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic

  10. Atom probe microanalysis: Principles and applications to materials problems

    International Nuclear Information System (INIS)

    Miller, M.K.; Smith, G.D.W.

    1987-01-01

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  11. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  12. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben; Al-Kassab, Talaat

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic

  13. Microscopic solvation of a lithium atom in water-ammonia mixed clusters: solvent coordination and electron localization in presence of a counterion.

    Science.gov (United States)

    Pratihar, Subha; Chandra, Amalendu

    2008-07-14

    The microsolvation structures and energetics of water-ammonia mixed clusters containing a lithium atom, i.e., Li(H(2)O)(n)(NH(3)), n = 1-5, are investigated by means of ab initio theoretical calculations. Several structural aspects such as the solvent coordination to the metal ion and binding motifs of the free valence electron of the metal are investigated. We also study the energetics aspects such as the dependence of vertical ionization energies on the cluster size, and all these structural and energetics aspects are compared to the corresponding results of previously studied anionic water-ammonia clusters without a metal ion. It is found that the Li-O and Li-N interactions play a very important role in stabilizing the lithium-water-ammonia clusters, and the presence of these metal ion-solvent interactions also affect the characteristics of electron solvation in these clusters. This is seen from the spatial distribution of the singly occupied molecular orbital (SOMO) which holds the ejected valence electron of the Li atom. For very small clusters, SOMO electron density is found to exist mainly at the vicinity of the Li atom, whereas for larger clusters, it is distributed outside the first solvation shell. The free dangling hydrogens of water and ammonia molecules are involved in capturing the SOMO electron density. In some of the conformers, OH{e}HO and OH{e}HN types of interactions are found to be present. The presence of the metal ion at the center of the cluster ensures that the ejected electron is solvated at a surface state only, whereas both surface and interiorlike states were found for the free electron in the corresponding anionic clusters without a metal ion. The vertical ionization energies of the present clusters are found to be higher than the vertical detachment energies of the corresponding anionic clusters which signify a relatively stronger binding of the free electron in the presence of the positive metal counterion. The shifts in different

  14. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid.

    Science.gov (United States)

    Wasem, Matthias; Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-13

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles.

  15. Si{sub 2}Sb{sub 2}Te{sub 5} phase change material studied by an atomic force microscope nano-tip

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yanbo; Min Guoquan; Zhang Jing; Zhou Weimin; Wan Yongzhong; Zhang Jianping; Li Xiaoli [Laboratory of Nano-Technology, Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Zhang Ting; Niu Xiaoming; Song Zhitang; Feng Songlin, E-mail: liuyanbo@snpc.org.c, E-mail: tzhang@mail.sim.ac.c [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2009-06-01

    The Si{sub 2}Sb{sub 2}Te{sub 5} phase change material has been studied by applying a nano-tip (30 nm in diameter) on an atomic force microscopy system. Memory switching from a high resistance state to a low resistance state has been achieved, with a resistance change of about 1000 times. In a typical I-V curve, the current increases significantly after the voltage exceeds approx4.3 V. The phase transformation of a Si{sub 2}Sb{sub 2}Te{sub 5} film was studied in situ by means of in situ X-ray diffraction and temperature dependent resistance measurements. The thermal stability of Si{sub 2}Sb{sub 2}Te{sub 5} and Ge{sub 2}Sb{sub 2}Te{sub 5} was characterized and compared as well.

  16. The relationship between local liquid density and force applied on a tip of atomic force microscope: a theoretical analysis for simple liquids.

    Science.gov (United States)

    Amano, Ken-ichi; Suzuki, Kazuhiro; Fukuma, Takeshi; Takahashi, Ohgi; Onishi, Hiroshi

    2013-12-14

    The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(ρDS) with the local liquid's density on a solid surface being ρDS. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule.

  17. The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Ken-ichi, E-mail: aman@tohoku-pharm.ac.jp; Takahashi, Ohgi [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan); Suzuki, Kazuhiro [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Fukuma, Takeshi [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Onishi, Hiroshi [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

    2013-12-14

    The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(ρ{sub DS}) with the local liquid's density on a solid surface being ρ{sub DS}. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule.

