WorldWideScience

Sample records for field-cooling induced unidirectional

  1. Field-cooling induced unidirectional anisotropy in the two-dimensional Ising antiferromagnet Rb sub 2 Cu sub 1 sub - sub x Co sub x F sub 4

    CERN Document Server

    Kawecka-Magiera, B; Maksymowicz, A Z

    2000-01-01

    Small cluster approximation and Monte Carlo Metropolis algorithm are applied to demonstrate that field cooling induces a unidirectional magnetic anisotropy of small clusters of Cu in Rb sub 2 Cu sub 1 sub - sub x Co sub x F sub 4. Within the Ising model, this anisotropy appears as a net magnetization at zero magnetic field. The effect is due to a coupling between the orbital ordering within clusters of Cu impurities and the antiferromagnetic ordering of Co matrix.

  2. Unidirectional invisibility induced by PT-symmetric periodic structures.

    Science.gov (United States)

    Lin, Zin; Ramezani, Hamidreza; Eichelkraut, Toni; Kottos, Tsampikos; Cao, Hui; Christodoulides, Demetrios N

    2011-05-27

    Parity-time (PT) symmetric periodic structures, near the spontaneous PT-symmetry breaking point, can act as unidirectional invisible media. In this regime, the reflection from one end is diminished while it is enhanced from the other. Furthermore, the transmission coefficient and phase are indistinguishable from those expected in the absence of a grating. The phenomenon is robust even in the presence of Kerr nonlinearities, and it can also effectively suppress optical bistabilities. © 2011 American Physical Society

  3. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon

    Science.gov (United States)

    Chen, Jiyun; Tu, Ruikang; Fang, Xiaoting; Gu, Quanchao; Zhou, Yanying; Cui, Rongjing; Han, Zhida; Zhang, Lei; Fang, Yong; Qian, Bin; Zhang, Chengliang; Jiang, Xuefan

    2017-03-01

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn50Ni41Sn9 ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface.

  4. Stress-wave induced fracture of unidirectional composites: an experimental study using digital image correlation method

    Science.gov (United States)

    Lee, Dongyeon; Tippur, Hareesh V.

    2010-03-01

    In this work, fracture behavior of unidirectional graphite/epoxy composite materials is optically investigated. Single-edge notched coupons are studied under geometrically symmetric impact loading. The notch orientation parallel to or at an angle relative to the fiber orientation is considered to produce mode-I as well as mixed-mode fracture. Stress-wave induced crack initiation and rapid crack growth events are studied using a digital correlation technique and high-speed photography. Surface deformations histories in the crack-tip vicinity are obtained by analyzing decorated speckle recordings. Measured deformation fields are used to extract fracture parameters and examine the effect of fiber orientation on crack initiation and growth behaviors. The maximum crack speed observed is the highest for mode-I dominant conditions and decreases with increasing fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. The crack initiation toughness values decrease with increasing degree-of-anisotropy.

  5. Unidirectional Transport of Ferromagnetic Particles in a Viscous LiquidInduced by the Magnus Force

    Directory of Open Access Journals (Sweden)

    S.I. Denisov

    2016-10-01

    Full Text Available We study the unidirectional motion of spherical ferromagnetic particles suspended in a viscous liquid and subjected to the action of an external periodic force and a non-uniformly rotating magnetic field. In the case when the translational and rotational motions of particles are characterized by small Reynolds numbers, we propose a system of equations that describes their dynamics and that accounts for the influence of the Magnus force. Theoretical and numerical analysis of the steady-state solution of this system of equations is carried out, the average velocity of unidirectional (drift motion of particles is calculated, and the dependence of the average velocity on the characteristics of particles, liquid, external force and magnetic field is studied.

  6. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer.

    Science.gov (United States)

    Chen, Qingming; Jin, Chao; Bao, Yuan; Li, Zhaohui; Li, Jianping; Lu, Chao; Yang, Liang; Li, Guifang

    2014-02-10

    We propose and experimentally demonstrate a novel ultra-long range and sensitive distributed fiber vibration sensor. Only one unidirectional Mach-Zehnder interferometer (MZI) is employed in this scheme as the sensing element. In this sensor structure, we utilize chromatic dispersion-induced walk-off effect between the vibration signals sensed by two distributed feedback (DFB) lasers at different wavelengths to locate the vibration position. Vibration signals with frequencies up to 9 MHz can be detected and the spatial resolution of 31 m is achieved over 320 km of the standard single mode fiber. Monitoring multiple vibration sources can also be realized using this scheme.

  7. Thermal relaxation of interacting fine magnetic particles - field-cooled and zero-field-cooled magnetization variation

    Energy Technology Data Exchange (ETDEWEB)

    Jing Ju Lu; Hong Yuan Deng; Huei Li Huang E-mail: hlhuang@phys.ntu.edu.tw

    2000-02-01

    Dipole interaction makes average energy barrier of magnetic fine particles for thermal relaxation reduced while the corresponding blocking temperature distribution is a function of both dipolar interaction strength and particle size distribution of the system. Flatness and fast drop-off of the {lambda}-shape behavior of the field-cooled and zero-field-cooled magnetization varies with both dipolar intereaction strength and field level applied.

  8. Zero-field-cooled and field-cooled magnetizations and magnetic susceptibility of itinerant ferromagnet SrRuO3

    Institute of Scientific and Technical Information of China (English)

    侯登录; 姜恩永; 白海力

    2002-01-01

    Zero-field-cooled (ZFC) magnetization, field-cooled (FC) magnetization, ac magnetic susceptibility and majorhysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from5 to 160 K. An empirical model is proposed to calculate the measured ZFC magnetization. The result indicates that thecalculated ZFC magnetization compares well with the measured one. Based on the generalized Preisach model, boththe ZFC and FC curves are reproduced by numerical simulations. The critical temperature and critical exponents aredetermined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinityof the point of phase transition.

  9. Magnetization of the joint-free high temperature superconductor (REBa2Cu3Ox coil by field cooling

    Directory of Open Access Journals (Sweden)

    Yali Zheng

    2017-09-01

    Full Text Available Joint-free (REBa2Cu3Ox (REBCO coil based on ‘wind-and-flip’ technique has been developed to generate a persistent magnetic field without power supply. This paper is to study the magnetization characteristics of the joint-free REBCO coil by field cooling, in order to trap higher field. A joint-free pancake coil is wound by REBCO tapes and the field cooling magnetization test is performed on it. An approximate numerical model based on H-formulation is built for this coil to analyze its magnetization behavior, which is validated by the experimental results Analysis show that a persistent direct current is induced in the coil during the field cooling operation, which generates the trapped field. The induced current of the joint-free coil shows an intrinsic non-uniform distribution among turns. Increasing the magnetization field and critical current of REBCO conductors can considerably increase the trapped field. But the trapping factor (the rate of trapped field to background magnetization field reaches a maximum value (60 % for the test coil. This maximum value is an intrinsic characteristics for a fabricated coil, which only depends on the coil’s geometry structure. With a same usage of REBCO tapes, the trapping factor can be improved significantly by optimizing the coil structure to multiple pancakes, and it can approach 100 %.

  10. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  11. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  12. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented....

  13. Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling

    Science.gov (United States)

    Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.

    2016-01-01

    The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling. PMID:27248368

  14. Unidirectional Rotation of Molecules Measured by the Rotational Doppler Effect

    Directory of Open Access Journals (Sweden)

    Prior Yehiam

    2013-03-01

    Full Text Available A pair of linearly polarized pump pulses induce field-free unidirectional molecular rotation, which is detected by a delayed circularly polarized probe. The polarization and spectrum of the probe are modified by the interaction with the molecules, in accordance with the Rotational Doppler Effect.

  15. Unsteady unidirectional micropolar fluid flow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particula...

  16. Magnetic investigation of zero-field-cooled dextran-coated magnetite-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil)]. E-mail: pcmor@unb.br; Santos, J.G. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Silveira, L.B. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Nunes, W.C. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Sinnecker, J.P. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Novak, M.A. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil)

    2005-03-15

    In this study, we investigate the temperature dependence of the zero-field-cooled magnetization of a quasi-monodisperse dextran-coated magnetite-based magnetic fluid. The well-defined maximum in the magnetization versus temperature curve and its downshift with the applied external field is explained by a simple model considering thermally activated dynamics of the nanoparticles magnetic moment and the temperature dependence of the saturation magnetization.

  17. Unidirectional reflectionless light propagation at exceptional points

    Directory of Open Access Journals (Sweden)

    Huang Yin

    2017-05-01

    Full Text Available In this paper, we provide a comprehensive review of unidirectional reflectionless light propagation in photonic devices at exceptional points (EPs. EPs, which are branch point singularities of the spectrum, associated with the coalescence of both eigenvalues and corresponding eigenstates, lead to interesting phenomena, such as level repulsion and crossing, bifurcation, chaos, and phase transitions in open quantum systems described by non-Hermitian Hamiltonians. Recently, it was shown that judiciously designed photonic synthetic matters could mimic the complex non-Hermitian Hamiltonians in quantum mechanics and realize unidirectional reflection at optical EPs. Unidirectional reflectionlessness is of great interest for optical invisibility. Achieving unidirectional reflectionless light propagation could also be potentially important for developing optical devices, such as optical network analyzers. Here, we discuss unidirectional reflectionlessness at EPs in both parity-time (PT-symmetric and non-PT-symmetric optical systems. We also provide an outlook on possible future directions in this field.

  18. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  19. Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongmook; Lim, Manho; Chung, Young Keun; Kang, Youn K. [Seoul National Univ., Seoul (Korea, Republic of); Park, Jaeheung [Pusan National Univ., Busan (Korea, Republic of); Noh, Hee Chang [Sangmyung Univ., Seoul (Korea, Republic of)

    2014-02-15

    Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2''-terpyridine) (2,2':6',2-terpyridine)][PF6]2 (TQ{sub T}), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through π-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitalsto-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and Q{sup -} state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

  20. Broadband unidirectional cloak designed by eikonal theory.

    Science.gov (United States)

    Liu, Xuan; Wu, Xiaojia; Zhang, Luoning; Zhou, Jing

    2015-11-02

    A method for designing optical device is derived based on the eikonal theory, which could obtain the eikonal distribution on a curved surface according to the propagation characteristics of the subsequent light wave. Then combining with the phase matching condition, we designed a broadband unidirectional cloak. Different from the reported unidirectional cloaks, the proposed one could be used for coherent wave and has continuous broadband performance. Moreover, it has three cloaked regions. Full-wave simulation results verify the properties of the cloak.

  1. Multicast Protocol for Uni-Directional Networks

    Institute of Scientific and Technical Information of China (English)

    黄皓; 陈贵海; 谢立; 孙钟秀

    2000-01-01

    A very inexpensive receive-only satellite receiver can receive high bandwidth traffic from a feeder. Therefore the connection between the feeder and the receiver is uni-directional. The existing routing protocols, such as Link-State and Distance-Vector, are designed on the premise that any links are bidirectional and they cannot handle the uni-directional links. In this paper, a dynamic multicast routing protocol is proposed, which can handle uni-directional networks. This protocol can also adapt to the dynamic change of the topology of the network and has good scalability. A formal description of the protocol by Petri net is given. Liveness,deadlock free and other properties of the protocol are proved.

  2. Broadband active tuning of unidirectional scattering from nanoantenna using combined radially and azimuthally polarized beams

    CERN Document Server

    Xi, Zheng; Adam, A J L; Urbach, H P

    2015-01-01

    We propose an approach to actively tune the scattering pattern of a Mie-type spherical antenna. The scheme is based on separate control over the induced electric dipole and induced magnetic dipole using two coherent focused beams of radial polarization and azimuthal polarization. By carefully tuning the amplitude and phase relation of the two beams, a broadband unidirectional scattering can be achieved, even at the wavelength where the antenna scatters most efficiently. By moving the focus of one beam, a drastic switch of the unidirectional scattering can be observed. Such scheme enables the design of ultra-compact optical switches and directional couplers based on nanoantennas.

  3. Modelling unidirectional liquid spreading on slanted microposts

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Blow, Matthew L.; Yeomans, Julia M.

    2013-01-01

    A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts...

  4. Negative magnetization and zero-field cooled exchange bias effect in Co0.8Cu0.2Cr2O4 ceramics

    Science.gov (United States)

    Wang, L. G.; Zhu, C. M.; Tian, Z. M.; Luo, H.; Bao, D. L. G. C.; Yuan, S. L.

    2015-10-01

    The negative magnetization and zero-field cooled exchange bias (ZFC EB) effect are observed in Co0.8Cu0.2Cr2O4 polycrystalline ceramics. 20% Cu substitution for Co in CoCr2O4 leads to the evident magnetization reversal at the compensation temperature (Tcomp ˜ 50 K) with applied magnetic field of 500 Oe. Besides, Tcomp decreases monotonously with increasing applied field, and the negative magnetization finally disappears when the field increases to 9000 Oe. Different temperature dependence of sublattice magnetization at different crystallographic sites is proved to induce the magnetization reversal. In addition, ZFC EB effect can be tuned by measuring temperature and presents the maximum of exchange bias field (HEB) with ˜2300 Oe at 50 K. This unconventional EB effect can be attributed to the coupling interaction between the two sublattices.

  5. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    Science.gov (United States)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  6. Unidirectional rotary motion in achiral molecular motors.

    Science.gov (United States)

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  7. [Capsular retensioning in anterior unidirectional glenohumeral instability].

    Science.gov (United States)

    Benítez Pozos, Leonel; Martínez Molina, Oscar; Castañeda Landa, Ezequiel

    2007-01-01

    To present the experience of the Orthopedics Service PEMEX South Central Hospital in the management of anterior unidirectional shoulder instability with an arthroscopic technique consisting of capsular retensioning either combined with other anatomical repair procedures or alone. Thirty-one patients with anterior unidirectional shoulder instability operated-on between January 1999 and December 2005 were included. Fourteen patients underwent capsular retensioning and radiofrequency, and in 17 patients, capsular retensioning was combined with suture anchors. Patients with a history of relapsing glenohumeral dislocations and subluxations, with anterior instability with or without associated Bankart lesions were selected; all of them were young. The results were assessed considering basically the occurrence of instability during the postoperative follow-up. No cases of recurring instability occurred. Two cases had neuroma and one experienced irritation of the suture site. Six patients had residual limitation of combined lateral rotation and abduction movements, of a mean of 10 degrees compared with the healthy contralateral side. The most frequent incident was the leak of solutions to the soft tissues. Capsular retensioning, whether combined or not with other anatomical repair techniques, has proven to result in a highly satisfactory rate of glenohumeral stabilization in cases of anterior unidirectional instabilities. The arthroscopic approach offers the well-known advantages of causing less damage to the soft tissues, and a shorter time to starting rehabilitation therapy and exercises.

  8. Relationship between the magnetic field distribution and attractive force of single domain YBCO bulk under different field cooling processes

    Institute of Scientific and Technical Information of China (English)

    Yang Wan-Min; Zhou Lian; Feng Yong; Zhang Ping-Xiang; R. Nicolsky

    2004-01-01

    The levitation forces under different field cooling states were measured at 77K by changing the field cooling distance 0Zfc between a YBCO bulk and a permanent magnet. It is found that the relationship between the absolute maximum attractive force (Fmaf) and the corresponding gap distance (Zmaf) to Fmaf can be well described by exponential laws as a function of Zfc, which allow us to predict these values according to Zfc. It is also found that the distance between the Z0fa (gap distance corresponding to the zero force) and Zmaf in the ascending process is a constant value, which is closely related to the constant reduction factor of the axial component of flux density along the axial line of the magnet if Zmaf - Z0fa is a constant value. These results are very interesting for fundamental research and helpful in practical designing and applications.

  9. Optical isolation via unidirectional resonant photon tunneling

    CERN Document Server

    Moccia, Massimo; Galdi, Vincenzo; Alu', Andrea; Engheta, Nader

    2013-01-01

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly-polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  10. A unidirectional Er3+-doped fiber ring laser without isolator

    DEFF Research Database (Denmark)

    Shi, Yuan; Sejka, Milan; Poulsen, Ove

    1995-01-01

    An Er3+-doped fiber ring laser with unidirectional operation without optical isolator has been investigated for different cavity conditions. The fiber ring laser cavity is built in such a way that the optical fields propagating in the two directions suffer different losses. As a consequence, the ......, the laser oscillation appears in a quasi-unidirectional form. By incorporating a fiber pigtailed bandpass filter to enhance mode competition, a purely unidirectional tunable fiber ring laser is obtained with high efficiency and broad tunability...

  11. Unidirectional Quantum Remote Control:Teleportation of Control-State

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-Zhuang; GU Yong-Jian; WU Gui-Chu; GUO Guang-Can

    2003-01-01

    We investigate the problem of teleportation of unitary operations by unidirectional control-state telepor-tation and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphismbetween operation and state. It allows us to store a unitary operation in a control state, thereby teleportation of theunitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probabilityof success for implementing an arbitrary unitary operation on arbitrary M-qubit state by unidirectional control-stateteleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation.

  12. Unidirectional Quantum Remote Control: Teleportation of Control-State

    Institute of Scientific and Technical Information of China (English)

    ZHENGYi-Zhuang; GUYong-Jian; WUGui-Chu; GUOGuang-Can

    2003-01-01

    We investigate the problem of teleportation of unitary operations by unidirectional control-state telepor-ration and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphism between operation and state. It allows us to store a unitary operation in a control state, thereby teleportatSon of the unitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probability of success for implementing an arbitrary unitary operation on arbitrary A~-qubit state by unidirectional control-state teleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation.

  13. Compressive strength of continuous fiber unidirectional composites

    Science.gov (United States)

    Thompson, Ronald H.

    Dow and Rosen's work in 1965 formed an intellectual framework for compressive strength of unidirectional composites. Compressive strength was explained in terms of micro-buckling, in which filaments are beams on an elastic foundation. They made simplifying assumptions, with a two dimensional idealization and linearized material properties. This study builds on their model, recognizing that the shear mode of instability drives unidirectional compressive strength. As a necessary corollary, the predictive methods developed in this study emphasize correct representation of composite shear stiffness. Non-linear effects related to matrix material properties, fiber misalignment, three dimensional representation, and thermal prestrains are taken into account. Four work streams comprise this study: first, development of a closed form analytical model; second, empirical methods development and model validation; third, creation and validation of a unit cell finite element model; and fourth, a patent application that leverages knowledge gained from the first three work streams. The analytical model characterizes the non-linearity of the matrix both with respect to shear and compressive loading. This improvement on existing analyses clearly shows why fiber modulus affects composite shear instability. Accounting for fiber misalignment in the model and experimental characterization of the fiber misalignment continuum are important contributions of this study. A simple method of compressive strength measurement of a small diameter monofilament glass-resin composite is developed. Sample definition and preparation are original, and necessary technologies are easily assessable to other researchers in this field. This study shows that glass fiber composites have the potential for high compressive strength. This potential is reached with excellent fiber alignment and suitable matrix characteristics, and results are consistent with model predictions. The unit cell three dimensional

  14. Unidirectional cell crawling model guided by extracellular cues.

    Science.gov (United States)

    Wang, Zhanjiang; Geng, Yuxu

    2015-03-01

    Cell migration is a highly regulated and complex cellular process to maintain proper homeostasis for various biological processes. Extracellular environment was identified as the main affecting factors determining the direction of cell crawling. It was observed experimentally that the cell prefers migrating to the area with denser or stiffer array of microposts. In this article, an integrated unidirectional cell crawling model was developed to investigate the spatiotemporal dynamics of unidirectional cell migration, which incorporates the dominating intracellular biochemical processes, biomechanical processes and the properties of extracellular micropost arrays. The interpost spacing and the stiffness of microposts are taken into account, respectively, to study the mechanism of unidirectional cell locomotion and the guidance of extracellular influence cues on the direction of unidirectional cell crawling. The model can explain adequately the unidirectional crawling phenomena observed in experiments such as "spatiotaxis" and "durotaxis," which allows us to obtain further insights into cell migration.

  15. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  16. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers

    Science.gov (United States)

    Avci, Can Onur; Garello, Kevin; Ghosh, Abhijit; Gabureac, Mihai; Alvarado, Santos F.; Gambardella, Pietro

    2015-07-01

    Magnetoresistive effects are usually invariant on inversion of the magnetization direction. In non-centrosymmetric conductors, however, nonlinear resistive terms can give rise to a current dependence that is quadratic in the applied voltage and linear in the magnetization. Here we demonstrate that such conditions are realized in simple bilayer metal films where the spin-orbit interaction and spin-dependent scattering couple the current-induced spin accumulation to the electrical conductivity. We show that the longitudinal resistance of Ta|Co and Pt|Co bilayers changes when reversing the polarity of the current or the sign of the magnetization. This unidirectional magnetoresistance scales linearly with current density and has opposite sign in Ta and Pt, which we associate with the modification of the interface scattering potential induced by the spin Hall effect in these materials. Our results suggest a route to control the resistance and detect magnetization switching in spintronic devices using a two-terminal geometry, which applies also to heterostructures including topological insulators.

  17. Auxin-driven patterning with unidirectional fluxes.

    Science.gov (United States)

    Cieslak, Mikolaj; Runions, Adam; Prusinkiewicz, Przemyslaw

    2015-08-01

    The plant hormone auxin plays an essential role in the patterning of plant structures. Biological hypotheses supported by computational models suggest that auxin may fulfil this role by regulating its own transport, but the plausibility of previously proposed models has been questioned. We applied the notion of unidirectional fluxes and the formalism of Petri nets to show that the key modes of auxin-driven patterning-the formation of convergence points and the formation of canals-can be implemented by biochemically plausible networks, with the fluxes measured by dedicated tally molecules or by efflux and influx carriers themselves. Common elements of these networks include a positive feedback of auxin efflux on the allocation of membrane-bound auxin efflux carriers (PIN proteins), and a modulation of this allocation by auxin in the extracellular space. Auxin concentration in the extracellular space is the only information exchanged by the cells. Canalization patterns are produced when auxin efflux and influx act antagonistically: an increase in auxin influx or concentration in the extracellular space decreases the abundance of efflux carriers in the adjacent segment of the membrane. In contrast, convergence points emerge in networks in which auxin efflux and influx act synergistically. A change in a single reaction rate may result in a dynamic switch between these modes, suggesting plausible molecular implementations of coordinated patterning of organ initials and vascular strands predicted by the dual polarization theory.

  18. Significant flux trapping in single grain GdBCO bulk superconductor under off-axis field cooled magnetization

    Science.gov (United States)

    Li, Zhi; Ida, Tetsuya; Miki, Motohiro; Teshima, Hidekazu; Morita, Mitsuru; Izumi, Mitsuru

    2017-03-01

    A single grain bulk high-temperature superconductor (HTS) exhibits intensified flux trapping performance upon field cooled magnetization. The world record of trapped flux is 17.6 T achieved by using stacked two-fold GdBCO bulks. However, the majority of magnetization studies focused on the magnetization along the crystallographic c-axis. In the present study, we clarify the flux trapping performance under field cooled magnetization using an off-axis magnetic field with respect to the c-axis. The results show that the trapped flux is almost polarized along the applied field as expected. This tendency remains up to a high off-axis angle θ around 60°. It is worth mentioning that, with θ of 30°, the maximum trapped flux component B // max parallel to the c-axis significantly remains more than 96% of 1.6 T which occurs under on-axis magnetization. Meanwhile, the angular dependence of the c-axis parallel component exhibits that observed flux density is higher than that expected from 1.6 cosθ. In addition, to visualize the flux line upon magnetization at θ of 90°, we successfully demonstrate the continuous flux line trace using steel wires; different trapped flux behaviour appears when applied field penetrates the bulk through the growth sectors centre and along the growth sector boundary, respectively. We interpret these results may come from the microstructure as a result of melt growth. It is highly emphasized that the off-axis magnetization with the finite inclination angle is quite useful for introducing into the design of HTS applications.

  19. Determination of effective thermal expansion coefficients of unidirectional fibrous nanocomposites

    Science.gov (United States)

    Dai, Ming; Schiavone, Peter; Gao, Cun-Fa

    2016-10-01

    We present an efficient numerical scheme (based on complex variable techniques) to calculate the effective thermal expansion coefficients of a composite containing unidirectional periodic fibers. Moreover, the mechanical behavior of the fibers incorporates interface effects allowing the ensuing analytical model of the composite to accommodate deformations at the nanoscale. The resulting `nanocomposite' is subjected to a uniform temperature variation which leads to periodic deformations within the plane perpendicular to the fibers and uniform deformations along the direction of the fibers. These deformation fields are determined by analyzing a representative unit cell of the composite subsequently leading to the corresponding effective thermal expansion coefficients. Numerical results are illustrated via several physical examples. We find that the influence of interface effects on the effective thermal expansion coefficients (in particular that corresponding to the transverse direction in the plane perpendicular to the fibers) decays rapidly as the fibers become harder. In addition, by comparing the results obtained here with those from effective medium theories, we show that the latter may induce significant errors in the determination of the effective transverse thermal expansion coefficient when the fibers are much softer than the matrix and the fiber volume fraction is relatively high.

  20. The effect of randomly oriented anisotropy on the zero-field-cooled magnetization of a non-interacting magnetic nanoparticle assembly

    Energy Technology Data Exchange (ETDEWEB)

    Fang, W.X. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of condensed matter physics, Sun Yat-sen University, Guangzhou 510275 (China); Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China); He, Z.H. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of condensed matter physics, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: stshzh@mail.sysu.edu.cn; Chen, D.H.; Shao, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of condensed matter physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-12-15

    A model based on localized partition function and master equation was set up to calculate the zero-field-cooled (ZFC) and field-cooled (FC) curves of a non-interacting magnetic nanoparticle assembly with randomly oriented anisotropy. The peak temperature of the ZFC curve corresponds to the highest energy barrier that acts against the unblocking process, and could be described well by an equation covering the heating rate effect. The predicted H{sup 2/3} field dependence of the peak temperature is in good agreement with published results.

  1. Interface-induced spontaneous positive and conventional negative exchange bias effects in bilayer La0.7Sr0.3MnO3/Eu0.45Sr0.55MnO3 heterostructures.

    Science.gov (United States)

    Murthy, J Krishna; Kumar, P S Anil

    2017-07-31

    We report zero-field-cooled spontaneous-positive and field-cooled conventional-negative exchange bias effects in epitaxial bilayer composed of La0.7Sr0.3MnO3 (LSMO) with ferromagnetic (FM) and Eu0.45Sr0.55MnO3 (ESMO) with A-type antiferromagnetic (AF) heterostructures respectively. A temperature dependent magnetization study of LSMO/ESMO bilayers grown on SrTiO3 (001) manifest FM ordering (TC) of LSMO at ~320 K, charge/orbital ordering of ESMO at ~194 K and AF ordering (TN) of ESMO at ~150 K. The random field Ising model has demonstrated an interesting observation of inverse dependence of exchange bias effect on AF layer thickness due to the competition between FM-AF interface coupling and AF domain wall energy. The isothermally field induced unidirectional exchange anisotropy formed at the interface of FM-LSMO layer and the kinetically phase-arrested magnetic phase obtained from the metamagnetic AF-ESMO layer could be responsible for the spontaneous exchange bias effect. Importantly, no magnetic poling is needed, as necessary for the applications. The FM-AF interface exchange interaction has been ascribed to the AF coupling with [Formula: see text] ([Formula: see text], coupling constant between AF spins) for the spontaneous positive hysteresis loop shift, and the field-cooled conventional exchange bias has been attributed to the ferromagnetically exchanged interface with [Formula: see text] (coupling constant between FM spins).

  2. Investigation the positive moments on the M-T curve of YBCO films measured by using zero-field cooling

    Institute of Scientific and Technical Information of China (English)

    郭树权; 王凤林; 周岳亮; 赵柏儒; 高炬

    2002-01-01

    The superconducting transition of a YBCO film was measured by a MPMS-5 superconducting quantum interference device magnetometer, using a zero-field cooling process. The experimental results have shown that there are positive magnetic moment and positive peak on the M-T curve. We have proven that these anomalous behaviours are due to measurement error, but not phase transition. We have proposed a simple formula to explain and to calculate quantitatively these anomalous behaviours. It was found that, provided dH > 0.59Hp (dH is the inhomogeneous field of the remnant field, Hp is the fully penetrated field of the measured sample), the experimental results will be positive,not negative.If dH ≥ 2Hp, the experimental results will be symmetrical to their real negative values. From the M-T curve, which h as positive moment and positive peak below Tc (superconducting transition temperature), we found a new possible method to obtain Hp of the measured sample.

  3. Effect of field cooling process and ion-beam bombardment on the exchange bias of NiCo/(Ni, Co)O bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Lin, K.-W., E-mail: kwlin@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Liu, H.-Y. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wei, D.-H. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Li, G.J. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Pong, P.W.T., E-mail: ppong@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong)

    2014-11-03

    The research on exchange coupled ferromagnetic/antiferromagnetic (FM/AF) bilayers has been the foundation of spintronic applications such as hard disk reading heads and spin torque oscillators. In order to further explore the exchange bias behavior of NiCo/(Ni, Co)O bilayers, effect of field cooling process, magnetic angular dependence, and ion-beam bombardment was investigated. The difference in film composition resulted in remarkable distinction in crystalline structures and domain patterns. The exchange bias field (H{sub ex}) in the bilayer systems exhibited a strong angular dependence. The negative H{sub ex} after a field cooling process indicated that the polarity of H{sub ex} can be defined by aligning the magnetization orientation of the FM NiCo layer with the applied field. Moreover, enhanced exchange bias effect was observed in the NiCo/(Ni, Co)O bilayers that resulted from the surface of the (Ni, Co)O layers bombarded with different Ar{sup +} ion-beam energies using End-Hall voltages from 0 V to 150 V. The interface spin structures as well as the surface domain patterns were altered by the ion-beam bombardment process. These results indicated that the exchange bias field of NiCo/(Ni, Co)O bilayer systems could be tailored by field cooling process, angular dependence of magnetic properties, and post ion-beam bombardment. - Highlights: • Strong angular dependence was observed in the exchange bias of NiCo/(Ni, Co)O bilayers. • The field cooling process resulted in negative exchange bias. • Moderate ion-beam bombardment on (NiCo)O layers enhanced exchange bias at 298 K. • High-energy ion bombardment strengthened the exchange coupling in field cooled bilayer. • The structural deformation was responsible for the change in magnetic properties.

  4. Asymmetric positioning of Cas1–2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system

    Science.gov (United States)

    Yoganand, K.N.R.; Sivathanu, R.; Nimkar, Siddharth; Anand, B.

    2017-01-01

    CRISPR–Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The universally conserved Cas1 and Cas2 form an integration complex that is known to mediate the protospacer invasion into the CRISPR array. However, the mechanism by which this protospacer fragment gets integrated in a directional fashion into the leader proximal end is elusive. Here, we employ CRISPR/dCas9 mediated immunoprecipitation and genetic analysis to identify Integration Host Factor (IHF) as an indispensable accessory factor for spacer acquisition in Escherichia coli. Further, we show that the leader region abutting the first CRISPR repeat localizes IHF and Cas1–2 complex. IHF binding to the leader region induces bending by about 120° that in turn engenders the regeneration of the cognate binding site for protospacer bound Cas1–2 complex and brings it in proximity with the first CRISPR repeat. This appears to guide Cas1–2 complex to orient the protospacer invasion towards the leader-repeat junction thus driving the integration in a polarized fashion. PMID:27899566

  5. Unidirectional Invisibility and Nonreciprocal Transmission in Two and Three Dimensions

    CERN Document Server

    Loran, Farhang

    2016-01-01

    We explore the phenomenon of unidirectional invisibility in two dimensions, examine its optical realizations, and discuss its three-dimensional generalization. In particular we construct an infinite class of unidirectionally invisible optical potentials that describe the scattering of normally incident transverse electric waves by an infinite planar slab with refractive-index modulations along both the normal directions to the electric field. A by-product of this investigation is a demonstration of nonreciprocal transmission in two dimensions. To elucidate this phenomenon we state and prove a general reciprocity theorem that applies to quantum scattering theory of real and complex potentials in two and three dimensions.

  6. Broadband unidirectional behavior of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin

    2017-01-01

    High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.

  7. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    Damage progression in unidirectional glass fibre reinforced composites exposed to tension fatigue is investigated, and a quantitative explanation is given for the observed stiffness loss. The stiffness degradation during fatigue is directly related to fibre breaks in the load-carrying axial fibre...... needs further attention and understanding in order to improve the fatigue life-time of glass fibre reinforced composites....... bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism...

  8. Unidirectional optical Bloch oscillations in asymmetric waveguide arrays.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2011-11-15

    We present an analytical proof of the existence of unidirectional optical Bloch oscillations in a waveguide array system. It is shown that the presence of nonreciprocity in the system allows for a complete normal-mode dephasing in one of the propagation directions, resulting in a unidirectional breakdown in Bloch oscillations. A model system consisting of an array of transversely magnetized asymmetric Si/SiO2 waveguides with a magneto-optic cover layer is presented. Large index contrasts between film and cover are critical for practical realizations.

  9. Routes to complex dynamics in a ring of unidirectionally coupled systems.

    Science.gov (United States)

    Perlikowski, P; Yanchuk, S; Wolfrum, M; Stefanski, A; Mosiolek, P; Kapitaniak, T

    2010-03-01

    We study the dynamics of a ring of unidirectionally coupled autonomous Duffing oscillators. Starting from a situation where the individual oscillator without coupling has only trivial equilibrium dynamics, the coupling induces complicated transitions to periodic, quasiperiodic, chaotic, and hyperchaotic behavior. We study these transitions in detail for small and large numbers of oscillators. Particular attention is paid to the role of unstable periodic solutions for the appearance of chaotic rotating waves, spatiotemporal structures, and the Eckhaus effect for a large number of oscillators. Our analytical and numerical results are confirmed by a simple experiment based on the electronic implementation of coupled Duffing oscillators.

  10. Visualization of unidirectional optical waveguide using topological photonic crystals made of dielectric material

    CERN Document Server

    Yang, Yuting; Xu, Tao; Wang, Hai-Xiao; Jiang, Jian-Hua; Hu, Xiao; Hang, Zhi Hong

    2016-01-01

    The introduction of topology unravels a new chapter of physics. Topological systems provide unique edge/interfacial quantum states which are expected to contribute to the development of novel spintronics and open the door to robust quantum computation. Optical systems can also benefit from topology. Engineering locally in real space a honeycomb photonic crystal with double Dirac cone in its photonic dispersion, topology transition in photonic band structure is induced and a pseudospin unidirectional optical channel is created and demonstrated by the backscattering immune electromagnetic transportation. The topological photonic crystal made of dielectric material can pave the road towards steering light propagations and contribute to novel communication technology.

  11. Thermal and magnetic behaviors of a melt-textured superconducting bulk magnet in the zero-field-cooling magnetizing process

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T [Faculty of Engineering, Niigata University, 8050 Ikarashi-Nino-cho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K [Ashikaga Department of Electrical and Electronic Engineering, Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Fujishiro, H; Noto, K [Faculty of Engineering, Iwate University, 3-4-5 Ueda, Morioka, Iwate 020-8551 (Japan)], E-mail: okat@eng.niigata-u.ac.jp

    2009-06-15

    The heat generation and magnetic field trapping behaviors of the melt-textured single-domain Sm-Ba-Cu-O bulk superconductor have been precisely investigated in the zero-field-cooling magnetizing processes (ZFC). The temperature and magnetic flux density were simultaneously measured in the temperature range of 50-60 K. Since the invasion of magnetic flux is suppressed by the superconducting pinning effect, the applied magnetic field is not supplied to the whole of the sample. Therefore, the trapped field distributions consequently exhibit trapezoid shapes. According to the balance of heat generation and draining, the temperature profiles show us distinctive behaviors of magnetic fluxes. Both the temperature and the magnetic flux density kept increasing even after the external magnetic field has stopped growing at 5 T. This is attributed to the flux creeping phenomenon which propagates from the periphery to the center portion of the sample like a snow slide. The highest temperature rise due to the flux motion reached 7.5 K even when the sample was magnetized at a slow sweeping rate of 5.06 mT s{sup -1}. As the temperature profiles were different between the ascending and descending field processes, it is suggested that the magnetic fluxes invade in and diffuse out in different heating manners between the processes. This assists the hypothesis that the time while the moving fluxes heat the sample strongly affects the total amount of heat generation, which acts contrary to the FC case. This behavior implies that the improvements of the heat propagation property of the HTS bulk material by embedding metallic membranes and more powerful/efficient cooling systems must suppress the temperature increases and enhance the field trapping abilities.

  12. Ultrafast ignition of a uni-directional molecular motor

    Directory of Open Access Journals (Sweden)

    Feringa Ben L.

    2013-03-01

    Full Text Available Light-driven molecular motors convert light into mechanical energy via excited state reactions. In this work we follow sub-picosecond primary events in the cycle of a two-stroke unidirectional motor by fluorescence up-conversion and transient absorption.

  13. Mining Maximal Frequent Patterns in a Unidirectional FP-tree

    Institute of Scientific and Technical Information of China (English)

    SONG Jing-jing; LIU Rui-xin; WANG Yan; JIANG Bao-qing

    2006-01-01

    Becausemining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However,because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques:single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_ FP-Max further lowers the expense of time and space.

  14. Unidirectional light emission from low-index polymer microlasers

    Energy Technology Data Exchange (ETDEWEB)

    Schermer, M.; Wiersig, J., E-mail: jan.wiersig@ovgu.de [Institut für Theoretische Physik, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D-39016 Magdeburg (Germany); Bittner, S.; Singh, G.; Lebental, M., E-mail: lebental@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moléculaire, CNRS UMR 8537, Institut d' Alembert FR 3242, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan (France); Ulysse, C. [Laboratoire de Photonique et Nanostructures, CNRS UPR20, Route de Nozay, F-91460 Marcoussis (France)

    2015-03-09

    We report on experiments with deformed polymer microlasers that have a low refractive index and exhibit unidirectional light emission. We demonstrate that the highly directional emission is due to transport of light rays along the unstable manifold of the chaotic saddle in phase space. Experiments, ray-tracing simulations, and mode calculations show very good agreement.

  15. Unidirectional light emission from low-index polymer microlasers

    CERN Document Server

    Schermer, M; Singh, G; Ulysse, C; Lebental, M; Wiersig, J

    2014-01-01

    We report on experiments with deformed polymer microlasers that have a low refractive index and exhibit unidirectional light emission. We demonstrate that the highly directional emission is due to transport of light rays along the unstable manifold of the chaotic saddle in phase space. Experiments, ray-tracing simulations, and mode calculations show very good agreement.

  16. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  17. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Shiroguchi

    2011-04-01

    Full Text Available Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(BT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery

  18. Review on the development of unidirectional water-transport fibers and fabrics

    Directory of Open Access Journals (Sweden)

    Yaqian XIAO

    2017-08-01

    Full Text Available Unidirectional water-transport fabric is a kind of functional fiber assembles used to realize unidirectional conduction of liquid water, and it could be used for the design and development of clothing with the function of thermal-wet comfort. The development of unidirectional water-transport fabrics from the mechanism of the unidirectional water-transport, selection of fiber and preparation method is summarized. Five key methods to achieve the unidirectional water-transport effect have been reviewed, including the designing of fabric structure, chemical finishing, plasma treatment, electro spinning and photocatalytic treatment. According to the current problems in the research on unidirectional water-transfer fabric, it is proposed that multi-functional unidirectional water-transfer fabrics should be developed by post-treatment finishing technology with adding special functional additives to expand the practical applications.