  18. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    Directory of Open Access Journals (Sweden)

    Matthias Wasem

    2014-01-01

    Full Text Available Amplitude-modulation atomic force microscopy (AM-AFM is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles.

  19. The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids

    International Nuclear Information System (INIS)

    Amano, Ken-ichi; Takahashi, Ohgi; Suzuki, Kazuhiro; Fukuma, Takeshi; Onishi, Hiroshi

    2013-01-01

    The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(ρ DS ) with the local liquid's density on a solid surface being ρ DS . The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule

  20. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  1. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    Science.gov (United States)

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-08

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  2. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo

    2016-04-27

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  3. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  4. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  5. Performance optimization of a cusp-field ion source and high-perveance extractor

    International Nuclear Information System (INIS)

    Meyer, E.A.; Amstrong, D.D.; Schneider, D.

    1981-01-01

    The injector for the Fusion Materials Irradiation Test (FMIT) Facility must deliver a 110-mA dc beam of deuterons or H 2 + ions to the radio-frequency quadrupole (RFQ) accelerator at 75-keV energy. Operational parameters of a hydrogen-fed cusp-field ion source and a high-perveance extractor have been evaluated on a test stand and on the recently completed first stage of the prototype injector

  6. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    Science.gov (United States)

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  9. Atomic structures and compositions of internal interfaces. Progress report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Merkle, K.L. [Argonne National Lab., IL (United States)

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l_brace}111{r_brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l_brace}222{r_brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l_brace}111{r_brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert_bar}O{vert_bar}Mg{hor_ellipsis} and not Cu{vert_bar}Mg{vert_bar}O{hor_ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l_brace}111{r_brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  10. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  11. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae.

    Science.gov (United States)

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-11-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20-40 years) and a group of elderly women (n = 5, age: 70-95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (-2.374 vs. -2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  12. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  13. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  14. Visions of Atomic Scale Tomography

    International Nuclear Information System (INIS)

    Kelly, T.F.; Miller, Michael K.; Rajan, Krishna; Ringer, S.P.

    2012-01-01

    A microscope, by definition, provides structural and analytical information about objects that are too small to see with the unaided eye. From the very first microscope, efforts to improve its capabilities and push them to ever-finer length scales have been pursued. In this context, it would seem that the concept of an ultimate microscope would have received much attention by now; but has it really ever been defined? Human knowledge extends to structures on a scale much finer than atoms, so it might seem that a proton-scale microscope or a quark-scale microscope would be the ultimate. However, we argue that an atomic-scale microscope is the ultimate for the following reason: the smallest building block for either synthetic structures or natural structures is the atom. Indeed, humans and nature both engineer structures with atoms, not quarks. So far as we know, all building blocks (atoms) of a given type are identical; it is the assembly of the building blocks that makes a useful structure. Thus, would a microscope that determines the position and identity of every atom in a structure with high precision and for large volumes be the ultimate microscope? We argue, yes. In this article, we consider how it could be built, and we ponder the answer to the equally important follow-on questions: who would care if it is built, and what could be achieved with it?

  15. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  16. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  17. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  18. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  19. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  20. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  1. Reviews Book: Sustainable Energy—Without the Hot Air Equipment: Doppler Effect Unit Book: The Physics of Rugby Book: Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Equipment: Brunel Eyecam Equipment: 200x Digital Microscope Book: The Atom and the Apple: Twelve Tales from Contemporary Physics Book: Physics 2 for OCR Web Watch

    Science.gov (United States)

    2009-09-01

    WE RECOMMEND Sustainable Energy—Without the Hot Air This excellent book makes sense of energy facts and figures Doppler Effect Unit Another simple, effective piece of kit from SEP Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Intriguing and unique write-up of an intellectual fraud case Brunel Eyecam An affordable digital eyepiece for your microscope 200x Digital Microscope An adjustable digital flexcam for classroom use The Atom and the Apple: Twelve Tales from Contemporary Physics A fascinating round-up of the recent history of physics WORTH A LOOK The Physics of Rugby Book uses sport analogy and context to teach physics concepts Physics 2 for OCR Essential textbook for the course but otherwise pointless WEB WATCH Some free teaching materials are better than those you'd pay for

  2. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  4. Irradiation of tungsten with metallic diatomic molecular ions: atomic-resolution observations of depleted zones

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1982-08-01

    Direct evidence, on an atomic scale, is presented for the enhancement of damage production per projectile ion in diatomic metallic molecular ion (dimer) irradiations of tungsten as compared to monatomic metallic ion (monomer) irradiations. Irradiations were performed in situ at less than or equal to 10 K, in a field-ion microscope, employing 20 keV Ag + or W + monomer ions and the results are compared with 40 keV W 2 + or Ag 2 + dimer ion bombardments; the average energy per ion was 20 keV. First, in the near-surface region the depleted zones produced by the W 2 + dimer ions give rise to void-like contrast effects. The W + monomer ions do not produce this void-like damage. The existence of voids was explained employing a nucleation and diffusion-limited growth model which suggests that the growth can occur on a time scale -9 s, if the effective diffusivity of an atom in the fully-developed collision cascade is > 3 x 10 -4 cm 2 s -1 . Second, by counting the number of vacancies in individual depleted zones, produced by the different ions, it was demonstrated that the number of vacancies produced per incoming ion of the dimer is 1.55 times greater than the number of vacancies produced per monomer ion

  5. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  6. Atomic-resolution study of homogeneous radiation-induced precipitation in a neutron-irradiated W-10 at. % Re alloy. MSC report No. 5014

    International Nuclear Information System (INIS)

    Herschitz, R.; Seidman, D.N.

    1983-06-01

    The phenomenon of radiation-induced precipitation has been investigated in a W-10 at. % Re alloy using the atom-probe field-ion microscope. Results show a significant alteration of the microstructure of this alloy as a result of the fast-neutron irradiation. Precipitates with the composition approx. WRe (sigma phase) were detected at a density of 10 16 cm -3 . Coherent, semicoherent and possibly incoherent precipitates of the sigma phase have been observed. They were not associated with either linear or planar defects, or with any impurity atoms; i.e. a true homogeneous radiation-induced precipitation occurs in this alloy. A physical argument is presented for the nucleation of the sigma phase precipitates in the vicinity of displacement cascades produced by primary knock-on atoms. It is suggested that the nucleation of the sigma phase is due to the formation of tightly-bound mobil mixed dumbells which react to form an immobile rhenium cluster. The growth of this cluster into a precipitate is most likely driven by the irreversible vacancy: self-interstitial atom (SIA) annihilation reaction, as suggested recently by Cauvin and Martin. A mechanism for the suppression of voids, in this alloy, is presented which is self-consistent with the homogeneous radiation-induced precipitation mechanism

  7. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  8. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  9. FY 1999 achievement report on the project on the R and D of industrial science technology. R and D of the atom/molecule limit operation technology (Development of high-functional material formation technology for electric power generation environment); 1999 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden kankyoyo kokino sozai keisei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the study of atomic technology. Using a combined system of the scanning tunnel microscope (STM) with the field ion microscope and the atom probe (AP), a few Ag atoms were identified. Si windows were formed by electron beam irradiated from a STM tip, and Ge nanocrystal array was formed at the windows by supplying GeH4 gas. Iron clusters were deposited on Si substrates. With those as nuclei and in self-formation for etching masks, Si pillar distribution nano-crystals were etching-processed. The oxidation process of clean Si surface using ultra-high vacuum electron spin resonance was observed, and the incomplete state of the Si oxidation process was observed. Perovskite oxide superlattices composed of the two kinds were fabricated using the laser ablation method. The layer type antiferromagnetic spin arrangement is artificially modulated in the superlattices along the stacking direction. To observe the magnetic nano-structure, the development was commenced of a spin-polarized STM. The paper theoretically analyzed the dynamic process of atoms and molecules. (NEDO)

  10. The Homemade Microscope.

    Science.gov (United States)

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  11. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  12. Energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Borie, E.; Rinker, G.A.