  19. Mathematical simulation of heat transfer in unidirectional fiber composite

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2014-01-01

    Full Text Available In order to justify a reliable application domain for the calculation dependence which allows one to determine the effective heat conductivity coefficient of transversely isotropic unidirectional fiber composite in the plane perpendicular to the fibers; a mathematical model of heat transfer in representative elements of this composite's structure was created. An ordered arrangement of parallel fibers was considered for the case when their centers coincide with the nodes of cross sectional plane grid with square cells or cells in the form of equilateral triangles. Quantitative analysis of developed mathematical model was performed using the finite element method with controlled integrated computational error. Presented results are important for assessing the temperature condition and efficiency of heat-stressed structures made of unidirectional fiber composite.

  20. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Directory of Open Access Journals (Sweden)

    P. Perna

    2016-05-01

    Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  1. Exact solutions and physical analogies for unidirectional flows

    CERN Document Server

    Bazant, Martin Z

    2016-01-01

    Unidirectional flow, exemplified by Hagen-Poiseuille flow in a circular pipe, is the simplest phenomenon of fluid mechanics. Its mathematical description, the Dirichlet problem for Poisson's equation in two dimensions with constant forcing, arises in many physical contexts, such as the torsion of elastic beams, first solved by de Saint-Venant and extended to arbitrary domains by Muskhelishvilli. In this article, we unify and extend the literature by identifying fifteen physical analogies for unidirectional flow and describing their common mathematical structure. We show how to construct approximate geometries that admit exact solutions, by adding harmonic functions to quadratic forms or truncating eigenfunction expansions, and we discuss the difficulty of the evaluating the general contour-integral solution for a given geometry. We prove that the remarkable geometrical interpretation of Poiseuille flow in an equilateral pipe, as the product of the distances from an interior point to the sides, is only shared ...

  2. Unidirectional enhanced spontaneous emission with metallo-dielectric optical antenna

    Science.gov (United States)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Gong, Qihuang

    2017-07-01

    A metallo-dielectric system consisted of two coupled metallic nanoparticles embedded in a planar dielectric antenna is proposed to control the light emission from a localized emitter. Such design integrates the advantages of planar dielectric antenna and plasmonic antenna such as highly localized excitation enhancement, emission direction control, and high collection efficiency. For specific configurations, the antenna can achieve unidirectional and plasmon-enhanced emission from single emitters, simultaneously presenting remarkable collection efficiency up to 96%. We show that the unidirectional effect is mainly determined by the plasmon coupling effect of the plasmonic dimer. The dependences of directivity property on the antenna geometry and emitter's position are also discussed in detail. These findings provide a promising route to realize novel optical devices involving directional and surface enhanced spontaneous emission, e.g. bright single-photon sources with high collection efficiency.

  3. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators

    OpenAIRE

    Hramov, Alexander E.; ALEXEY A. KORONOVSKII

    2005-01-01

    A new behavior type of unidirectionally coupled chaotic oscillators near the generalized synchronization transition has been detected. It has been shown that the generalized synchronization appearance is preceded by the intermitted behavior: close to threshold parameter value the coupled chaotic systems demonstrate the generalized synchronization most of the time, but there are time intervals during which the synchronized oscillations are interrupted by non-synchronous bursts. This type of th...

  4. Unidirectional mechanism for reentrant activity generation in excitable media.

    Science.gov (United States)

    Sendiña-Nadal, Irene; de Castro, Maite; Sagués, Francesc; Gómez-Gesteira, Moncho

    2002-07-01

    A closed excitable pathway with one point-to-point connection is used to generate a rotating wave both in experiments using the photosensitive Belousov-Zhabotinsky system and numerically with an Oregonator reaction-diffusion model. By varying the excitability and geometrical properties of the medium, propagation can be made unidirectional or bidirectional, giving rise, respectively, to the existence or not of sustained reentrant activity in a closed excitable track.

  5. Exact solutions and physical analogies for unidirectional flows

    Science.gov (United States)

    Bazant, Martin Z.

    2016-06-01

    Unidirectional flow is the simplest phenomenon of fluid mechanics. Its mathematical description, the Dirichlet problem for Poisson's equation in two dimensions with constant forcing, arises in many physical contexts, such as the torsion of elastic beams, first solved by de Saint-Venant for complex shapes. Here the literature is unified and extended by identifying 17 physical analogies for unidirectional flow and describing their common mathematical structure. Besides classical analogies in fluid and solid mechanics, applications are discussed in stochastic processes (first passage in two dimensions), pattern formation (river growth by erosion), and electrokinetics (ion transport in nanochannels), which also involve Poisson's equation with nonconstant forcing. Methods are given to construct approximate geometries that admit exact solutions, by adding harmonic functions to quadratic forms or by truncating eigenfunction expansions. Exact solutions for given geometries are also derived by conformal mapping. We prove that the remarkable geometrical interpretation of Poiseuille flow in an equilateral triangular pipe (the product of the distances from an interior point to the sides) is only shared by parallel plates and unbounded equilateral wedges (with the third side hidden behind the apex). We also prove Onsager reciprocity for linear electrokinetic phenomena in straight pores of arbitrary shape and surface charge, based on the mathematics of unidirectional flow.

  6. Unidirectional transmission in non-symmetric gratings containing metallic layers.

    Science.gov (United States)

    Serebryannikov, A E; Ozbay, Ekmel

    2009-08-03

    The mechanism of achieving unidirectional transmission in the gratings, which only contain isotropic dielectric and metallic layers, is suggested and numerically validated. It is shown that significant transmission in one direction and nearly zero transmission in the opposite direction can be obtained in the same intrinsically isotropic gratings as those studied recently in A. E. Serebryannikov and E. Ozbay, Opt. Express 17, 278 (2009), but at a non-zero angle of incidence. The tilting, non-symmetric features of the grating and the presence of a metallic layer with a small positive real part of the index of refraction are the conditions that are necessary for obtaining the unidirectionality. Single- and multibeam operational regimes are demonstrated. The frequency and angle ranges of the unidirectional transmission can be estimated by using the conventional framework based on isofrequency dispersion contours and construction lines that properly take into account the periodic features of the interfaces, but should then be corrected because of the tunneling arising within the adjacent ranges. After proper optimization, this mechanism is expected to become an alternative to that based on the use of anisotropic materials.

  7. Chiral asymmetry driven by unidirectional magnetic anisotropy in Spin-Orbitronic systems

    Science.gov (United States)

    Perna, Paolo; Ajejas, Fernando; Maccariello, Davide; Guerrero, Ruben; Camarero, Julio; Miranda, Rodolfo

    2016-10-01

    Spin-Orbit (SO) effects of a ferromagnetic (FM) layer can be artificially modified by interfacial exchange coupling with an anti-ferro magnet (AFM). Non-symmetric magnetization reversals as well as asymmetric transport behaviors are distinctive signatures of the symmetry-breaking induced by such interfacial coupling. We present a complete picture of the symmetry of the SO effects by studying the magneto-transport properties of single FM film and FM/AFM systems (exchanged-biased bilayer and spin-valve structures) with specific in-plane magnetic anisotropy. Single FM films with a well-defined (two-fold) uniaxial magnetic anisotropy display symmetric magnetization reversals and magneto-resistance responses for any value and direction of the applied magnetic field. On the contrary, in the exchange-biased structures, the exchange interaction at the interface between the FM and AFM layers is responsible of chiral asymmetries in magnetization reversal pathways as well as in the magneto-resistance behaviors. Such asymmetries are directly related to the additional unidirectional (one-fold) magnetic anisotropy imposed by the AFM. In particular, chiral reversals and MR responses are found around the magnetization hard-axis direction. This has been shown in FM/AFM bilayer and spin-valve (where the MR outputs are related to different transport phenomena, i.e. anisotropic magneto-resistance and giant magneto-resistance respectively), hence indicating that the chiral asymmetries are intrinsic of systems with unidirectional anisotropy.

  8. Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness

    Directory of Open Access Journals (Sweden)

    Swaroop Narayanan Nair

    2017-08-01

    Full Text Available The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure.

  9. Unidirectional superscattering by multilayered cavities of effective radial anisotropy

    CERN Document Server

    Liu, Wei; Shi, Jianhua; Hu, Haojun

    2016-01-01

    We achieve unidirectional forward superscattering by multilayered spherical cavities which are effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies the Kerker's condition of simultaneous backward scattering suppression and forward scattering enhancement. We show such scattering pattern shaping can be obtained in both all-dielectric and plasmonic multilayered cavities, and believe that the mechanism we have revealed provides extra freedom for scattering shaping, which may play a significant role in many scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic two dimensional materials.

  10. Unidirectionality of an optically pumped far infrared ring laser

    Science.gov (United States)

    Matsushima, Kyoji; Higashida, Noriyoshi; Sokabe, Noburu; Ariyasu, Tomio

    1995-02-01

    An experimental and theoretical investigation has been made on the unidirectional operation of an optically pumped far infrared ring laser. A ring laser operating on the 119 μm line of CH 3OH experiences reversal of output direction in either case of (a) the pump frequency being tuned across the line center of the infrared pump transition or (b) the fir cavity being tuned across the far infrared line center. A model based on two-mode laser theory predicts the output directionality of the optically pumped fir ring laser.

  11. Dynamic states of a unidirectional ring of chen oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana [Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4440-452 Porto, Portugal up200802541@fc.up.pt (Portugal); Pinto, Carla M.A. [School of Engineering, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal cap@isep.ipp.pt (Portugal)

    2015-03-10

    We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.

  12. Reflecting and transmitting effect of a planar unidirectionally conducting screen

    Institute of Scientific and Technical Information of China (English)

    E Peng; JIANG Bin-hao

    2009-01-01

    The reflecting and transmitting effects of a planar unidirectionally conducting screen are analyzed based on the accurate closed-form expression for electric field of an arbitrarily oriented electric dipole. For a dipole oriented along the wire elements of the screen, the screen acts as a perfectly electrically conducting plane.For a dipole perpendicular to the wire elements, the fields reflected by the screen can be interpreted as the contribution of an image dipole and image transmission-line current source, while the transmitted field is arisen from image transmission-line source. The expressions of related surface waves are derived and can be compared with previous results.

  13. Steering Multiple Reverse Current into Unidirectional Current in Deterministic Ratchets

    Institute of Scientific and Technical Information of China (English)

    韦笃取; 罗晓曙; 覃英华

    2011-01-01

    Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the multiple reverse current to unidirectional current, an adaptive control law is presented inspired from the relation between multiple reversaJs current and the chaos-periodic/quasiperiodic transition of the transport velocity. The designed controller can stabilize the transport velocity of ratchets to steady state and suppress any chaos-periodic/quasiperiodic transition, namely, the stable transport in ratchets is achieved, which makes the current sign unchanged.

  14. Course revision: from unidirectional knowledge to dynamic application.

    Science.gov (United States)

    Phillippi, Julia C; Schorn, Mavis N

    2011-07-01

    There is a proliferation of educational technologies. Many nursing faculty want to incorporate new methods but lack information on best practices. The authors describe the course revision of an onsite course to move all unidirectional content transmission to an online course environment, thereby freeing up onsite course time for concept application and interactive quizzes using a classroom response system. The course revision had positive student evaluations and improved test scores. Students enjoyed being able to watch lectures when they were prepared to concentrate and felt the application of the content to patient care encouraged knowledge retention and application. This revision demonstrates effective use of a variety of teaching modalities to enhance student learning.

  15. Non-Hermitian interferometer: Unidirectional amplification without distortion

    Science.gov (United States)

    Li, C.; Jin, L.; Song, Z.

    2017-02-01

    A non-Hermitian interferometer can realize asymmetric transmission in the presence of imaginary potential and magnetic flux. Here, we propose a non-Hermitian dimer with an unequal hopping rate by an interferometerlike cluster in the framework of a tight-binding model. The intriguing features of this design are the wave-vector independence and unidirectionality of scattering, which amplify the wave packet without distortion and absorb the incoherent wave without reflection. The absorption relates to the system spectral singularities. The dynamical behaviors of the spectral singularities are also investigated analytically and numerically.

  16. New methods to provide exact solutions for some unidirectional motions of rate type fluids

    Directory of Open Access Journals (Sweden)

    Fetecau Corina

    2016-01-01

    Full Text Available Based on three immediate consequences of the governing equations corresponding to some unidirectional motions of rate type fluids, new motion problems are tackled for exact solutions. For generality purposes, exact solutions are developed for shear stress boundary value problems of generalized Burgers fluids. Such solutions, for which the shear stress instead of its differential expressions is given on the boundary, are lack in the literature for such fluids. Consequently, the first exact solutions for motions of rate type fluids induced by an infinite plate or a circular cylinder that applies a constant shear f or an oscillating shear f sin(ωt to the fluid are here presented. In addition, all steady-state solutions can easily be reduced to known solutions for second grade and Newtonian fluids.

  17. Reduced order prediction of rare events in unidirectional nonlinear water waves

    CERN Document Server

    Cousins, Will

    2015-01-01

    We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...

  18. Magnetically controllable circulator based on photonic crystal unidirectional waveguide consisting of metamaterials

    Science.gov (United States)

    Liang, Wenyao

    2016-09-01

    Unidirectional edge modes are achieved in gyromagnetic photonic crystals. The physical reason is attributed to magnetic resonance and broken time-reversal symmetry under external magnetic fields. These edge modes propagate only along a single direction, while the backward modes are completely suppressed. The unidirectional transmittance is nearly 100% and hardly affected by perfect electric conductor (PEC) defect. However, a PEC defect has sensitive influence on both the phase delay and pattern distribution of unidirectional edge modes. These properties hold promise in designing various unidirectional devices. Here we design a three port circulator with high transmission contrast and magnetic controllability simultaneously.

  19. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  20. Energy equipartition and unidirectional emission in a spaser nanolaser

    KAUST Repository

    Gongora, J. S. Totero

    2016-03-18

    A spaser is a nanoplasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and a resonant cavity replaced by a metallic nanostructure supporting localized plasmonic modes. By combining analytical results and first-principle numerical simulations, we provide a comprehensive study of the ultrafast dynamics of a spaser. Due to its highly-nonlinear nature, the spaser is characterized by a large number of interacting degrees of freedom, which sustain a rich manifold of different phases we discover, describe and analyze here. In the regime of strong interaction, the system manifests an irreversible ergodic evolution towards the configuration where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex-like lasing modes that are spinning on the femtosecond scale and whose direction of rotation is dictated by quantum noise. In this regime, the spaser acquires the character of a nanoparticle with an effective spin. This opens up a range of interesting possibilities for achieving unidirectional emission from a symmetric nanostructure, stimulating a broad range of applications for nanoplasmonic lasers as unidirectional couplers and random information sources.

  1. Multi-Use Unidirectional Proxy Re-Signatures

    CERN Document Server

    Libert, Benoît

    2008-01-01

    In 1998, Blaze, Bleumer, and Strauss suggested a cryptographic primitive named proxy re-signatures where a proxy turns a signature computed under Alice's secret key into one from Bob on the same message. The semi-trusted proxy does not learn either party's signing key and cannot sign arbitrary messages on behalf of Alice or Bob. At CCS 2005, Ateniese and Hohenberger revisited the primitive by providing appropriate security definitions and efficient constructions in the random oracle model. Nonetheless, they left open the problem of designing a multi-use unidirectional scheme where the proxy is able to translate in only one direction and signatures can be re-translated several times. This paper solves this problem, suggested for the first time 10 years ago, and shows the first multi-hop unidirectional proxy re-signature schemes. We describe a random-oracle-using system that is secure in the Ateniese-Hohenberger model. The same technique also yields a similar construction in the standard model (i.e. without rel...

  2. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  3. Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow.

    Science.gov (United States)

    Mead, Kristina S; Wiley, Megan B; Koehl, M A R; Koseff, Jeffrey R

    2003-01-01

    Many marine animals track odor plumes to their source. Although studies of plume-tracking behavior have been performed in unidirectional flow, benthic animals such as crustaceans live in coastal habitats characterized by waves. We compared signal encounters by odor-plume-tracking stomatopods (mantis shrimp) in wave-affected and unidirectional flow in a flume. Stomatopods are small enough that we can study their natural behavior in a flume. They sample odors by flicking their antennules. A thin sheet of laser light illuminating an odor plume labeled with dye [planar laser induced fluorescence (PLIF) technique] permitted us to measure the instantaneous odor concentration encountered by the animal's chemosensory organs (antennules) while it tracked the plume. We simultaneously measured behavior and the high-resolution odor signal at the spatial and temporal scale of the animal. We found that the navigating animal encountered odor filaments more often in wave-affected flow than in unidirectional flow. Odor filaments along the animals' antennules were significantly wider and of higher concentration in waves than in unidirectional flow.

  4. The effect of field cooling on a spin-chiral domain structure in a magnetoelectric helimagnet Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Y. [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Tanaka, Y.; Oura, M. [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Wakabayashi, Y. [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kimura, T., E-mail: kimura@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2015-06-15

    Spin-chiral domain structures near a cleaved crystal face of a magnetoelectric helimagnet, Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}, were examined after various magnetic and electric field-cooling procedures by means of the scanning resonant X-ray microdiffraction technique using circularly polarized X-rays. We have found that the application of a magnetic field (1–2 k Oe) during the field-cooling procedure stabilizes one of the handedness among the two spin-chiral states (left- or right-handed screw structure) and makes nearly a single spin-chiral domain in the vicinity of the cleaved crystal face. However, it makes the degree of the spin chirality spatially inhomogeneous even within a domain. We discuss the observed field-cooling effect in terms of possible formation of spin-chiral domains with “stripe-type” domain walls accompanied by randomly-distributed ferromagnetic islands. - Highlights: • Spin-chiral domain structures in a magnetoelectric helimagnet, Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}, were considerably affected by the field-cooling procedure. • The field-cooling with a small magnetic field stabilizes either a left- or right-handed spin-chiral state near a cleaved crystal face perpendicular to the helical axis.

  5. Competition and transformation of modes of unidirectional air waveguide

    Science.gov (United States)

    Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan

    2016-10-01

    In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.

  6. A Deformation Model for Dispersely Failing Elastoplastic Unidirectionally Reinforced Composites

    Science.gov (United States)

    Lagzdins, A.

    2001-09-01

    A calculation model is proposed for unidirectionally reinforced elastoplastic composites capable of gradually accumulating disperse microdamages under loading. The composite is assumed to be a homogeneous transversely isotropic solid. To describe its elastoplastic behavior, an incremental plasticity theory with a nonlinear combined hardening mechanism is invoked. At each point of the solid, its damage is characterized by a centrally symmetric scalar function on a unit sphere. This function is approximated by a fourth-rank tensor, which is used for describing the degradation of the elastic properties of the solid due to the accumulation of disperse microdamages. It is shown how to determine, using the known experimental data, all material constants appearing in the theoretical relations suggested.

  7. Quantitative validation of PEDFLOW for description of unidirectional pedestrian dynamics

    CERN Document Server

    Zhang, J; Chraibi, M; Loehner, R; Haug, E; Gawenat, B

    2015-01-01

    The results of a systematic quantitative validation of PEDFLOW based on the experimental data from FZJ are presented. Unidirectional flow experiments, totaling 28 different combinations with varying entry, corridor and exit widths, were considered. The condition imposed on PEDFLOW was that all the cases should be run with the same input parameters. The exit times and fundamental diagrams for the measuring region were evaluated and compared. This validation process led to modifications and enhancements of the model underlying PEDFLOW. The preliminary conclusions indicate that the results agree well for densities smaller than 3 m-2 and a good agreement is observed even at high densities for the corridors with bcor = 2.4 m, and bcor = 3.0 m. For densities between 1 and 2 m-2 the specific flow and velocities are underpredicted by PEDFLOW.

  8. Buckling Analysis of Unidirectional PolymerMatrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Jawad Kadhim Uleiwi

    2006-01-01

    Full Text Available This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.The results show that the maximum value of the critical load is (629.54 N/m at (? = 0? and (Vf = 40 % for the finite element method, while the minimum value of the critical load is (49 N/m at (? = 90? and (Vf = 10 % for the experimental results. The results also indicated that the maximum difference between the finite element analysis and experimental work is about (11 % at ( ? = 0? and (Vf = 40 %

  9. Physical and mechanical properties of unidirectional plant fibre composites

    DEFF Research Database (Denmark)

    Madsen, B.; Lilholt, H.

    2003-01-01

    Unidirectional composites were made from filament wound non-treated flax yarns and polypropylene foils. With increasing composite fibre weight fractions from 0.56 to 0.72, porosity fractions increased from 0.04 to 0.08; a theoretical model was fitted to the data in order to describe the composite...... volumetric interaction between contents of fibre, matrix and porosity. In the model two porosity components were proposed, a process governed component and a structurally governed component. The composite axial stiffness and strength were in the range 27-29 GPa and 251-321 MPa, respectively. A modified...... version of the "rule-of-mixtures", supplemented with parameters of composite porosity content and anisotropy of fibre properties, were developed to improve the prediction of composite tensile properties. (C) 2003 Elsevier Science Ltd. All rights reserved....

  10. Chaotic Microcavity Laser with Low threshold and Unidirectional Output

    CERN Document Server

    Song, Q H; Liu, B Y; Ho, S T; Fang, W; Solomon, G s

    2015-01-01

    Here we report lasing action in lima\\c{c}on-shaped GaAs microdisks with quantum dots (QDs) embedded. Although the intracavity ray dynamics is predominantly chaotic, high-$Q$ modes are concentrated in the region $\\chi > \\chi_c$ as a result of wave localization. Strong optical confinement by total internal reflection leads to very low lasing threshold. Our measurements show that all the lasing modes have output in the same direction, regardless of their wavelengths and intracavity mode structures. This universal emission direction is determined by directed phase space flow of optical rays in the open chaotic cavity. The divergence angle of output beam is less than 40 degree. The unidirectionality proves to be robust against small deviations of the real cavity shape and size from the designed values.

  11. Heating of thermoplastic-based unidirectional composite prepregs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Weber, M.E.; Charrier, J.M. (McGill Univ., Montreal (Canada))

    1989-04-01

    Thermoplastic-based prepregs offer a potential for faster manufacture of composite products than with thermoset-based prepregs. The winding or controlled placement of thermoplastic-based prepreg tapes requires the rapid heating of the moving tape, just prior to its contact with the substrate on the mandrel. In the case of complex shapes, geometrical constraints and significant variations in tape speeds in the course of manufacture, make it particularly desirable to be able to model the heating process. A mathematical model and its experimental verification for convection/conduction heat transfer to and through either a homogeneous thermoplastic material, or thermoplastic-based unidirectional composites featuring glass, aramid and carbon fibers, is discussed. 12 refs.

  12. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles.

    Science.gov (United States)

    Liu, Shoujie; Sun, Zhihu; Liu, Qinghua; Wu, Lihui; Huang, Yuanyuan; Yao, Tao; Zhang, Jing; Hu, Tiandou; Ge, Mengran; Hu, Fengchun; Xie, Zhi; Pan, Guoqiang; Wei, Shiqiang

    2014-02-25

    Understanding the atomic diffusions at the nanoscale is important for controlling the synthesis and utilization of nanomaterials. Here, using in situ X-ray absorption spectroscopy coupled with theoretical calculations, we demonstrate a so far unexplored unidirectional diffusion from the Au shell to the Cu core in thermally alloying Cu@Au core@shell architecture of ca. 7.1 nm. The initial diffusion step at 423 K is found to be characterized by the formation of a diffusion layer composed of a Au-dilute substitutional CuAu-like intermetallic compound with short Cu-Au bond length (2.61 Å). The diffusion further happens by the migration of the Au atoms with large disorder into the interior Cu matrix at higher temperatures (453 and 553 K). These results suggest that the structural preference of a CuAu-like compound, along with the nanosized effect, plays a critical role in determining the atomic diffusion dynamics.

  13. Self-stabilizing unidirectional network algorithms by power-supply

    Energy Technology Data Exchange (ETDEWEB)

    Afek, Y.; Bremler, A. [Tel-Aviv Univ. (Israel)

    1997-06-01

    Power-supply, a surprisingly simple and new general paradigm for the development of self-stabilizing algorithms in different models, is introduced. The paradigm is exemplified by developing simple and efficient self-stabilizing algorithms for leader election and either BFS or DFS spanning tree constructions, in strongly-connected unidirectional and bidirectional dynamic networks (synchronous and asynchronous). The different algorithms stabilize in O(n) time in both synchronous and asynchronous networks without assuming any knowledge about the network topology or size, where n is the total number of nodes. Following the leader election algorithms we present a generic self-stabilizing spanning tree and/or leader election algorithm that produces a whole spectrum of new and efficient algorithms for these problems. Two variations that produce either a rooted Depth First Search tree or a rooted Breadth First Search tree are presented.

  14. Evaluation of electrical transverse conductivity of the unidirectional CFRP

    Science.gov (United States)

    Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, M.

    2016-01-01

    In this paper, a technique for the calculation of the electrical transverse conductivity of unidirectional carbon fiber reinforced polymer (CFRP), based on Markov chains, is proposed. Inspired by the microscopic cross-sectional structure of CFRP, an electrical percolation system is constructed. The effective transverse conductivity is derived from an equivalent conductance of the percolation network. To achieve such a determination, a notion of escape probability associated to absorbing Markov chains is applied. The obtained results are compared with those given by percolation theory; and also with published experimental data. Our results are shown to be in good agreement with the references. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  15. Investigation of the levitation force of field-cooled YBCO and MgB2 disks as functions of temperature

    Science.gov (United States)

    Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.

    2017-06-01

    We report levitation force cycles resulting from measurements carried out on a YBCO and a MgB2 disk cooled down in the field of a permanent magnet. In both cases the amplitude of the levitation force tends toward maximum values as the temperature decreases. Otherwise, the cycles are almost closed at low temperature and strongly hysteretic in the high temperature range. The hysteresis of the force cycles is attributed to the distribution of the currents induced in the sample by the field of the magnet. The saturation of the levitation forces at low temperature is related to that of the magnetic moment of the disks. We show that this type of measurement allows for the determination of the critical current density of superconductors in a restricted domain of temperatures.

  16. Unsteady Unidirectional Flow of Voigt Fluid through the Parallel Microgap Plates with Wall Slip and Given Inlet Volume Flow Rate Variations

    OpenAIRE

    Yinwei Lin; Chen, C. K.

    2015-01-01

    In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly started and a constant acc...

  17. Field cooling of a MgB{sub 2} cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Perini, E; Giunchi, G [EDISON S.p.A., R and D Division, Foro Buonaparte 31, 20121 Milano (Italy)], E-mail: elena.perini@edison.it, E-mail: giovanni.giunchi@edison.it

    2009-04-15

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB{sub 2}, even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB{sub 2} bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T{sub c}. We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  18. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    Science.gov (United States)

    Perini, E.; Giunchi, G.

    2009-04-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB2, even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below Tc. We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  19. Induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules using two linearly polarized stationary lasers.

    Science.gov (United States)

    Mineo, Hirobumi; Yamaki, Masahiro; Kim, Gap-Sue; Teranishi, Yoshiaki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-09-29

    A new laser-control scenario of unidirectional π-electron rotations in a low-symmetry aromatic ring molecule having no degenerate excited states is proposed. This scenario is based on dynamic Stark shifts of two relevant excited states using two linearly polarized stationary lasers. Each laser is set to selectively interact with one of the two electronic states, the lower and higher excited states are shifted up and down with the same rate, respectively, and the two excited states become degenerate at their midpoint. One of the four control parameters of the two lasers, i.e. two frequencies and two intensities, determines the values of all the other parameters. The direction of π-electron rotations, clockwise or counter-clockwise rotation, depends on the sign of the relative phase of the two lasers at the initial time. An analytical expression for the time-dependent expectation value of the rotational angular momentum operator is derived using the rotating wave approximation (RWA). The control scenario depends on the initial condition of the electronic states. The control scenario with the ground state as the initial condition was applied to toluene molecules. The derived time-dependent angular momentum consists of a train of unidirectional angular momentum pulses. The validity of the RWA was checked by numerically solving the time-dependent Schrödinger equation. The simulation results suggest an experimental realization of the induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules without using any intricate quantum-optimal control procedure. This may open up an effective generation method of ring currents and current-induced magnetic fields in biomolecules such as amino acids having aromatic ring molecules for searching their interactions.

  20. 零场冷和场冷方式下高温超导块材最大悬浮力关系%RELATIONSHIP OF THE MAXIMUM LEVITATION FORCE OF BULK HIGH TEMPERATURE SUPERCONDUCTOR IN ZERO-FIELD-COOLING AND FIELD-COOLING CASE

    Institute of Scientific and Technical Information of China (English)

    邓自刚; 王家素; 郑珺; 刘伟; 林群煦; 马光同; 王为; 王素玉; 张娅

    2009-01-01

    文章通过对15块高温超导块材与永磁轨道相互作用的悬浮力测试,比较了零场冷和场冷两种冷却方式下块材的最大悬浮力关系.实验结果显示零场冷时悬浮力大的块材在场冷时悬浮力不一定就大,反之亦然,两者并无直接的对应关系.在实际的场冷应用中,推荐以场冷下的悬浮力数据为参考.%The paper compares the relationship of maximum levitation force of bulk high temperature superconductor in zero-field-cooling (ZFC) and field-cooling (FC) cases by the levitation measurement of 15 bulks interacting with permanent magnet guideway. The experimental results show that the maximum forces in the two cooling cases are not corresponding to each other. The bulk with large levitation force in ZFC case will not always obtain a large one in the FC case, and vice ver-sa. So, the levitation force data in FC case is recommended to the practical FC applications.

  1. Effect of field cooling heights on the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, D.; Dey, T.K., E-mail: tapasdey@hijli.iitkgp.ernet.in

    2014-12-15

    Highlights: • Levitation force between PM and starch/PS/MWCNT added MgB{sub 2} are studied in FC mode. • MgB{sub 2} added with 1 wt.% PS gives best result. • Levitation forces do not display hysteresis during ascending and descending mode. • Exponential variation in Max. Levitation (F{sub MLF}) and attractive forces (F{sub MAF}). • The gap between PM and SC for F{sub MAF} and F{sub 0AF} varies linearly with FC height. - Abstract: A series of MgB{sub 2} pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB{sub 2} with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (T{sub c0}) for MgB{sub 2} doped with starch/PS/MWCNT. The effect of different field cooling heights (H{sub IFC}) at 20 K on maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}) of pure MgB{sub 2} and MgB{sub 2} doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB{sub 2} is found to improve F{sub MLF} and F{sub MAF} and the best result is obtained for MgB{sub 2} doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}). However, the gap distance between PM and the sample (H{sub 0AF} and H{sub MAF}) corresponding to maximum attractive force (F{sub MAF}) and zero attractive force (F{sub 0AF}) varies linearly and their difference remains constant. This constancy in (H{sub MAF} − H{sub 0AF}) is understood in

  2. Dynamic initiation and propagation of cracks in unidirectional composite plates

    Science.gov (United States)

    Coker, Demirkan

    Dynamic crack growth along weak planes is a significant mode of failure in composites and other layered/sandwiched structures and is also the principal mechanism of shallow crustal earthquakes. In order to shed light on this phenomenon dynamic crack initiation and propagation characteristics of a model fiber-reinforced unidirectional graphite/epoxy composite plate was investigated experimentally. Dynamic fracture experiments were conducted by subjecting the composite plates to in-plane, symmetric and asymmetric, impact loading. The lateral shearing interferometric technique of coherent gradient sensing (CGS) in conjunction with high-speed photography was used to visualize the failure process in real time. It was found that mode-I cracks propagated subsonically with crack speeds increasing to the neighborhood of the Rayleigh wave speed of the composite. Also in mode-I, the dependence of the dynamic initiation fracture toughness on the loading rate was determined and was found to be constant for low loading rates and to increase rapidly above K˙dI>10 5 . The dynamic crack propagation toughness, KID, was observed to decrease with crack tip speed up to the Rayleigh wave speed of the composite. For asymmetric, mode-II, types of loading the results revealed highly unstable and intersonic shear-dominated crack growth along the fibers. These cracks propagated with unprecedented speeds reaching 7400 m/s which is the dilatational wave speed of the composite along the fibers. For intersonic crack growth, the interferograms, featured a shock wave structure typical of disturbances traveling with speeds higher than one of the characteristic wave speeds in the solid. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating non-uniform crack face frictional contact. In addition, shear dominated dynamic crack growth is investigated along composite/Homalite interfaces subjected to impact loading. The crack

  3. Unidirectional P-body transport during the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Cecilia Garmendia-Torres

    Full Text Available P-bodies belong to a large family of RNA granules that are associated with post-transcriptional gene regulation, conserved from yeast to mammals, and influence biological processes ranging from germ cell development to neuronal plasticity. RNA granules can also transport RNAs to specific locations. Germ granules transport maternal RNAs to the embryo, and neuronal granules transport RNAs long distances to the synaptic dendrites. Here we combine microfluidic-based fluorescent microscopy of single cells and automated image analysis to follow p-body dynamics during cell division in yeast. Our results demonstrate that these highly dynamic granules undergo a unidirectional transport from the mother to the daughter cell during mitosis as well as a constrained "hovering" near the bud site half an hour before the bud is observable. Both behaviors are dependent on the Myo4p/She2p RNA transport machinery. Furthermore, single cell analysis of cell size suggests that PBs play an important role in daughter cell growth under nutrient limiting conditions.

  4. Self-stabilizing algorithms for synchronous unidirectional rings

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A.; Ostrovsky, R. [MCC, Morristown, NJ (United States); Yung, Moti

    1996-12-31

    In this work we investigate the notion of built-in fault-tolerant (i.e. self-stabilizing) computations on a synchronous uniform unidirectionalring network. Our main result is a protocol-compiler that transforms any self-stabilizing protocol P for a (synchronous or asynchronous) bidirectional ring to a self-stabilizing protocol P{prime} which runs on the synchronous unidirectional ring. P{prime} requires O(S{sub LE} (n)+S(n)) space and has expected stabilization time O(T{sub LE}(n) + n{sup 2} + nT(n)), where S(n) (T(n)) is the space (time) performance of P and S{sub LE}(n) (T{sub LE}(n)) is the space (time) performance of a self-stabilizing leader-election protocol on a bidirectional ring. As subroutines, we also solve the problems of leader election and round-robin token management in our setting.

  5. Cutting forces in orthogonal cutting of unidirectional GFRP composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; Nele, L. [Univ. of Naples Federico II (Italy). Dept. of Materials and Production Engineering

    1996-07-01

    The results of orthogonal cutting tests carried out on unidirectional glass fiber reinforced plastic composites, using HSS tools, are presented and discussed. During the tests, performed on a milling machine at very low cutting speed to avoid thermal effects, the cutting speed was held constant and parallel to the fiber direction. Three parameters, namely the tool rake angle {alpha}, the tool relief angle {gamma}, and the depth of cut t, were varied. According to the experimental results, the horizontal force per unit width, F{sub hu}, undergoes a dramatic decrease, never verified for metals, with increasing {alpha}. Besides, F{sub hu} is only negligibly affected by the relief angle, and linearly increases with t. Similarly to metals, an effect of the depth of cut on the specific energy (size effect) is found also for composites. However, the presented results indicate that the size effect can be analytically modeled in a simple way in the case of composites. The vertical force per unit width, F{sub vu}, exhibits a marked reduction when the relief angle is increased. F{sub vu} is also very sensitive to the rake angle: the lower {alpha}, the higher is F{sub vu}. It is shown that this behavior probably reflects a strong influence of the rake angle on the forces developing at the flank. A linear dependence of the vertical force on the depth of cut is also demonstrated. Finally, the experimental data are utilized to obtain empirical formulae, allowing an approximate evaluation of cutting forces.

  6. Mechanical properties and failure behavior of unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  7. Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites

    Science.gov (United States)

    Virk, Amandeep Singh; Hall, Wayne; Summerscales, John

    2014-12-01

    The elastic properties of a composite can be predicted by micromechanical models based on the properties of the individual constituent materials of the composite and their geometrical characteristics. This paper presents a novel methodology using image analysis to determine (a) the fibre volume fraction and (b) the fibre orientation distribution factor of quasi-unidirectional jute fibre reinforced epoxy resin composites. For fibre volume fraction, digital micrographs were smoothed to reduce noise in the image, an intensity histogram informed selection of the threshold intensity for conversion to a binary image, the image was morphologically closed and opened to remove internal voids and small features respectively and the fibre volume fraction was calculated as the ratio of the detected fibre area to the total image area. For fibre orientation, the image was sharpened with Contrast-Limited Adaptive Histogram Equalisation, a threshold was set for conversion to binary and then a masking image was rotated at a number of seed points over the image to find the angles with the minimum sum of intensity at each point. The data generated was then used to validate new rules-of-mixture equations for natural fibre composites.

  8. Reliability-analysis on damage of unidirectional composites matrix polymers

    Directory of Open Access Journals (Sweden)

    Khiat M. A.

    2014-04-01

    Full Text Available This work presents an analytical model to predict the strength of the unidirectional carbon epoxy composite using micromechanical techniques. This model supposes that a group of broken fibres surrounded by a number of intact fibres with hexagonal arrangement. The mathematical developments used are presented to justify the distribution form of the stresses around broken fibre and adjacent intact fibres. To follow the evolution of the damage in regions of debonding and local plasticity; we proceeded to a progressive increase in the fiber volume fraction and tensile external load. This, procedure enable us to evaluate the extension of the region locally plasticized, the ineffective region, the stress concentration and the longitudinal displacement of broken and intact fibres, in function of broken fibres number and specimen length. As fiber breaks are intrinsically random, the variability of input data allows us to describe the probabilistic model by using the Monte-Carlo method. The sensitivities of the mechanical response are evaluated regarding the uncertainties in design variables such as Young’s modulus of fibers and matrix, fiber reference strength, shear yield stress, fiber volume fraction and shear parameter defining the shear stress in the inelastic region.

  9. Mechanical properties and failure behavior of unidirectional porous ceramics.

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-04-14

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  10. Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites

    Science.gov (United States)

    Şahin, Y.; De Baets, P.

    2017-02-01

    Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites containing 42wt.% (CU42) and 52wt.% (CU52) carbon fibres fabricated by moulding technique was investigated on a pin-on-flat plate configuration. It is the first time to measure static and dynamic coefficient of frictions and wear rates of epoxy composites under heavy loading conditions. Microstructures of composites were examined by scanning electron microscopy (SEM). The experimental results indicated the carbon fiber improved the tribological properties of thermoset epoxy by reducing wear rate, but increased the coefficient of friction. At higher load, average wear rates were about 10.8x10-5 mm3/N.m for composites while it was about 38.20x10-5 mm3/N.m for epoxy resin. The wear rate decreased with decreasing load while friction coefficient increased with decreasing load. Moreover, friction coefficient of composites of CU42 tested at 90 N load was measured to be in the range 0.35 and 0.13 for static and dynamic component, respectively.