    1982-01-01

    The theory of muonic atoms is a complex and highly developed combination of nuclear physics, atomic physics, and quantum electrodynamics. Perhaps nowhere else in microscopic physics are such diverse branches so intimately intertwined and yet readily available for precise experimental verification or rejection. In the present review we summarize and discuss all of the most important components of muonic atom theory, and show in selected cases how this theory meets experimental measurements

  13. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  14. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  15. Design and calibration of a vacuum compatible scanning tunneling microscope

    Science.gov (United States)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  16. Microscopic studies of RIB target materials and ion induced nanostructures

    International Nuclear Information System (INIS)

    Karmakar, Prasanta; Bhattacharya, Shampa; Roy, Tapatee Kundu; Bhowmick, Debasis; Chakrabarti, Alok

    2010-01-01

    The invention of electron microscope and scanning probe microscope has empowered us to visualize the tiny world that has explored many fundamental laws of natures. Further technological advancements have made these tools capable to probe micron size structures to individual atom. These microscopes are used to image and study micron size fibers or grain structures used for high yield radioactive products, to few nanometer size ripple, dot and hole structures produced by ion irradiation. Electron Microscope has also been used to characterize the ion beam synthesized dilute magnetic systems

  17. Coherent matter wave optics on an atom chip

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Schumm, Thorsten

    2006-01-01

    Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip.......Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip....

  18. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  19. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  20. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  1. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  2. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  3. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  4. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  5. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1992-01-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations

  6. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  7. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Nikita Agrawal

    2014-01-01

    Full Text Available Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP paste, 1.23% acidulated phosphate fluoride (APF gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM. Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks.

  8. Quantum liquids in confinement the microscopic view

    CERN Document Server

    Krotscheck, Eckhard S; Rimnac, A; Zillich, R

    2003-01-01

    We discuss, on a microscopic level, the effects of confinement on structural as well as dynamic properties of quantum liquids. The most evident structural consequences of confinement are layer structures found in liquid films, and free surfaces appearing in liquid drops and slabs. These structural properties have immediate consequences: new types of excitation such as surface phonons, layer phonons, layer rotons, and standing waves can appear and are potentially observable in neutron scattering spectra as well as in thermodynamic properties. Atom scattering experiments provide further insights into structural properties. Methods have been developed to describe elastic and inelastic atom scattering as well as transport currents. The theory has been applied to examine scattering processes of sup 4 He and sup 3 He atoms impinging on sup 4 He clusters, as well as sup 4 He scattering off sup 4 He films and slabs.

  9. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  10. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  11. Manipulation of magnetic Skyrmions with a Scanning Tunneling Microscope

    OpenAIRE

    Wieser, R.

    2016-01-01

    The dynamics of a single magnetic Skyrmion in an atomic spin system under the influence of Scanning Tunneling Microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single Skyrmions is showed.

  12. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  13. Designs for a quantum electron microscope

    International Nuclear Information System (INIS)

    Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A.; Hommelhoff, P.; Berggren, K.K.

    2016-01-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  14. Designs for a quantum electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kruit, P., E-mail: p.kruit@tudelft.nl [Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hammer, J.; Thomas, S.; Weber, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Hommelhoff, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Berggren, K.K. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  15. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  16. Neuromorphic Data Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Naegle, John H.; Suppona, Roger A.; Aimone, James Bradley; James, Conrad D.; Follett, David R.; Townsend, Duncan C.M.; Follett, Pamela L.; Karpman, Gabe D.

    2017-08-01

    In 2016, Lewis Rhodes Labs, (LRL), shipped the first commercially viable Neuromorphic Processing Unit, (NPU), branded as a Neuromorphic Data Microscope (NDM). This product leverages architectural mechanisms derived from the sensory cortex of the human brain to efficiently implement pattern matching. LRL and Sandia National Labs have optimized this product for streaming analytics, and demonstrated a 1,000x power per operation reduction in an FPGA format. When reduced to an ASIC, the efficiency will improve to 1,000,000x. Additionally, the neuromorphic nature of the device gives it powerful computational attributes that are counterintuitive to those schooled in traditional von Neumann architectures. The Neuromorphic Data Microscope is the first of a broad class of brain-inspired, time domain processors that will profoundly alter the functionality and economics of data processing.

  17. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  18. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  19. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  20. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  1. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  2. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  3. Electromigration of single metal atoms observed by scanning tunneling microscopy

    NARCIS (Netherlands)

    Braun, K.-F.; Soe, W.H.; Flipse, C.F.J.

    2007-01-01

    The authors show in this letter that single metal atoms on a Ni(111) surface can be pushed by electromigration forces from a scanning tunneling microscope tip. This repulsive interaction is obsd. over a length scale of 6 nm. While for voltages above -300 mV the atoms are pulled by the microscope

  4. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  5. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  6. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  7. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  8. Electron microscope phase enhancement

    Science.gov (United States)

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  9. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  10. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  11. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  12. Symmetries and microscopic physics

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1997-01-01

    This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)

  13. Simple Activities to Improve Students' Understanding of Microscopic Friction

    Science.gov (United States)

    Corpuz, Edgar de Guzman; Rebello, N. Sanjay

    2012-01-01

    We are currently on the verge of several breakthroughs in nanoscience and technology, and we need to prepare our citizenry to be scientifically literate about the microscopic world. Previous research shows that students' mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. Most students see…

  14. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  15. Mechanochemistry Induced Using Force Exerted by a Functionalized Microscope Tip

    DEFF Research Database (Denmark)

    Zhang, Yajie; Wang, Yongfeng; Lü, Jing-Tao

    2017-01-01

    Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density...

  16. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  17. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  18. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  19. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  20. Intersegmental interactions in supercoiled DNA: atomic force microscope study

    Energy Technology Data Exchange (ETDEWEB)

    Shlyakhtenko, Luda S.; Miloseska, Lela; Potaman, Vladimir N.; Sinden, Richard R.; Lyubchenko, Yuri L

    2003-10-15

    Intersegmental interactions in DNA facilitated by the neutralization of electrostatic repulsion was studied as a function of salt concentration and DNA supercoiling. DNA samples with defined superhelical densities were deposited onto aminopropyl mica at different ionic conditions and imaged in air after drying of the samples. Similar to hydrodynamic data, we did not observe a collapse of supercoiled DNA, as proposed earlier by cryo-EM studies. Instead, the formation of the contacts between DNA helices within supercoiled loops with no visible space between the duplexes was observed. The length of such close contacts increased upon increasing NaCl concentration. DNA supercoiling was a critical factor for the stabilization of intersegmental contacts. Implications of the observed effect for understanding DNA compaction in the cell and for regulation DNA transactions via interaction of distantly separated DNA regions are discussed.

  1. Atomic Force Microscope 2: Digital Instruments/Veeco Dimension 3000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: AFM 2A tool used to study the material surface characteristics, check the surface patterns generated by nanofabrication. It can take samples...

  2. Lorentz force actuation of a heated atomic force microscope cantilever.

    Science.gov (United States)

    Lee, Byeonghee; Prater, Craig B; King, William P

    2012-02-10

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

  3. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  4. Model Development for Atomic Force Microscope Stage Mechanisms

    National Research Council Canada - National Science Library

    Smith, Ralph C; Hatch, Andrew G; De, Tathagata; Salapaka, Murti V; Raye, Julie K; del Rosario, Ricardo C

    2005-01-01

    In this paper, we develop nonlinear constitutive equations and resulting system models quantifying the nonlinear and hysteretic field-displacement relations inherent to lead zirconate titanate (PZT...