  11. Unidirectional infiltration method to produce crown for dental prosthesis application

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, F.H.D.; Taguchi, S.P. [Universidade de Sao Paulo (EEL/DEMAR/USP), Lorena, SP (Brazil). Escola de Engenharia; Borges Junior, L.A. [Centro Universitario de Volta Redonda, RJ (Brazil); Machado, J.P.B. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Santos, C. [ProtMat Materiais Avancados, Guaratingueta, SP (Brazil)

    2009-07-01

    Alumina ceramics have been used in dental prosthesis because it is inert, presents higher corrosion and shear resistance when compared to metals, excellent aesthetic, and mechanical resistance. In this work it was produced an infrastructure material for applications in dental crowns, obtained by glass infiltration in alumina preform. Various oxides, among that, rare-earth oxide produced by Xenotime, were melted at 1450 deg C and heat treatment at 700 deg C to obtain the glass (REglass). The alumina was pre-sintered at 1100 deg C cut and machined to predetermine format (unidirectional indirect infiltration) and finally conducted to infiltration test. The alumina was characterized by porosity (Hg-porosity and density) and microstructure (SEM). The glass wettability in alumina was determined as function of temperature, and the contact angle presented a low value (θ<90 deg), showing that glass can be infiltrated spontaneously in alumina. The infiltration test was conducted at glass melting temperature, during 30, 60, 180, 360 minutes. After infiltration, the samples were cut in longitudinal section, ground and polished, and analyzed by XRD (crystalline phases), SEM (microstructure) and EDS (composition).The REglass presents higher infiltration height when compared to current processes (direct infiltration), and homogeneous microstructure, showing that it is a promising method used by prosthetics and dentists. (author)

  12. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    Science.gov (United States)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  13. Formulation of unidirectional release buccal patches of carbamazepine and study of permeation through porcine buccal mucosa

    Directory of Open Access Journals (Sweden)

    Parthasarathy Govindasamy

    2013-12-01

    Conclusions: The prepared unidirectional buccal patches of carbamazepine provided a maximum drug release within specified mucoadhesion period and it indicates a potential alternative drug delivery system for systemic delivery of carbamazepine.

  14. Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites

    DEFF Research Database (Denmark)

    Aslan, Mustafa; Mehmood, S.; Madsen, Bo

    2013-01-01

    Unidirectional flax/polyethylene terephthalate composites are manufactured by filament winding, followed by compression moulding with low and high consolidation pressure, and with variable flax fibre content. The experimental data of volumetric composition and tensile stiffness are analysed with ...

  15. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage-mechanisms are exami......Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...... mechanisms need further attention and understanding in order to improve the fatigue life-time of unidirectional glass fibre reinforced non-crimp fabrics....

  16. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero

    2015-01-01

    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.

  17. A Superhelical Spiral in the Escherichia coli DNA Gyrase A C-terminal Domain Imparts Unidirectional Supercoiling Bias

    Energy Technology Data Exchange (ETDEWEB)

    Ruthenburg,A.; Graybosch, D.; Huetsch, J.; Verdine, G.

    2005-01-01

    DNA gyrase is unique among type II topoisomerases in that its DNA supercoiling activity is unidirectional. The C-terminal domain of the gyrase A subunit (GyrA-CTD) is required for this supercoiling bias. We report here the x-ray structure of the Escherichia coli GyrA-CTD (Protein Data Bank code 1ZI0). The E. coli GyrA-CTD adopts a circular-shaped {beta}-pinwheel fold first seen in the Borrelia burgdorferi GyrA-CTD. However, whereas the B. burgdorferi GyrA-CTD is flat, the E. coli GyrA-CTD is spiral. DNA relaxation assays reveal that the E. coli GyrA-CTD wraps DNA inducing substantial (+) superhelicity, while the B. burgdorferi GyrA-CTD introduces a more modest (+) superhelicity. The observation of a superhelical spiral in the present structure and that of the Bacillus stearothermophilus ParC-CTD structure suggests unexpected similarities in substrate selectivity between gyrase and Topo IV enzymes. We propose a model wherein the right-handed ((+) solenoidal) wrapping of DNA around the E. coli GyrA-CTD enforces unidirectional (-) DNA supercoiling.

  18. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    Science.gov (United States)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-02-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  19. Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions

    CERN Document Server

    Naruse, Makoto; Ishii, Satoshi; Drezet, Aurélien; Huant, Serge; Hoga, Morihisa; Ohyagi, Yasuyuki; Matsumoto, Tsutomu; Tate, Naoya; Ohtsu, Motoichi

    2014-01-01

    We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provides results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities.

  20. Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses

    Science.gov (United States)

    Kinsler, Paul

    2010-02-01

    I derive unidirectional wave equations for fields propagating in materials with both electric and magnetic dispersion and nonlinearity. The derivation imposes no conditions on the pulse profile except that the material modulates the propagation slowly, that is, that loss, dispersion, and nonlinearity have only a small effect over the scale of a wavelength. It also allows a direct term-to-term comparison of the exact bidirectional theory with its approximate unidirectional counterpart.

  1. Unidirectional generation of surface plasmon polaritons by a single right-angled trapezoid metallic nanoslit

    Science.gov (United States)

    Yang, Xuefeng; Wang, Jun; Hann Lim, Xiao; Xu, Zhengji; Teng, Jinghua; Zhang, Dao Hua

    2017-02-01

    We report theoretical and experimental investigation on a single right-angled trapezoid metallic nanoslit for efficient unidirectional generation of surface plasmon polaritons (SPPs) under normal incidence. The propagated SPPs intensity ratio in two directions is sensitive to the taper angle and metal thickness. Significant intensity ratio at the same propagation distances from the respective slit edges in opposite directions is demonstrated. We believe that the proposed compact unidirectional SPPs generator has high potential for applications in nanolithography and photonic integration.

  2. Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading.

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Li, Li; Liu, Hongliang; Liu, Guang; Zhang, Liwen; Zhang, Deyuan; Jiang, Lei

    2017-02-15

    Unidirectional liquid spreading without energy input has attracted considerable attention due to various potential applications such as biofluidics devices and self-lubrication. Introducing a surface wettable gradient or asymmetric nanostructures onto the surface has successfully harnessed the liquid to spread unidirectionally. However, these surfaces are still plagued with problems that restrict their practical applications: fixed spreading state for a fixed surface, and spreading slowly over a short distance. Herein, bioinspired from the fast continuous unidirectional water transport on the peristome of Nepenthes alata, we report a smart peristome with temperature-controlled unidirectional water spreading. The smart artificial peristome was fabricated by grafting the thermoresponsive material PNIPAAm onto the artificial PDMS peristome. Unidirectional water spreading on the smart peristome can be dynamically regulated by changing the surface temperature. Besides, the water spreading is demonstrated with a remarkable reversibility and stability. By investigating the relationship between liquid spreading distance and wettability, the underlying mechanism was revealed. This work gives a new way to achieve the control of unidirectional liquid spreading available for controllable microfluidics and medical devices.

  3. The cost of ventilation in birds measured via unidirectional artificial ventilation.

    Science.gov (United States)

    Markley, Jessamyn S; Carrier, David R

    2010-02-01

    The highly derived mechanism birds use to ventilate their lungs relies on dorsoventral excursions of their heavily muscled sternum and abdominal viscera. Our expectation of the level of mechanical work involved in this mechanism led us to hypothesize that the metabolic cost of breathing is higher in birds than in other tetrapods. To test this theory, we used unidirectional artificial ventilation (UDV) to stop normal ventilatory movements in guinea fowl (Numida meleagris L.) at rest and during treadmill locomotion at three speeds. Oxygen consumption was measured during normal breathing and UDV, and the difference was used to approximate the cost of ventilation. Contrary to our prediction, metabolism increased when ventilatory movements ceased during UDV at rest. Although we do not understand why this occurred we suspect that UDV induced a homeostatic mechanism to counteract the loss of carbon dioxide. Nevertheless, across all running speeds, metabolism decreased significantly with UDV, indicating a minimum cost of ventilation during running of 1.43+/-0.62% of total running metabolism or 0.48+/-0.21 mL O(2) (L ventilated)(-1). These results suggest that the metabolic cost of ventilation is low in birds and that it is within the range of costs reported previously for other amniotes.

  4. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  5. Fatigue properties of unidirectional carbon fibre composites at cryogenic temperatures

    Science.gov (United States)

    Pannkoke, K.; Wagner, H.-J.

    Design engineers working with composite materials are still confronted with uncertainties as to their fatigue behaviour, especially for cryogenic applications. In the course of cooling, different thermal contraction of the fibre and matrix gives rise to thermal stresses and strains which influence most of the mechanical properties. In this paper, the fatigue behaviour of unidirectional (UD) composites with different fibres and matrices will be described. A first step in understanding the failure mechanism under cyclic loading will be presented. In earlier tests excellent fatigue properties were found for carbon fibre UD composites made of T300 carbon fibres and an epoxy matrix 1,2. However, the applied epoxy resin was brittle, especially at low temperatures. Therefore the brittle resin was substituted by polycarbonate (PC), a tough thermoplastic polymer 3,4. Nevertheless, for a composite with that matrix the fatigue endurance limit, normalized to the static strength, was found to be much lower (43%). SEM studies illustrated a poor fibre - matrix bond. To determine the bond's influence on fatigue properties, another tough matrix system was tested. The polymer PEEK is known to build a strong bond to carbon fibres, initiated by crystal growth onto the fibre surface 4,5. However, investigations on the fatigue behaviour of this composite at 77 K yielded the same low fatigue endurance limit as was found for the carbon fibre - PC system 4. At this point it can be concluded that the poor fatigue behaviour is not necessarily due to a strong or poor fibre - matrix bond. It is the purpose of this work to examine whether this different fatigue behaviour is due to matrix failure.

  6. Current-controlled unidirectional edge-meron motion

    Science.gov (United States)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  7. Analysis of the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling condition

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2016-04-01

    The measurement of superconducting levitation force between permanent magnet and polycrystalline samples of pure and MgB2 added with starch, polystyrene (PS) and multiwall carbon nanotube (MWCNT) have been performed under zero field cooling (ZFC) condition at 20 K in both descending and ascending modes. For this, the bulk pellets were synthesized by conventional solid state sintering technique. The XRD data indicate well developed MgB2 phase. However, a decrease in lattice parameter 'a = b' have been observed for doped MgB2 samples. Superconducting transition temperature of MgB2 also decreases with starch/PS/MWCNT addition. Unlike MWCNT, the addition of starch/polystyrene is found to enhance the levitation force of MgB2 superconductor. The levitation force between PM and investigated pellets in ZFC condition is explained well in terms of the updated version of modified frozen image model and the magnetic moment originated due to vertical motion of the superconductors have been estimated. It may be noted that except for MWCNT, addition of starch/PS in MgB2 improves the magnetic moment generated by vertical movement of pure MgB2. However, this improvement is more pronounced for 1 wt.% of PS added MgB2, which indicates more flux trapping and hence better levitation properties in 1 wt.% of PS added MgB2. The vertical stiffness estimated for pure and starch/PS/MWCNT doped MgB2 samples indicate that the levitation force are more sensitive in the region close to the PM.

  8. Micromechanics analysis of space simulated thermal stresses in composites. I - Theory and unidirectional laminates. II - Multidirectional laminates and failure predictions

    Science.gov (United States)

    Bowles, David E.; Griffin, O. H., Jr.

    1991-01-01

    A micromechanics analysis is used to study the effects of constituent properties on thermally induced stresses in continuous fiber reinforced composites. A finite element formulation is described, and results are presented for unidirectional carbon/epoxy laminates. It is shown that significant stresses develop in composites exposed to thermal excursions typical of spacecraft operating environments and that the fiber thermoelastic properties have a minimal effect on the magnitude of these stresses. The finite element micromechanics analysis is then extended to the study of multidirectional laminates using a simple global/local formulation. Damage initiation predictions are compared with experimental data, and factors controlling the initiation of damage are identified. Ways of improving the durability of composites are discussed.

  9. A new ant colony-based routing algorithm with unidirectional link in UV mesh communication wireless network

    Institute of Scientific and Technical Information of China (English)

    KE Xi-zheng; HE Hua; WU Chang-li

    2011-01-01

    Aiming at the unidirectional links coming from nodes with different transmitting power and the obstacle blocking in UV mesh wireless communication network and the traditional ant colony algorithm only supporting bidirectional links, a new ant colony based routing algorithm with unidirectional link in UV mesh communication wireless network is proposed. The simulation results show that the proposed algorithm can improve the overall network connectivity and the survivability by supporting the combination of unidirectional link and bidirectional link.

  10. Anomalous metamagnetic-like transition in a FeRh/Fe3Pt interface occurring at T ≈ 120 K in the field-cooled-cooling curves for low magnetic fields

    Directory of Open Access Journals (Sweden)

    S. Salem-Sugui Jr.

    2012-09-01

    Full Text Available We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe3Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment.

  11. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  12. Influence of Shear Stiffness Degradation on Crack Paths in Uni-Directional Composite Laminates

    Science.gov (United States)

    Satyanarayana, Arunkumar; Bogert, Phil B.

    2017-01-01

    Influence of shear stiffness degradation in an element, due to damage, on crack paths in uni-directional laminates has been demonstrated. A new shear stiffness degradation approach to improve crack path prediction has been developed and implemented in an ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, built-in ABAQUS (TradeMark), original COmplete STress Reduction (COSTR) and the modified COSTR damage models have been utilized in this study to simulate crack paths in five unidirectional notched laminates, 15deg, 30deg, 45deg, 60deg and 75deg under uniaxial tension load. Results such as crack paths and load vs. edge displacement curves are documented in this report. Modified COSTR damage model shows better accuracy in predicting crack paths in all the uni-directional laminates compared to the ABAQUS (TradeMark) and the original COSTR damage models.

  13. Unidirectional coating technology for organic field-effect transistors: materials and methods

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Qian, Jun; Yin, Yao; Shi, Yi; Li, Yun

    2015-05-01

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V-1 s-1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed.

  14. Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Naibao He

    2015-01-01

    Full Text Available A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.

  15. Unidirectional invisibility and non-reciprocal transmission in two and three dimensions

    Science.gov (United States)

    Loran, Farhang; Mostafazadeh, Ali

    2016-07-01

    We explore the phenomenon of unidirectional invisibility in two dimensions, examine its optical realizations and discuss its three-dimensional generalization. In particular, we construct an infinite class of unidirectionally invisible optical potentials that describe the scattering of normally incident transverse electric waves by an infinite planar slab with refractive-index modulations along both the normal directions to the electric field. A by-product of this investigation is a demonstration of non-reciprocal transmission in two dimensions. To elucidate this phenomenon, we state and prove a general reciprocity theorem that applies to quantum scattering theory of real and complex potentials in two and three dimensions.

  16. Unidirectional invisibility and non-reciprocal transmission in two and three dimensions.

    Science.gov (United States)

    Loran, Farhang; Mostafazadeh, Ali

    2016-07-01

    We explore the phenomenon of unidirectional invisibility in two dimensions, examine its optical realizations and discuss its three-dimensional generalization. In particular, we construct an infinite class of unidirectionally invisible optical potentials that describe the scattering of normally incident transverse electric waves by an infinite planar slab with refractive-index modulations along both the normal directions to the electric field. A by-product of this investigation is a demonstration of non-reciprocal transmission in two dimensions. To elucidate this phenomenon, we state and prove a general reciprocity theorem that applies to quantum scattering theory of real and complex potentials in two and three dimensions.

  17. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  18. Mixed-mode fracture in unidirectional graphite epoxy composite laminates with central notch

    Science.gov (United States)

    Binienda, Wieslaw K.; Reddy, E. S.

    1992-01-01

    Mixed-mode matrix fracture in central notched off-axis unidirectional composite laminates was investigated. A limited number of unidirectional tensile type specimens with a central, horizontal, notch were tested. Crack initiation and propagation were examined under various local stress fields that were controlled by fiber orientations. The tested specimens were simulated using a two dimensional finite element method with constant strain loading. The strain energy release rates along the crack were evaluated via crack closure technique. The variation of critical strain energy rates with off-axis angle was studied. The results from single (one-sided) and double (two-sided) crack simulations were presented and compared.

  19. Bifurcation analysis of the transition of dune shapes under a unidirectional wind.

    Science.gov (United States)

    Niiya, Hirofumi; Awazu, Akinori; Nishimori, Hiraku

    2012-04-13

    A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, the Dune Skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the decrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to a wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind.

  20. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.

    Science.gov (United States)

    Pot, Michiel W; Faraj, Kaeuis A; Adawy, Alaa; van Enckevort, Willem J P; van Moerkerk, Herman T B; Vlieg, Elias; Daamen, Willeke F; van Kuppevelt, Toin H

    2015-04-29

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture.

  1. Evaluation of Properties of Unidirectional Hemp/Polypropylene Composites: Influence of Fiber Content and Fiber/Matrix Interface Variables

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, Tom; Lilholt, Hans

    2002-01-01

    Flament-wound textile hemp yarn was used in combination with unmodified or maleated polypropylene (PP) films to produce plates of unidirectional composites.......Flament-wound textile hemp yarn was used in combination with unmodified or maleated polypropylene (PP) films to produce plates of unidirectional composites....

  2. Study on unidirectional circuit problem in multi-fan-station ventilation type of Jinchuan No.2 mine

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; LI Yan-chang; ZHAO Qian-li

    2008-01-01

    The calculating methods for path number and path matrix of ventilation networks without unidirectional circuits were introduced, and the inapplicability problem of the matrix algorithm to determine paths in a ventilation network with unidirectional circuit was brought forward, and a depth-first search method based algorithm to determine path matdx by means of modifying search strategies was discussed. The method is suitable for ventilation networks with unidirectional circuits and ventilation networks without unidirectional circuits, moreover the complexity is less than the complexities of matrix based algorithms. A series of methods and means to avoid and to reduce the negative effects of unidirectional circuits such as the optimum of the positions of fan stations, the increase or de-crease of fan station numbers, the optimum regulation of network and the analysis of diagonal structures were put forward.

  3. Risk Factors for Unidirectional and Bidirectional Intimate Partner Violence among Young Adults

    Science.gov (United States)

    Renner, Lynette M.; Whitney, Stephen D.

    2012-01-01

    Objective: The purpose of this study was to identify common and unique risk factors for intimate partner violence (IPV) among young adults in relationships. Guided by two models of IPV, the same set of risk factors was used to examine outcomes of unidirectional (perpetration or victimization) and bidirectional (reciprocal) IPV separately for males…

  4. The Dynamics of Small-Sized Ensembles of the Phase-Locked Loops with Unidirectional Couplings

    Science.gov (United States)

    Aleshin, K. N.; V. Matrosov, V.; Shalfeev, V. D.

    2016-06-01

    We study collective dynamics of a small-sized chain of the unidirectionally coupled phase-locked loop. The conditions for the synchronous-regime existence are found, the asynchronous selfoscillation regimes and the transitions among them are studied, and the property of inheriting the structure of the parameter space of the chain when a new element is added to it is established.

  5. The behavior of high-strength unidirectional composites under tension with superposed hydrostatic pressure

    NARCIS (Netherlands)

    Zinoviev, P.A.; Tsvetkov, S.V.; Kulish, G.G.; Berg, van den R.W.; Schepdael, van L.J.M.M.

    2001-01-01

    Three types of high-strength unidirectional composite materials were studied under longitudinal tension with superposed high hydrostatic pressure. Reinforcing fibers were T1000G carbon, S2 glass and Zylon PBO fibers; the Ciba 5052 epoxy resin was used as matrix. The composites were tested under exte

  6. Effects of Unidirectional vs. Reciprocal Teaching Strategies on Web-Based Computer Programming Learning

    Science.gov (United States)

    Shadiev, Rustam; Hwang, Wu-Yuin; Yeh, Shih-Ching; Yang, Stephen J. H.; Wang, Jing-Liang; Han, Lin; Hsu, Guo-Liang

    2014-01-01

    This study aimed to investigate an effectiveness of unidirectional and reciprocal teaching strategies on programming learning supported by web-based learning system (VPen); particularly, how differently effective these two teaching strategies would work. In this study novice programmers were exposed to three different conditions: 1) applying no…

  7. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial; González, Carlos; Llorca, Javier;

    2014-01-01

    The effect of porosity on the transverse mechanical properties of unidirectional fiber-reinforced composites is studied by means of computational micromechanics. The composite behavior is simulated by the finite element analysis of a representative volume element of the composite microstructure i...

  8. Uni-directional waves over slowly varying bottom, part II: Deformation of travelling waves

    NARCIS (Netherlands)

    Pudjaprasetya, S.R.; Pudjaprasetya, S.R.; van Groesen, Embrecht W.C.

    1996-01-01

    A new Korteweg-de Vries type of equation for uni-directional waves over slowly varying bottom has been derived in Part I. The equation retains the Hamiltonian structure of the underlying complete set of equations for surface waves. For flat bottom it reduces to the standard Korteweg-de Vries

  9. Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors

    NARCIS (Netherlands)

    Klok, Martin; Browne, Wesley R.; Feringa, Ben L.

    2009-01-01

    The combination of a photochemical and a thermal equilibrium in overcrowded alkenes, which is the basis for unidirectional rotation of light-driven molecular rotary motors, is analysed in relation to the actual average rotation rates of such structures. Experimental parameters such as temperature, c

  10. Effects of Unidirectional vs. Reciprocal Teaching Strategies on Web-Based Computer Programming Learning

    Science.gov (United States)

    Shadiev, Rustam; Hwang, Wu-Yuin; Yeh, Shih-Ching; Yang, Stephen J. H.; Wang, Jing-Liang; Han, Lin; Hsu, Guo-Liang

    2014-01-01

    This study aimed to investigate an effectiveness of unidirectional and reciprocal teaching strategies on programming learning supported by web-based learning system (VPen); particularly, how differently effective these two teaching strategies would work. In this study novice programmers were exposed to three different conditions: 1) applying no…

  11. Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates

    Science.gov (United States)

    2011-08-01

    Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell... discovery and development of the ARL X Hybrid architecture, which consists of 1) the balance of architecture in the panel being 75% [0°/90°] and 25

  12. Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.

  13. Controlled Smart Anisotropic Unidirectional Spreading of Droplet on a Fibrous Surface.

    Science.gov (United States)

    Zhang, Miaoxin; Wang, Lei; Hou, Yongping; Shi, Weiwei; Feng, Shile; Zheng, Yongmei

    2015-09-09

    Smart anisotropic-unidirectional spreading is displayed on a wettable-gradient-aligned fibrous surface due to a synergetic directing effect from the aligned structure and the ratio of hydrophilic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analytical treatment for synchronizing chaos through unidirectional coupling and implementation of logic gates

    Indian Academy of Sciences (India)

    VENKATESH P R; VENKATESAN A; LAKSHMANAN M

    2016-06-01

    The idea of synchronization can be explicitly demonstrated by both numerical and analytical means on a nonlinear electronic circuit. Also, we introduce a scheme to obtain various logic gate structures, using synchronization of chaotic systems. By a small change in the response parameter of unidirectionally coupled nonlinear systems, one is able to construct various logic behaviours by both numerical and analytical methods.

  15. 47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.

    Science.gov (United States)

    2010-10-01

    ... products on digital cable systems. 76.640 Section 76.640 Telecommunication FEDERAL COMMUNICATIONS... Standards § 76.640 Support for unidirectional digital cable products on digital cable systems. (a) The requirements of this section shall apply to digital cable systems. For purposes of this section, digital...

  16. Formulation of unidirectional release buccal patches of carbamazepine and study of permeation through porcine buccal mucosa

    Institute of Scientific and Technical Information of China (English)

    Parthasarathy Govindasamy; Bhaskar Reddy Kesavan; Jayaveera Korlakunta Narasimha

    2013-01-01

    Objective:To achieve transbuccal release of carbamazepine by loading in unidirectional release mucoadhesive buccal patches. Methods:Buccal patches of carbamazepine with unidirectional drug release were prepared using hydroxypropyl methyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and ethyl cellulose by solvent casting method. Water impermeable backing layer (Pidilite® Biaxially-oriented polypropylene film) of patches provided unidirectional drug release. They were evaluated for thickness, mass uniformity, surface pH and folding endurance. Six formulations FA2, FA8, FA10, FB1, FB14 and FB16 (folding endurance above 250) were evaluated further for swelling studies, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, ex vivo permeation, accelerated stability studies and FTIR and XRD spectral studies. Results: The ex vivo mucoadhesion time of patches ranged between 109 min (FA10) to 126 min (FB14). The ex vivo mucoadhesive force was in the range of 0.278 to 0.479 kg/m/s. The in vitro drug release studies revealed that formulation FA8 released 84%and FB16 released 99.01%of drug in 140 min. Conclusions: The prepared unidirectional buccal patches of carbamazepine provided a maximum drug release within specified mucoadhesion period and it indicates a potential alternative drug delivery system for systemic delivery of carbamazepine.

  17. Fatigue behaviour of uni-directional flax fibre/epoxy composites

    DEFF Research Database (Denmark)

    Ueki, Yosuke; Lilholt, Hans; Madsen, Bo

    2015-01-01

    A study related to the fatigue behaviour of natural fibre-reinforced composites was conducted to expand their range of product applications. A uni-directional flax-epoxy composite was fabricated and several conditions of tension-tension fatigue tests were performed. During fatigue testing...

  18. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  19. Economic Comparison of Electric Vehicles Performing Unidirectional and Bidirectional Frequency Control in Denmark with Practical Validation

    DEFF Research Database (Denmark)

    Thingvad, Andreas; Martinenas, Sergejus; Andersen, Peter Bach

    2016-01-01

    the EV is plugged into the network ready to support the system frequency. Performing unidirectional frequency control with Electric Vehicles (EVs) requires little hardware implementation in the household but has the limit that the service only can be performed until the battery is fully charged...

  20. Similarity of Crocodilian and Avian Lungs Indicates Unidirectional Flow Is Ancestral for Archosaurs.

    Science.gov (United States)

    Farmer, C G

    2015-12-01

    Patterns of airflow and pulmonary anatomy were studied in the American alligator (Alligator mississippiensis), the black caiman (Melanosuchus niger), the spectacled caiman (Caiman crocodilus), the dwarf crocodile (Osteolaemus tetraspis), the saltwater crocodile (Crocodylus porosus), the Nile crocodile (Crocodylus niloticus), and Morelet's crocodile (Crocodylus moreletii). In addition, anatomy was studied in the Orinoco crocodile (Crocodylus intermedius). Airflow was measured using heated thermistor flow meters and visualized by endoscopy during insufflation of aerosolized propolene glycol and glycerol. Computed tomography and gross dissection were used to visualize the anatomy. In all species studied a bird-like pattern of unidirectional flow was present, in which air flowed caudad in the cervical ventral bronchus and its branches during both lung inflation and deflation and craniad in dorsobronchi and their branches. Tubular pathways connected the secondary bronchi to each other and allowed air to flow from the dorsobronchi into the ventrobronchi. No evidence for anatomical valves was found, suggesting that aerodynamic valves cause the unidirectional flow. In vivo data from the American alligator showed that unidirectional flow is present during periods of breath-holding (apnea) and is powered by the beating heart, suggesting that this pattern of flow harnesses the heart as a pump for air. Unidirectional flow may also facilitate washout of stale gases from the lung, reducing the cost of breathing, respiratory evaporative water loss, heat loss through the heat of vaporization, and facilitating crypsis. The similarity in structure and function of the bird lung with pulmonary anatomy of this broad range of crocodilian species indicates that a similar morphology and pattern of unidirectional flow were present in the lungs of the common ancestor of crocodilians and birds. These data suggest a paradigm shift is needed in our understanding of the evolution of this

  1. Stable magnetic levitation with adjustable ratio of levitation force to restoring force using rings of zero-field cooled YBa{sub 2}Cu{sub 3}O{sub y} samples

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, W.; Parks, D.; Weinstein, R.; Sawh, R.-P.; Ren, Y. [Beam Particles Dynamics Laboratories and TCSUH, University of Houston, Houston, TX 77204-5506 (United States)

    2000-10-01

    Both high levitation pressures (up to 22 N cm{sup -2}) and high restoring pressures (up to 11 N cm{sup -2}) are obtained for a superconducting trapped field magnet of 1.5 T levitating above the centre of a ring of zero-field cooled high-temperature superconductors. The ratio of levitation force to restoring force can be varied between 2.9 and 0.3 by changing the quality of the superconductors. This significantly improves the stability of levitation compared to commonly used single sample configurations. (author)

  2. Influence of critical current density on levitation force of high - Tc superconducting system under field cooling condition%临界电流密度对场冷超导磁悬浮力的影响研究

    Institute of Scientific and Technical Information of China (English)

    赵宪锋; 周又和

    2011-01-01

    After the penetration depth of superconducting currents and the internal magnetic field interior of the HTS were calculated, the influence of critical current density (Jc) on the interaction forces between a high - Tc superconductor (HTS) and a permanent magnet (PM) was investigated under field cooling process based on Kim critical state model. It was found that the maximum levitation forces including the attractive force and the repulsive force increased as an exponential function with the increasing of the Jc. They became to saturate at high Jc. The hysteresis energy loss of vertical force - displacement curve under field cooling condition was larger than the one under zero -field cooling condition. There was a force ratio k, which was important on estimating the mechanics capability of superconducting levitation system with large Jc. All these relations could be explained with the penetration history of superconducting currents under field cooling condition.%基于Kim临界态模型,通过考虑超导块材内部屏蔽电流的穿透历史过程,讨论了场冷条件下临界电流密度对高温超导悬浮系统磁悬浮排斥力和吸引力的影响.结果显示:最大超导磁悬浮排斥力和吸引力均随临界电流密度的增加呈指数关系增加,并趋于饱和;场冷条件下的磁悬浮力回滞能量损耗远高于零场冷情况;存在一个磁悬浮力比率κ,κ值对于评价大电流超导磁悬浮系统的机械性能具有重要作用.磁悬浮力随临界电流密度的这些变化特征可以用超导块材内部屏蔽电流的穿透情况进行合理地解释,为高温超导悬浮系统的工业应用提供了重要的理论依据.

  3. Anomalous metamagnetic-like transition in a FeRh/Fe3Pt interface occurring at T approximate to 120 K in the field-cooled-cooling curves for low magnetic fields

    OpenAIRE

    Salem-Sugui Jr., S.; Alvarenga, A. D.; R. D. Noce; R. B. Guimarães; C. Salazar Mejia; Salim, H; Gandra, F. G.

    2012-01-01

    We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe3Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment. Copyright 2012 Author(s). This article is distribute...

  4. Circuit models for Salisbury screens made from unidirectional carbon fiber composite sandwich structures

    Science.gov (United States)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2016-05-01

    Carbon fiber composite materials have many useful structural material properties. The electromagnetic perfor- mance of these materials is of great interest for future applications. The work presented in this paper deals with the construction of Salisbury screen microwave absorbers made from unidirectional carbon fiber composite sand- wich structures. Specifically, absorbers centered at 7.25 GHz and 12.56 GHz are investigated. Circuit models are created to match the measured performance of the carbon fiber Salisbury screens using a genetic algorithm to extract lumped element circuit values. The screens presented in this paper utilize unidirectional carbon fiber sheets in place of the resistive sheet utilized in the classic Salisbury screen. The theory, models, prototypes, and measurements of these absorbers are discussed.

  5. Fast transition to chaos in a ring of unidirectionally coupled oscillators

    CERN Document Server

    Yanchuk, S; Wolfrum, M; Stefanski, A; Kapitaniak, T

    2010-01-01

    In this paper we study the destabilization mechanism in a ring of unidirectionally coupled oscillators. We derive an amplitude equation of Ginzburg-Landau type that describes the destabilization of the stationary state for systems with a large number of oscillators. Based on this amplitude equation, we are able to provide an explanation for the fast transition to chaos (or hyperchaos) that can be observed in such systems. We show that the parameter interval, where the transition from a stable periodic state to chaos occurs, scales like the inverse square of the number of oscillators in the ring. In particular, for a sufficiently large number of oscillators a practically immediate transition to chaos can be observed. The results are illustrated by a numerical study of a system of unidirectionally coupled Duffing oscillators.

  6. Prediction of Transverse Permeability for Unidirectional Fiber Tows Based on the Homogenization Theory

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qing; LI Jia-lu; FENG Chi

    2007-01-01

    The transverse permeability of unidirectional fiber tows is calculated using homogenization method. Each fiber tow consisting of 21 filaments is arranged in uniform square packing. Stokes governing equation is analogized with Lame equation used in the linear elasticity problem and is solved by the finite element code ANSYS. The prediction for transverse permeability of unidirectional fiber obtained by the homogenization approach is compared with other analytical methods. The result shows a good agreement with Kozeny-Carman equation and Gebart square packing model. A model for nonuniform fiber distribution and measurement technology are proposed. It can be found that the experimental result is in excellent agreement with predicted permeability in the nonuniform distribution model.

  7. DAMAGE MECHANISM ANALYSIS OF 2D 1 × 1 BRAIDED COMPOSITES UNDER UNIDIRECTIONAL TENSION

    Institute of Scientific and Technical Information of China (English)

    张超; 许希武; 陈康

    2013-01-01

    Coupling with the periodical displacement boundary condition ,a representative volume element (RVE) model is established to simulate the progressive damage behavior of 2D 1 × 1 braided composites under unidirection-al tension by using the nonlinear finite element method .Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix .The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D 1 × 1 braided composites .Murakami′s damage tensor is adopted to characterize each damage mode .In the simulation process ,the damage mechanisms are revealed and the tensile strength of 2D 1 × 1 braided composites is predicted from the calculated average stress-average strain curve . Numerical results show good agreement with experimental data ,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites .

  8. Unidirectional excitation of graphene plasmon in attenuated total reflection (ATR) configuration

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Hubei University of Education, Wuhan (China). School of Physics and Mechanical and Electrical Engineering; Wu, Yue-Chao [Nanyang Technological University, Singapore (Singapore). Div. of Physics and Applied Physics; Liu, Fang-Li [Maryland Univ., College Park, MD (United States). Joint Quantum Institute

    2016-08-01

    Graphene plasmon has been attracting interests from both theoretical and experimental research due to its gate tunability and potential applications in the terahertz frequency range. Here, we propose an effective scheme to unidirectionally excite the graphene plasmon by exploiting magneto-optical materials in the famous attenuated total reflection (ATR) configuration. We show that the graphene plasmon dispersion relation in such a device is asymmetric in different exciting directions, thus making it possible to couple the incident light unidirectionally to the propagating plasmon. The split of absorption spectrum of graphene clearly indicates that under a magnetic field for one single frequency, graphene plasmon can only be excited in one direction. The possible gate tunablity of excitation direction and the further application of the proposed scheme, such as optical isolator, also are discussed.

  9. A new matrix-based mathematical model for determining unidirectional circuits in a ventilation network

    Institute of Scientific and Technical Information of China (English)

    JIA Jin-zhang

    2008-01-01

    The occurrence of local circulating ventilation can be caused by many factors,such as the airflow reversion during mine fire, the improper arrangement of local fan or underground fan station and the man-made error input of raw data before network solving.Once circulating ventilations occur, the corresponding branches in the ventilation network corresponding to the relevant airways in ventilation system form circuits, and all the directions of the branches in the circuits are identical, which is the unidirectional problem in ventilation network. Based on the properties of node adjacent matrix, a serial of mathematical computation to node adjacent matrix were performed, and a mathematical model for determining unidirectional circuits based on node adjacent matrix was put forward.

  10. Exciting Reflectionless Unidirectional Edge Modes in a Photonic Topological Insulator Without Breaking Time-Reversal Symmetry

    CERN Document Server

    Xiao, Bo; Yu, Yang; Ma, Tzuhsuan; Shvets, Gennady; Anlage, Steven M

    2016-01-01

    Photonic topological insulators are an interesting class of materials whose photonic band structure can have a bandgap in the bulk while supporting topologically protected unidirectional edge modes. Recent studies on bianisotropic metamaterials that emulate the electronic quantum spin Hall effect using its electromagnetic analog are examples of such systems with relatively simple and elegant design. In this paper, we present a novel rotating magnetic dipole antenna, composed of two perpendicularly oriented helical coils, that can efficiently excite the unidirectional topologically protected surface waves in the bianisotropic metawaveguide (BMW) structure recently realized by Ma, et al., despite the fact that the BMW does not break time-reversal invariance. In addition to achieving high directivity, the antenna can be tuned continuously to excite reflectionless edge modes to the two opposite directions with various amplitude ratios. We demonstrate its performance through experiment and compare to simulation re...

  11. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Science.gov (United States)

    Wu, Xiaohu; Fu, Ceji

    2017-07-01

    We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT). The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs) or surface plasmon polaritons (SPPs) in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC) and silver (Ag) with properly chosen values of the structure's geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  12. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Directory of Open Access Journals (Sweden)

    Xiaohu Wu

    2017-07-01

    Full Text Available We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT. The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs or surface plasmon polaritons (SPPs in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC and silver (Ag with properly chosen values of the structure’s geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  13. Unidirectional Pinning and Hysteresis of Spatially Discordant Alternans in Cardiac Tissue

    CERN Document Server

    Skardal, Per Sebastian; Restrepo, Juan G

    2011-01-01

    Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac tissue that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-beat dynamics, we explore this pattern's dynamics in the regime of a calcium-dominated period-doubling instability at the single cell level. We find a novel nonlinear bifurcation associated with the formation of a discontinuous jump in the amplitude of calcium alternans at nodal lines separating discordant regions. We show that this jump unidirectionally pins nodal lines by preventing their motion away from the pacing site following a pacing rate decrease, but permitting motion towards this site following a rate increase. This unidirectional pinning leads to strongly history-dependent nodal line motion that is strongly arrhythmogenic.

  14. Radiation Efficient Unidirectional Low-Profile Slot Antenna Elements for X-Band Application

    Directory of Open Access Journals (Sweden)

    C. Löcker

    2005-01-01

    Full Text Available Slots in metallic ground planes are very promising candidates for conformal antenna applications. However, a low-profile unidirectional antenna requires a back reflector close to the slot and the resulting stripline feed causes strong excitation of parallel-plate modes. In this contribution, we consider unidirectional reflector-backed slot configurations with parallel-plate mode suppression by shorting pins. Starting from a parametric study with respect to shorting pin location and back reflector distance, we present a stripline-fed rectangular slot element with radiation efficiency of more than 80% and a bandwidth of about 5% at centre frequency 10GHz. A careful optimisation of shorting pin locations guarantees reliable parallel-plate mode suppression without deteriorating the slot radiation behaviour. Coupling coefficients between parallel and aligned rectangular slot elements are presented. For increased bandwidth applications, a bow-tie slot element with about 8% bandwidth and radiation efficiency of close to 80% is proposed.

  15. Modeling Unidirectional Pedestrian Movement: An Investigation of Diffusion Behavior in the Built Environment

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Unidirectional pedestrian movement is a special phenomenon in the evacuation process of large public buildings and urban environments at pedestrian scale. Several macroscopic models for collective behaviors have been built to predict pedestrian flow. However, current models do not explain the diffusion behavior in pedestrian crowd movement, which can be important in representing spatial-temporal crowd density differentiation in the movement process. This study builds a macroscopic model for describing crowd diffusion behavior and evaluating unidirectional pedestrian flow. The proposed model employs discretization of time and walking speed in geometric distribution to calculate downstream pedestrian crowd flow and analyze movement process based on upstream number of pedestrians and average walking speed. The simulated results are calibrated with video observation data in a baseball stadium to verify the model precision. Statistical results have verified that the proposed pedestrian diffusion model could accurately describe pedestrian macromovement behavior within the margin of error.