  5. Imaging arrangement and microscope

    Science.gov (United States)

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  6. Microscopic Theory of Transconductivity

    Directory of Open Access Journals (Sweden)

    A. P. Jauho

    1998-01-01

    Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.

  7. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  8. Differences between application of some basic principles of quantum mechanics on atomic and mesoscopic levels

    OpenAIRE

    Nikulov, Alexey

    2005-01-01

    Formalism of the quantum mechanics developed for microscopic (atomic) level comes into collision with some logical difficulties on mesoscopic level. Some fundamental differences between application of its basic principles on microscopic and mesoscopic levels are accentuated.

  9. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  10. Development of an Ultrafast Scanning Tunneling Microscope for Dynamic Surface Studies

    National Research Council Canada - National Science Library

    Nunes

    1999-01-01

    .... The microscope has demonstrated atomic resolution. We have a femtosecond laser system, optics for delivering ultrafast laser pulses to the STM, and a computer controlled delay line for time-resolved measurements...

  11. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  12. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  13. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  14. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  15. The Photodetachment Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, C.; Delsart, C.; Dulieu, F. [Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II, Batiment 505, F-91405 Orsay cedex (France)

    1996-10-01

    Br{sup {minus}} ions undergo photodetachment in the presence of an electric field. As a result of the photoexcitation process, the emitted electron{close_quote}s wave function extends to infinity, but inside a paraboloid elongated in the direction of the field. A position-sensitive detector set across the electron emission axis makes it possible to image the transverse factor of the atomic wave function. A ring pattern is observed, with a number of dark rings which is analogous to the first parabolic quantum number of the LoSurdo-Stark problem. {copyright} {ital 1996 The American Physical Society.}

  16. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  17. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  18. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  19. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  20. The new Isidore microscope

    International Nuclear Information System (INIS)

    Rabouille, O.; Viard, J.; Menard, M.; Allegre, S.

    2001-01-01

    In the frame of the refurbishment of LECI hot laboratory in Saclay, it was decided to renew one of the two metallography lines of the building. This line is located at one end of the Isidore line of lead-shielded hot cells. The work started by the cleaning of 5 aout of 9 cells in Isidore line. Two were 2 m x 1.5 m cells, whereas the 3 others were smaller. Decontamination was difficult in both larger cells, because a lot of metallographic preparation had been performed there and because the cleaning of the lower parts of the cell, below the working area, was uneasy by remote manipulators. The refurbishment of the cells included: - Changing the windows, because old windows were made of glass panels sperated by oil, which is now prohibited by safety requirements. - Putting of a new pair of manipulators on one large cell, and adding bootings on manipulators on one large cell, and adding bootings on manipulators on both large cells. - Changing all the ventilation systems in these cells (new types of filters, new air-ducts), - Modifying and changing metallic pieces constituting the working are inside the cell - Increasing the hight of the small cells in order to add a manipulator for charging the sample on microscope or on hardness machine. - Simplifying the electrical wiring in order to decrease the fire risk in the hot cell line. - Add a better fire protection between the working area and the transfer area, i. e. between the front and the rear part of the cells. The scientific equipments fot these cells are: An Olympus microscope, modified by Optique Peter (company based in Lyons), equipped with a motorised sample holder (100 x 200 mm), maximum size of sample: O. D.=100 mm, 6 magnifications: x 12.5, x50, x100, x200, x500 and x1000, two microhardness positions: Vickers and Knoop. Polaroid image and digital camera with SIS image analysis system. A new periscope manufactured by Optique Peter. magnification x2 and x9, digital image and SIS system, and old periscope

  1. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  2. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  3. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  4. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  5. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  6. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  7. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  8. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  9. Performance of ultrahigh resolution electron microscope JEM-4000EX and some applications of high Tc superconductors

    International Nuclear Information System (INIS)

    Honda, T.; Ibe, K.; Ishida, Y.; Kersker, M.M.