  16. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons

    CERN Document Server

    Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Rousseau, Emmanuel; Genet, Cyriaque; Ebbesen, Thomas; Lalanne, Philippe

    2011-01-01

    Controlling the launching efficiencies and the directionality of surface plasmon polaritons (SPPs) and their decoupling to freely propagating light is a major goal for the development of plasmonic devices and systems. Here, we report on the design and experimental observation of a highly efficient unidirectional surface plasmon launcher composed of eleven subwavelength grooves, each with a distinct depth and width. Our observations show that, under normal illumination by a focused Gaussian beam, unidirectional SPP launching with an efficiency of at least 52% is achieved experimentally with a compact device of total length smaller than 8 \\mu m. Reciprocally, we report that the same device can efficiently convert SPPs into a highly directive light beam emanating perpendicularly to the sample.

  17. Aspects Regarding the Unidirectional Two-Port Circuits Implemented by Means of Electronic Gyrators

    Directory of Open Access Journals (Sweden)

    TONT, G.

    2016-02-01

    Full Text Available The paper investigates the behavior of unidirectional two-port equivalent circuit composed of an electronic gyrator with Antoniou operational amplifier and a reciprocal two-port built by a transversal resistance (RT. From the analysis of two-port equations standpoint, by correct choice of circuit conductance, the two-port can operate as an ideal or a lossy gyrator. Due to the interest in practical aspects of energy transfer from one terminal to other, an analysis of the two-port parameters for the unidirectional circuit diagram is performed. The validity of the tested circuit results obtained analytically and through numerical simulation PSpice has been verified experimentally, in two cases, with equal and different transfer conductance.

  18. The Influence of Unidirectional Pressure on Electrical Conductivity of Carbon Black Filled Polyethylene

    Institute of Scientific and Technical Information of China (English)

    WANG Ke; ZHANG Guo; ZHAO Zhudi; PENG Yi; DI Weihua; DU Chuang

    2006-01-01

    High density polyethylene filled with conductive carbon black was prepared by conventional melt-mixing method. The effect of unidirectional pressure on the conductivity was studied. Wide angle X-ray diffraction (WAXD) was used to show the influence of pressure on the aggregate structure of the polymer filled with carbon black (CB) fillers. A model on the basis of the formation and destruction of conductive networks was proposed to explain the change in the conductivity with the application of pressure.

  19. Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors.

    Science.gov (United States)

    García-Iriepa, Cristina; Marazzi, Marco; Zapata, Felipe; Valentini, Alessio; Sampedro, Diego; Frutos, Luis Manuel

    2013-05-02

    Generation of a chiral hydrogen bond environment in efficient molecular photoswitches is proposed as a novel strategy for the design of photoactive molecular motors. Here, the following strategy is used to design a retinal-based motor presenting singular properties: (i) a single excitation wavelength is needed to complete the unidirectional rotation process (360°); (ii) the absence of any thermal step permits the process to take place at low temperatures; and (iii) the ultrafast process permits high rotational frequencies.

  20. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators.

    Science.gov (United States)

    Borkowski, L; Perlikowski, P; Kapitaniak, T; Stefanski, A

    2015-06-01

    The subject of the experimental research supported with numerical simulations presented in this paper is an analog electrical circuit representing the ring of unidirectionally coupled single-well Duffing oscillators. The research is concentrated on the existence of the stable three-frequency quasiperiodic attractor in this system. It is shown that such solution can be robustly stable in a wide range of parameters of the system under consideration in spite of a parameter mismatch which is unavoidable during experiment.

  1. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  2. Parenting stress and depressive symptoms in postpartum mothers: Bidirectional or unidirectional effects?

    OpenAIRE

    Thomason, Elizabeth; Volling, Brenda L.; Flynn, Heather A.; McDonough, Susan C.; Marcus, Sheila M; Lopez, Juan F.; Vazquez, Delia M.

    2014-01-01

    Despite the consistent link between parenting stress and postpartum depressive symptoms, few studies have explored the relationships longitudinally. The purpose of this study was to test bidirectional and unidirectional models of depressive symptoms and parenting stress. Uniquely, three specific domains of parenting stress were examined: parental distress, difficult child stress, and parent–child dysfunctional interaction (PCDI). One hundred and five women completed the Beck Depression Invent...

  3. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators

    Science.gov (United States)

    Borkowski, L.; Perlikowski, P.; Kapitaniak, T.; Stefanski, A.

    2015-06-01

    The subject of the experimental research supported with numerical simulations presented in this paper is an analog electrical circuit representing the ring of unidirectionally coupled single-well Duffing oscillators. The research is concentrated on the existence of the stable three-frequency quasiperiodic attractor in this system. It is shown that such solution can be robustly stable in a wide range of parameters of the system under consideration in spite of a parameter mismatch which is unavoidable during experiment.

  4. Comparison of micromechanical models for elastic properties. [for unidirectional graphite/epoxy composites

    Science.gov (United States)

    Lissenden, Cliff J.; Herakovich, Carl T.

    1992-01-01

    Results for the predicted effective elastic properties of unidirectional composites are presented for glass/epoxy and graphite/epoxy using eight different models. A brief review of each of the models is given along with the final equations in most cases. It is shown that there is wide variation in some predictions for glass/epoxy and that the upper and lower composite cylinder assemblage bounds do not always fall close together for this material.

  5. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.

    Science.gov (United States)

    Weiler, Jeffrey; Hassall, Cameron D; Krigolson, Olave E; Heath, Matthew

    2015-02-01

    The execution of an antisaccade selectively increases the reaction time (RT) of a subsequent prosaccade (the unidirectional prosaccade switch-cost). To explain this finding, the task-set inertia hypothesis asserts that an antisaccade requires a cognitively mediated non-standard task-set that persists inertially and delays the planning of a subsequent prosaccade. The present study sought to directly test the theoretical tenets of the task-set inertia hypothesis by examining the concurrent behavioural and the event-related brain potential (ERP) data associated with the unidirectional prosaccade switch-cost. Participants pseudo-randomly alternated between pro- and antisaccades while electroencephalography (EEG) data were recorded. As expected, the completion of an antisaccade selectively increased the RT of a subsequent prosaccade, whereas the converse switch did not influence RTs. Thus, the behavioural results demonstrated the unidirectional prosaccade switch-cost. In terms of the ERP findings, we observed a reliable change in the amplitude of the P3 - time-locked to task-instructions - when trials were switched from a prosaccade to an antisaccade; however, no reliable change was observed when switching from an antisaccade to a prosaccade. This is a salient finding because extensive work has shown that the P3 provides a neural index of the task-set required to execute a to-be-completed response. As such, results showing that prosaccades completed after antisaccades exhibited increased RTs in combination with a P3 amplitude comparable to antisaccades provides convergent evidence that the unidirectional prosaccade switch-cost is attributed to the persistent activation of a non-standard antisaccade task-set.

  6. Deficits of motion transparency perception in adult developmental dyslexics with normal unidirectional motion sensitivity.

    Science.gov (United States)

    Hill, Gary T; Raymond, Jane E

    2002-04-01

    We assessed motion integration ability in seven adult developmental dyslexics using unidirectional and bidirectional (transparent) random dot kinematograms (RDKs) that varied in the number of frames. All adult dyslexics performed as well as normally reading age-matched controls with unidirectional RDKs, regardless of frame number. However, using orthogonal motion transparent stimuli, deficits were obvious in six dyslexics and depended on frame number. Whereas controls needed on average only 4.4 frames (144 ms) to identify both directions correctly on 75% of presentations, dyslexics needed on average 14.6 frames (483 ms) to achieve this level of performance. Even though a unidirectional motion task failed to reveal processing abnormalities in adult dyslexics, the motion transparency task was effective at revealing significant perceptual dysfunction, suggesting that performance on this task is a better psychophysical indicator of visual motion deficits in dyslexia. This finding provides little support for the magnocellular deficit hypothesis and, rather, points to abnormality within dorsal extrastriate cortical areas that subserve the integration and segmentation of complex motion signals.

  7. Catapult mechanism renders the chaperone action of Hsp70 unidirectional.

    Science.gov (United States)

    Gisler, S M; Pierpaoli, E V; Christen, P

    1998-06-19

    Molecular chaperones of the Hsp70 type promote the folding and membrane translocation of proteins. The interaction of Hsp70s with polypeptides is linked to ATP binding and hydrolysis. We formed complexes of seven different fluorescence-labeled peptides with DnaK, the Hsp70 homolog of Escherichia coli, and determined the rate of peptide release under two different sets of conditions. (1) Upon addition of ATP to nucleotide-free peptide.DnaK complexes, all tested peptides were released with similar rate constants (2.2 s-1 to 6.7 s-1). (2) In the binding equilibrium of peptide and ATP-liganded DnaK, the dissociation followed one or two-step reactions, depending on the amino acid sequence of the peptide. For the monophasic reactions, the dissociation rate constants diverged by four orders of magnitude from 0.0004 s-1 to 5.7 s-1; for the biphasic reactions, the rate constants of the second, slower isomerization step were in the range from 0.3 s-1 to 0.0005 s-1. The release of the different peptides in case (1) is 1.4 to 14,000 times faster than in case (2). Apparently, binding of ATP induces a transient state of the chaperone which ejects target peptides before the final state of ATP-liganded DnaK is reached. This "catapult" mechanism provides the chaperone cycle with a mode of peptide release that does not correspond with the reverse of peptide binding. By allowing the conformation of the outgoing polypeptide to differ from that of the incoming polypeptide, a futile cycle with respect to conformational work exerted on the target protein is obviated.

  8. Optimal design and loss mechanism analysis of microwave absorbing unidirectional SiC fiber composites with broad absorption band and good polarization stability

    Science.gov (United States)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-04-01

    A microwave-absorbing unidirectional SiC fiber composite with wide absorption and good polarization stability was designed by genetic algorithm. The anisotropic nature of unidirectional fiber composites was considered in the design by characterizing tensor permittivity. This special composite is composed of two kinds of SiC fibers that separately exhibit relatively high conductivity and low conductivity. The electromagnetic loss mechanism of this composite was examined for polarizations that differ in the electric field of the incident wave, applied either in the direction of the fiber or in the transverse direction, perpendicular to the fibers. For both polarizations, the absorption band of our composite can reach 6 GHz and the lowest microwave reflectivity was about -20 dB over a range of 8-18 GHz. When the electric field is polarized parallel to fibers, strong coupling among the high-conductivity fibers can induce a strong current and thus efficiently dissipate the electromagnetic energy. When the electric field is polarized perpendicular to fibers, the electromagnetic loss mechanism in the composite resembles the electric energy loss in capacitors and currents in the transverse direction are obstructed by the fibers resulting in attenuation of the electromagnetic energy in the matrix.

  9. Effect of light backscattering on high-speed modulation performance in strongly injection-locked unidirectional semiconductor ring lasers

    Science.gov (United States)

    Smolyakov, Gennady A.; Osinski, Marek

    2014-03-01

    Greatly enhanced high-speed modulation performance has been recently predicted in numerical calculations for a novel injection-locking scheme involving a DBR or DFB master laser monolithically integrated with a unidirectional semiconductor microring laser. In this work, we investigate the effect of light backscattering between the two counterpropagating modes on high-speed modulation performance of strongly injection-locked unidirectional semiconductor microring lasers.

  10. Unidirectional Bilingualism

    OpenAIRE

    Bogdan, Krakowian

    1983-01-01

    This is a slightly modified version of a paper delivered at the Third Overseas Conference of IATEFL and MLA of Poland held at Poznań in April 1979. W pracy niniejszej opisano swego rodzaju eksperyment naturalny podjęty z dwojgiem dzieci autora (obecnie dziewczynka ma 9 lat, a chłopiec 12), celem którego było przekonać się, czy uda się je nauczyć mówić w języku angielskim jeżeli jedno z rodziców (ojciec) będzie używało tego języka przy zwracaniu się do dzieci. W tym konkretnym p...

  11. Unidirectional expansion of lattice parameters in GaN induced by ion implantation

    Institute of Scientific and Technical Information of China (English)

    Fa Tao; Li Lin; Yao Shu-De; Wu Ming-Fang; Zhou Sheng-Qiang

    2011-01-01

    This paper reports that the 150-keV Mn ions are implanted into GaN thin film grown on Al2O3 by metalorganic chemical vapour deposition. The X-ray diffraction reciprocal spacing mapping is applied to study the lattice parameter variation upon implantation and post-annealing. After implantation, a significant expansion is observed in the perpendicular direction. The lattice strain in perpendicular direction strongly depends on ion fluence and implantation geometry and can be partially relaxed by post-annealing. While in the parallel direction, the lattice parameter approximately keeps the same as the unimplanted GaN, which is independent of ion fluence, implantation geometry and post-annealing temperature.

  12. Tuning exchange bias through zero field cooling from different remanent states above blocking temperature in Ni{sub 50}Mn{sub 36}Sb{sub 14} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.L. [Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China); Department of Physics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701 (China); Xu, L.S.; Xiao, H.B.; Xu, L.F.; Yang, C.P. [Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China); Sun, Z.G. [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Marchenkov, V.V. [Institute of Metal Physics, Ekaterinburg 620041 (Russian Federation); Huang, J.C.A. [Department of Physics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701 (China)

    2012-11-15

    Changing remanent states above blocking temperature (T{sub B}) in Ni{sub 50}Mn{sub 36}Sb{sub 14} alloy has been proven to be an effective way of tuning the value and sign of exchange bias (EB) field. The hysteresis loops at 5 K exhibit double shifted shape, indicating that there are two opposite EB signs resulting from an imprint of domain pattern of ferromagnetic (FM) regions into anti-ferromagetic (AFM) ones during cooling. All the results demonstrate that the interfacial spin configuration plays a crucial role on the origin of EB, while the high cooling field not only induces a single FM domain state above T{sub B} but also tunes the fractions of FM and AFM interactions through martensitic transition. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway.

    Directory of Open Access Journals (Sweden)

    Samantha Torres Grams

    Full Text Available Maximal Inspiratory Pressure (MIP is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway.This study aimed to compare the MIP values assessed by standard method (MIPsta and by unidirectional expiratory valve method (MIPuni in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated.This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B at two moments (Tests 1 and 2 to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1] was used to determine intraobserver and interobserver reproducibility.The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O than the mean values for MIPsta (-102.5 ± 23.9 cmH2O (p<0.001. Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91, and high correlation for Test 2 (ICC[2,1] = 0.88. The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86 and evaluator B (ICC[2,1] = 0.77.MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway.

  14. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway

    Science.gov (United States)

    Grams, Samantha Torres; Kimoto, Karen Yumi Mota; Azevedo, Elen Moda de Oliveira; Lança, Marina; de Albuquerque, André Luis Pereira; de Brito, Christina May Moran; Yamaguti, Wellington Pereira

    2015-01-01

    Introduction Maximal Inspiratory Pressure (MIP) is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway. Objectives This study aimed to compare the MIP values assessed by standard method (MIPsta) and by unidirectional expiratory valve method (MIPuni) in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated. Methods This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B) at two moments (Tests 1 and 2) to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1]) was used to determine intraobserver and interobserver reproducibility. Results The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O) than the mean values for MIPsta (-102.5 ± 23.9 cmH2O) (p<0.001). Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91), and high correlation for Test 2 (ICC[2,1] = 0.88). The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86) and evaluator B (ICC[2,1] = 0.77). Conclusions MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway. PMID:26360255

  15. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  16. Half-spectral unidirectional invisibility in non-Hermitian periodic optical structures

    CERN Document Server

    Longhi, Stefano

    2015-01-01

    The phenomenon of half-spectral unidirectional invisibility is introduced for one-dimensional periodic optical structures with tailored real and imaginary refractive index distributions in a non-$\\mathcal{PT}$-symmetric configuration. The effect refers to the property that the optical medium appears to be invisible, both in reflection and transmission, below the Bragg frequency when probed from one side, and above the Bragg frequency when probed from the opposite side. Half-spectral invisibility is obtained by a combination of in-phase index and gain gratings whose spatial amplitudes are related each other by a Hilbert transform.

  17. Intrinsic-Stabilization Uni-Directional Quantum Key Distribution Between Beijing and Tianjin

    CERN Document Server

    Mo, X; Han, Z; Gui, Y; Guo, G; Mo, Xiao-fan; Zhu, Bing; Han, Zheng-fu; Gui, You-zhen; Guo, Guang-can

    2004-01-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experiment schemes are not suitable for long-distance fiber transmission because of instability or backscattering. We present a uni-directional intrinsic-stabilization scheme that is based on Michelson-Faraday interferometers, in which reflectors are replaced with 90 degree Faraday mirrors. With the scheme, key exchange from Beijing to Tianjin over 125 kilometers with an average error rate is below 6% has been achieved and its limited distance exceeds 150 kilometers. Experimental result shows the system is insensitive to environment and can run over day and night without any break even in the noise workshop.

  18. Application of directed-miss guidance for roll-pointing of unidirectional warheads

    Science.gov (United States)

    Kain, J. E.

    1981-08-01

    A directed-miss (DM) guidance law is presented which allows the integration of terminal guidance and roll pointing of a unidirectional warhead. This guidance law was derived using assumptions similar to those used for derivations of proportional navigation, and the relationship between proportional navigation and DM guidance was demonstrated. The DM guidance law was implemented in a thorough 6-DOF simulation of an air breathing air-to-air missile along with a generic model for seeker signal processing, guidance filtering and glint noise.

  19. Analysis of unidirectional non-paraxial invisibility of purely reflective PT-symmetric volume gratings

    CERN Document Server

    Kulishov, Mykola; Kress, Bernard

    2015-01-01

    We study the diffraction produced by a slab of purely reflective PT-symmetric volume Bragg grating that combines modulations of refractive index and gain/loss of the same periodicity with a quarter-period shift between them. Such a complex grating has a directional coupling between the different diffraction orders, which allows us to find an analytic solution for the first three orders of the full Maxwell equations without resorting to the paraxial approximation. This is important, because only with the full equations can the boundary conditions, allowing for the reflections, be properly implemented. Using our solution we analyze unidirectional invisibility of such a grating in a wide variety of configurations.

  20. A unidirectional room temperature multi-wavelength fiber ring laser without isolator

    Institute of Scientific and Technical Information of China (English)

    Guoyong Sun(孙国勇); Jing Yang(杨敬); Ronghui Qu(瞿荣辉); Zujie Fang(方祖捷); Xiangzhao Wang(王向朝)

    2004-01-01

    A simplified ring cavity for achieving a unidirectional room temperature multi-wavelength erbium-doped fiber ring laser without optical isolator is demonstrated. The fiber ring cavity is built in such a way that the optical fields propagating in two directions suffer different losses caused by one sampled fiber Bragg grating. Furthermore, simultaneous multi-wavelength lasing with 0.8-nm intervals is demonstrated with sinusoidal phase modulation just before the sampled fiber Bragg grating to prevent single-wavelength lasing and unstable wavelength oscillation.

  1. Investigation of Mechanical Properties of Unidirectional Steel Fiber/Polyester Composites: Experiments and Micromechanical Predictions

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Bech, Jakob Ilsted

    2016-01-01

    The article introduces steel fiber reinforced polymer composites, which is considered new for composite product developments. These composites consist of steel fibers or filaments of 0.21 mm diameter embedded in a polyester resin. The goal of this investigation is to characterize the mechanical...... performance of steel fiber reinforced polyester composites at room temperature. The mechanical properties of unidirectional steel fiber reinforced polyester composites (SFRP) are evaluated experimentally and compared with the predicted values by micro-mechanical models. These predictions help to understand...

  2. Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells

    Science.gov (United States)

    Gao, B.; Chen, X. J.; Nakano, S.; Kakimoto, K.

    2010-04-01

    An improved furnace was designed to reduce the carbon impurity of multicrystalline silicon at unidirectional solidification process. Global simulations of oxygen and carbon transport in the improved furnace showed that the carbon concentration in the crystal can be reduced to a negligible value in the order of 10 14 atom/cm 3; simultaneously, the oxygen concentration in the crystal can also be reduced by at least 30%. Therefore, the present design can markedly reduce the back transfer of CO from graphite components of the furnace.

  3. Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov-Bohm effect.

    Science.gov (United States)

    Yuan, Luqi; Xu, Shanshan; Fan, Shanhui

    2015-11-15

    We show that nonreciprocal unidirectional single-photon quantum transport can be achieved with the photonic Aharonov-Bohm effect. The system consists of a 1D waveguide coupling to two three-level atoms of the V-type. The two atoms, in addition, are each driven by an external coherent field. We show that the phase of the external coherent field provides a gauge potential for the photon states. With a proper choice of the phase difference between the two coherent fields, the transport of a single photon can exhibit unity contrast in its transmissions for the two propagation directions.

  4. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  5. Synchronization of unidirectional time delay chaotic networks and the greatest common divisor

    CERN Document Server

    Kanter, I; Englert, A; Geissler, F; Kinzel, W; 10.1209/0295-5075/93/60003

    2011-01-01

    We present the interplay between synchronization of unidirectional coupled chaotic nodes with heterogeneous delays and the greatest common divisor (GCD) of loops composing the oriented graph. In the weak chaos region and for GCD=1 the network is in chaotic zero-lag synchronization, whereas for GCD=m>1 synchronization of m-sublattices emerges. Complete synchronization can be achieved when all chaotic nodes are influenced by an identical set of delays and in particular for the limiting case of homogeneous delays. Results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps.

  6. Synchronization of unidirectional time delay chaotic networks and the greatest common divisor

    Science.gov (United States)

    Kanter, I.; Zigzag, M.; Englert, A.; Geissler, F.; Kinzel, W.

    2011-03-01

    We present the interplay between synchronization of unidirectional coupled chaotic nodes with heterogeneous delays and the greatest common divisor (GCD) of loops composing the oriented graph. In the weak-chaos region and for GCD=1 the network is in chaotic zero-lag synchronization, whereas for GCD=m>1 synchronization of m-sublattices emerges. Complete synchronization can be achieved when all chaotic nodes are influenced by an identical set of delays and in particular for the limiting case of homogeneous delays. Results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps.

  7. On-chip optical isolation via unidirectional Bloch oscillations in a waveguide array.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2012-09-15

    We propose to use the unidirectionality of the optical Bloch oscillation phenomenon achievable in a magneto-optic asymmetric waveguide array to achieve optical isolation. At the 1.55 μm telecommunication wavelength, our isolator design exhibits an isolation ratio of 36 dB between forward- and backward-propagating waves. The proposed design consists of a waveguide array made in a silicon-on-insulator substrate with a magnetic garnet cover layer. A key role is played by the transverse-magnetic mode nonreciprocal phase shift effect.

  8. A unidirectional multiwavelength erbium-doped fiber ring laser without isolator at room temperature

    Science.gov (United States)

    Sun, Guoyong; Qu, Ronghui; Yang, Jing; Wang, Xiangzhao; Fang, Zujie

    2005-01-01

    Highly uniform multiwavelength erbium-doped fiber ring laser with a sinusoidal phase modulator and line intervals of 0.45 nm is demonstrated. The flat and stable output distribution is realized by optimizing modulation voltage and frequency for the sine phase modulator. Simultaneous 30 lasing lines are obtained in power difference less than 2 dB. In addition, the implemented cavity structure can support unidirectional operation even without optical isolators. The power difference between clockwise and counterclockwise direction is higher than 20 dB, almost independent of pumping powers and lasing wavelengths in lasing operation.

  9. Unidirectional synchronization of Hodgkin-Huxley neurons exposed to ELF electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)], E-mail: jiangwang@tju.edu.cn; Che Yanqiu; Zhou Sisi; Deng Bin [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2009-02-15

    In this paper, a hybrid control strategy, H{sub {infinity}} variable universe adaptive fuzzy control, is derived and applied to synchronize two Hodgkin-Huxley (HH) neurons exposed to external electric field. Firstly, the modified model of HH neuron exposed to extremely low frequency (ELF) external electric field is established and its periodic and chaotic dynamics in response to sinusoidal electric field stimulation are described. And then the statement of the problem for unidirectional synchronization of two HH neurons is given. Finally H{sub {infinity}} variable universe adaptive fuzzy control is designed to synchronize the HH systems and the simulation results demonstrate the effectiveness of the proposed control method.

  10. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  11. Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite

    Science.gov (United States)

    Ramulu, M.; Arola, D.

    1993-06-01

    Unidirectional graphite/epoxy composite material has been machined by water jet and abrasive water jet cutting processes. Topography and morphology of the machined surfaces were evaluated with surface profilometry and scanning electron microscopy. The surface characteristics in terms of roughness and the micromechanisms of material removal for both processes were analyzed and compared. Abrasive water jet surface characteristics of graphite/epoxy were found to be significantly different from those of the water jet cutting process and micromechanical behavior of material removal was strongly dependent on the fiber orientation.

  12. A Randomly Enlarging Critical Core Theory of Unidirectionally Fiber-reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    范赋群; 曾庆敦

    1994-01-01

    Based upon the micro-stochastic failure mechanisms of composites,a new micromechanical statistical model,i.e.randomly enlarging critical core theory,for the tensile failure of unidirectional composites is proposed,with which we can overcome the primary imperfections of the existing chain-of-bundles probability model.On the basis of the established statistical model,the strength distribution and the failure criterion of composites are derived.The predictions of strength for T300/5208 and glass/epoxy show very good agreement with the existing experimental results,thus verifying the reasonableness and correctness of the present theory.

  13. Unidirectional growth, rocking curve, linear and nonlinear optical properties of LPHCl single crystals

    Science.gov (United States)

    Kumar, P. Ramesh; Gunaseelan, R.; Raj, A. Antony; Selvakumar, S.; Sagayaraj, P.

    2012-06-01

    Nonlinear optical amino-acid single crystal of L-phenylalanine hydrochloride (LPHCl) was successfully grown by unidirectional Sankaranarayanan-Ramasamy (SR) method under ambient conditions for the first time. The grown single crystal was subjected to different characterization analyses in order to find out its suitability for device fabrication. The crystalline perfection was evaluated using high-resolution X-ray diffractometry. It is evident from the optical absorption study that crystal has excellent transmission in the entire visible region with its lower cut off wavelength around 290 nm.

  14. An Inverse method of elastic constants for unidirectional fiber-reinforced composite plate

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; CUI Lian-jun; XU Jian; CHENG Jian-chun

    2006-01-01

    An inverse method is presented to determine the elastic constants of an experimental sample,a titanium graphite unidirectional fiber-reinforced composite plate,using wavelet transform and neural networks.Optimal algorithms of wavelet transform and neural networks are given here in order to improve the accuracy of inversion results.Coherent results were shown in both fiber direction and cross fiber direction,proving the feasibility of this method.Neither the group velocity of the Lamb wave modes are needed,as in the conventional method,and no direct least-square fitting of the experimental waveforms is necessary.

  15. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... for cooling, the GHz-bandwidth upconverter can readily be extended to the mid-IR (2 - 5 mu m) as an alternative to cooled low-bandgap semiconductor detectors for applications such as high-speed free-space optical communications. (C) 2017 Optical Society of America...

  16. A Unidirectional Split-key Based Signature Protocol with Encrypted Function in Mobile Code Environment

    Institute of Scientific and Technical Information of China (English)

    MIAOFuyou; YANGShoubao; XIONGYan; HUABei; WANGXingfu

    2005-01-01

    In mobile code environment, signing private keys are liable to be exposed; visited hosts are susceptible to be attacked by all kinds of vicious mobile codes, therefore a signer often sends remote nodes mobile codes containing an encrypted signature function to complete a signature. The paper first presents a unidirectional split-key scheme for private key protection based on RSA, which is more simple and secure than secret sharing; and then proposes a split-key based signature protocol with encrypted function, which is traceable, undeniable and malignance resistant. Security analysis shows that the protocol can effectively protect the signing private key and complete secure signatures in mobile code environment.

  17. Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice

    Directory of Open Access Journals (Sweden)

    D. Carrella-Payan

    2016-10-01

    Full Text Available The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM. The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages….

  18. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    Directory of Open Access Journals (Sweden)

    Pornthida Poosala

    2016-01-01

    Full Text Available Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12 cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6 was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.

  19. Analytical Framework for End-to-End Delay Based on Unidirectional Highway Scenario

    Directory of Open Access Journals (Sweden)

    Aslinda Hassan

    2015-01-01

    Full Text Available In a sparse vehicular ad hoc network, a vehicle normally employs a carry and forward approach, where it holds the message it wants to transmit until the vehicle meets other vehicles or roadside units. A number of analyses in the literature have been done to investigate the time delay when packets are being carried by vehicles on both unidirectional and bidirectional highways. However, these analyses are focusing on the delay between either two disconnected vehicles or two disconnected vehicle clusters. Furthermore, majority of the analyses only concentrate on the expected value of the end-to-end delay when the carry and forward approach is used. Using regression analysis, we establish the distribution model for the time delay between two disconnected vehicle clusters as an exponential distribution. Consequently, a distribution is newly derived to represent the number of clusters on a highway using a vehicular traffic model. From there, we are able to formulate end-to-end delay model which extends the time delay model for two disconnected vehicle clusters to multiple disconnected clusters on a unidirectional highway. The analytical results obtained from the analytical model are then validated through simulation results.

  20. Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium

    Science.gov (United States)

    Xiao, Bo; Lai, Kueifu; Yu, Yang; Ma, Tzuhsuan; Shvets, Gennady; Anlage, Steven M.

    2016-11-01

    Photonic topological insulators are an interesting class of materials whose photonic band structure can have a band gap in the bulk while supporting topologically protected unidirectional edge modes. Recent studies on bianisotropic metamaterials that emulate the electronic quantum spin Hall effect using its electromagnetic analog are examples of such systems with a relatively simple and elegant design. In this paper, we present a rotating magnetic dipole antenna, composed of two perpendicularly oriented coils, that can efficiently excite the unidirectional topologically protected surface waves in the bianisotropic metawaveguide (BMW) structure recently realized by T. Ma et al. [Phys. Rev. Lett. 114, 127401 (2015), 10.1103/PhysRevLett.114.127401] despite the fact that the BMW medium does not break time-reversal invariance. In addition to achieving a high directivity, the antenna can be tuned continuously to excite reflectionless edge modes in the two opposite directions at various amplitude ratios. We demonstrate its performance through experiments and compare the results to simulation results.

  1. Big thistle eats the little thistle: does unidirectional introgressive hybridization endanger the conservation of Onopordum hinojense?

    Science.gov (United States)

    Balao, Francisco; Casimiro-Soriguer, Ramón; García-Castaño, Juan Luis; Terrab, Anass; Talavera, Salvador

    2015-04-01

    Hybridization is known to have a creative role in plant evolution. However, it can also have negative effects on parental species. Onopordum is a large genus whose species frequently hybridize. In the Southwest Iberian Peninsula, the rare O. hinojense co-occurs with the widely distributed O. nervosum, and hybrids between these two taxa have been described as O. × onubense. In this study we determine the extinction risk in a hybrid zone, both for hybrids and parentals, using analyses of morphological and cytogenetic traits as well as genetic markers and demographic models. To investigate the introgression process we used amplified fragment length polymorphism (AFLP) markers, Bayesian analyses and genome scan methods. Morphology, genome size and molecular markers confirmed homoploid hybridization and also indicated unidirectional backcrossing of F₁ hybrids with O. nervosum, which is likely to swamp O. hinojense, the parental with lower pollen size and a very low fruit set (8%). Genome scan methods revealed several loci significantly deviating from neutrality. Finally, our demographic modeling indicated that the higher fitness of O. nervosum threats the survival of O. hinojense by demographic swamping. Our study provides strong new evidence for a scenario of rapid extinction by unidirectional introgression and demographic swamping. The multifaceted approach used here sheds new light on the role of introgression in plant extinctions.

  2. Unidirectional transport of wave packets through tilted discrete breathers in nonlinear lattices with asymmetric defects

    Science.gov (United States)

    Bai, Xiao-Dong; Malomed, Boris A.; Deng, Fu-Guo

    2016-09-01

    We consider the transfer of lattice wave packets through a tilted discrete breather (TDB) in opposite directions in the discrete nonlinear Schrödinger model with asymmetric defects, which may be realized as a Bose-Einstein condensate trapped in a deep optical lattice, or as optical beams in a waveguide array. A unidirectional transport mode is found, in which the incident wave packets, whose energy belongs to a certain interval between full reflection and full passage regions, pass the TDB only in one direction, while in the absence of the TDB, the same lattice admits bidirectional propagation. The operation of this mode is accurately explained by an analytical consideration of the respective energy barriers. The results suggest that the TDB may emulate the unidirectional propagation of atomic and optical beams in various settings. In the case of the passage of the incident wave packet, the scattering TDB typically shifts by one lattice unit in the direction from which the wave packet arrives, which is an example of the tractor-beam effect, provided by the same system, in addition to the rectification of incident waves.

  3. Unidirectional Emission of a Site-Controlled Single Quantum Dot from a Pyramidal Structure.

    Science.gov (United States)

    Kim, Sejeong; Gong, Su-Hyun; Cho, Jong-Hoi; Cho, Yong-Hoon

    2016-10-12

    Emission control of a quantum emitter made of semiconductor materials is of significance in various optical applications. Specifically, the realization of efficient quantum emitters is important because typical semiconductor quantum dots are associated with low extraction efficiency levels due to their high refractive index contrast. Here, we report bright and unidirectional emission from a site-controlled InGaN quantum dot formed on the apex of a silver-coated GaN nanopyramidal structure. We show that the majority of the extracted light from the quantum dot is guided toward the bottom of the pyramid with high directionality. We also demonstrate that nanopyramid structures can be detached from a substrate, thus demonstrating great potential of this structure in various applications. To clarify the directional radiation, the far-field radiation pattern is measured using Fourier microscopy. This scheme will pave the way toward the realization of a bright and unidirectional quantum emitter along with easy fabrication and large-area reproducibility.

  4. Unidirectional Dual-Band CPW-Fed Antenna Loaded with an AMC Reflector

    Directory of Open Access Journals (Sweden)

    Qun Luo

    2013-01-01

    Full Text Available A unidirectional dual-band coplanar waveguide fed antenna (DB-CPWFA loaded with a reflector is presented in this paper. The reflector is made of an electric ground plane, a dielectric substrate, and artificial magnetic conductor (AMC which shows an effective dual operational bandwidth. Then, the closely spaced AMC reflector is employed under the DB-DPWFA for performance improvement including unidirectional radiation, low profile, gain enhancement, and higher front-to-back (F/B ratio. The final antenna design exhibits an 8% and 13% impedance bandwidths for 2.45 GHz and 5.8 GHz frequency regions, respectively. The overall gain enhancement of about 4 dB is achieved. The F/B ratio is approximate to 20 dB with a 16 dB improvement. The measured results are inconsistent with the numerical values. The presented design is a suitable candidate for radio frequency identification (RFID reader application.

  5. A numerical model for predicting crack path and modes of damage in unidirectional metal matrix composites

    Science.gov (United States)

    Bakuckas, J. G.; Tan, T. M.; Lau, A. C. W.; Awerbuch, J.

    1993-01-01

    A finite element-based numerical technique has been developed to simulate damage growth in unidirectional composites. This technique incorporates elastic-plastic analysis, micromechanics analysis, failure criteria, and a node splitting and node force relaxation algorithm to create crack surfaces. Any combination of fiber and matrix properties can be used. One of the salient features of this technique is that damage growth can be simulated without pre-specifying a crack path. In addition, multiple damage mechanisms in the forms of matrix cracking, fiber breakage, fiber-matrix debonding and plastic deformation are capable of occurring simultaneously. The prevailing failure mechanism and the damage (crack) growth direction are dictated by the instantaneous near-tip stress and strain fields. Once the failure mechanism and crack direction are determined, the crack is advanced via the node splitting and node force relaxation algorithm. Simulations of the damage growth process in center-slit boron/aluminum and silicon carbide/titanium unidirectional specimens were performed. The simulation results agreed quite well with the experimental observations.

  6. Design and Numerical Simulation of Unidirectional Chaotic Synchronization and its Application in Secure Communication System

    Directory of Open Access Journals (Sweden)

    A. Sambas

    2013-09-01

    Full Text Available Chaotic systems are characterized by sensitive dependence on initial conditions, similar to random behavior, and continuous broad-band power spectrum. Chaos is a good potential to be used in secure communications system. In this paper, in order to show some interesting phenomena of three-order Jerk circuit with modulus nonlinearity, the chaotic behavior as a function of a variable control parameter, has been studied. The initial study in this paper is to analyze the phase portraits, the Poincaré maps, the bifurcation diagrams, while the analysis of the synchronization in the case of unidirectional coupling between two identical generated chaotic systems, has been presented. Moreover, some appropriate comparisons are made to contrast some of the existing results. Finally, the effectiveness of the unidirectional coupling scheme between two identical Jerk circuits in a secure communication system is presented in details. Integration of theoretical physics, the numerical simulation by using MATLAB 2010, as well as the implementation of circuit simulations by using MultiSIM 10.0 has been performed in this study

  7. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    Science.gov (United States)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  8. Unidirectional growth and characterization of 1,3,5-triphenylbenzene single crystals

    Science.gov (United States)

    Govindan, V.; Dhatchayani, S.; Sarala, N.; Sankaranarayanan, K.

    2016-05-01

    1,3,5-Triphenylbenzene single crystals has been grown by both conventional slow evaporation and Unidirectional Sankaranarayanan-Ramasamy method. Colourless, highly transparent crystal of size 20 mm × 10 mm × 3mm with well defined morphology was grown from slow evaporation solution method and -oriented unidirectional bulk single crystal of size 23 mm length and 23 mm diameter was grown by the SR method. From the PXRD measurement the material has been crystallized in orthorhombic crystal system. The functional groups were assessed by the use of FTIR analysis. The optical parameter of the grown crystal was obtained from UV-visible spectral analysis and the cutoff wavelength was observed at 247 nm. Mechanical and thermal properties of the grown crystals were carried out from Vicker's hardness test method and TG-DSC analysis respectively. From the TG-DSC studies, the melting points were confirmed at 172°C and no decompose or dissociation was observed. The powder Kurtz method confirms that 1,3,5-Triphenylbenzene has second harmonic generation (SHG) and the SHG efficiency was found to be 0.7 times that of KDP.

  9. Rotary and unidirectional metal shadowing of VAT: localization of the substrate-binding domain.

    Science.gov (United States)

    Rockel, B; Guckenberger, R; Gross, H; Tittmann, P; Baumeister, W

    2000-11-01

    AAA-ATPases have important roles in manifold cellular processes. VAT (valosine-containing protein-like ATPase of Thermoplasma acidophilum), a hexameric archaeal member of this family, has the tripartite domain structure N-D1-D2 that is characteristic of many members of this family. N, the N-terminal domain of 20.5 kDa, has been implicated in substrate binding. We have applied rotary and unidirectional shadowing to VAT and an N-terminally deleted mutant, VAT(Delta N), in order to map the location of this domain. For the analysis of data derived from unidirectionally shadowed samples we used a new approach combining eigenvector analysis with surface relief reconstruction. Averages of rotary shadowed particles as well as relief reconstructions map the N-terminal domains to the periphery of the hexameric complex and reveal their bipartite structure. Thus, this method appears to be well suited to study the conformational changes that occur during the functional cycle of the protein.