    1989-01-01

    The high resolution electron microscope is powerful for modern materials science because of its direct observation capability for the atomic structure of materials. the JEM-4000EX, a 400 kV accelerating voltage electron microscope whose objective lens has a 1 mm spherical aberration coefficient, has a 0.168 nm theoretical resolving power. Using this microscope, atomic structure images of high Tc superconductor such as Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O are reported

  10. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  11. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification. Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are...

  12. Dissipation and oscillatory solvation forces in confined liquids studied by small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Mugele, Friedrich

    2010-01-01

    We determine conservative and dissipative tip–sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat

  13. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  15. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  16. Mobile microscope complex GIB-1

    International Nuclear Information System (INIS)

    Belyakov, A.V.; Gorbachev, A.N.

    2002-01-01

    To study microstructure in operating pipelines of power units a mobile microscope system is developed and successfully used. The system includes a portable microscope, a monitor, power supply and a portable computer. The monitor is used for surveying images from a video camera mounted on the microscope. The magnification on visual examination constitutes x 100 and x 500. Diameters of pipelines examined should not be less than 130 mm. Surface preparation for microstructural studies includes routine mechanical rough grinding and polishing with subsequent etching [ru

  17. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  18. Design and performance of a beetle-type double-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-01-01

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip

  19. MICROSCOPIC USES OF NANOGOLD.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.POWELL,R.D.FURUYA,F.R.

    2003-04-17

    Gold has been used for immunocytochemistry since 1971 when Faulk and Taylor discovered adsorption of antibodies to colloidal gold. It is an ideal label for electron microscopy (EM) due to its high atomic number, which scatters electrons efficiently, and the fact that preparative methods have been developed to make uniform particles in the appropriate size range of 5 to 30 nm. Use in light microscopy (LM) generally requires silver enhancement (autometallography; AMG) of these small gold particles. Significant advances in this field since that time have included a better understanding of the conditions for best antibody adsorption, more regular gold size production, adsorption of other useful molecules, like protein A, and advances in silver enhancement. Many studies have also been accomplished showing the usefulness of these techniques to cell biology and biomedical research. A further advance in this field was the development of Nanogold{trademark}, a 1.4 nm gold cluster. A significant difference from colloidal gold is that Nanogold is actually a coordination compound containing a gold core covalently linked to surface organic groups. These in turn may be covalently attached to antibodies. This approach to immunolabeling has several advantages compared to colloidal gold such as vastly better penetration into tissues, generally greater sensitivity, and higher density of labeling. Since Nanogold is covalently coupled to antibodies, it may also be directly coupled to almost any protein, peptide, carbohydrate, or molecule of interest, including molecules which do not adsorb to colloidal gold. This increases the range of probes possible, and expands the applications of gold labeling.

  20. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  1. Microscopic Procedures for Plant Meiosis.

    Science.gov (United States)

    Braselton, James P.

    1997-01-01

    Describes laboratory techniques designed to familiarize students with meiosis and how microscopic preparations of meiosis are made. These techniques require the use of fresh or fixed flowers. Contains 18 references. (DDR)

  2. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  3. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  4. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  5. Single atom and-molecules chemisorption on solid surfaces

    International Nuclear Information System (INIS)

    Anda, E.V.; Ure, J.E.; Majlis, N.

    1981-01-01

    A simplified model for the microscopic interpretation of single atom and- molecules chemisorption on metallic surfaces is presented. An appropriated hamiltonian for this problem is resolved, through the Green's function formalism. (L.C.) [pt

  6. Microscopic modelling of doped manganites

    International Nuclear Information System (INIS)

    Weisse, Alexander; Fehske, Holger

    2004-01-01

    Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations

  7. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  8. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  9. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  10. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  11. Nanometer-scale lithography on microscopically clean graphene

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...... to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous...

  12. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  13. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  14. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  15. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  16. Atomic level microstructural characterization by APFIM

    International Nuclear Information System (INIS)

    Miller, M.K.