  10. Determination of tensile and compressive moduli of laminae in unidirectionally reinforced laminate by flexural tests

    Science.gov (United States)

    Kuklinski, Mariusz

    2017-03-01

    The Euler-Bernoulli beam theory is widely used in engineering despite of various simplifications. One of which, that do matters in this article, is neglecting the difference between tensile and compressive moduli. Experimental tests reveal that for fibre reinforced composites tensile moduli are generally greater than compressive ones. This paper presents the results of testing the laminate composed of four unidirectionally glass reinforced laminae separated by layers of glass mat. The specimens were subjected to flexural, tensile and compressive loading in order to calculate corresponding moduli of elasticity. The results were compared using equations of Classical Beam Theory. Knowing the tensile and compressive moduli of glass mat reinforced laminae and performing flexural tests of laminate it is possible to calculate the tensile and compressive moduli of unidirectionally glass reinforced laminae. The experimental data taken into calculations correspond to linear normal strains of 0.0005 and 0.0025. The experimental data are consistent with results of calculations within acceptable margin of tolerance.

  11. Comparison of Fracture Energies of Epoxy-polysulfone Matrices and Unidirectional Composites Based on Them

    Science.gov (United States)

    Solodilov, V. I.; Korokhin, R. A.; Gorbatkina, Yu. A.; Kuperman, A. M.

    2015-05-01

    The fracture energies of modified epoxy matrices and unidirectional glass (GFRP)-, organic (OFRP)-, and carbon (CFRP)-fiber-reinforced plastics based on them are compared. The unidirectional composites were fabricated by winding. Epoxy-polysulfone compositions were used as matrices containing from 5 to 20 wt.% of PSK-1 polysulfone. The matrices were cured with triethanolaminotitanate. It is shown that the fracture mechanisms of GFRP, OFRP, and CFRP in shear differ, which is supposedly related to the nature of fibers. The fracture energy of reinforced plastics is mainly determined by the impact strength of matrix. The delamination energy G IR cm of GFRP, OFRP, and CFRP increased monotonically with content of polysulfone in the matrix. A marked growth in G IR cm was observed at a content of polysulfone exceeding 10 wt.%. The crack resistance of the composites under investigation increased two times. The fracture toughness of GFRP and OFRP was 3-4 times higher than that of CFRP at any concentration of polysulfone. A growth in G IR m of the matrices started when the content of PSK-1 exceeded 5 wt.%, and at 15-20 wt.% of PSK-1, the values of G IR m increased four times. In all the cases investigated, a correlation between the crack resistance of reinforced plastics and that of polymeric matrices was observed.

  12. Blade Vortex Interaction of Bi-directional flow in a Uni-directional Impulse Turbine

    Science.gov (United States)

    Velez, Carlos

    2011-11-01

    Uni-directional impulse turbines are used for the extraction of wave energy by converting oscillating air flow generated by waves into uni-directional rotational energy. The symmetric airfoil design requires a large camber, in order to function in bi-directional flow, which creates a large boundary layer separation region towards the trailing edge of the blade. A three-dimensional, viscous, transient turbulent CFD model with rotating reference frame is created to model the blade vortex interaction (BVI) which occurs during transient bi-directional air flow. Various LES models are compared to determine an adequate turbulence model to accurately resolve the vortices created on the blade trailing edge. A study of the adverse effects of this BVI is conducted and a novel blade jet technique is introduced to prevent the separation of air flow from the trailing edge of the blade. Results show strong stresses arise from BVI during bi-directional transitional flow and the effectiveness of the blade jet technique in diminishing flow separation is successfully demonstrated. Results indicate that the increase in blade lift is linearly proportional to the blade jet mass flow rate once the jet velocity reaches approximately 120% of the turbine inlet velocity and that the increase in efficiency created by the blade jets are greater than the loss in efficiency in reducing the mass flow rate extracted from the inlet to the blade jet.

  13. Studying fatigue damage evolution in uni-directional composites using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    , it will be possible to lower the costs of energy for wind energy based electricity. In the present work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre failure during...... the fatigue loading. The load carrying laminates in wind turbine blades is typically based on a number of non-crimp fabrics in which the load carrying fibres are oriented in the axial direction of the blades. In order to ease the handling of the fabric during the dry fabric layup and to ensure a good...... alignment of the final laminates, approximately 10% of the fibres are oriented in secondary directions as so-called backing bundles and stitched to the uni-directionally oriented bundles. Due to the coarse structure of the non-crimp fabric, test samples with a larger cross-section (compared to other...

  14. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    Science.gov (United States)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were

  15. Effect of magnetic field on the crystalline structure of magnetostrictive TbFe2 alloy solidified unidirectionally in microgravity.

    Science.gov (United States)

    Okutani, Takeshi; Nakata, Yoshinori; Nagai, Hideaki

    2004-11-01

    We performed unidirectional solidification experiments on TbFe(2) alloy in a static magnetic field in microgravity of 10(-4) g for 10 sec obtained by a 490 m free fall of the Japan microgravity center (JAMIC). When the magnetic field strength was increased from zero to 4.5 x 10(-2) T during unidirectional solidification in microgravity, a [1 1 1] crystallographic alignment dominated, and the maximum magnetostriction constant increased from 1,000 ppm to 4,000 ppm. For unidirectional solidification in normal gravity, the maximum magnetostriction constant remained at 2,000 ppm with increasing magnetic field. The columnar structure grows and orients along the magnetic field. TbFe(2) crystals grow in microgravity predominantly in the same direction as the magnetic field.

  16. Unidirectional barbed suture versus standard monofilament for urethrovesical anastomosis during robotic assisted laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Marc Manganiello

    2012-02-01

    Full Text Available PURPOSE: V-LocTM180 (Covidien Healthcare, Mansfield, MA is a new unidirectional barbed suture that may reduce loss of tension during a running closure. We evaluated the use of the barbed suture for urethrovesical anastomosis (UVA during robotic assisted laparoscopic prostatectomy (RALP. Time to completion of UVA, post-operative anastomotic leak rate, and urinary incontinence were compared in patients undergoing UVA with 3-0 unidirectional-barbed suture vs. 3-0 MonocrylTM (Ethicon, Somerville, NJ. MATERIALS AND METHODS: Data were prospectively collected for 70 consecutive patients undergoing RALP for prostate cancer between November 2009 and October 2010. In the first 35 patients, the UVA was performed using a modified running van Velthoven anastomosis technique using two separate 3-0 monofilament sutures. In the subsequent 35 patients, the UVA was performed using two running novel unidirectional barbed sutures. At 7-12 days postoperatively, all patients were evaluated with a cystogram to determine anastomotic integrity. Urinary incontinence was assessed at two months and five months by total daily pad usage. Clinical symptoms suggestive of bladder neck contracture were elicited. RESULTS: Age, PSA, Gleason score, prostate size, estimated blood loss, body mass index, and clinical and pathologic stage between the 2 groups were similar. Comparing the monofilament group and V-LocTM180 cohorts, average time to complete the anastomosis was similar (27.4 vs. 26.4 minutes, p = 0.73 as was the rate of urinary extravasation on cystogram (5.7 % vs. 8.6%, p = 0.65. There were no symptomatic bladder neck contractures noted at 5 months of follow-up. At 2 months, the percentage of patients using 2 or more pads per day was lower in the V-LocTM180 cohort (24% vs. 44%, p < 0.02. At 5 months, this difference was no longer evident. CONCLUSIONS: Time to complete the UVA was similar in the intervention and control groups. Rates of urine leak were also comparable

  17. Uni-directional consumer-resource theory characterizing transitions of interaction outcomes

    Science.gov (United States)

    Wang, Y.; DeAngelis, D.L.; Holland, J.N.

    2011-01-01

    A resource is considered here to be a biotic population that helps to maintain the population growth of its consumers, whereas a consumer utilizes a resource and in turn decreases its growth rate. Bi-directional consumer-resource (C-R) interactions have been the object of recent theory. In these interactions, each species acts, in some respects, as both a consumer and a resource of the other, which is the basis of many mutualisms. In uni-directional C-R interactions between two species, one acts as a consumer and the other as a material and/or energy resource, while neither acts as both. The relationship between insect pollinator/seed parasites and the host plant is an example of the latter interaction type of C-R, as the insect provides no material resource to the plant (though it provides a pollination service). In this paper we consider a different variation of the uni-directional C-R interaction, in which the resource species has both positive and negative effects on the consumer species, while the consumer has only a negative effect on the resource. A predator-prey system in which the prey is able to kill or consume predator eggs or larvae is an example. Our aim is to demonstrate mechanisms by which interaction outcomes of this system vary with different conditions, and thus to extend the uni-directional C-R theory established by Holland and DeAngelis (2009). By the analysis of a specific two-species system, it is shown that there is no periodic solution of the system, and the parameter (factor) space can be divided into six regions, which correspond to predation/parasitism, amensalism, and competition. The interaction outcomes of the system transition smoothly when the parameters are changed continuously in the six regions and/or initial densities of the species vary in a smooth fashion. Varying a pair of parameters can also result in the transitions. The analysis leads to both conditions under which the species approach their maximal densities, and

  18. 反单向性照应的生成%Derivation of Counter-unidirectional Anaphora

    Institute of Scientific and Technical Information of China (English)

    杨永忠

    2011-01-01

    Counter-unidirectional anaphora involves a complex interplay between syntax and pragmatics, thus providing a rich source of data with which theories of grammar can be tested. After a criticism of some of the available analyses, this paper proposes an alternative explanation, in which it is argued that counter-unidirectional anaphora does not undergo a process of movement. On the contrary, it is base-generated. The ways of generation of counterunidirectional anaphora fall into two types, i. e. modifier base-generation and topic base-generation. Counterunidirectional anaphora generated in the first way occupies the subject zone and functions as the modifier of the subject head, whereas counter-unidirectional anaphora generated in the second way occupies the adjunct zone and functions as a topic. Both ways of generation, however, must follow the Binding Principles B and C and satisfy Prominence Constraint, Feature Compatibility Constraint, and I-within-I Constraint.%反单向性照应因涉及复杂的句法和语用关系,为检验某些语法理论原则提供了非常难得的素材。本文在对现有的部分解释作出批评分析之后提出,反单向性照应的生成并未经历移位过程,而是在现有句法位置基础生成的。反单向性照应基础生成方式包括两种类型:修饰语位置基础生成和话题位置基础生成。通过前一种方式生成的反单向性照应一般占据主语域带,充当主语中心词的修饰语;通过后一种方式生成的反单向性照应一般占据附加语域带,充当话题。然而,无论前者还是后者,均须遵守约束原则B和c,满足显著性限制、特征相容性限制和I在I内限制。

  19. Analysis of temperature and impurity distributions in a unidirectional-solidification process for multi-crystalline silicon of solar cells by a global model

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga 816-8580 (Japan)]. E-mail: kakimoto@riam.kyushu-u.ac.jp; Liu Lijun [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga 816-8580 (Japan); Nakano, Satoshi [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-Koen, Kasuga 816-8580 (Japan)

    2006-10-15

    The unidirectional-solidification process is a key method for large-scale production of multi-crystalline silicon for use in highly efficient solar cells in the photovoltaic industry. Since the efficiency of solar cells depends on the crystal quality of the multi-crystalline silicon, it is necessary to optimize the unidirectional-solidification process to control temperature and impurity distributions in a silicon ingot. We developed a transient global model for the unidirectional-solidification process. We carried out calculations to investigate the temperature and impurity distributions in a silicon ingot during solidification. Conductive heat transfer and radiative heat exchange in a unidirectional-solidification furnace and convective heat transfer in the melt in a crucible are coupled to each other. These heat exchanges were solved iteratively by a finite volume method in a transient condition. Time-dependent distributions of impurity and temperature in a silicon ingot during the unidirectional-solidification process were numerically investigated.

  20. Unidirectionally Coupled Map Lattices with Nonlinear Coupling: Unbinding Transitions and Superlong Transients

    DEFF Research Database (Denmark)

    Marschler, Christian; Vollmer, Jürgen

    2014-01-01

    , the Reynolds number for pipe flow, and with transitions from bounded chaotic patches to an invasion of space of irregular motion. Dynamical systems models are unique tools in this respect because they can provide insight into the origin of the very long lifetime of puffs, and the dynamical mechanism leading......Recently, highly resolved experiments and simulations have provided detailed insight into the dynamics of turbulent pipe flow. This has revived the interest in identifying mechanisms that generate chaotic transients with superexponential growth of lifetime as a function of a control parameter...... to the transition from puffs to slugs in pipe flow. The present paper contributes to this enterprise by introducing a unidirectionally coupled map lattice. It mimics three of the salient features of pipe-flow turbulence: (i) the transition from laminar flow to puffs, (ii) a superexponential scaling of puff lifetime...

  1. Properties of unidirectional GFRPs based on an epoxy resin modified with polysulphone or an epoxyurethane oligomer

    Science.gov (United States)

    Solodilov, V. I.; Gorbatkina, Yu. A.

    2006-11-01

    The mechanical properties of unidirectional GFRPs based on an ED-22 epoxy resin were investigated. The resin was modified with a PSK-1 polysulphone or a PEF-3a epoxyurethane oligomer. Triethanolaminotitanate or diaminodiphenilsulphone was used as a hardener. The modification did not improve the mechanical properties of GFRPs in quasi-static loading; but in a low-speed impact loading, the shear strength of epoxypolysulphone GFRPs with 20 wt.% PSK-1 increased by 20-25%. For all the GFRPs investigated, the shear strength grew linearly with the logarithm of loading rate. The introduction of the modifiers increased the fracture toughness considerably: by 100 and 70% for GFRPs modified with 20 wt.% PSK-1 and 50 wt.% PEF-3a, respectively.

  2. Geometric analysis on the unidirectionality of the pulmonary veins for atrial reentry

    CERN Document Server

    Chun, Sehun

    2013-01-01

    It is widely believed that the pulmonary veins (PVs) of the atrium play the central role in the generation of atrial reentry leading to atrial fibrillation, but its mechanism has not been analytically explained. In order to improve the current clinical procedures for atrial reentry by understanding its mechanism, geometrical analysis is proposed on the conditions of conduction failure at the PVs and is validated by various computational modeling. To achieve this, a new analytic approach is proposed by adapting the geometric relative acceleration analysis from spacetime physics on the hypothesis that a large relative acceleration can translate to a dramatic increase in the curvature of the wavefront and subsequently to conduction failure. This analytic method is applied to a simplified model of the PV to reveal the strong dependency of the propagational direction and the magnitude of anisotropy for conduction failure. The unidirectionality of the PVs follows directly and is validated by computational tests in ...

  3. Interlaminar/interfiber Failure of Unidirectional GFRP used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin; Hvejsel, C.F.; Lund, Erik

    2013-01-01

    A unidirectional glass fiber/epoxy composite material system used for wind turbine blades was characterized under multi-axial loading by cutting specimens in varying off-axis angles relative to the fiber direction. In addition, Iosipescu shear tests were performed on both symmetric and asymmetric...... a “failure initiation strength” by analyzing the recorded stress-strain curves. The experimentally determined failure stresses were compared to the predictions of the maximum stress, Tsai-Wu and Northwestern University (NU) failure criteria. It was found that by using the approach of analyzing the stress......-strain curve to define a point of material failure initiation, it was possible to obtain a good theoretical fit to the experimental data using both the Tsai-Wu and the NU failure criteria....

  4. On Exact Solutions of the Navier-Stokes Equations for Uni-directional Flows

    CERN Document Server

    Lam, F

    2015-01-01

    In the present note, we show that the uni-directional flows in a rectangular channel and in a circular pipe are exact spatio-temporal solutions of the Navier-Stokes equations over a short time interval. We assert that the classical plane Poiseuille-Couette flow and Hagen-Poiseuille flow are time-independent approximations of the exact solutions if an appropriate initial velocity distribution at starting location is specified. Conceptually, there do not exist absolute steady flows starting from unspecified initial data. The classic experimental measurements by Poiseuille can be explained in terms of the evolutional solutions. In particular, the pipe flow does not have a time-independent characteristic velocity. The orthodox notion that the parabolic profile exists for arbitrary Reynolds numbers is unwarranted.

  5. SELF-EXCITED WAVE PROCESSES IN CHAINS OF UNIDIRECTIONALLY COUPLED IMPULSE NEURONS

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of neural activity. We propose new classes of singularly perturbed differential-difference equations with delay of Volterra type. With these systems, the models as a single neuron or neural networks are described. We study attractors of ring systems of unidirectionally coupled impulse neurons in the case where the number of links in the system increases indefinitely. In order to study periodic solutions of travelling wave type of this system, some special tricks are used which reduce the existence and stability problems for cycles to the investigation of auxiliary system with impulse actions. Using this approach, we establish that the number of stable self-excited waves simultaneously existing in the chain increases unboundedly as the number of links of the chain increases, that is, the well-known buffer phenomenon occurs.

  6. Unidirectional cloning by cleaving heterogeneous sites with a single sandwiched zinc finger nuclease.

    Science.gov (United States)

    Shinomiya, Kazuki; Mori, Tomoaki; Aoyama, Yasuhiro; Sera, Takashi

    2011-11-04

    We previously developed a novel type of zinc finger nucleases (ZFNs), sandwiched ZFNs that can discriminate DNA substrates from cleavage products and thus cleave DNA much more efficiently than conventional ZFNs as well as perform with multiple turnovers like restriction endonucleases. In the present study, we used the sandwiched ZFN to unidirectionally clone exogenous genes into target vectors by cleaving heterogeneous sites that contained heterogeneous spacer DNAs between two zinc-finger protein binding sites with a single sandwiched ZFN. We demonstrated that the sandwiched ZFN cleaved a 40-fold excess of both insert and vector plasmids within 1h and confirmed by sequencing that the resulting recombinants harbored the inserted DNA fragment in the desired orientation. Because sandwiched ZFNs can recognize and cleave a variety of long (≥ 26-bp) target DNAs, they may not only expand the utility of ZFNs for construction of recombinant plasmids, but also serve as useful meganucleases for synthesis of artificial genomes.

  7. Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    CERN Document Server

    Popov, Alexander K; Myslivets, Sergey A; Slabko, Vitaly V

    2013-01-01

    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.

  8. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  9. Modified Adomian decomposition method for fracture of laminated uni-directional composites

    Indian Academy of Sciences (India)

    B K Raghu Prasad; P V Ramana

    2012-02-01

    In this paper, the well-known Adomian Decomposition Method (ADM) is modified to solve the fracture laminated multi-directional problems. The results are compared with the existing analytical/exact or experimental method. The already known existing ADM is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The results from MADM are found to converge very quickly, simple to apply for fracture(singularity) problems and are more accurate compared to experimental and analytical methods. MADM is quite efficient and is practically well-suited for use in these problems. Several examples are given to check the reliability of the present method. In the present paper, the principle of the decomposition method is described, and its advantages form the analyses of fracture of laminated uni-directional composites.

  10. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    Science.gov (United States)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  11. Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive

    KAUST Repository

    Kim, Tae-il

    2009-06-12

    A study was conducted to demonstrate a simple method for fabricating stopped high-aspect-ratio (AR) nanohairs of polyurethane acrylate (PUA) material that utilized replica molding and post-electron-beam irradiation. The method offered a facile route to prepare angled polymer nanohairs without multistep processes or surface treatment. It was demonstrated that the PUA material was molded into a geometry controlled and high-density nanochair surface with an AR of up to 10 without facing self-matting problem, due to its favorable mechanical properties. The as-formed hairy structures also allowed for structural transformation into directional and angled nanohairs, while maintaining better adhesion capability. The nanohair surface also showed significant unidirectional adhesion properties and a higher shear adhesion due to its structural similarity to natural gecko foot hairs.

  12. Optimal and Adaptive Virtual Unidirectional Sound Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Dariusz Bismor

    2008-01-01

    Full Text Available One of the problems concerned with active noise control is the existence of acoustical feedback between the control value (“active” loudspeaker output and the reference signal. Various experiments show that such feedback can seriously decrease effects of attenuation or even make the whole ANC system unstable. This paper presents a detailed analysis of one of possible approaches allowing to deal with acoustical feedback, namely, virtual unidirectional sound source. With this method, two loudspeakers are used together with control algorithm assuring that the combined behaviour of the pair makes virtual propagation of sound only in one direction. Two different designs are presented for the application of active noise control in an acoustic duct: analytical (leading to fixed controller and adaptive. The algorithm effectiveness in simulations and real experiments for both solutions is showed, discussed, and compared.

  13. Tensile properties of unidirectional glass/epoxy composites at different orientations of fibres

    Directory of Open Access Journals (Sweden)

    Alok Hegde

    2015-03-01

    Full Text Available In this work, Diglycidyl Ether of BisphenolA(DGEBA / TriEthylene Tetra Amine(TETA system is used as the epoxy matrix and unidirectional glass fabric is used to reinforce with the polymer matrix by hand layup and vacuum bagging process. The glass fibre reinforced composites are prepared with fibre orientations of 0°, 45° and 90°. The specimens, after preparation, are tested for various tensile properties at different angles of the laminate. The tensile properties studied in this case are Tensile Strength, Tensile Modulus, Specific Tensile Strength and Specific Tensile Modulus. The result shave then been tabulated and studied to understand variation in the properties with orientation of fibre in the composite. Experimental procedure is carried out as per ASTM D3039 standards.

  14. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    Science.gov (United States)

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Kwang Su; Yi, Hoon; Yoo, Pil J.; Pang, Changhyun; Jeong, Hoon Eui; Kim, Tae-il

    2015-10-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests.

  15. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    Science.gov (United States)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  16. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Swinteck, N., E-mail: swinteck@email.arizona.edu; Matsuo, S.; Runge, K.; Lucas, P.; Deymier, P. A. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Vasseur, J. O. [Institut d' Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d' Ascq Cedex (France)

    2015-08-14

    Recent progress in electronic and electromagnetic topological insulators has led to the demonstration of one way propagation of electron and photon edge states and the possibility of immunity to backscattering by edge defects. Unfortunately, such topologically protected propagation of waves in the bulk of a material has not been observed. We show, in the case of sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice are supported by a manifold in momentum space with the topology of a single twist Möbius strip. Our results demonstrate the possibility of attaining one way transport and immunity to scattering of bulk elastic waves.

  17. Robust unidirectional transport in a one-dimensional metacrystal with long-range hopping

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    In two- and three-dimensional structures, topologically-protected chiral edge modes offer a powerful mean to realize robust light transport. However, little attention has been paid so far to robust one-way transport in one-dimensional systems. Here it is shown that unidirectional transport, which is immune to disorder and backscattering, can occur in certain one-dimensional metacrystals with long-range hopping without resorting to topological protection. Such metacrystals are described by an effective Hermitian Hamiltonian with broken time reversal symmetry, and transport does not require adiabatic (Thouless) pumping. A simple implementation in optics of such one-dimensional metacrystals, based on transverse light dynamics in a self-imaging optical cavity with phase gratings, is suggested

  18. Micromechanical Investigation of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Mikkelsen, Lars Pilgaard

    2015-01-01

    In this study, 3D x-ray computed tomography (XCT) is used to study fatigue damage mechanisms of a uni-directional (UD) glass fibre composite used in wind turbine blades. The challenges related to using 3D XCT for fatigue damage assessment over time is outlined, and a cut-out of a specimen...... previously subjected to tension-tension fatigue loading is examined. Broken UD load-carrying fibres are observed locally close to the thin off-axis backing support layers and are spreading out in a local damage zone in the UD bundle close to the backing. The common factors of the fatigue damaged regions...... found in this study were intertwining backing bundles in direct contact with the UD bundle and a locally high fibre volume fraction at the backing. Other factors like fibre misalignment and fibre radii could have an effect; however this is not obvious from the obtained results. Further studies...

  19. Unidirectionally Coupled Map Lattices with Non-Linear Coupling: Unbinding Transitions and Super-Long Transients

    CERN Document Server

    Marschler, Christian

    2014-01-01

    Recently, highly resolved experiments and simulations have provided detailed insight into the dynamics of turbulent pipe flow. This has revived the interest to identify mechanisms that generate chaotic transients with super-exponential growth of lifetime as a function of a control parameter, the Reynolds number for pipe flow, and with transitions from bounded chaotic patches to an invasion of space of irregular motion. Dynamical systems models are unique tools in this respect because they can provide insight into the origin of the very long life time of puffs, and the dynamical mechanism leading to the transition from puffs to slugs in pipe flow. The present paper contributes to this enterprise by introducing a unidirectionally coupled map lattice. It mimics three of the salient features of pipe-flow turbulence: (i) the transition from laminar flow to puffs, (ii) a super-exponential scaling of puff lifetime, and (iii) the transition from puffs to slugs by an unbinding transition in an intermittency scenario. ...

  20. Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations.

    Science.gov (United States)

    Andreasen, J; Kolesik, M

    2012-09-01

    Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse propagation equations to structures characterized by strong refractive index differences and material interfaces. We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method with single-frequency beam-propagation techniques.

  1. Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without an isolator

    Science.gov (United States)

    Sun, Guo-Yong; Qu, Ronghui; Yang, Jingxin; Wang, Xiangzhao

    2005-09-01

    A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths.

  2. Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator

    Science.gov (United States)

    Sun, Guoyong; Chung, Youngjoo; Luo, Zhengqian; Cai, Zhiping; Ye, Chenchun

    2007-07-01

    Highly uniform multiwavelength erbium-doped fiber ring laser with an intra-cavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude and frequency of the sine phase modulator. 15 lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably in power differences less than 2 dB and the side mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. The output power difference of about 20 dB is realized between counterclockwise and clockwise direction, which is almost independent of the pump power and lasing wavelengths.

  3. Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2017-01-01

    Full Text Available This article presents the design and experimental testing of a unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton. The proposed actuator is designed for mimicking the high-efficiency passive behavior of biological knee and providing actively assistance in locomotion. The adjustable passive compliance of exoskeletal knee is achieved through a variable ratio lever mechanism with linear elastic element. A compact customized electrohydraulic system is also designed to accommodate application demands. Preliminary experimental results show the prototype has good performances in terms of stiffness regulation and joint torque control. The actuator is also implemented in an exoskeleton knee joint, resulting in anticipant human-like passive compliance behavior.

  4. Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking model(Ⅰ): numerical modeling

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; I. Ohnaka; H.Yasuda; SU Yan-qing; GUO Jing-jie

    2006-01-01

    A 3D dendrite envelope tracking model was developed for estimating the solidification structure of unidirectionally solidified turbine blade. The normal vector of dendrite envelope was estimated by the gradient of dendrite volume fraction, and growth velocity of the dendrite envelope (dendrite tips) was calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope was calculated by introducing an effective solute partition coefficient(ke). Simulation results show that the solute-build-up due to the rejection at envelope affects grain competition and consequently the solidification structure. The lower value of ke leads to more waved dendrite growth front and higher solute rejection. The model was applied to predict the structure of turbine-blade-shape samples showing good ability to reproduce the columnar and single grain structures.

  5. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes......During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...

  6. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    Science.gov (United States)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  7. How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface.

    Science.gov (United States)

    Dai, Jiayun; Wang, Danxia; Zhang, Miao; Niu, Tianchao; Li, Ang; Ye, Mao; Qiao, Shan; Ding, Guqiao; Xie, Xiaoming; Wang, Yongqiang; Chu, Paul K; Yuan, Qinghong; Di, Zengfeng; Wang, Xi; Ding, Feng; Yakobson, Boris I

    2016-05-11

    The unidirectional alignment of graphene islands is essential to the synthesis of wafer-scale single-crystal graphene on Ge(110) surface, but the underlying mechanism is not well-understood. Here we report that the necessary coalignment of the nucleating graphene islands on Ge(110) surface is caused by the presence of step-pattern; we show that on the preannealed Ge(110) textureless surface the graphene islands appear nonpreferentially orientated, while on the Ge(110) surfaces with natural step pattern, all graphene islands emerge coaligned. First-principles calculations and theoretical analysis reveal this different alignment behaviors originate from the strong chemical binding formed between the graphene island edges and the atomic steps on the Ge(110) surface, and the lattice matching at edge-step interface dictates the alignment of graphene islands with the armchair direction of graphene along the [-110] direction of the Ge(110) substrate.

  8. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    Science.gov (United States)

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density.

  9. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    Science.gov (United States)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  10. Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria

    Directory of Open Access Journals (Sweden)

    Emma R. Schachner

    2013-03-01

    Full Text Available The lungs of birds have long been known to move air in only one direction during both inspiration and expiration through most of the tubular gas-exchanging bronchi (parabronchi. Recently a similar pattern of airflow has been observed in American alligators, a sister taxon to birds. The pattern of flow appears to be due to the arrangement of the primary and secondary bronchi, which, via their branching angles, generate inspiratory and expiratory aerodynamic valves. Both the anatomical similarity of the avian and alligator lung and the similarity in the patterns of airflow raise the possibility that these features are plesiomorphic for Archosauria and therefore did not evolve in response to selection for flapping flight or an endothermic metabolism, as has been generally assumed. To further test the hypothesis that unidirectional airflow is ancestral for Archosauria, we measured airflow in the lungs of the Nile crocodile (Crocodylus niloticus. As in birds and alligators, air flows cranially to caudally in the cervical ventral bronchus, and caudally to cranially in the dorsobronchi in the lungs of Nile crocodiles. We also visualized the gross anatomy of the primary, secondary and tertiary pulmonary bronchi of C. niloticus using computed tomography (CT and microCT. The cervical ventral bronchus, cranial dorsobronchi and cranial medial bronchi display similar characteristics to their proposed homologues in the alligator, while there is considerable variation in the tertiary and caudal group bronchi. Our data indicate that the aspects of the crocodilian bronchial tree that maintain the aerodynamic valves and thus generate unidirectional airflow, are ancestral for Archosauria.

  11. Unidirectional photoreceptor-to-Muller glia coupling and unique K+ channel expression in Caiman retina.

    Directory of Open Access Journals (Sweden)

    Astrid Zayas-Santiago

    Full Text Available BACKGROUND: Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS: We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus, endowed with both diurnal and nocturnal vision, by (i immunohistochemistry, (ii whole-cell voltage-clamp, and (iii fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS: Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION: Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K

  12. Performance Analysis of Video PHY Controller Using Unidirection and Bi-directional IO Standard via 7 Series FPGA

    DEFF Research Database (Denmark)

    Das, Bhagwan; Abdullah, M F L; Hussain, Dil muhammed Akbar

    2017-01-01

    graphics consumes more power, this creates a need of designing the low power design for Video PHY controller. In this paper, the performance of Video PHY controller is analyzed by comparing the power consumption of unidirectional and bi-directional IO Standard over 7 series FPGA. It is determined...

  13. Fatigue damage evolution in quasi-unidirectional non-crimp fabric based composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The fatigue failure of wind turbine blades is controlled by failure mechanisms on multiple scales spanning single fiber fatigue failure at the sub-micron scale, over the fiber bundle structure on the millimeter scale to the quasi-unidirectional non-crimp fabric on the meter scale. At the smaller ...

  14. Resonance-Based Reflector and Its Application in Unidirectional Antenna with Low-Profile and Broadband Characteristics for Wireless Applications.

    Science.gov (United States)

    Peng, Lin; Xie, Ji-Yang; Sun, Kai; Jiang, Xing; Li, Si-Min

    2016-12-09

    In this research, the novel concept of a resonance-based reflector (RBR) was proposed, and a ring-shaped RBR was utilized to design a unidirectional antenna with low-profile and broadband characteristics. Research found the ring operates as two half-wavelength (λ/2) resonators. Then, the resonance effect transforms the reflection phase of the ring RBR, and achieves a reflection phase of 0° antenna above the RBR with a distance smaller than λ/4. Two unidirectional antennas, named Case 1 and Case 2, were designed with the ring-shaped RBRs and bowtie antennas (RBR-BAs). The impedance bandwidths of Case 1 and the Case 2 are 2.04-5.12 GHz (86.3%) and 1.97-5.01 GHz (87.1%), respectively. The front-to-back ratio (FBR, an important parameter to measure the unidirectional radiation) of Case 1 ranges from 5-9.9 dB for frequencies 2.04-2.42 GHz, and the FBR of Case 2 ranges from 5-16 dB for frequencies 2.16-3.15 GHz. The proposed concept of RBR is desirable in wideband unidirectional antenna design, and the designing antennas can be used at the front end of wireless systems-such as indoors communication, remote sensing, and wireless sensor systems-for signal receiving or transmitting.

  15. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations

    NARCIS (Netherlands)

    Pot, M.W.; Faraj, K.A.; Adawy, A.; Enckevort, W.J.P. van; Moerkerk, H.T. van; Vlieg, E.; Daamen, W.F.; Kuppevelt, T.H. van

    2015-01-01

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore archi

  16. Anisotropy of hardness and laser damage threshold of unidirectional organic NLO crystal in relation to the internal structure

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu (India); Arivanandhan, M., E-mail: arivu_cz@yahoo.co.in [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Sankaranarayanan, K. [Department of Physics, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)

    2011-10-17

    Highlights: {center_dot} Growth rate of the unidirectional organic crystals were measured and the variation in the growth rate was explained based on the attachment energy model. {center_dot} Anisotropic behaviors of hardness and laser damage threshold of the unidirectional materials were analyzed. {center_dot} The obtained results were explained based on the crystal structure of the material. - Abstract: Unidirectional benzophenone crystals were grown along <1 1 0>, <0 1 0> and <0 0 1> directions by uniaxially solution crystallization method at ambient temperature. The growth rate of the grown crystals was varied with orientation. The optical absorption coefficients of benzophenone were measured as a function of wavelength. The optical absorption study reveals that the benzophenone crystal has very low absorption in the wavelength range of interest. Moreover, the laser damage threshold and micro hardness for <1 1 0>, <0 1 0> and <0 0 1> oriented unidirectional benzophenone crystals were measured using a Q-switched Nd:YAG laser operating at 1064 nm radiation and Vicker's micro hardness tester, respectively. The laser damage threshold is larger for the <1 1 0> and <0 1 0> oriented crystals compared to <0 0 1> oriented crystal at 1064 nm wavelength. The result is consistent with the hardness variation observed for the three different crystallographic directions of benzophenone crystal. The relation between the laser damage profile and mechanical hardness anisotropy is discussed based on the crystal structure of benzophenone.

  17. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined...

  18. Influence of cooling rate on interlaminar fracture properties of unidirectional commingled CF/PEEK composites

    Science.gov (United States)

    Beehag, Andrew; Ye, Lin

    1995-05-01

    The influence of cooling rates on the mechanical property profile (transverse flexure properties and modes-I and -II interlaminar fracture toughness) has been investigated for unidirectional commingled CF/PEEK composites. A laboratory hot press with a steel mould was used to process the composites at 400°C for 60 min, at an applied pressure of 1 MPa. Cooling rates from fast (quenching in oil) to slow (hot press cooling) were achieved at ambient pressure. The results indicate that different matrix morphology was found at different cooling conditions, although deconsolidation occurred in the CF/PEEK composites during cooling. When the cooling rate was shifted from slow to fast, consolidation quality of the CF/PEEK composites was improved. The resulting effect of the consolidation quality and cooling rates on the mechanical property profile of commingled CF/PEEK composites is presented. It was found that the effect of the cooling rate on the mechanical property profile of the commingled CF/PEEK composites could not be isolated from the consolidation quality.

  19. An Overview of A Perturbation Analysis for Uni-directionally Coupled Vibratory Gyroscopes

    Science.gov (United States)

    Vu, Huy; Palacios, Antonio; In, Visarath; Longhini, Patrick; Neff, Joseph

    2011-04-01

    The complex behaviours of gyroscope systems have been scientifically researched and thoroughly studied for decades. Most of scientific research involving gyroscopes specifically concentrates on studying the designs and fabrications at the circuitry level. Although gaining a recent popularity with the low cost of MEMS device that offers an attractive approach for gyroscope fabrications, its performance is far from meeting the requirements for an inertial grade guidance system. To improve the performance, our current research is theoretically focusing upon investigating the dynamics of vibratory gyroscopes coupled in a ring configuration. Particularly, a certain topology of arrangements among coupled gyroscopes can be designed and studied to enhance robustness. The main operation depends mostly on an external source for a stable oscillation in the drive axis, while an oscillatory motion in the sense axis, which is used to detect an angular rate of rotation, is enabled through the transfers of energy from the drive via the Coriolis force. With the mathematical model depicted as Duffing oscillators, however, by adding a certain coupling among gyroscopes, a similar behavior to a Duffing oscillator is expected, only with more complicated dynamics at a higher dimension. A number of Perturbation methods have popularly been carried out, to seek for a general asymptotic solution of typical Duffing oscillators. In this work as an overview, the two-time scale Perturbation expansion is asymptotically applied on the uni-directionally coupled vibratory gyroscopes to find an analytical solution which is then compared to the numerical one.

  20. Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution

    Science.gov (United States)

    Yamamoto, H.; Matsumura, R.; Takaoki, H.; Katsurabayashi, S.; Hirano-Iwata, A.; Niwano, M.

    2016-07-01

    The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level. We then examined how synapses develop on micropatterned hippocampal neurons. Three types of micropatterns with different numbers of short paths for dendrite growth were compared. A normal development in synapse density was observed when micropatterns with three or more short paths were used. Finally, we performed double patch clamp recordings on micropatterned neurons to confirm that these synapses are indeed functional, and that the neuronal signal is transmitted unidirectionally in the intended orientation. This work provides a practical guideline for patterning single neurons to design functional neuronal networks in vitro with the direction of signal propagation being controlled.

  1. Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves

    Science.gov (United States)

    Shemer, Lev; Sergeeva, Anna; Liberzon, Dan

    2010-12-01

    Results of extensive experiments on propagation of unidirectional nonlinear random waves in a large wave tank are presented. The nonlinearity of the wavefield determined by the characteristic wave amplitude and the dominant wave length was retained constant in various series of experimental runs. In each experimental series, initial spectra of different shape and/or width were considered. Every series contained sufficient number of independent realizations to ensure reliable statistics. Evolution of various statistical parameters along the tank was investigated. It is demonstrated that the spectrum width plays an important role in the evolution of the random wavefield and strongly affects the variation of the wave spectrum as well as of parameters that characterize the deviation of the wavefield statistics from that corresponding to the Gaussian distribution. In particular, in a random wavefield that initially contains independent free harmonics within a narrow spectrum, extremely steep waves appear more often in the process of evolutions than predicted by a Rayleigh distribution, while for wider initial wave spectra the probability of those waves decreases sharply and is well below the Rayleigh values.

  2. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    Science.gov (United States)

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  3. Extensive unidirectional introgression between two salamander lineages of ancient divergence and its evolutionary implications

    Science.gov (United States)

    Canestrelli, Daniele; Bisconti, Roberta; Nascetti, Giuseppe

    2014-01-01

    Hybridization and introgression, contrary to previous beliefs, are now considered to be widespread processes even among animal species. Nonetheless, the range of their possible outcomes and roles in moulding biodiversity patterns are still far from being fully appraised. Here we investigated the pattern of hybridization and introgression between Salamandrina perspicillata and S. terdigitata, two salamanders endemic to the Italian peninsula. Using a set of diagnostic or differentiated genetic markers (9 nuclear and 1 mitochondrial), we documented extensive unidirectional introgression of S. terdigitata alleles into the S. perspicillata gene pool in central Italy, indicating that barriers against hybridization were permeable when they came into secondary contact, and despite their ancient divergence. Nonetheless, purebred S. terdigitata, as well as F1, F2, and backcrosses were not found within the hybrid zone. Moreover, Bayesian analyses of population structure identified admixed populations belonging to a differentiated gene pool with respect to both parental populations. Overall, the observed genetic structure, together with their geographic pattern of distribution, suggests that Salamandrina populations in central Italy could have entered a distinct evolutionary pathway. How far they have gone along this pathway will deserve future investigation. PMID:25269625

  4. Molecular Order and Dynamics of Tris(2-ethylhexyl)phosphate Confined in Uni-Directional Nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Kipnusu, Wycliffe Kiprop [University of Leipzig, Germany; Kossack, Wilhelm [University of Leipzig, Germany; Iacob, Ciprian [University of Leipzig; Jasiurkowska, Malgorzata [University of Leipzig, Germany; Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Infrared Transition Moment Orientational Analysis (IR-TMOA) and Broadband Dielectric Spectroscopy (BDS) are combined to study molecular order and dynamics of the glass-forming liquid Tris(2-ethylhexy)phosphate (TEHP) confined in uni-directional nanopores with diameters of 4, 8, and 10.4 nm. The former method enables one to determine the molecular order parameter of specific IR transition moments. It is observed that the central P=O moiety of TEHP has a weak orientational effect (molecular order parameter Sz = 0.1 0.04) due the nanoporous confinement, in contrast to the terminal C H groups. BDS traces the dynamic glass transition of the guest molecules in a broad spectral range and at widely varying temperature. An enhancement of the mobility takes place when approaching the glass transition temperature and becomes more pronounced with decreasing pore diameter. This is attributed to a slight reduction of the density of the confined liquid caused by the 2-dimensional geometrical constraint.

  5. A Numerical Model for Natural Backfill of Pipeline Trenches Subjected to Unidirectional/Oscillatory Flows

    Institute of Scientific and Technical Information of China (English)

    LIANG Dong-fang; CHENG Liang; Kervin YEOW

    2005-01-01

    A numerical model for the self-burial of a pipeline trench is developed. Morphological evolutions of a pipeline trench under steady-current or oscillatory-flow conditions are simulated with/without a pipeline inside the trench. The oscillatory flow in this study represents the action of waves. The two-dimensional Reynolds-averaged continuity and Navier-Stokes equations with the standard k-ε turbulence closure, as well as the sediment transport equations, are solved with the finite difference method in a curvilinear coordinate system. Both bed and suspended loads of sediment transport are included in the morphological model. Because of the lack of experimental data on the backfilling of pipeline trenches, the numerical model is firetly verified against three closely-relevant experiments available in literature. A detailed measurement of the channel migration phenomenon under steady currents is employed for the assessment of the integral performance of the model. The two experimental results from U-tube tests are used to validate the model's ability in predicting oscillatory flows. Different time-marching schemes are employed for the morphological computation under unidirectional and oscillatory conditions. It is found that vortex motions within the trench play an important role in the trench development.

  6. Rigid, Branched Porphyrin Antennas: Control over Cascades of Unidirectional Energy Funneling and Charge Transfer.

    Science.gov (United States)

    Wolf, Maximilian; Herrmann, Astrid; Hirsch, Andreas; Guldi, Dirk M

    2017-08-30

    Porphyrin arrays consisting of three peripheral Zinc porphyrins (ZnPs) and a central free base porphyrin (H2P)-all rigidly linked to each other-serve as light-harvesting antennas as well as electron donors and are flexibly coupled to an electron-accepting C60 to realize the unidirectional flow of (i) excited-state energy from the ZnPs at the periphery to the H2P, (ii) electrons to C60, and (iii) holes to H2P and, subsequently, to ZnP. Dynamics following photoexcitation are elucidated by time-resolved transient absorption measurements on the femto-, pico-, nano-, and microsecond time scales and are examined by multiwavelength as well as target analyses. Hereby, full control over the charge shift between H2P and ZnP to convert the (ZnP)3-H2P(•+)-C60(•-) charge-separated state into (ZnP)3(•+)-H2P-C60(•-) charge-separated state is enabled by the solvent polarity: It is deactivated/switched-off in apolar toluene, while in polar benzonitrile it is activated/switched-on. Activating/switching impacts the recovery of the ground state via charge recombination rates, which differ by up to 2 orders of magnitude. All charge-separated states lead to the repopulation of the ground state with dynamics that are placed in the inverted region of the Marcus parabola.

  7. Analytical Study on Inherent Properties of a Unidirectional Vibrating Steel Strip Partially Immersed in Fluid

    Directory of Open Access Journals (Sweden)

    J. Li

    2013-01-01

    Full Text Available The theory of singuarity functions is introduced to present an analytical approach for the natural properties of a unidirectional vibrating steel strip with two opposite edges simply supported and other two free, partially submerged in fluid and under tension. The velocity potential and Bernoulli's equation are used to describe the fluid pressure acting on the steel strip. The effect of fluid on vibrations of the strip may be equivalent to added mass of the strip. The math formula of added mass can be obtained from kinematic boundary conditions of the strip-fluid interfaces. Singularity functions are adopted to solve problems of the strip with discontinuous characteristics. By applying Laplace transforms, analytical solutions for inherent properties of the vibrating steel strip in contact with fluid are finally acquired. An example is given to illustrate that the proposed method matches the numerical solution using the finite element method (FEM very closely. The results show that fluid has strong effect on natural frequencies and mode shapes of vibrating steel strips partially dipped into a liquid. The influences such as tension, the submergence depth, the position of strip in the container and the dimension of the container on the dynamic behavior of the strip are also investigated. Moreover, the presented method can also be used to study vertical or angled plates with discontinuous characteristics as well as different types of pressure fields around.

  8. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites

    Science.gov (United States)

    Zhang, Lifeng; Ren, Chengzu; Ji, Chunhui; Wang, Zhiqiang; Chen, Guang

    2016-03-01

    The machining mechanism of woven ceramic matrix composites is one of the most challenging problems in composite application. To elucidate the grinding mechanism of the woven ceramic matrix composites, a new model material consisting of unidirectional CVI-C/SiC was prepared and ground. The composite was ground in three typical directions and the experimental investigation of the surface grinding process for this composite is described. In addition, the micro structural characteristics and grinding mechanism of the composite were analyzed. The result shows that brittle fracture is the dominant removal mechanism for grinding of the C/SiC composites, and the destroy form of the composites is mainly the syntheses of the matrix cracking, fiber fracture, and interfacial debonding. The grinding force follows the order: Normal > Longitudinal > Transverse, and the surface roughness follows: Longitudinal > Normal > Transverse. The grinding parameters (feed speed, cut depth, grinding speed) have great influence on the grinding force and surface roughness. Based on the findings, the grinding force and surface integrity of the woven ceramic matrix composites can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of the C/SiC composites.

  9. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient.

    Science.gov (United States)

    Kou, Jianlong; Mei, Maofei; Lu, Hangjun; Wu, Fengmin; Fan, Jintu

    2012-05-01

    We perform molecular dynamics simulations to demonstrate that when a nanodroplet is confined inside a carbon nanotube (CNT), unidirectional motion can be created by a nonzero surface energy gradient. It is found that the water nanodroplet moves along the direction of increasing surface energy. The transportation efficiency of the water nanodroplet is found to be dependent on the surface energy gradient; environmental temperature; and the flexibility, diameter, and defectiveness of the CNT. It is shown that higher surface energy gradient, the smaller diameter of the CNT, and fewer defects promote higher transportation efficiency. However, when the temperature is too high or too low, the water transport across the CNT is impeded. Except for the initial stage at the relatively low environmental temperature, higher flexibility of the CNT wall reduces the transportation efficiency. It is also found that the hydrogen bonds of water molecules play a role in the dynamic acceleration process with a wavelike feature. The present work provides insight for the development of CNT devices for applications such as drug delivery, nanopumps, chemical process control, and molecular medicine.

  10. A Unidirectional Cell Switching Gate by Engineering Grating Length and Bending Angle.

    Directory of Open Access Journals (Sweden)

    Shu Fan Zhou

    Full Text Available On a microgrooved substrate, cells migrate along the pattern, and at random positions, reverse their directions. Here, we demonstrate that these reversals can be controlled by introducing discontinuities to the pattern. On "V-shaped grating patterns", mouse osteogenic progenitor MC3T3-E1 cells reversed predominately at the bends and the ends. The patterns were engineered in a way that the combined effects of angle- and length-dependence could be examined in addition to their individual effects. Results show that when the bend was placed closer to one end, migration behaviour of cells depends on their direction of approach. At an obtuse bend (135°, more cells reversed when approaching from the long segment than from the short segment. But at an acute bend (45°, this relationship was reversed. Based on this anisotropic behaviour, the designed patterns effectively allowed cells to move in one direction but blocked migrations in the opposing direction. This study demonstrates that by the strategic placement of bends and ends on grating patterns, we can engineer effective unidirectional switching gates that can control the movement of adherent cells. The knowledge developed in this study could be utilised in future cell sorting or filtering platforms without the need for chemotaxis or microfluidic control.

  11. Performance Analysis of Phase Controlled Unidirectional and Bidirectional AC Voltage Controllers

    Directory of Open Access Journals (Sweden)

    Abdul Sattar Larik

    2011-01-01

    Full Text Available AC voltage controllers are used to vary the output ac voltage from a fixed ac input source. They are also commonly called ac voltage regulators or ac choppers. The output voltage is either controlled by PAC (Phase Angle Control method or on-off control method. Due to various advantages of ac voltage controllers, such as high efficiency, simplicity, low cost and ability to control large amount of power they efficiently control the speed of ac motors, light dimming and industrial heating, etc. These converters are variable structure systems and generate harmonics during the operation which will affect the power quality when connected to system network. During the last couple of years, a number of new semiconductor devices and various power electronic converters has been introduced. Accordingly the subject of harmonics and its problems are of great concern to power industry and customers. In this research work, initially the simulation models of single phase unidirectional and bidirectional ac voltage controllers were developed by using MATLAB software. The harmonics of these models are investigated by simulation. In the end, the harmonics were also analyzed experimentally. The simulated as well as experimental results are presented.

  12. Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations

    Science.gov (United States)

    Colak, Evrim; Serebryannikov, Andriy E.; Usik, P. V.; Ozbay, Ekmel

    2016-05-01

    It is shown that strong diffractions and related dual-beam splitting can be obtained at transmission through the nonsymmetric structures that represent two slabs of photonic crystal (PhC) separated by a single coupled-cavity type defect layer, while there are no grating-like corrugations at the interfaces. The basic operation regimes include unidirectional and bidirectional splitting that occur due to the dominant contribution of the first positive and first negative diffraction orders to the transmission, which is typically connected with different manifestations of the asymmetric transmission phenomenon. Being the main component of the resulting transmission mechanism, diffractions appear owing to the effect exerted by the defect layer that works like an embedded diffractive element. Two mechanisms can co-exist in one structure, which differ, among others, in that whether dispersion allows coupling of zero order to a wave propagating in the regular, i.e., defect-free PhC segments or not. The possibility of strong diffractions and efficient splitting related to it strongly depend on the dispersion properties of the Floquet-Bloch modes of the PhC. Existence of one of the studied transmission scenarios is not affected by location of the defect layer.

  13. Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Colak, Evrim [Electrical Engineering Department, Ankara University, Golbasi, 06830 Ankara (Turkey); Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Usik, P. V. [Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 61002 Kharkiv (Ukraine); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2016-05-21

    It is shown that strong diffractions and related dual-beam splitting can be obtained at transmission through the nonsymmetric structures that represent two slabs of photonic crystal (PhC) separated by a single coupled-cavity type defect layer, while there are no grating-like corrugations at the interfaces. The basic operation regimes include unidirectional and bidirectional splitting that occur due to the dominant contribution of the first positive and first negative diffraction orders to the transmission, which is typically connected with different manifestations of the asymmetric transmission phenomenon. Being the main component of the resulting transmission mechanism, diffractions appear owing to the effect exerted by the defect layer that works like an embedded diffractive element. Two mechanisms can co-exist in one structure, which differ, among others, in that whether dispersion allows coupling of zero order to a wave propagating in the regular, i.e., defect-free PhC segments or not. The possibility of strong diffractions and efficient splitting related to it strongly depend on the dispersion properties of the Floquet-Bloch modes of the PhC. Existence of one of the studied transmission scenarios is not affected by location of the defect layer.

  14. Unidirectional single-photon generation via matched zero-index metamaterials

    Science.gov (United States)

    Xu, Jingping; Song, Ge; Zhang, Zhenqing; Yang, Yaping; Chen, Hong; Zubairy, M. Suhail; Zhu, Shiyao

    2016-12-01

    We propose a scheme which can generate a highly directional single photon with almost 100% efficiency. Therefore we can get a useful single photon when it is required. An initial excited atom is placed inside a special Fabry-Pérot cavity whose walls consist of left-handed and zero-index metamaterials. The left-handed slabs work as a closed shell to avoid dissipation of the emitted photon, while the outer zero-index metamaterial slabs act as a special shutter which is transparent only for normal incidence, so that the photon emitted by the atom can only escape out of the cavity unidirectionally. Furthermore, we design the cavity with currently available metamaterials made of two-dimensional dielectric photonic crystals, and simulate the radiative field of an electric dipole to confirm our prediction. Differently from the previous proposal of single-photon sources which demanded complicated structure design and subtle mode analysis, our scheme is simple and robust for atomic position. This work has promising applications for quantum communication and optical quantum computing.

  15. Effect of Moisture and Temperature on the Compressive Failure of CCF300/QY8911 Unidirectional Laminates

    Science.gov (United States)

    Yongbo, Zhang; Huimin, Fu; Zhihua, Wang

    2013-10-01

    CCF300/BMI composites are relevant materials for supersonic aircraft due to their high specific properties. However in aeronautical applications, the composites are exposed to severe environmental conditions, and it is known that hot and humid environments can degrade some aspects of the material performance especially the compressive strength. In this paper, the effect of moisture and temperature on the compressive failure of unidirectional CCF300 carbon fiber reinforced bismaleimide(BMI) matrix composites were studied. Also scanning electron microscope (SEM) was employed for fractographic investigations. It is observed that the plastic deformations at the fiber/matrix and interlaminar interface as well as residual stresses lower the compressive strength of the material. The failure of specimens tested in hot and wet conditions always occurs as a result of out-of-plane microbuckling that is attributed to the reduction of matrix strength. In addition, the fiber microbuckling model, fiber kinking model and combined model were employed for the compressive strength prediction of the UD CCF300/QY8911 composites subjected to different environment conditions. The comparison was done between these models. Results show that the combined model is more suitable for the compressive strength prediction of CCF300/QY8911 composite systems when suffering severe environment conditions.

  16. Unidirectional hybridization at a species' range boundary: implications for habitat tracking

    DEFF Research Database (Denmark)

    Beatty, Gemma, E.; Philipp, Marianne; Provan, Jim

    2010-01-01

    Aim Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects of such p....... This could compromise the ability of species to respond to climate change via habitat tracking, although the final outcome of these processes may ultimately depend on the rate of global climate change and its effect on the species' distributions.......Aim Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects...... hybridization may lead to the extinction of peripheral populations of P. minor where the two species grow sympatrically. Extinction could occur as a result of genetic assimilation where F1s are fertile, or via the removal of unidirectionally pollinated sterile F1s, or by a combination of these processes...

  17. Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians

    Science.gov (United States)

    Porzycki, Jakub; WÄ s, Jarosław; Hedayatifar, Leila; Hassanibesheli, Forough; Kułakowski, Krzysztof

    2017-08-01

    The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004, 10.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n , for the consecutive n th -nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

  18. Rogue events in spatio-temporal numerical simulations of unidirectional waves in basins of different depth

    CERN Document Server

    Slunyaev, Alexey; Didenkulova, Ira

    2016-01-01

    The evolution of unidirectional nonlinear sea surface waves is calculated numerically by means of solutions of the Euler equations. The wave dynamics corresponds to quasi-equilibrium states characterized by JONSWAP spectra. The spatio-temporal data are collected and processed providing information about the wave height probability and typical appearance of abnormally high waves (rogue waves). The waves are considered at different water depths ranging from deep to relatively shallow cases ($k_p h > 0.8$, where $k_p$ is the peak wavenumber, and $h$ is the local depth). The asymmetry between front and rear rogue wave slopes is identified; it becomes apparent for sufficiently high waves in rough sea states at all considered depths. The lifetimes of rogue events may reach up to 30-60 wave periods depending on the water depth. The maximum observed wave has height of about 3 significant wave heights. A few randomly chosen in-situ time series from the Baltic Sea are in agreement with the general picture of the numeri...

  19. Numerical study on unidirectional fluid–solid coupling of Francis turbine runner

    Directory of Open Access Journals (Sweden)

    Kan Kan

    2015-03-01

    Full Text Available To analyze the fluid–solid coupling stress characteristics of the Francis turbine runner comprehensively, based on the Reynolds-averaged Navier–Stokes equations and shear stress transport k-ω turbulence model, this article performs numerical simulation of three-dimensional steady incompressible turbulent flow through the whole passage of a certain large Francis turbine under multiple operating conditions with Computational Fluid Dynamic software CFX and contrasts the result with that model test conversion. With the help of ANSYS workbench platform, equivalent stress, deformation distribution, and variation of the runner under multiple operating conditions are obtained through loading the water pressure on the runner blade as structural plane load to blades by the method of unidirectional fluid–solid coupling. The results show that under small flow operating conditions, flow patterns in the runner are disordered, the stress on the blade distributes unevenly, and the maximum stress lies on the influent side of the blades connected to the band; as the flow increases, the stress appears intensively around the effluent side of the blades connected to the runner crown. The maximum deformation first decreases and then increases as the flow increases. The deformation area expands from the middle effluent side of blades to the band. The results can be found in the researches on the structure design and the safety and stability of the Francis turbine runner.

  20. Verification of Peterson's Algorithm for Leader Election in a Unidirectional Asynchronous Ring Using NuSMV

    CERN Document Server

    Ansari, Amin

    2008-01-01

    The finite intrinsic nature of the most distributed algorithms gives us this ability to use model checking tools for verification of this type of algorithms. In this paper, I attempt to use NuSMV as a model checking tool for verifying necessary properties of Peterson's algorithm for leader election problem in a unidirectional asynchronous ring topology. Peterson's algorithm for an asynchronous ring supposes that each node in the ring has a unique ID and also a queue for dealing with storage problem. By considering that the queue can have any combination of values, a constructed model for a ring with only four nodes will have more than a billion states. Although it seems that model checking is not a feasible approach for this problem, I attempt to use several effective limiting assumptions for hiring formal model checking approach without losing the correct functionality of the Peterson's algorithm. These enforced limiting assumptions target the degree of freedom in the model checking process and significantly...

  1. THE HYDROLOGIC CYCLE, UNIDIRECTIONAL CHARTER OF THE DISSOLVED SALTS AND SUSPENDED LOAD

    Directory of Open Access Journals (Sweden)

    Nicolae Florea

    2012-12-01

    Full Text Available In this paper it is underlined that the hydrologic cycle in nature, reversible and regenerating of fresh water, carries out also an unidirectional and irreversible circulation – by means of a fragment of the hydrologic cycle – of the dissolved salts and stream’s suspended load, entailed by the water drained from continents to ocean. The trend is to transfer soluble salts from land to ocean in the same time with the running water on land in the portion of the hydrologic cycle which refers to the water transfer from continents to ocean in order to equilibrate the annual water balance of the hydrologic cycle. But, one can realize here and there some local salt accumulations in salt soils or in salt lakes within areas without drainage in arid climate; these salts accumulations are cases of local hydrologic cycles „grafted” along the way of water on land (to ocean. The energy necessary to the hydrologic cycle in nature is delivered by the Sun, and the entropy remains at a low level as a consequence of the elimination in this cycle of water vapors with high entropy, and of the receiving of liquid or solid water with low entropy, so that the annual level of entropy is maintained at a low level.

  2. All-dielectric nanoantennas for unidirectional excitation of electromagnetic guided modes

    CERN Document Server

    Lee, Sergey; Krasnok, Alexander; Belov, Pavel

    2015-01-01

    Engineering of intensity and direction of radiation from a single quantum emitter by means of structuring of their environment at the nanoscale is at the cornerstone of modern nanophotonics. Recently discovered systems exhibiting spin--orbit coupling of light are of particular interest in this context. In this Letter, we have demonstrated that asymmetrical excitation of a high-index subwavelength dielectric nanoparticle by a point dipole source located in a notch at its surface results in formation of a chiral near field, which is similar to that of a circularly polarized dipole or quadrupole. Using numerical simulations, we have shown that this effect is the result of a higher multipole (quadrupole and octupole) modes excitation within the nanoparticle. We have applied this effect for unidirectional excitation of dielectric waveguide and surface plasmon-polariton modes. We have achieved the value of front--to--back ratio up to 5.5 for dielectric waveguide and to 7.5 for the plasmonic one. Our results are imp...

  3. Enhanced magnetocaloric effect in a Co-doped Heusler Mn50Ni37Co3In10 unidirectional crystal

    Science.gov (United States)

    Ren, Jian; Feng, Shutong; Fang, Yue; Zhai, Qijie; Luo, Zhiping; Zheng, Hongxing

    2016-11-01

    A high-pressure optical zone-melting technique was employed to grow a Mn-rich Heusler Mn50Ni37Co3In10 unidirectional crystal in the present study. It was found that the Co-doped Mn50Ni37Co3In10 unidirectional crystal showed a low magnetic hysteretic loss and a widened working temperature interval in the vicinity of the martensitic transformation. The inverse magnetic entropy change (∆SM) reached 7.84 Jkg-1K-1 around 237.5 K under a magnetic field change of 30 kOe, and the corresponding effective refrigeration capacity (RCeff) was about 127.2 Jkg-1. The experimental results demonstrated a high potential to develop high-performance Mn-rich Heusler Mn-Ni-In magnetocaloric materials by means of Co doping in combination with the high-pressure optical zone-melting fabrication technique.

  4. Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes onto Carbon Fibers by Electrophoretic Deposition

    Institute of Scientific and Technical Information of China (English)

    Qiang Song; Kezhi Li; Hejun Li; Qiangang Fu

    2013-01-01

    Although in-situ growing carbon nanotubes (CNTs) on carbon fibers could greatly increase the matrix-dominated mechanical properties of carbon/carbon composites (C/Cs),it always decreased the tensile strength of carbon fibers.In this work,CNTs were introduced into unidirectional carbon fiber (CF) preforms by electrophoretic deposition (EPD) and they were used to reinforce C/Cs.Effects of the content of CNTs introduced by EPD on tensile property of unidirectional C/Cs were investigated.Results demonstrated that EPD could be used as a simple and efficient method to fabricate carbon nanotube reinforced C/Cs (CNT-C/Cs) with excellent tensile strength,which pays a meaningful way to maximize the global performance of CNT-C/Cs.

  5. Unidirectional reflectionlessness and invisibility in the TE and TM modes of a P T -symmetric slab system

    Science.gov (United States)

    Sarısaman, Mustafa

    2017-01-01

    Unidirectional invisibility of a P T -symmetric optical system is of great interest, but challenging as well since it is infeasible to fulfill it through wide optical frequency ranges in all angular directions. Accordingly we study reflectionless and invisible patterns in the TE and TM modes of an optical slab system consisting of an adjacent or separated pair of balanced gain and loss layers with a gap. We provide a comprehensive study of one of the simplest experimentally accessible examples of a unidirectionally reflectionless and invisible P T -symmetric optical slab system. We obtain the physically optimal conditions for the realization of these phenomena. We derive analytic expressions, and show that only certain gain amounts restricted to take values between certain minimum and maximum values give rise to uni- or bidirectionally invisible configurations. The size of gap decides the measure of reflectionlessness and invisibility parameters, especially on gain value and incident angle.

  6. Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit

    Science.gov (United States)

    Kang, Jianhong; Xu, Mingyu

    2009-04-01

    The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.

  7. Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit

    Institute of Scientific and Technical Information of China (English)

    Jianhong Kang; Mingyu Xu

    2009-01-01

    The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.

  8. Resonance-Based Reflector and Its Application in Unidirectional Antenna with Low-Profile and Broadband Characteristics for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2016-12-01

    Full Text Available In this research, the novel concept of a resonance-based reflector (RBR was proposed, and a ring-shaped RBR was utilized to design a unidirectional antenna with low-profile and broadband characteristics. Research found the ring operates as two half-wavelength (λ/2 resonators. Then, the resonance effect transforms the reflection phase of the ring RBR, and achieves a reflection phase of 0° < ϕ < 180° in a wide frequency range above the resonance. Then, the in-phase reflection characteristic (−90° < ϕ < 90° can be obtained in the wide frequency band by placing an antenna above the RBR with a distance smaller than λ/4. Two unidirectional antennas, named Case 1 and Case 2, were designed with the ring-shaped RBRs and bowtie antennas (RBR-BAs. The impedance bandwidths of Case 1 and the Case 2 are 2.04–5.12 GHz (86.3% and 1.97–5.01 GHz (87.1%, respectively. The front-to-back ratio (FBR, an important parameter to measure the unidirectional radiation of Case 1 ranges from 5–9.9 dB for frequencies 2.04–2.42 GHz, and the FBR of Case 2 ranges from 5–16 dB for frequencies 2.16–3.15 GHz. The proposed concept of RBR is desirable in wideband unidirectional antenna design, and the designing antennas can be used at the front end of wireless systems—such as indoors communication, remote sensing, and wireless sensor systems—for signal receiving or transmitting.

  9. On the equivalence of unidirectional rogue waves detected in periodic simulations and reproduced in numerical wave tanks

    OpenAIRE

    Ducrozet, Guillaume; BONNEFOY, Félicien; Ferrant, Pierre

    2016-01-01

    International audience; This paper deals with the reproduction of unidirectional extreme events in a numerical wave basin. From a rogue wave measurement at a given location , experiments or numerical simulations are conducted with the same wave profiles using reproduction procedures. Although it is recognized that many different physical mechanisms may be at play in freak wave formation, reproduction procedures generally use frequency focusing to generate these high waves. This paper intends ...

  10. Free vibrations of delaminated unidirectional sandwich panels with a transversely flexible core—a modified Galerkin approach

    Science.gov (United States)

    Schwarts-Givli, H.; Rabinovitch, O.; Frostig, Y.

    2007-03-01

    A theoretical approach for the free vibration analysis of delaminated unidirectional sandwich panels is developed. The theoretical model accounts for the flexibility of the core in the out of plane (vertical) direction and the resulting high-order displacement, acceleration, and velocity fields within the core. The analytical approach is based on Hamilton's variational principle along with the high-order unidirectional sandwich panel theory and the modified Galerkin method. The two types of models investigated include delaminated regions with and without contact. The ability of the model to describe the high-order effects such as the pumping phenomenon and the localized effects in the vicinity of the delaminated regions is examined. A numerical example that focuses on the free vibration behavior of simply supported delaminated unidirectional sandwich panels is presented and discussed. A parametric study that examines the influence of the length of the delaminated region, its location, and the mechanical properties of the core material is presented. The numerical results are also compared with finite element analysis and with some special asymptotic cases for which the free vibrations behavior is analytically evaluated. A summary and conclusions close the paper.

  11. Stress Relaxation Behavior of Unidirectional Carbon/Epoxy Composites at Elevated Temperature and Analysis Using Viscoplasticity Model

    Science.gov (United States)

    Kawai, Masamichi; Kazama, Takeshi; Masuko, Yoichi; Tsuda, Hiroshi; Takahashi, Jun; Kemmochi, Kiyoshi

    Off-axis stress relaxation behavior of unidirectional T800H/3631 carbon/epoxy composite exposed to high temperature is examined at relatively high tensile strain levels, and a phenomenological viscoplasticity model is tested on the capability to describe the time-dependent response observed. First, stress relaxation tests are performed at 100°C on plain coupon specimens with different fiber orientations, θ=0, 10, 30, 45, and 90°. For each of the fiber orientations, in principle, stress relaxation tests are carried out at three different strain levels. The relaxation of axial stress in the unidirectional composite is clearly observed, regardless of the fiber orientation. Just after the total strain hold, the axial stress quickly relaxes with time in a short period. The stress relaxation rate of the composite tends to become zero, irrespective of the fiber orientation. The associated relaxation modulus depends on the level of strain. The entire process of the prior instantaneous tensile response and the subsequent off-axis stress relaxation behavior is simulated using a macromechanical viscoplasticity model based on an overstress concept. It is demonstrated that the model succeeds in adequately reproducing the off-axis stress relaxation behavior of the unidirectional composite laminate.

  12. A novel unidirectional cross-talk from the insulin-like growth factor-I receptor to leptin receptor in human breast cancer cells.

    Science.gov (United States)

    Ozbay, Tuba; Nahta, Rita

    2008-06-01

    Obesity is a major risk factor for the development and progression of breast cancer. Increased circulating levels of the obesity-associated hormones leptin and insulin-like growth factor-I (IGF-I) and overexpression of the leptin receptor (Ob-R) and IGF-I receptor (IGF-IR) have been detected in a majority of breast cancer cases and during obesity. Due to correlations between increased leptin, Ob-R, IGF-I, and IGF-IR in breast cancer, we hypothesized that molecular interactions may exist between these two signaling pathways. Coimmunoprecipitation and immunoblotting showed that IGF-IR and Ob-R interact in the breast cancer cell lines MDA-MB-231, MCF7, BT474, and SKBR3. Stimulation of cells with IGF-I promoted Ob-R phosphorylation, which was blocked by IGF-IR kinase inhibition. In addition, IGF-I activated downstream signaling molecules in the leptin receptor and IGF-IR pathways. In contrast to IGF-I, leptin did not induce phosphorylation of IGF-IR, indicating that receptor cross-signaling is unidirectional, occurring from IGF-IR to Ob-R. Our results show, for the first time, a novel interaction and cross-talk between the IGF-I and leptin receptors in human breast cancer cells.

  13. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers

    Science.gov (United States)

    Kimmig, S.; Allen, I.; You, J. H.

    2013-09-01

    A SiC long fiber-reinforced copper composite offers a beneficial combination of high strength and high thermal conductivity at elevated temperatures. Both properties make the composite a promising material for the heat sink of high-heat-flux components. In this work, we developed a novel Cu/SiCf composite using the Sigma fiber. Based on HIP technique, a metallurgical process was established for fabricating high quality specimens using a TiC interface coating. Extensive tensile tests were conducted on the unidirectionally reinforced composite at 20 °C and 300 °C for a wide range of fiber volume fraction (Vf). In this paper, a large amount of test data is presented. The transversal thermal conductivity varies from 260 to 130 W/mK at 500 °C as Vf is increased from 13% to 37%. The tensile strength reached up to 1246 MPa at 20 °C for Vf = 37.6%, where the fracture strain was limited to 0.8%. The data of both elastic modulus and ultimate strength exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. The strength of the composite with the Sigma fibers turned out to be superior to those of the SCS6 fibers at 300 °C, although the SCS6 fiber actually has a higher strength than the Sigma fiber. The fractographic pictures of tension test and fiber push-out test manifested a sufficient interfacial bonding. Unidirectional copper composite reinforced by long SiC fibers was fabricated using the Sigma SM1140+ fiber for a wide range of fiber volume fraction from 14% to 40%. Extensive tensile tests were carried out at RT and 300 °C. The data of ultimate strength as well as elastic modulus exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. In terms of the tensile strength, the Cu/Sigma composite turned out to be superior to the previous Cu/SCS6 composite at 300 °C, while comparable at RT, although the SCS6 fiber has a higher strength than the Sigma fiber. Such a

  14. Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2014-11-01

    Full Text Available Chitosan is the N-deacetylated derivative of chitin, a naturally abundant mucopolysaccharide that consists of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4 linkage and is found in nature as the supporting material of crustaceans, insects, etc. Chitosan has been strongly recommended as a suitable functional material because of its excellent biocompatibility, biodegradability, non-toxicity, and adsorption properties. Boosting all these excellent properties to obtain unprecedented performances requires the core competences of materials chemists to design and develop novel processing strategies that ultimately allow tailoring the structure and/or the composition of the resulting chitosan-based materials. For instance, the preparation of macroporous materials is challenging in catalysis, biocatalysis and biomedicine, because the resulting materials will offer a desirable combination of high internal reactive surface area and straightforward molecular transport through broad “highways” leading to such a surface. Moreover, chitosan-based composites made of two or more distinct components will produce structural or functional properties not present in materials composed of one single component. Our group has been working lately on cryogenic processes based on the unidirectional freezing of water slurries and/or hydrogels, the subsequent freeze-drying of which produce macroporous materials with a well-patterned structure. We have applied this process to different gels and colloidal suspensions of inorganic, organic, and hybrid materials. In this review, we will describe the application of the process to chitosan solutions and gels typically containing a second component (e.g., metal and ceramic nanoparticles, or carbon nanotubes for the formation of chitosan nanocomposites with a macroporous structure. We will also discuss the role played by this tailored composition and structure in the ultimate performance of these materials.

  15. Survival and relaxation time, pore size distribution moments, and viscous permeability in random unidirectional fiber structures

    Science.gov (United States)

    Tomadakis, Manolis M.; Robertson, Teri J.

    2005-03-01

    Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially

  16. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  17. The particle interaction effects in the field-cooled and zero-field-cooled magnetization processes

    NARCIS (Netherlands)

    Papusoi Jr, C.

    1999-01-01

    The present theories explaining the mechanism of particle interaction within a fine particle system driven by the thermal agitation assign the increase of the interaction strength either to an increase of the particle anisotropy due to the environment reaction to its dipole moment, or to the occurre

  18. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    Science.gov (United States)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  19. Zero-field-cooled/field-cooled magnetization study of Dendrimer model

    Science.gov (United States)

    Arejdal, M.; Bahmad, L.; Benyoussef, A.

    2017-01-01

    Being motivated by Dendrimer model with mixed spins σ=3 and S=7/2, we investigated the magnetic nanoparticle system in this study. We analyzed and discussed the ground-state phase diagrams and the stable phases. Then, we elaborated and explained the magnetic properties of the system by using Monte Carlo Simulations (MCS) in the framework of the Ising model. In this way, we determined the blocking temperature, which is deduced through studying the partial-total magnetization and susceptibility as a function of the temperature, and we established the effects of both the exchange coupling interaction and the crystal field on the hysteresis loop.

  20. Modeling of flow and solidification of liquid water during unidirectional freezing in porous media

    Science.gov (United States)

    Saruya, Tomotaka; Rempel, Alan; Kurita, Kei

    2014-05-01

    Flow and phase change of liquid in porous media are fundamental processes in earth science and soil physics. Particularly in cold region or periglacial environment, the flow and solidification of pore water in the ground simultaneously occur and their collective interactions control the growth of ice lenses and upward displacement of surface called as frost heave. In the nucleation and growth of ice lenses, the homogeneous mixture of soil particles and pore water is transformed to the heterogeneous structure due to the water redistribution and the particle migration. Unfrozen water that is adsorbed to the particle surface or confined to capillary regions plays an important role in the formation of ice lenses and its behaviors have been investigated from a perspective of premelting dynamics (e.g., Worster and Wettlaufer 2006). In the porous media below the nominal melting temperature, intermolecular forces that act between particles and ice through the liquid thin film produce the net thermomolecular force that is responsible for the particle separation form the ice lenses(Dash et al. 2006). Although the mechanisms of ice lens formation have been investigated by many researchers, still large uncertainties remain and more experimental constraints are required. Here we present experimental results of ice lens formation, particularly focusing on the role of grain size and compare the model by Rempel et al (2004). We have performed the unidirectional freezing experiments using water-saturated glass beads that have uniform structures. Since the flow of water in porous media depends on the particles size and pore throat size (Darcy's law), we have prepared various sizes of glass beads from submicron to submillimeter. Our experiments reveal the clear relationships between the host particle sizes and nucleated location and lens thickness. Part of this work is already published in Saruya et al, PRE but we extended to smaller sized regime. We compared our experimental results

  1. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Søndergaard, Lise

    1994-01-01

    The authors present an in vivo method for measuring the unidirectional influx constant (Ki) for gadolinium diethylenetriaminepentaacetic acid (DTPA) diffusion across the capillary membrane in the human myocardium with magnetic resonance imaging. Ki is related to the extraction fraction (E......) and the perfusion (F) by the equation Ki = E.F.Ki was obtained by using the longitudinal relaxation rate (R1) as a measure of the myocardial concentration of Gd-DTPA in the mathematical model for transcapillary transport across capillary membranes. Myocardial enhancement after Gd-DTPA injection was followed...

  2. Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in the presence of noise

    DEFF Research Database (Denmark)

    Kapustina, J.V.; Kuznetsov, A.P.; Kuznetsov, S.P.

    2001-01-01

    We study scaling regularities associated with the effects of additive noise on the bicritical behavior of a system of two unidirectionally coupled quadratic maps. A renormalization group analysis of the effects of noise is developed. We outline the qualitative and quantitative differences between....... A number of computer graphical illustrations for the scaling regularities is presented. We discuss the smearing of the fine structure of the bicritical attractor and the Fourier spectra in the presence of noise, the self-similar structure of the Lyapunov charts on the parameter plane near the bicritical...

  3. Effect of microgravity and magnetic field on the metallic and crystalline structure of magnetostrictive SmFe2 synthesized by unidirectional solidification.

    Science.gov (United States)

    Okutani, Takeshi; Nagai, Hideaki; Mamiya, Mikito; Shibuya, Masachika; Castillo, Martin

    2006-09-01

    The Sm-2Fe molten alloy with 1:2 molar ratio was unidirectionally solidified in both microgravity and normal gravity in concurrence with a magnetic flux (0-0.12 T). The compound SmFe2 was produced by the unidirectional solidification in microgravity with a magnetic flux of 0T and exhibited a lamellar microstructure. The average lamellar thickness was 30 mum and each lamella possessed a crystallographic alignment along major axis aligned in the direction of cooling. Unidirectional solidification in microgravity with a magnetic field of 0.04 T produced crystalline SmFe2 and Fe phases. The microstructure of this product was lamellar with an average lamellar thickness of 17 mum and no crystalline alignment. Unidirectional solidification in microgravity with a magnetic flux ranging from 0.06 to 0.12 T and in normal gravity with a magnetic flux ranging from 0 to 0.12 T produced crystalline Sm2Fe17 and Fe. During unidirectional solidification in microgravity without a magnetic flux, few nucleation sites were formed and rapid crystal growth occurred, consequently forming large-grain SmFe2. The produced SmFe2 had a lamellar structure with a dominant crystallographic alignment in the direction of cooling. Convection in the molten state and where a magnetic flux was present caused homogeneous nucleation, forming Sm2Fe17 with a disordered structure and crystalline alignment coinciding with the formation of the dendritic Fe.

  4. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6.