    1996-01-01

    Atom probe field ion microscopy has been used to characterize Ni aluminides in addition to changes in microstructure of pressure vessel steels as a result of exposure to neutron irradiation. Ultrafine intragranular Cu precipitates and P segregation to grain and lath boundaries have been quantified in the pressure vessel steels. In boron-doped Ni 3 Al, the B additions were found to segregate to dislocations, low angle boundaries, antiphase boundaries, stacking faults, and grain boundaries. In boron-doped NiAl, B segregation to grain boundaries and ultrafine MB 2 precipitates were observed. In Mo-doped NiAl, enrichments of Mo, C, N/Si, B, and Fe were observed at the grain boundaries together with Mo precipitates and low Mo matrix solubility

  17. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  18. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  19. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  20. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  1. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  2. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  3. Microscope and method of use

    Science.gov (United States)

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  4. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  5. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  6. Non-local effects in kaonic atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-04-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self-energy in nuclear matter. The optical potentials show strong non-linearities in the nucleon density and sizeable non-local terms. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful fits are obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. We conclude that a microscopic description of kaonic atom data requires further detailed studies of the microscopic K - nuclear dynamics. (orig.)

  7. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  8. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  9. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  10. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  11. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  12. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  13. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; de Grooth, B.G.; Hansma, Paul K.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect

  14. Development and trial measurement of synchrotron-radiation-light-illuminated scanning tunneling microscope

    International Nuclear Information System (INIS)

    Matsushima, Takeshi; Okuda, Taichi; Eguchi, Toyoaki; Ono, Masanori; Harasawa, Ayumi; Wakita, Takanori; Kataoka, Akira; Hamada, Masayuki; Kamoshida, Atsushi; Hasegawa, Yukio; Kinoshita, Toyohiko

    2004-01-01

    Scanning tunneling microscope (STM) study is performed under synchrotron-radiation-light illumination. The equipment is designed so as to achieve atomic resolution even under rather noisy conditions in the synchrotron radiation facility. By measuring photoexcited electron current by the STM tip together with the conventional STM tunneling current, Si 2p soft-x-ray absorption spectra are successfully obtained from a small area of Si(111) surface. The results are a first step toward realizing a new element-specific microscope

  15. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  16. Nanometer-scale lithography on microscopically clean graphene

    International Nuclear Information System (INIS)

    Van Dorp, W F; De Hosson, J Th M; Zhang, X; Feringa, B L; Wagner, J B; Hansen, T W

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO) 6 was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.

  17. Optical perturbation of atoms in weak localization

    Science.gov (United States)

    Yedjour, A.

    2018-01-01

    We determine the microscopic transport parameters that are necessary to describe the diffusion process of the atomic gas in optical speckle. We use the self-consistent theory to calculate the self-energy of the atomic gas. We compute the spectral function numerically by an average over disorder realizations in terms of the Greens function. We focus mainly on the behaviour of the energy distribution of the atoms to estimate a correction to the mobility edge. Our results show that the energy distribution of the atoms locates the mobility edge position under the disorder amplitude. This behaviour changes for each disorder parameter. We conclude that the disorder amplitude potential induced modification of the energy distribution of the atoms that plays a major role for the prediction of the mobility edge.

  18. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  19. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  20. Apoptosis study of the macrophage via near-field scanning optical microscope

    International Nuclear Information System (INIS)

    Wang, D-C; Chen, K-Y; Chen, G-Y; Chen, S-H; Wun, S-J

    2008-01-01

    The cell apoptosis phenomenon was studied by traditional optical microscope with much lower resolution and also observed by Atomic Force Microscope (AFM) with nano-resolution recently. They both detect the cell apoptosis through the change of cell topography. In this study, the cell apoptosis was investigated via Near-Field Scanning Optical Microscope (NSOM). The cell topography, with nano-scaled resolution, and its optical characteristics were observed by NSOM at the same measurement scanning. The macrophage was chosen as the cell investigated. To understand the cell apoptosis process is the goal set for the research. The apoptosis process was related to the variations of the optical characteristics of the cell