    Science.gov (United States)

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Jin, Shifeng; Chen, Xiaolong

    2015-06-05

    Borates are among a class of compounds that exhibit rich structural diversity and find wide applications. The formation of edge-sharing (es-) BO4 tetrahedra is extremely unfavored according to Pauling's third and fourth rules. However, as the first and the only es-borate obtained under ambient pressure, es-KZnB3O6 shows an unexpected high thermal stability up to its melting point. The origin of this extraordinary stability is still unclear. Here, we report a novel property in KZnB3O6: unidirectional thermal expansion, which plays a role in preserving es-BO4 from disassociation at elevated temperatures. It is found that this unusual thermal behavior originates from cooperative rotations of rigid groups B6O12 and Zn2O6, driven by anharmonic thermal vibrations of K atoms. Furthermore, a detailed calculation of phonon dispersion in association with this unidirectional expansion predicts the melting initiates with the breakage of the link between BO3 and es-BO4. These findings will broaden our knowledge of the relationship between structure and property and may find applications in future.

  5. A Unidirectional Total Variation and Second-Order Total Variation Model for Destriping of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-01-01

    Full Text Available Remote sensing images often suffer from stripe noise, which greatly degrades the image quality. Destriping of remote sensing images is to recover a good image from the image containing stripe noise. Since the stripes in remote sensing images have a directional characteristic (horizontal or vertical, the unidirectional total variation has been used to consider the directional information and preserve the edges. The remote sensing image contaminated by heavy stripe noise always has large width stripes and the pixels in the stripes have low correlations with the true pixels. On this occasion, the destriping process can be viewed as inpainting the wide stripe domains. In many works, high-order total variation has been proved to be a powerful tool to inpainting wide domains. Therefore, in this paper, we propose a variational destriping model that combines unidirectional total variation and second-order total variation regularization to employ the directional information and handle the wide stripes. In particular, the split Bregman iteration method is employed to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed method.

  6. Theoretical - Experimental Analysis of Cellular and Primary Dendritic Spacings during Unidirectional Solidification of Sn-Pb Alloys

    Directory of Open Access Journals (Sweden)

    Otávio F.L. da Rocha

    2002-09-01

    Full Text Available Structural parameters as grain size, dendritic and cellular spacings, segregated products, porosity and other phases are strongly influenced by the thermal behavior of the metal/mold system during solidification, imposing a close correlation between this and the resulting microstructure. Several unidirectional solidification studies with the objective of characterizing cellular and dendritic spacings have been developed in large scale involving solidification in steady-state heat flow. The main objective of this work is to determine the thermal solidification parameters during the cellular/dendritic transition as well as to compare theoretical models that predict cellular and primary dendritic spacings with experimental results for solidification situations in unsteady-state heat flow. Experiments were carried out in a water cooled unidirectional solidification apparatus and dilute alloys of the Sn-Pb system were used (Sn 1.5wt%Pb, Sn 2.5wt%Pb and Sn 5wt%Pb. The upper limit of the Hunt-Lu cellular growth model closely matched the experimental spacings. The lower limit calculated with the Hunt-Lu dendritic model best generated the experimental results. The cellular/dendritic transition was observed to occur for the Sn 2.5wt%Pb alloy over a range of analytical cooling rates from 0.28 K/s to 1.8 K/s.

  7. Dependence of gain and phase-shift on crystal parameters and pump intensity in unidirectional photorefractive ring resonators

    Indian Academy of Sciences (India)

    M K Maurya; T K Yadav; R A Yadav

    2009-04-01

    The steady-state amplification of light beam during two-wave mixing in photorefractive materials has been analysed in the strong nonlinear regime. The oscillation conditions for unidirectional ring resonator have been studied. The signal beam can be amplified in the presence of material absorption, provided the gain due to the beam coupling is large enough to overcome the cavity losses. Such amplification is responsible for the oscillations. The gain bandwidth is only a few Hz. In spite of such an extremely narrow bandwidth, unidirectional oscillation can be observed easily at any cavity length in ring resonators by using photorefractive crystals as the medium and this can be explained in terms of the photorefractive phase-shift. The presence of such a phase-shift allows the possibility of the non-reciprocal steady-state transfer of energy between the two light beams. Dependence of gain bandwidth on coupling constant, absorption coefficient of the material's cavity length (crystal length) and modulation ratio have also been studied.

  8. Kim model for flux-pinning-induced stress in a long cylindrical superconductor

    Science.gov (United States)

    Zeng, Jun; Wang, Xiaogui; Wu, Huaping; Xue, Feng; Zhu, Jun

    2016-07-01

    In this work, the flux-pinning-induced stress distribution in a circular cylinder of high-temperature superconductors is studied by adopting the Kim critical state model to describe the relationship between the magnetic flux density and induced current. Based on the plane strain approach, the analytic expressions of the radial and hoop stress in the cylinder are derived for the zero-field cooling and field cooling magnetization processes. It is shown that the stress distributions depend on the activation processes and the values of the dimensionless parameter p in the Kim model, and the overall maximums of the stresses appear at or near the center of the cylinder where cracking may be most likely initiated. In addition, the Kim model has wider applicability than the Bean model, and the influence of p on the stress depends on the activation process. Generally speaking, these results may be useful for understanding the magnetoelastic problem in practical application of bulk superconductors.

  9. 32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line

    DEFF Research Database (Denmark)

    Mizuno, Takayuki; Shibahara, K.; Ono, Hirotaka;

    2016-01-01

    We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system.......We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system....

  10. A STUDY OF FRACTURE OF UNIDIRECTIONAL CF/SiC SINGLE EDGE-NOTCHED BEAM UNDER THREE-POINT BENDING- MACRO/MICRO-NUMERICAL MONTE CARLO SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Cheng Tianle; Xia Yuanming; Jiang Dazhi

    2001-01-01

    In this paper, the fracture process of a unidirectional CF/SiC single edge-notched beam (SENB) under three-point bending (TPB) is studied by means of macro/micro-statistical Monte Carlo simulation. The simulated p-△ curves are in agreement with the experimental results before the peaks of curves, and the simulated microevolution patterns are in agreement with the patterns of the crack surfaces, which have verified this method. It is preliminarily demonstrated that the second turning point in the compliance changing rate curve corresponds to the fracture initiation for experiments on SENB under TPB of unidirectional CF/SiC composites.

  11. Surgical palliation of primary pulmonary arterial hypertension by a unidirectional valved Potts anastomosis in an animal model.

    Science.gov (United States)

    Bui, Minh Thanh; Grollmus, Oswin; Ly, Mohamedou; Mandache, Anca; Fadel, Elie; Decante, Benoit; Serraf, Alain

    2011-11-01

    Patients with idiopathic pulmonary hypertension are at risk for right-sided heart failure and sudden death. Despite improvement in pharmacologic management, some still require lung transplantation. Potts anastomosis has been demonstrated as a good palliation in children to alleviate symptoms and medical therapy despite desaturation in the lower part of the body. Young adult patients with pulmonary hypertension and isosystemic pressure remain at risk, particularly at exercise. The goal of this research was to find a palliation for patients in whom suprasystemic pulmonary hypertension developed at exercise. Creating a Potts anastomosis involved a unidirectional valve between the left pulmonary artery and the descending aorta. Experimental study was performed on 14 pigs. A prosthetic patch of polytetrafluoroethylene (Gore-Tex; WL Gore & Associates Inc, Newark, Del) was used to create the unidirectional valve and implanted in the Potts anastomosis. Via a left thoracotomy, an aorto-aortic shunt between the aortic isthmus and the distal descending thoracic aorta was instituted, allowing a safe surgical procedure. Intrapulmonary injection of Erciplex glue (Peters Surgical, Bobigny, France), diluted in 70% alcohol, was used to create acute pulmonary hypertension. The right to left shunt across the unidirectional valvular patch was evaluated after clamping the aorta in the acute phase of pulmonary hypertension by echo-pulsed Doppler at the level of the descending thoracic aorta by withdrawal of blood gas (arterial carbon dioxide tension, alveolar carbon dioxide tension) and assessment of peripheral oxygen saturation. Similar reevaluation of the shunt was performed at a mean interval of 13 ± 2.5 weeks. In the first series, Erciplex glue increased pulmonary artery pressure from 15.3 ± 3.1 mm Hg to 38.7 ± 6.0 mm Hg. Mean peripheral oxygen saturation decreased from 100% to 85% ± 1.5%. Mean partial pressure of carbon dioxide increased from 31.9 ± 9.1 mm Hg to 46.2 ± 12

  12. Synthesis of unidirectional structures of SiO{sub 2}-Ag using Au nanoparticles as nucleation centers; Sintesis de estructuras unidireccionales de SiO{sub 2}-Ag utilizando nanoparticulas de Au como centros de nucleacion

    Energy Technology Data Exchange (ETDEWEB)

    Villa S, G.; Mendoza A, D.; Gutierrez W, C.; Perez H, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)], e-mail: demetrio.mendoza@inin.gob.mx

    2008-07-01

    This paper reports a method to synthesize Ag unidirectional structures covered with SiO{sub 2} by sol-gel technique using Au nanoparticles as nucleation centers of the unidirectional structures. In the first phase unidirectional structures of SiO{sub 2}-Ag CI are obtained by sol-gel, using TEOS as a precursor of metallic structures (Ag) and the incorporation of Au nanoparticles as nucleation centers for growth of unidirectional structures. In the second stage, one-way systems are subjected to thermal treatment in H{sub 2} atmosphere for obtain AG{sup 0} particles through mechanisms that diffusion and coalescence of silver to form structures that have a thin cover of SiO{sub 2}. Analysis by scanning electron microscopy, transmission and atomic force microscopy allowed to determine the chemical composition and microstructural properties of unidirectional systems SiO{sub 2}-Ag. (Author)

  13. Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions

    Science.gov (United States)

    Barraud, Clément; Bouzehouane, Karim; Deranlot, Cyrile; Fusil, Stéphane; Jabbar, Hashim; Arabski, Jacek; Rakshit, Rajib; Kim, Dong-Jik; Kieber, Christophe; Boukari, Samy; Bowen, Martin; Beaurepaire, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-05-01

    Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co /CoPc /Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.

  14. Real-Time Control of Uni-Directional Liquid Spreading on a Half-Cone Nanoshell Array

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhao, Zhiyuan; Zhou, Ziwei; Zhang, Gang; Lin, Quan

    2014-10-01

    Half-cone nanoshell arrays, fabricated by a simple and efficient colloidal lithography method, enable uni-directional liquid spreading on their hydrophilic asymmetric nanostructured surface. The preferred direction of the liquid flow is reversed when the surface is made hydrophobic. Accordingly, poly(N-isopropyl-acrylamide) is polymerized onto the surface for in-site controlling the transition of liquid spreading direction via its temperature dependent hydrophobicity. Furthermore, we also explain theoretically, that the spreading direction on hexagonal nanocone arrays is independent of the lattice orientation and only depends on the slanting direction. The insights gained from this work offer new opportunities for smart microfluidics, water harvesting and making use of other wetting conditions on demand.

  15. Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking model (Ⅱ): model validation and defects prediction

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; SU Yan-qing; GUO Jing-jie; I. OHNAKA; H. YASUDA

    2006-01-01

    The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.

  16. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    Science.gov (United States)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  17. Spring-back simulation of unidirectional carbon/epoxy L- shaped laminate composites manufactured through autoclave processing

    Science.gov (United States)

    Nasir, M. N. M.; Mezeix, L.; Aminanda, Y.; Seman, M. A.; Rivai, A.; Ali, K. M.

    2016-02-01

    This paper presents an original method in predicting the spring-back for composite aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up samples are fabricated on moulds with different corner angles (30°, 45° and 90°) and the effect on spring-back deformation are observed. Then, the FEA model that was developed in the previous study on flat samples is utilized. The model maintains the physical mechanisms of spring-back such as ply stretching and tool-part interface properties with the additional mechanism in the corner effect and geometrical changes in the tool, part and the tool-part interface components. The comparative study between the experimental data and FEA results show that the FEA model predicts adequately the spring-back deformation within the range of corner angle tested.

  18. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  19. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm

    2017-01-01

    The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers, namely glass and carbon fibre composites. The compression strength of the composite is related to the orientation of the fibres. Thus the orientation is essential when designing materials...... for wind turbine blades. The calculation of the fibre orientation distribution is based on segmenting the individual fibres from volumes that have been acquired through X-ray tomography. The segmentation method presented in this study can accurately extract individual fibres from low contrast X-ray scans...... of composites with high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which are independent of the scanning quality. The compression strength for both composites is estimated from the average fibre orientations and is found to be of the same order of magnitude...

  20. Nonlinear response of a unidirectional erbium-doped fiber ring laser to a sinusoidally modulated pump power

    Science.gov (United States)

    Sola, I. J.; Martín, J. C.; Álvarez, J. M.

    2002-11-01

    The response of a unidirectional erbium-doped fiber ring laser, excited by a sinusoidally modulated pump power, is analyzed both experimentally and theoretically. Experimentally, several resonance peaks are observed, as well as different frequency ranges showing bistable behaviour. Appearance of all resonance peaks obtained can be explained taking into account simple relations between the pump modulation frequency and the system natural frequency. Theoretically, it is shown how a model which combines the theory of erbium-doped fibers and the semiclassical laser treatment can account for all phenomena observed, with good agreement. In particular, it is demonstrated that a correct description of the bistable regions requires taking into account powers and population distributions along the laser active medium.

  1. Optical and mechanical studies on unidirectional grown tri-nitrophenol methyl p-hydroxybenzoate bulk single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Uthrakumar, R. [Department of Physics, Loyola College, Chennai 600 034 (India); Vesta, C. [Department of Physics, SDNB Vaishnav College, Chennai 600 044 (India); Robert, R. [Department of Physics, Government Arts College (Men), Krishnagiri 635 001 (India); Mangalam, G. [Department of Physics, MGR University, Chennai 600 095 (India); Jerome Das, S., E-mail: jerome@loyolacollege.ed [Department of Physics, Loyola College, Chennai 600 034 (India)

    2010-10-15

    The bulk single crystal of tri-nitrophenol methyl p-hydroxybenzoate (TNMPHB) of length 90 mm and diameter 12 mm was obtained by employing unidirectional growth technique. Single crystal X-ray diffraction studies and powder XRD analysis have been carried out to confirm the identity of the crystal. The optical band gap of the grown crystal was calculated to be 4.91 eV from UV transmission spectrum. The mechanical strength of the grown crystal has been studied using Vicker's microhardness tester. Low dielectric loss shows that the grown crystal contains lesser defects authenticating the suitability of the crystal towards device applications. The surface morphology studies have been carried out on the grown crystal.

  2. Spectral, optical and mechanical studies on L-histidine hydrochloride monohydrate (LHC) single crystals grown by unidirectional growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R. [Department of Physics, Government Arts College (Men), Krishnagiri (India); Justin Raj, C. [Department of Physics, Loyola College, Chennai 600 034 (India); Krishnan, S. [Department of Physics, R.M.K. Engineering College, Kavaripettai 601 206 (India); Uthrakumar, R.; Dinakaran, S. [Department of Physics, Loyola College, Chennai 600 034 (India); Jerome Das, S., E-mail: sjeromedas2004@yahoo.co [Department of Physics, Loyola College, Chennai 600 034 (India)

    2010-08-15

    Single crystals of nonlinear optical L-histidine hydrochloride monohydrate (LHC) were grown in an aqueous solution by the unidirectional crystal growth method within a period of 45 days along (1 0 1) plane. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their orthorhombic structure having space group P2{sub 1}2{sub 1}2{sub 1}. Values of several physical parameters were determined for the grown crystal. Optical transmission studies revealed very low absorption and band gap energy was calculated for the LHC crystals. Further, some optical constant were also determined for the grown crystals. Anisotropy in Vicker's microhardness led to the assessment of fracture toughness, brittleness index and yield strength for the synthesized crystals. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found to be three times that of KDP crystals.

  3. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre......The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites....

  4. Discrete model in the analysis of residual stresses in unidirectional winding cylinders made of fiber-reinforced plastic

    Directory of Open Access Journals (Sweden)

    Turusov Robert Alekseevich

    2015-01-01

    Full Text Available Today works in cosmos and at great sea depths are becoming very current. In order to execute these works tanks with great mass perfection are needed, which represents the relation of the product of pressure and inner volume to its mass. Usually such tanks are usually produced as a cocoon by winding methods, which can be automated. The simplest model of a cocoon is a cylinder with hemispheric blinds at the edges. The radial stresses arise in thick walled composite cylinders due to anisotropic thermal shrinkage during cooling process after curing. It also can lead to formation of radial cracks. The results of the analyses when a material is simplified to a homogenous orthotropic material show a very small residual radial stress value. In this paper we have used discrete model to evaluate residual radial stresses in thick-walled unidirectional filament wound cylinder and the results were compared to the results of homogenous orthotropic model.

  5. Micromechanical Time-Lapse X-ray CT Study of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Lowe, Tristan; Withers, Philip J.

    2015-01-01

    This study considers fatigue damage evolution in a uni-directional (UD) glass fibre composite used for wind turbine blades which is manufactured from a non-crimp fabric. It is the initial part of a time-lapse study where the damage progression is followed in a sample during a fatigue test....... In the current study 3D X-ray Computed Tomography (XCT) is used to characterise the fatigue damage in the material at three different stages of the fatigue life of a tension-tension fatigue test. 3D XCT is performed on rectangular samples (4x4x110mm) cut out from pre-fatigued full-size fatigue test specimens...

  6. Influence of specimen type and reinforcement on measured tension-tension fatigue life of unidirectional GFRP laminates

    DEFF Research Database (Denmark)

    Korkiakoski, Samuli; Brøndsted, Povl; Sarlin, Essi

    2016-01-01

    It is well known that standardised tension-tension fatigue test specimens of unidirectional (UD) glass-fibre-reinforced plastics (GFRP) laminates tend to fail at end tabs. The true fatigue life is then underestimated. The first objective of this study was to find for UD GFRP laminates a test...... specimen that fails in the gauge section. The second objective was to compare fatigue performance of two laminates, one having a newly developed UD powder-bound fabric as a reinforcement and the other having a quasi-UD stitched non-crimp fabric as a reinforcement. In the first phase, a rectangular specimen...... a significant effect on the failure mode and measured fatigue life of the laminates. A significantly higher fatigue life was measured for the laminate with the powder-bound fabric reinforcement when compared to the laminate with the stitched reinforcement....

  7. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    Science.gov (United States)

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  8. Optical, crystalline perfection and mechanical studies on unidirectional grown bis(thiourea) cadmium zinc chloride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Uthrakumar, R. [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India); Department of Physics, Sri Muthukumaran Institute of Technology, Chennai-600 069 (India); Vesta, C. [Department of Physics, SDNB Vaishnav College, Chennai-600 044 (India); Bhagavannarayana, G. [CGC Section, National Physical Laboratory, New Delhi-110 012 (India); Robert, R. [Department of Physics, Government Arts College, Krishnagiri-635 001 (India); Jerome Das, S., E-mail: sjeromedas2004@yahoo.com [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India)

    2011-02-03

    Research highlights: > Growth of bulk and optically clear single crystal of bis(thiourea) cadmium zinc chloride was successfully grown from aqueous solution by utilizing unidirectional crystal growth method. The title material belongs to orthorhombic crystal system with space group P2{sub 1}2{sub 1}2{sub 1}. The grown single crystal was free from structural grain boundaries with the FWHM value of the diffraction curve as 14 arc s. The optical transmission analysis indicates that BTCZC has a wide transparency window in the visible region with a lower cutoff wavelength at 250 nm. Hardness parameters have been calculated for the grown crystal. The dielectric studies reveal that BTCZC has low dielectric constant with fewer defects, and hence this crystal can be used as a potential material for optical applications. - Abstract: Optically transparent and bulk single crystal of bis(thiourea) cadmium zinc chloride was successfully grown by unidirectional crystal growth technique. The quality of the crystal was examined by high-resolution X-ray diffraction analysis. The cell parameters and the crystallinity of the grown crystal were estimated by the single-crystal and powder X-ray diffraction analyses, respectively. Optical transmittance of the crystal was recorded using the UV-vis-NIR spectrophotometer. The optical band gap and optical constant of the material were calculated by using transmission spectrum. Microhardness measurements were made for the grown crystal using Vicker's microhardness tester. The dielectric loss and dielectric constant measurements as a function of frequency and temperature were measured for the grown crystal.

  9. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.

    Science.gov (United States)

    He, Fupo; Chen, Yan; Li, Jiyan; Lin, Bomiao; Ouyang, Yi; Yu, Bo; Xia, Yuanyou; Yu, Bo; Ye, Jiandong

    2015-04-01

    In this study, a platelet-rich plasma poly(lactic-co-glycolic acid) (PRP-PLGA)/calcium phosphate cement (CPC) composite scaffold was prepared by incorporating PRP into PLGA/CPC scaffold with unidirectional pore structure, which was fabricated by the unidirectional freeze casting of CPC slurry and the following infiltration of PLGA. The results from in vitro cell experiments and in vivo implantation in femoral defects manifested that incorporation of PRP into PLGA/CPC scaffold improved in vitro cell response (cell attachment, proliferation, and differentiation), and markedly boosted bone formation, angiogenesis and material degradation. The incorporation of PRP into scaffold showed more outstanding improvement in osteogenesis as the scaffolds were used to repair the segmental radial defects, especially at the early stage. The new bone tissues grew along the unidirectional lamellar pores of scaffold. At 12 weeks postimplantation, the segmental radial defects treated with PRP-PLGA/CPC scaffold had almost recuperated, whereas treated with the scaffold without PRP was far from healed. Taken together, the PRP-PLGA/CPC scaffold with unidirectional pore structure is a promising candidate to repair bone defects at various sites.

  10. Control of Mechanical Properties of Three-Dimensional Ti-6Al-4V Products Fabricated by Electron Beam Melting with Unidirectional Elongated Pores

    Science.gov (United States)

    Ikeo, Naoko; Ishimoto, Takuya; Serizawa, Ai; Nakano, Takayoshi

    2014-09-01

    Aligned, unidirectional, elongated pores were incorporated in Ti-6Al-4V products fabricated by electron beam melting in order to control the mechanical properties of the products such that they became suitable for biomedical applications. Unidirectional pores were successfully produced when the scan spacing of the electron beam was greater than the diameter of the beam. By changing the scan spacing of the electron beam, the size of the unidirectional pores could be varied. As a result, both the Young's moduli and the yield stresses of the products with unidirectional pores decreased linearly with an increase in their porosity, owing to the stress concentration coefficient being 1 in the equation representing the relation between strength and porosity for porous materials. Further, low (<35 GPa) Young's moduli were obtained when the scan spacing was 1 mm or higher, with these values being were close to the typical Young's modulus of human cortical bone. This suggested that these porous materials could be used to fabricate customized bone implants that exhibited desired mechanical properties and suppressed the stress shielding of bone that is normally noticed when implants made of Ti alloys are used.

  11. Ex-situ time-lapse x-ray CT study of 3D micro-structural fatigue damage evolution in uni-directional composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Wang, Ying; Zangenberg Hansen, Jens

    2016-01-01

    In this study, the progress of damage under tension-tension fatigue of a uni-directional (UD) glass fibre composite made from a non-crimp fabric is studied using transilluminated white light imaging (TWLI) and X-ray computed tomography (CT). TWLI images are automatically captured throughout...

  12. Magnetic-field-induced strain in Ni{sub 2}MnGa melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Algarabel, P.A. E-mail: algarabe@posta.unizar.es; Magen, C.; Morellon, L.; Ibarra, M.R.; Albertini, F.; Magnani, N.; Paoluzi, A.; Pareti, L.; Pasquale, M.; Besseghini, S

    2004-05-01

    Linear thermal expansion (300-350 K) and magnetostriction measurements in magnetic fields up to 15 kOe have been performed on a Ni{sub 2}MnGa melt-spun ribbon. The magnetic-field-induced strain has been studied on a field-cooling process through the martensitic transformation and shows a maximum as a function of the applied field. This previously unreported behaviour is discussed.

  13. Optically Induced Transparency

    CERN Document Server

    Zheng, Yuanlin; Shen, Zhenhua; Cao, Jianjun; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    Light-matter-light interactions serve as the backbone technology of all-optical information processing for both on-chip and long-haul communication purposes. The representative example of electromagnetically induced transparency has its unique ability of optically controlling transparency windows with relative low light in atomic systems, though its practical applications are limited due to rigid experimental requirements. Here we demonstrate a new form of optically induced transparency in a micro-cavity by introducing four-wave mixing gain in order to couple nonlinearly two separated resonances of the micro-cavity in ambient environment. A signature Fano-like resonance is also observed owing to the nonlinear interference of two coupled resonances. Moreover, we show that the unidirectional gain of four-wave mixing can lead to non-reciprocal transmission at the transparency windows. Optically induced transparency may offer a unique platform for a compact, integrated solution to all-optical processing and quant...

  14. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    Directory of Open Access Journals (Sweden)

    Schneider Horacio

    2011-09-01

    two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression.

  15. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-10-01

    Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations. We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude of the effect.

  16. Modelling the Strength and Fatigue Life of a Unidirectional Fibrous Composite by Using Daniels' Sequence and Markov Chains

    Science.gov (United States)

    Paramonov, Yu.; Cimanis, V.; Varickis, S.; Kleinhofs, M.

    2013-11-01

    A review of the previous works of the authors dedicated to the use of Daniels' sequence (DS) for analyzing the relation between the distribution of the static strength of components of a unidirectional fibrous composite (UFC) and the distribution of its fatigue life is presented. A generalization of the DS which can be used to analyze the association of distribution of the static strength of composite components with distribution of the static strength of the UFC itself is given. In analyzing the fatigue life of a UFC, unlike in Daniels' model, the loading rate and randomness of the number of still workable components in the weak microvolume in which the destruction process takes place are taken into account. By analyzing the fatigue life, it is possible to explain the existence of the random fatigue strength and to calculate the maximum load at which the probability of absence of fatigue failure is great enough when the number of cycles of fatigue loading tends to infinity. Numerical examples of processing of experimental data are presented, and estimates for parameters of the corresponding nonlinear regression model, which can be interpreted as the strength parameters of UFC, are obtained.

  17. Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Siva Bhaskara Rao Devireddy

    2014-01-01

    Full Text Available The aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional fiber-reinforced polymer composites with different volume fractions of fiber up to 0.7 using micromechanical approach. Two ways for calculating the material properties, that is, analytical and numerical approaches, were presented. In numerical approach, finite element analysis was used to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. The finite element model based on three-dimensional micromechanical representative volume element (RVE with a square and hexagonal packing geometry was implemented by using finite element code ANSYS. Circular cross section of fiber and square cross section of fiber were considered to develop RVE. The periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite. The steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure. Thermal conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. The material properties obtained using finite element techniques were compared with different analytical methods and good agreement was achieved. The results are affected by a number of parameters such as volume fraction of the fibers, geometry of fiber, and RVE.

  18. Dynamical Theory of Scattering, Exact Unidirectional Invisibility, and Truncated $\\mathfrak{z}\\,e^{-2ik_0x}$ potential

    CERN Document Server

    Mostafazadeh, Ali

    2016-01-01

    The dynamical formulation of time-independent scattering theory that is developed in [Ann. Phys. (NY) 341, 77-85 (2014)] offers simple formulas for the reflection and transmission amplitudes of finite-range potentials in terms of the solution of an initial-value differential equation. We prove a theorem that simplifies the application of this result and use it to give a complete characterization of the invisible configurations of the truncated $\\mathfrak{z}\\,e^{-2ik_0 x}$ potential to a closed interval, $[0,L]$, with $k_0$ being a positive integer multiple of $\\pi/L$. This reveals a large class of exact unidirectionally and bidirectionally invisible configurations of this potential. The former arise for particular values of $\\mathfrak{z}$ that are given by certain zeros of Bessel functions. The latter occur when the wavenumber $k$ is an integer multiple of $\\pi/L$ but not of $k_0$. We discuss the optical realizations of these configurations and explore spectral singularities of this potential.

  19. Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2014-10-01

    Full Text Available A novel poly-lactic acid (PLA based biocomposite reinforced with unidirectional high-strength magnesium alloy (Mg-alloy wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method (FEM, respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached 20 vol%, the impact strength of the composite could achieve 93.4 kJ/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation. Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.

  20. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.

    Science.gov (United States)

    Zhang, Xiao; Wang, Yanping; Chen, Penglei; Rong, Yunlong; Liu, Minghua

    2016-05-18

    Porphyrins are considered to be important scaffolds bridging supramolecular chemistry and chiral chemistry, where chirality selection via physical effects such as directional stirring and spin-coating has aroused particular interest. Nevertheless, these protocols could only work on a limited number of achiral porphyrins. It still remains a formidable challenge to pave a general avenue for the construction of chiral assemblies using achiral porphyrins. By means of a unique Langmuir-Schaefer (LS) technique of a unidirectional compression configuration, we herein have demonstrated that a series of achiral porphyrins could be facilely organized to form chiral interfacial assemblies of controlled supramolecular chirality. It has been disclosed that such a fascinating chirality selection scenario is intimately related to the direction of the compression-generated vortex-like flow, while the compression speed, one of the most significant parameters of the Langmuir technique, contributes less to this issue. With regard to a surface-pressure-dependent chirality selection phenomenon, it is suggested that the directional vortex-like flow generated by lateral compression might play a role in promoting the preferential growth of chiral assemblies showing an enhanced yet controlled CD signal. Our protocol might be, to some extent, a general method for achieving chiral porphyrin assemblies of controlled chirality.

  1. Optimization of an acoustic rectifier for uni-directional wave propagation in periodic mass-spring lattices

    Science.gov (United States)

    Ma, Chu; Parker, Robert G.; Yellen, Benjamin B.

    2013-09-01

    We perform optimization studies on the construction of acoustic rectifiers, which allow uni-directional propagation of acoustic waves, from a periodic array of masses and springs arranged in one- and two- dimensions. An acoustic rectifier is achieved by pairing a nonlinear material, which can up-convert an input excitation frequency to a higher harmonic, with a bandgap material whose dispersion relation has a bandgap region for the input frequency range but a bandpass region at the higher harmonic. First, we analyze the mass and stiffness parameters that lead to acoustic rectification in infinite mass-spring arrays with the largest possible range of working frequencies. A combination of analytical techniques, numerical simulations, and particle swarm optimization is used to identify the optimal acoustic rectifier. Next, we study the practical working range of acoustic rectifiers of finite size and examine how the rectification properties change as a function of the lattice size and damping. Finally, we perform numerical simulations of an acoustic rectification device in which a Duffing oscillator is attached to the end of a tri-atomic mass-spring chain.

  2. Unidirectional Cordenka Fibre-Reinforced Furan Resin Full Biocomposite: Properties and Influence of High Fibre Mass Fraction

    Directory of Open Access Journals (Sweden)

    Talent Malaba

    2015-01-01

    Full Text Available A full biocomposite was fabricated from Cordenka CR fibre and furan resin. High fibre mass fractions (FMF were achieved by pressing the CR fibres into unidirectional sheets prior to incorporation into the resin. Results of testing indicated that the tensile properties of the biocomposite were improved by the initial increase of FMF from 51 to 64%, with a subsequent increase of FMF to 75% resulting in a deterioration of those properties. Examination of the tensile fracture surfaces with a scanning electron microscope (SEM revealed moderate deterioration in fibre-matrix adhesion after the initial increase of FMF. Further increase of the FMF to 75% was shown by SEM to result in worse fibre-matrix adhesion. On the other hand, the flexural, interlaminar-shear, and dynamic mechanical properties were adversely affected by the increase in fibre-mass fraction from 51 through 75%. These effects were mainly attributed to reduced fibre wetting that resulted in weakened fibre-matrix interfacial bonding and subsequent poor stress exchange at the fibre-matrix interface. Observations made with a digital microscope revealed normal crack behaviour in the laminated composite, and the shear fracture modes were I and II. This biocomposite has mechanical properties comparable to those of flax and glass fibre-reinforced furan resin biocomposites.

  3. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    Science.gov (United States)

    Liu, M.; Thygesen, A.; Meyer, AS; Madsen, B.

    2016-07-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and the mechanical properties of the composites are thereby increased. The effective fibre stiffness and strength established from the modelling show that the enzymatic removal of pectin also leads to increased mechanical properties of the fibres. Among the investigated samples, the composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites.

  4. Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Chao Guo; Xiaokai Liu; Lei Liu; Jing Bai; Feng Xue; Pinghua Lin; Chenglin Chu

    2014-01-01

    A novel poly-lactic acid (PLA) based biocomposite reinforced with unidirectional high-strength magnesium alloy (Mg-alloy) wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method (FEM), respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached 20 vol%, the impact strength of the composite could achieve 93.4 kJ/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation. Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.

  5. Comparison of Intralaminar and Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 Graphite/Epoxy Composite

    Science.gov (United States)

    Czabaj, Michael W.; Ratcliffe, James

    2012-01-01

    The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.

  6. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  7. Tension-Tension Fatigue Behavior of Unidirectional C/Sic Ceramic-Matrix Composite at Room Temperature and 800 °C in Air Atmosphere

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2015-06-01

    Full Text Available The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.

  8. Validation of the adjusted strength criterion LaRC04 for uni-directional composite under combination of tension and pressure

    Directory of Open Access Journals (Sweden)

    Krystek J.

    2010-12-01

    Full Text Available Strength of unidirectional composite materials for some combinations of state of stress cannot be successsfully predicted even with modern failure criteria. In case of the combination of compression in the transverse direction and tension in the fiber direction, the criterion LaRC04 was adjusted in previous work. The predicted strengths in this case reach significantly larger values compared to the ultimate strengths of the material in the respective directions. The adjusted criterion is able to predict the failure of unidirectional composite in case of the mentioned combination of loading. The validation of the adjusted criterion is carried out by means of the comparison of experimental results and numerical analysis performed in finite element system MSC.Marc.

  9. Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound

    Energy Technology Data Exchange (ETDEWEB)

    Kou, R. H.; Gao, J.; Wang, G.; Liu, Y. D.; Wang, Y. D.; Ren, Y.; Brown, D. E.

    2016-02-01

    The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under the influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound.

  10. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels

    Science.gov (United States)

    Badiei, N.; Sowedan, A.M.; Curtis, D.J.; Brown, M.R.; Lawrence, M.J.; Campbell, A.I.; Sabra, A.; Evans, P.A.; Weisel, J.W.; Chernysh, I.N.; Nagaswami, C.; Williams, P.R.; Hawkins, K.

    2015-01-01

    Abstract Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties. PMID:25624413

  11. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.

    Science.gov (United States)

    Badiei, N; Sowedan, A M; Curtis, D J; Brown, M R; Lawrence, M J; Campbell, A I; Sabra, A; Evans, P A; Weisel, J W; Chernysh, I N; Nagaswami, C; Williams, P R; Hawkins, K

    2015-01-01

    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.

  12. The unidirectional relationship between consumer confidence and PSI-20 returns - The influence of the economic cycle

    Directory of Open Access Journals (Sweden)

    Maria Elisabete Duarte Neves

    Full Text Available ABSTRACT The aim of this paper is to determine the relationship between market sentiment and rates of return on the main Portuguese benchmark and verify whether this relationship is influenced by different economic cycles. Given the subjectivity inherent to the use of variables capturing investor sentiment, the Consumer Confidence Index (CCI was used as a benchmark. To achieve the proposed objective, an analysis of time series stationarity, Pearson correlation, and Granger causality using the autoregressive vectors model was carried out, followed by the Least Squares Method with macroeconomic variables. The results obtained suggest a one-way relationship between stock market returns and the sentiment variable. In fact, in times of recession, investor pessimism induces linear behavior and the sentiment-return relationship is more evident. This article will thus be of interest both to the academic community, in providing a basis for future investigations, and to managers and investors, with regards to the perception that the predictability of returns will be easier in periods of recession.

  13. Unidirectional cross-tolerance between the carbamate insecticide propoxur and the organophosphate disulfoton in mice.

    Science.gov (United States)

    Costa, L G; Murphy, S D

    1983-01-01

    Previous studies have shown that subchronic treatment of mice with the organophosphate insecticide, disulfoton, or the carbamate insecticide, propoxur, leads to the development of tolerance to their toxicity. Tolerance to disulfoton was due to a decrease in the number of muscarinic cholinergic receptors, while tolerance to propoxur appeared to be due to an induction of hepatic microsomal enzymes. In the present study we investigated if cross-tolerance between disulfoton and propoxur would occur. Cross-tolerance was evaluated by measuring acute toxicities, cholinesterase and carboxylesterase inhibition and hypothermic and antinociceptive effects. Mice tolerant to propoxur were cross-tolerant to the hypothermic and anticholinesterase effects of disulfoton. Similarly, when mice were pretreated with the microsomal enzyme inducer, phenobarbital, the toxicity of disulfoton was decreased. Mice made tolerant to disulfoton were cross-tolerant to the organophosphate chlorpyrifos, but were more sensitive than controls to the toxicity of propoxur. The acute toxicity of the organophosphate malathion was also increased in disulfoton-tolerant mice. Propoxur is metabolized by mixed function oxidases and possibly by a carboxylesterase. While hepatic microsomal enzymes appeared to be unchanged in disulfoton-tolerant mice, brain and liver carboxylesterase activities were significantly inhibited. Pretreatment of mice with the specific carboxylesterase inhibitor triorthotolylphosphate is known to greatly potentiate the toxicity of malathion and also potentiated, to a lesser extent, the toxicity of propoxur.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. First general solutions for unidirectional motions of rate type fluids over an infinite plate

    Directory of Open Access Journals (Sweden)

    Constantin Fetecau

    2015-09-01

    Full Text Available Based on a simple but important remark regarding the governing equation for the non-trivial shear stress corresponding to the motion of a fluid over an infinite plate, exact solutions are established for the motion of Oldroyd-B fluids due to the plate that applies an arbitrary time-dependent shear stress to the fluid. These solutions, that allow us to provide the first exact solutions for motions of rate type fluids produced by an infinite plate that applies constant, constantly accelerating or oscillating shears stresses to the fluid, can easily be reduced to the similar solutions for Maxwell, second grade or Newtonian fluids performing the same motion. Furthermore, the obtained solutions are used to develop general solutions for the motion induced by a moving plate and to correct or recover as special cases different known results from the existing literature. Consequently, the motion problem of such fluids over an infinite plate that is moving in its plane or applies a shear stress to the fluid is completely solved.

  15. Tensile Failure of Unidirectional Composite Laminates%复合材料单向板的拉伸失效

    Institute of Scientific and Technical Information of China (English)

    范金娟; 刘杰; 隋晓燕

    2015-01-01

    由于复合材料断裂特征的复杂性,尚未给出所受载荷与断裂特征之间的关系,通常认为失效模式与层板的基体、纤维类型及试验温度有关。本研究通过拉伸试验、断口观察等方法研究了碳纤维与玻璃纤维增强树脂基复合材料单向板在-55、23及70℃的0°拉伸失效行为,分析了单向板0°拉伸的断裂特征、失效模式及其影响因素。结果表明:复合材料单向板的0°拉伸主要有2种失效模式,纤维基体断裂和界面失效;由于2种失效模式所占的比例不同,形成多种断口形态;失效模式、断裂特征与复合材料的拉伸强度关系不大,主要与界面的结合强度有关;试验温度、纤维、基体等对其断裂特征与失效模式的影响也主要是界面强度变化所致。%Owing to the fracture behavior complexity of composite laminates, the relationship between loads and fracture characteristics has not been obtained. It is generally believed that the failure mode of composite laminates is mainly related to the matrix, fiber and testing temperature, but in the present work, a different result was obtained. The 0° tensile failure behaviors of unidirectional composite laminates of carbon fiber reinforced polymer matrix and glass fiber reinforced polymer matrix were studied by tensile testing at -55 ℃, room temperature and 70 ℃,respectively, as well as observation of the fracture characteristics. The failure modes and influencing factors were analyzed. The results show that there exist two types of failure modes of the unidirectional composite laminates at 0° tensile test: the fracture of fiber and matrix, and the interface failure. Because of different ratio of the two failure modes, there exist different fracture characteristics. Failure modes and fracture characteristics mainly depend on the interface strength of the fiber and matrix. The effect of test temperature, fiber and matrix on the fracture

  16. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yishan; Han, Ping [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Li, Xiao-yan; Shih, Kaimin [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Gu, Ji-Dong, E-mail: jdgu@hkucc.hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d' Aguilar, Hong Kong (China)

    2011-09-15

    Highlights: {yields} We isolated a Xanthobacter flavus strain PA1 utilizing the racemic 2-PBA and the single enantiomers as the sole source of carbon and energy. {yields} Both (R) and (S) forms of enantiomers can be degraded in a sequential manner in which the (S) disappeared before the (R) form. {yields} The biochemical degradation pathway involves an initial oxidation of the alkyl side chain before aromatic ring cleavage. - Abstract: Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the

  17. Low-cost and low-power unidirectional torus network-on-chip with corner buffer power-gating

    Science.gov (United States)

    Wang, Feng; Tang, Xiantuo; Xing, Zuocheng; Liu, Hengzhu

    2016-08-01

    Network-on-chip (NoC) is one of critical communication architectures for the scaling of future many-core processors. The challenge for on-chip network is reducing design complexity to save both area and power while providing high performance such as low latency and high throughput. Especially, with increase of network size, both design complexity and power consumption have become the bottlenecks preventing proper network scaling. Moreover, as technology continuously scales down, leakage power takes up a larger fraction of total NoC power. It is increasingly important for a power-efficient NoC design to reduce the increasing leakage power. Power-gating, as a representative low-power technique, can be applied to an on-chip network for mitigating leakage power. In this paper, we propose a low-cost and low-power router architecture for the unidirectional torus network, and adopt an improved corner buffer structure for the inoffensive power-gating, which has minimal impact on network performance. Besides, an explicit starvation avoidance mechanism is introduced to guarantee injection fairness while decreasing its negative impact on network throughput. Simulation results with synthetic traffic show that our design can improve network throughput by 11.3% on average and achieve significant power-saving in low- and medium-load regions. In the SPLASH-2 workload simulation, our design can save on average 27.2% of total power compared to the baseline, and decrease 42.8% average latency compared to the baseline with power-gating.

  18. Subtraction of unidirectionally encoded images for suppression of heavily isotropic objects (SUSHI) for selective visualization of peripheral nerves

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Taro; Kwee, Thomas C.; Hendrikse, Jeroen; Niwa, Tetsu; Mali, Willem P.T.M.; Luijten, Peter R. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Van Cauteren, Marc [Philips Healthcare, Asia Pacific, Tokyo (Japan); Koh, Dow-Mu [Royal Marsden Hospital, Department of Radiology, Sutton (United Kingdom)

    2011-02-15

    The aim of this study was to introduce and assess a new magnetic resonance (MR) technique for selective peripheral nerve imaging, called ''subtraction of unidirectionally encoded images for suppression of heavily isotropic objects'' (SUSHI). Six volunteers underwent diffusion-weighted MR neurography (DW-MRN) of the brachial plexus, and seven volunteers underwent DW-MRN of the sciatic, common peroneal, and tibial nerves at the level of the knee, at 1.5 T. DW-MRN images with SUSHI (DW-MRN{sub SUSHI}) and conventional DW-MRN images (DW-MRN{sub AP}) were displayed using a coronal maximum intensity projection and evaluated by two independent observers regarding signal suppression of lymph nodes, bone marrow, veins, and articular fluids and regarding signal intensity of nerves and ganglia, using five-point grading scales. Scores of DW-MRN{sub SUSHI} were compared to those of DW-MRN{sub AP} using Wilcoxon tests. Suppression of lymph nodes around the brachial plexus and suppression of articular fluids at the level of the knee at DW-MRN{sub SUSHI} was significantly better than that at DW-MRN{sub AP} (P < 0.05). However, overall signal intensity of brachial plexus nerves and ganglia at DW-MRN{sub SUSHI} was significantly lower than that at DW-MRN{sub AP} (P < 0.05). On the other hand, signal intensity of the sciatic, common peroneal, and tibial nerves at the level of the knee at DW-MRN{sub SUSHI} was judged as significantly better than that at DW-MRN{sub AP} (P < 0.05). The SUSHI technique allows more selective visualization of the sciatic, common peroneal, and tibial nerves at the level of the knee but is less useful for brachial plexus imaging because signal intensity of the brachial plexus nerves and ganglia can considerably be decreased. (orig.)

  19. Error analysis of a CAD/CAM method for unidirectional mandibular distraction osteogenesis in the treatment of hemifacial microsomia.

    Science.gov (United States)

    Sun, Hao; Li, Biao; Zhao, Zeliang; Zhang, Lei; Shen, Steve G F; Wang, Xudong

    2013-12-01

    Our aim was to investigate the errors in a computer-aided design and manufacture (CAD/CAM) method of unidirectional mandibular distraction osteogenesis. Six patients with hemifacial microsomia were selected, and studied on computed tomographic (CT) scans taken at 3 time intervals: preoperatively, at the end of the latent period, and at the end of consolidation. The plan for mandibular distraction osteogeneisis was designed using CT-based 3-dimensional visible software. The osteotomy line and site of the drill were transferred to a rapid prototyping surgical guide. The osteotomy of the mandible and implantation of the distraction device were completed under guidance. The accuracy of the transferred surgical plan was confirmed by fusion of images after the latency period. The 3-dimensional superimposition of the preoperative simulation, and the postoperative actual models at the end of consolidation, showed that the mean (SD) error between the actual and the predicted height of the ramus was 0.6 (0.6) mm. The error between the actual and predicted intercondylar distance was 8.1 (2.1) mm. There was a significant difference in intercondylar distance between the simulated and actual groups (p=0.00024). The 3-dimensional CT-based planning system described in this paper was transferred precisely from the virtual plan to the real-time operation. The planning system also gave a precise prediction of the height of the ramus after mandibular distraction osteogenesis. However, because of the pull of the lateral pterygoid muscle and pseudarthrosis, the intercondylar distance decreased compared with the predicted value. These influencing factors should be considered when the planning system is refined.

  20. Preparation and properties of unidirectional boron nitride fibre reinforced boron nitride matrix composites via precursor infiltration and pyrolysis route

    Energy Technology Data Exchange (ETDEWEB)

    Li Duan, E-mail: whataboutduan@gmail.com [State Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); Zhang Changrui; Li Bin; Cao Feng; Wang Siqing; Li Junsheng [State Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)

    2011-10-25

    Highlights: {yields} BN fibres degrade little when exposed at elevated temperatures. {yields} Precursor infiltration and pyrolysis route is useful to prepare BNf/BN composites. {yields} Few reports have related to the preparation and properties of BNf/BN composites. {yields} BNf/BN composites have desirable high-temperature mechanical properties. {yields} BNf/BN composites have excellent dielectric properties at 2-18 GHz. - Abstract: The unidirectional boron nitride fibre reinforced boron nitride matrix (BN{sub f}/BN) composites were prepared via the precursor infiltration and pyrolysis (PIP) route, and the structure, composition, mechanical and dielectric properties were studied. The composites have a high content and fine crystallinity of BN. The density is 1.60 g cm{sup -3} with a low open porosity of 4.66%. The composites display good mechanical properties with the average flexural strength, elastic modulus and fracture toughness being 53.8 MPa, 20.8 GPa and 6.88 MPa m{sup 1/2}, respectively. Lots of long fibres pull-out from the fracture surface, suggesting a good fibre/matrix interface. As temperature increases, both of the flexural strength and elastic modulus exhibit a decreasing trend, with the lowest values being 36.2 MPa and 8.6 GPa at 1000 deg. C, respectively. The desirable residual ratios of the flexural strength and elastic modulus at 1000 deg. C are 67.3% and 41.3%, respectively. The composites have excellent dielectric properties, with the average dielectric constant and loss tangent being 3.07 and 0.0044 at 2-18 GHz, respectively.

  1. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems.

    Science.gov (United States)

    Feifel, Sven C; Lokstein, Heiko; Hejazi, Mahdi; Zouni, Athina; Lisdat, F

    2015-09-29

    One major vital element of the oxygenic photosynthesis is photosystem I (PSI). We report on the construction of graphene-based nanohybrid light-harvesting architectures consisting of PSI supercomplexes adsorbed onto π-system-modified graphene interfaces. The light-driven nanophotobioelectrochemical architectures have been designed on a modified carbon surface, on the basis of π-π-stacking interactions between polycyclic aromatic compounds and graphene. As a result of the remarkable features of graphene and the feasibility of purposeful surface property adjustment, well-defined photoelectrochemical responses have been displayed by the nanophotohybrid electrodes. In particular, the PSI-graphene electrodes utilizing naphthalene derivatives provided a suitable surface for the adsorption of PSI and display already at the open circuit potential (OCP) a high cathodic photocurrent output of 4.5 ± 0.1 μA/cm(2). By applying an overpotential and addition of a soluble electron acceptor (methyl viologen), the photocurrent density can be further magnified to 20 ± 0.5 μA/cm(2). On the contrary, the investigated anthracene-based PSI-graphene electrodes exhibit considerably smaller and not very directed photoelectrochemical responses. This study grants insights into the influences of different polycyclic aromatic compounds acting as an interface between the very large protein supercomplex PSI and graphene while supporting the electrochemical communication of the biomolecule with the electrode. It needs to be emphasized that solely the naphthalene-based photoelectrodes reveal unidirectional cathodic photocurrents, establishing the feasibility of utilizing this advanced approach for the construction of next-generation photovoltaic devices.

  2. Field-induced microwave absorption in high- T sub c superconducting powders: Evidence for a superconducting glass phase at low T

    Energy Technology Data Exchange (ETDEWEB)

    Gould, A.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA)); Manheimer, M.A. (Laboratory for Physical Sciences, 4928 College Avenue, College Park, Maryland 20740 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104 (USA))

    1990-05-01

    Measurements of the magnetic-field-induced microwave absorption, {ital P}({ital H}), in micron-sized powders of the high-temperature superconductor Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} at several microwave frequencies for 1.3 K{le}{ital T}{le}{ital T}{sub {ital c}} are reported. The hysteresis loops ({ital P}({ital H}) vs {ital H}) observed at low temperatures ({ital T}{le}16 K) indicate the presence of spontaneous circulating currents within the sample. These hysteresis loops and dc magnetization data (taken for both field-cooled and zero-field-cooled states) combine to suggest that the magnetic moments of these loops are in a spin-glass-like'' state.

  3. Beyond unidirectional knowledge transfer

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Neergaard, Helle; Bjerregaard, Toke

    2012-01-01

    Using theory on technology transfer and on trust and an indepth study of nine university departments and nineteen science-based small and medium-sized enterprises (SMEs), the authors explore the nature and direction of knowledge flows during university-industry R&D collaboration. More specifically......, they examine the nature and direction of R&D technological knowledge transfer in collaborations between universities and science-based SMEs and the primary mechanisms regulating such collaborations. The findings suggest that these collaborations are highly recursive processes of technological knowledge...

  4. The benefits of neighboring vegetation: The hydrodynamics of concurrent positive and negative plant-plant interactions under sustained unidirectional airflow

    Science.gov (United States)

    Trautz, A.

    2016-12-01

    Over one-third of Earth is classified as arid or semi-arid which includes a variety of water-limited environments such as savannas, deserts, and Mediterranean grasslands and steppes. Within these environments, water is often considered the resource limiting plant growth as well as ecosystem productivity and diversity. Plant community structure and the spacing distance between individuals is driven by simultaneously occurring positive and negative plant-plant interactions. Plants often interact negatively through direct competition of resources (i.e. water, light, nutrients) and positively via microclimatic amelioration which helps reduce the abiotic stress of other nearby plants. Classically, ecologists concentrate on the impacts of plant-plant interactions by monitoring plant performance (e.g. density, survival, biomass accumulation) in the context of the larger vegetative community. The objective of this research is to fill fundamental knowledge gaps regarding how individual plants interact with each other for limited resources in water limited environments under sustained unidirectional winds to improve our understanding of how climate and land-use change will effect the hydrodynamics of plant communities. Rather than adopting traditional approaches, we focus on the hydrodynamics of plant-plant interactions through physical experimentation and numerical simulation. Experiments were performed in a unique low-velocity climate-controlled wind tunnel interfaced with a synthetic aquifer, both of which are outfitted with current state-of-art sensor technology; synthetic plants were used in lieu of living vegetation to reduce experimental complexity as demonstrated in Trautz et al. [2016]. Results demonstrate that there exist complex feedbacks and interactions between the bulk soil, atmosphere, and plant canopies and root zones that play key roles in controlling soil moisture dynamics. The presence of two plants led to improved soil moisture conservation compared to

  5. The use of an interphase to improve the transverse properties of unidirectional glass fibre reinforced polymer composites

    Science.gov (United States)

    Ellis, Keith

    The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour

  6. Dynamics of three unidirectionally coupled autonomous Duffing oscillators and application to inchworm piezoelectric motors: Effects of the coupling coefficient and delay

    Science.gov (United States)

    Tchakui, Murielle Vanessa; Woafo, Paul

    2016-11-01

    This work deals with the dynamics of three unidirectionally coupled Duffing oscillators and that of three coupled piezoelectric actuators, considering the special case of inchworm motors. Two configurations of the network are studied: ring configuration and chain configuration. The effects of the coupling coefficient and the time delay are analyzed through different bifurcation diagrams and phase difference variation. It is shown that varying the coupling coefficient and the time delay leads to the appearance of different dynamical behaviors: steady states, periodic and quasiperiodic oscillations, chaos, and phase synchronization.

  7. A method for generating sticky-end PCR products which facilitates unidirectional cloning and the one-step assembly of complex DNA constructs.

    Science.gov (United States)

    Walker, Andrew; Taylor, James; Rowe, Duncan; Summers, David

    2008-05-01

    We have developed and tested a method for the restriction enzyme-independent generation of sticky-end PCR products. The method is suitable for use with a proof-reading polymerase such as pfu, or any other heat-stable polymerase which produces a blunt-end product. The technique can be used to achieve unidirectional cloning of PCR products with an efficiency greater than 90%. Because the sequences of the sticky ends are defined by the user and potentially can be of any length, the method can also be exploited for the one-step construction of recombinant plasmids from multiple functional cassettes, without the use of restriction enzymes.

  8. Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 1. Uni-directional sliding

    OpenAIRE

    Aslanyan, I. R.; Bonino, Jean-Pierre; Celis, J.-P.

    2006-01-01

    As-plated and annealed NiP coatings and composite NiP-SiC coatings were investigated in uni-directional ball-on-disc sliding tests. Abrasive wear was noticed in the case of composite NiP coatings containing submicron SiC particles, whereas in NiP coatings oxidational wear was active. The addition of submicron SiC particles not only increases the hardness of these electrolytic coatings but also hinders the formation of an oxide film in the sliding wear track. As a consequence, the wear loss on...

  9. EVALUASI MODEL-MODEL PENDUGAAN UMUR SIMPAN PANGAN DARI DIFUSI HUKUM FICK UNIDIREKSIONAL EVALUATION OF SHELF-LIFE EQUATION MODELS DERIVED FROM UNIDIRECTIONAL FICK’S LAW

    Directory of Open Access Journals (Sweden)

    M. Arpah

    2000-04-01

    Full Text Available The aim of this research was to study the variation of shelf-life values, obtained in quantifying shelf-life of biscuits among models of accelerated storage studies (ASS from unidirectional Fick’S law. Shelf-life of biscuits is defined as the length of time of a packaged biscuits can be stored before the onset quality change appears.Four models: Heiss-Eichner (1971, Labuza (1983, Rudolph (1986 and Half Value Period or HVP model (Syarief, 1986 were evaluated. These models shared a common basic principle that they were all derived and developed from unidirectional Fick’s law. Therefore, each parameter of individual model can be compared to the athers. A semi empirical approach using reaction kinetics through Arrhenius plot was used as a real shelf-life values.Quantification resulted in two categories of shelf-life values, First those which higher than expected value and second, were lower than expected. Parameter evaluation of components of Heiss-Eichner and Labuza models clearly shown less in number than components of Rudolph and HVP models. This led to a conclusion that the more sophisticated models gave higher shelf-life values as compared to the Arhenius model.

  10. A Function for EHD Family Proteins in Unidirectional Retrograde Dendritic Transport of BACE1 and Alzheimer’s Disease Aβ Production

    Directory of Open Access Journals (Sweden)

    Virginie Buggia-Prévot

    2013-12-01

    Full Text Available Abnormal accumulation of β-secretase (BACE1 in dystrophic neurites and presynaptic β-amyloid (Aβ production contribute to Alzheimer's disease pathogenesis. Little, however, is known about BACE1 sorting and dynamic transport in neurons. We investigated BACE1 trafficking in hippocampal neurons using live-cell imaging and selective labeling. We report that transport vesicles containing internalized BACE1 in dendrites undergo exclusive retrograde transport toward the soma, whereas they undergo bidirectional transport in axons. Unidirectional dendritic transport requires Eps15-homology-domain-containing (EHD 1 and 3 protein function. Furthermore, loss of EHD function compromises dynamic axonal transport and overall BACE1 levels in axons. EHD1/3 colocalize with BACE1 and APP β-C-terminal fragments in hippocampal mossy fiber terminals, and their depletion in neurons significantly attenuates Aβ levels. These results demonstrate unidirectional endocytic transport of a dendritic cargo and reveal a role for EHD proteins in neuronal BACE1 transcytosis and Aβ production, processes that are highly relevant for Alzheimer’s disease.

  11. Experimental Investigation of the Effect of Short Flax Fibers on the Permeability Behavior of a New Unidirectional Flax/Paper Composite

    Directory of Open Access Journals (Sweden)

    Mohamed Habibi

    2016-07-01

    Full Text Available A new type of reinforcement for unidirectional natural fiber composites has been developed, where a paper layer is assembled with a layer of unidirectional flax yarns. The paper layer chemically and mechanically bonds to the loose yarns to maintain their alignment and enables better manipulability of the reinforcement during stacking in the mold. Unfortunately, the paper layer adversely affects the permeability of the whole reinforcement to liquid resin and thus limits the impregnation quality of the final part. In this paper, a technique is adopted to increase the impregnation performance by modifying the architecture of the fibrous network in the paper layer. In particular, a method has been developed to replace a proportion of the Kraft fibers by short flax fibers in the paper layer, in an attempt to open the structure and increase the paper permeability. Permeability measurements show a major improvement in global reinforcement permeability. Basic mechanical properties of resulting composites were also analysed. Results show a slight decrease in modulus and strength when the paper layer is present. This is compensated by an important reduction in variability. Furthermore, increasing the flax proportion in the paper layer limits the loss of mechanical properties, while reducing variability even further.

  12. Unidirectional growth of large size urea doped L-cysteine hydrochloride monohydrate NLO organic crystal and investigations of its crystalline and optical properties

    Science.gov (United States)

    Verma, Sunil; Ramachandra Rao, K.; Kar, S.; Bartwal, K. S.

    2016-01-01

    Organic crystals of urea doped L-cysteine hydrochloride monohydrate have been grown by unidirectional solution growth technique. The crystal grown by this technique has high growth rate as compared to the crystals grown using conventional slow cooling method. This method is ideally suited to grow crystals along a specific direction. The growth process was monitored at regular intervals of time in a time-lapsed manner to estimate the growth rate and also monitor its quality visually. The grown crystal was subjected to different characterizations in order to confirm the phase of the grown crystal, its crystalline perfection and optical properties. The X-ray diffraction confirmed the phase of the crystal. The rocking curve recorded using high resolution X-ray diffraction (HRXRD) technique reveals that the crystal grown using conventional slow cooling method has internal gain boundaries whereas that grown by unidirectional technique has high degree of crystalline perfection. The bonding environment present in the crystal was characterized by FTIR spectroscopy where vibrational frequencies of the different functional groups present were identified. The optical quality of the crystal was characterized using UV-vis-NIR spectrophotometer and Mach-Zehnder interferometer. The nonlinear optical response of the crystal was measured using Kurtz-Perry method and found to be 1.4 times that of a KDP crystal.

  13. Contamination control in HVAC systems for aseptic processing area. Part I: Case study of the airflow velocity in a unidirectional airflow workstation with computational fluid dynamics.

    Science.gov (United States)

    Ogawa, M

    2000-01-01

    A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.

  14. Induced moment due to perpendicular field cycling in trained exchange bias system

    Indian Academy of Sciences (India)

    Amithesh Paul; S Mattauch

    2013-04-01

    Depth-sensitive polarized neutron scattering in specular and off-specular mode has recently revealed that perpendicular field cycling brings about a modification in the interfacial magnetization of a trained exchange coupled interface. We show here by various model fits to our neutron reflectivity data that a restoration of the untrained state is not possible in the case of our polycrystalline multilayer specimen. This is due to the magnetic moment at the interface induced only after perpendicular field cycling, changing the initial field-cooled state.

  15. Synthesis of high-performance magnetostrictive Tb0.3Dy0.7Fe2 by unidirectional solidification in microgravity.

    Science.gov (United States)

    Okutani, Takeshi; Nagai, Hideaki; Mamiya, Mikito

    2009-04-01

    Giant magnetostrictive materials, Tb(0.297)Dy(0.679)Fe(2), were synthesized by unidirectional solidification of a mixture of Tb(0.99)Fe(2) and Dy(0.97)Fe(2) alloys in microgravity with magnetic field of 0-0.12 T. Tb(0.297)Dy(0.679)Fe(2) is a mixed crystal of TbFe(2) and DyFe(2). Tb(0.297)Dy(0.679)Fe(2) synthesized in microgravity with no magnetic field had sheet dendrites structure with 300 (cooling direction) x 200 x 30 microm (thickness) and Fe-rich layer between the sheet dendrites, and they exhibited a tendency for crystalline orientation of and with the cooling direction. The magnetostriction with the cooling direction was 9000 ppm at an external magnetic field of 120 mT. In contrast, Tb(0.297)Dy(0.679)Fe(2) synthesized by unidirectional solidification in normal gravity with no magnetic field had a dendrite structure with a 30-mum diameter x 250-microm length growing in the cooling direction and no preferred orientation. The magnetostriction along the cooling direction was 2000 ppm at an external magnetic field of 120 mT. Analysis of the solidification in microgravity with magnetic field revealed that the dendrites oriented along the cooling direction and that the tendency for crystalline orientation of and with the cooling direction increased with magnetic field. Examination of the solidification in normal gravity with magnetic field indicated that Tb(0.297)Dy(0.679)Fe(2) consisted of sheet dendrites without orientation and revealed no preferred orientation. The magnetostriction along the cooling direction increased with increases in the magnetic field. The effects of microgravity and magnetic field on the structure and crystalline orientation were considered.

  16. Manipulating Somatic Cells to Remove Barriers in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Chung, Julia

    2013-01-01

    Development leads unidirectionally towards a more restricted cell fate that is usually stable. However, it has been proven that developmental systems are reversible by the success of animal cloning of a differentiated somatic genome through somatic cell nuclear transfer (SCNT). Recently, reprogramming of somatic cells to a pluripotent embryonic stem cell (ESC)-like state by introducing defined transcripton factor has been achieved, resulting in the generation of induced pluripotent stem cells...

  17. NdFeB永磁轨道上方YBaCuO块材的悬浮稳定性与场冷位置间关系%DEPENDENCE OF LEVITATION STABILITY OF THE YBaCuO BULK ABOVE A NdFeB GUIDEWAY ON FIELD-COOLED POSITION

    Institute of Scientific and Technical Information of China (English)

    郑珺; 王晓融; 王家素

    2005-01-01

    如何获得稳定悬浮是高温超导磁悬浮系统的一个重大问题.高温超导体在外磁场中所受的悬浮力和导向力是两个衡量系统悬浮稳定性的重要参数.本文实验研究了场冷情况下NdFeB永磁轨道上方YBaCuO块材在竖直运动和水平运动时所受悬浮力和导向力的情况,并且根据Bean模型开发了数值计算程序用于悬浮力和导向力的计算分析.不同竖直场冷高度下计算值和实验值获得了较好的一致性.实验结果和计算结果都显示出永磁轨道场中高温超导体所受的两个力与其场冷历史有着密切的关系,也就是说超导体的悬浮稳定性受场冷历史影响程度较大.不同的竖直场冷高度,其最大悬浮力的变化趋势和最大导向力的变化趋势相反.较小的水平场冷位置导致了较大的导向力和较大的磁滞.根据上述结果,为了获得较优的悬浮稳定性,本文推荐了可行的场冷高度范围和有效的高温超导体组合方式.%For the high temperature superconductor (HTS) Maglev system, it is a key problem to realize stable levitation. Levitation force and guidance force of HTS bulks in applied field are two primary parameters. These two forces of YBaCuO HTS bulk above a NdFeB permanent magnetic guideway (PMG) is investigated in the field-cooled (FC). And codes were developed based on the Bean model to calculate these two forces. At different vertical FC positions, the calculation agrees with the experiments well. The results suggest that both forces are also strongly dependent on the HTS cooling history over the PMG, that is to say, HTS cooling history has great influence on levitation stability. For vertical FC positions, the trend of the maximum levitation force is contrary to that of the maximum guidance force. For smaller horizontal FC positions, the guidance force is larger and the hysteresis is stronger. An avail FCH and an effective bulks array mode are also proposed for better

  18. Laying-up of sterile instruments in the operating theatre: equal or superior protection by using a horizontal unidirectional air flow system.

    Science.gov (United States)

    Traversari, A A L; Goedhart, C A; Dusseldorp, E; Bode, A; Keuning, F; Pelk, M S J; Vos, M C

    2013-10-01

    A system for the preparation of sterilized instruments with unidirectional horizontal air flow (UDHF) has several advantages over a unidirectional down flow system (UDDF). The advantages are based on the installation of the system being more flexible and easier to use, no cooling of the air flow being necessary and less air being needed for circulation, resulting in reduced energy use. The objective of this study was to determine whether a system with UDHF performs equal or superior to a system with UDDF in terms of prevention of contamination of the air (the presence of particles and micro-organisms) during the laying-up process. The degree of protection (DP) offered by two UDHF system variants and two UDDF system variants was determined for several static set-ups and a dynamic simulation of the process. In addition to determining the level of protection for several categories of particle size, colony-forming units (CFU) were also measured during process simulations. When maximum protection (no particles present) is considered, the UDHF systems performed significantly better than the UDDF systems for particles ≥2.5μm. When particles were present, there was no significant difference between systems for particles ≥0.3 and ≥0.5μm. However, the performance of the UDHF system was superior to that of the UDDF system (DP) for particles ≥1.0μm representing the bacteria-carrying particles. During the process measurements, no CFU were found with the UDDF system in 64% of the measurements, compared with 90% for the UDHF system (P = 0.012). The UDHF system offers equal or superior protection to the UDDF system against contamination of the clean area within which the laying up takes place. Despite our finding that the differences did not always reach statistical significance (due to low background concentrations), there is a clear trend, from the small-sized particles (≥1.0μm) up to the largest sizes considered, including bacteria-carrying particles, that

  19. Transbuccal delivery of betahistine dihydrochloride from mucoadhesive tablets with a unidirectional drug flow: in vitro, ex vivo and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    El-Nabarawi MA

    2016-12-01

    Full Text Available Mohamed A El-Nabarawi,1 Adel A Ali,2 Heba M Aboud,2 Amira H Hassan,2 Amany H Godah2 1Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 2Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt Objective: Betahistine dihydrochloride (BH.2HCl, an anti-vertigo histamine analog used in the treatment of Ménière’s disease, undergoes extensive first-pass metabolism and suffers from short biological half-life. The aim of the present work was to develop and estimate controlled release mucoadhesive buccal tablets of BH.2HCl with a unidirectional drug flow to overcome this encumbrance. Methods: A direct compression method was adopted for preparation of the tablets using mucoadhesive polymers like guar gum, hydroxypropyl methyl cellulose K4M, sodium carboxymethyl cellulose and their combinations. The tablets were coated from all surfaces except one surface with a solution of 5% (w/v cellulose acetate and 1% (w/v dibutyl phthalate. Different permeation enhancers like 2% sodium deoxycholate, 2% sodium cholate hydrate (SCH and 5% menthol were tested. Swelling index, ex vivo residence time, mucoadhesion strength, in vivo testing of mucoadhesion time, in vitro dissolution and ex vivo permeation were carried out. Furthermore, compatibility and accelerated stability studies were performed for the drug excipients. Finally, drug bioavailability of the BH.2HCl-optimized buccal mucoadhesive formulation was compared with that of the orally administered Betaserc® 24 mg tablet in six healthy male volunteers. Results: Formulation F10, which contained a combination of 35% guar gum and 5% sodium carboxymethyl cellulose, exhibited long adhesion time, high adhesion strength and diminished irritation to volunteers and showed zero-order release kinetics. SCH produced a significant enhancement in permeation of BH.2HCl across buccal mucosa. BH.2HCl-optimized buccal mucoadhesive formulation showed percentage relative

  20. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    Science.gov (United States)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  1. Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers.

    Science.gov (United States)

    Lodi Rizzini, A; Krull, C; Balashov, T; Mugarza, A; Nistor, C; Yakhou, F; Sessi, V; Klyatskaya, S; Ruben, M; Stepanow, S; Gambardella, P

    2012-11-14

    We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.

  2. 单向复合材料板剪切破坏实验分析%UNIDIRECTIONAL COMPOSITES SHEARING FAILURE EXPERIMENTAL ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    陆荣林; 董国华; 费云鹏

    2001-01-01

    本文分析了单向复合材料板在剪切时的微观破坏过程,结合声发射技术监测其损伤的起始与扩展过程,确定了完整的τ-γ曲线上几个特定阶段。在不同损伤阶段,从不同方位切取断面,分别用微差干涉法与电镜法观察其微观破坏过程。%Unidirectional Composites micro failure process und er shearing was ana lyzed in this paper. The damage process from beginning to expanding was monitori ng with acoustic emission. Some special stages of the τ-γ curve was determine d In various damage stages the section that was cut in different direction was o bserved with differential interference method and electron microscope.

  3. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    Science.gov (United States)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  4. Simulating the special features of fundamental diagrams observed by Mori-Tsukaguchi and Helbing et al in uni-directional pedestrian flow

    Science.gov (United States)

    Jin, Cheng-Jie; Jiang, Rui

    2017-02-01

    The pedestrian flow dynamics are very complex. Even the fundamental diagrams of uni-directional pedestrian flow exhibit diversity. In the empirical data of Mori-Tsukaguchi and Helbing et al, the flows drop drastically with medium densities and nearly keep constant with high densities, which is different from many other empirical and experimental results. To simulate these special phenomena with cellular automaton (CA) models, we use the new configuration, in which the occupied area of each pedestrian is 0.4 m * 0.2 m. The modeling framework is based on the ITP model, which is a two-process CA model presented in our previous paper, and one new rule is added: when the local density behind is below a threshold, pedestrians prefer to keep a certain front gap. With the simple rule, the new fundamental diagrams can qualitatively coincide with the empirical facts of Mori-Tsukaguchi and Helbing et al. Some other results, including simulation patterns and velocities of pedestrians can further confirm the validity of the new rule, and give some explanations for the diversity of different empirical data. These results are useful contributions for pedestrian flow modeling.

  5. Influence of stress and unidirectional field annealing on structural and magnetic performance of PtMn bottom spin-filter spin valves

    Science.gov (United States)

    Öksüzoglu, R. Mustafa; Schug, Christoph; York, Brian

    2004-09-01

    The influence of unidirectional field annealing (UDA) and subsequent stress annealing (SA) on the structure and magnetic response of PtMn bottom spin-filter spin-valve sensors with a NiFeCr/NiFe seed layer was investigated. A time constant of 1.17 h for the FCC-FCT phase transition of the PtMn layer was obtained upon UDA at 265°C in an external magnet field of 13 kOe, which is consistent with 1.1 h observed for the GMR. A lower time constant of 0.7 h was determined for the exchange interaction field. The SA with similar conditions as in the manufacturing environment leads to a UDA time-dependent alteration of sensor performance. A SA up to 38 h causes a GMR value reduction, which becomes more pronounced with increasing UDA duration prior to SA. Furthermore, SA causes a progressive oxidation of the Ta cap layer; in contrast, the exchange field remains nearly unaffected, particularly for the sensors with 5 or 6 h UDA. From the point view of application, an UDA treatment of (5-6) h yields the optimal sensor performance for the finished read-write head.

  6. Microstructure and Mechanical Properties of Unidirectional W Filament Reinforced Al-6Ti-6Nb and SiCp-Al-6Ti-6Nb Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Unidirectional Tungsten filament (Wf) reinforced pure Al,Al-6Ti-6Nb and SiCp-Al-6Ti-6Nb matrix composites were prepared by hot-pressing in vacuum atmosphere,their microstructure and room temperature mechanical properties were investigated. It was indicated that no reaction products appeared at Wf/Al interfaces in pure Al matrix composites. While, in Wf/Al-6Ti-6Nb and Wf/SiCp-Al-6Ti-6Nb,intermetallic WAl4 interfacial reaction products formed. Much better strengthening effect from W filament was shown in the Wf/Al-6Ti-6Nb and Wf/SiCp-Al-6Ti-6Nb composites than in the pure Al matrix composite. Their strength reached 319 and 339MPa, respectively, with only a small content of Wf(<5Vol.%). The excellent reinforcement effects could be predominantly attributed to the strong Wf/Al interfacial bonding strength due to the interfacial reaction.

  7. Effects of rate-of-change pattern on the discrimination of unidirectional gliding tones with fixed frequency and time transition spans

    Science.gov (United States)

    Li, Pei-Chun; Tang, Shih-Tsang; Young, Shuenn-Tsong

    2005-09-01

    Listening experiments were designed to test the three hypotheses for detection and discrimination of glides in frequency: (1) end point sampling; (2) a weighted average method; and (3) decision based on changes in the low-frequency side of the excitation pattern. Forty-eight frequency and time transition spans were chosen. The center frequencies of testing signals were 500 Hz, 2 KHz, and 6 KHz, with frequency spans of 0, 0.5, 1, and 2 ERBs and durations of 20, 50, 200, and 400 ms. For a given transition span, the frequency difference limens for five different gliding patterns were measured, including linear chirp, quadratic and inverse quadratic sweep chirps, and FM modulated sweeps. All test patterns had the following features: (1) they are unidirectional gliding tones with increasing instantaneous frequency throughout the whole duration; (2) the phase functions are at least first-order differentiable, thus the interference of click sounds caused by fast frequency transitions are alleviated. The results showed that none of these hypotheses was able to explain the mechanism for detection and discrimination of glides in frequency well. It is speculated that, at least, both sides of the excitation patterns should be compared, and that the time-related cues could have an effect as well.

  8. Experimental analysis of segregation and porosity during the transient unidirectional solidification of an Al-9%Si-3%Cu ternary; Analise experimental da macrossegregacao e porosidade durante a solidificacao unidirecional transitoria de uma liga ternaria Al-9%Si-3%Cu

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.G.; Moutinho, D.J.; Rocha, O.L., E-mail: lgouvea@fem.unicamp.b [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Ferreira, I.L. [Universidade Federal Fluminense (DEM/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica; Garcia, A. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The solute macro segregation and formation of micro porosity were experimental y investigated in the transient unidirectional solidification of a ternary league. The solute macro segregation profile, the specific theoretical mass and the apparent specific mass are presented alongside of ingot length. The experimental segregation profile of the solute were obtained through the X ray fluorescence spectrometry technique. The micro porosity measurements were performed by using the technique of picnometry. The presence of silicon on the league acted as inhibitor of inverse segregation of the copper, which is a typically observed in the transient unidirectional solidified of Al-Cu leagues. The volumetric fractions of porous has shown a ascendent tendency from the base to the top of ingot

  9. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    Science.gov (United States)

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120

  10. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    Science.gov (United States)

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals.

  11. Exchange Bias in NiCo/FeMn Bilayers with Stripe Domains

    Institute of Scientific and Technical Information of China (English)

    LIN Jing; SHI Zhong; ZHOU Shi-Ming; ZHANG Xia; XIA Yun-Jie

    2009-01-01

    Exchange bias in NiCo/FeMn bilayers is established by alternating current (magnetic) field cooling, and stripe domains are induced as manifested by the "double" hysteresis loop. Only one resonance peak occurs at high magnetic fields in the in-plane ferromagnetic resonance spectra. The exchange field measured by both the magnetometry and ferromagnetic resonances is inversely proportional to the ferromagnetic layer thickness tfM.More remarkably, the exchange field determined by the ferromagnetic resonance is smaller than that of the magnetometry measurements.It is suggested to arise from the misalignment of the unidirectional anisotropic directions in neighboring domains.

  12. Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 ternary single crystals

    Science.gov (United States)

    Wang, Yaojin; Wang, Zhiguang; Ge, Wenwei; Luo, Chengtao; Li, Jiefang; Viehland, D.; Chen, Jianwei; Luo, Haosu

    2014-10-01

    Temperature and electric field effects on rhombohedral (R ) ternary Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 (PIN-PMN-PT) ferroelectric single crystals were comprehensively studied by x-ray diffraction. We have focused on how the individual phase transitions as well as the phase transition sequences depend on thermal and electrical history. Electric field-temperature phase diagrams have been constructed under [001] field-cooling and field-heating conditions. As happens to the R phase of binary PMN-PT crystals [H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, Phys. Rev. B 73, 184110 (2006), 10.1103/PhysRevB.73.184110], the R phase of the zero-field-cooled (ZFC) state is replaced by a monoclinic A (M A) phase in the field-cooled (FC) diagram. In particular, reciprocal-space mesh scans demonstrated that the M A phase was stable for crystals poled along the [001] crystallographic direction rather than the initial R phase of the ZFC state. Furthermore, an E -field-induced phase transformational sequence of R →M A→ tetragonal (T ) was observed at constant temperature, revealing a gradual increase in the c lattice parameter. These findings demonstrate that the ternary PIN-PMN-PT crystals exhibit common phase transition features with binary PMN-PT and Pb(Zn 1 /3Nb2 /3)O3-PbTiO3 (PZN-PT) ones for compositions in the low PT side of the morphotropic phase boundary.

  13. Study of angular dependence of exchange bias and misalignment in uniaxial and unidirectional anisotropy in NiFe(111)/FeMn(111)/CoFeB(amorphous) stack

    Science.gov (United States)

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2015-07-01

    We report the investigation of the in-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/CoFeB(amorphous) stack. Compared to the as-deposited case, the magnetic annealing resulted in 3 fold enhancement in exchange bias but decrease in coercivity. The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. The training effect associated with the exchange bias showed unconventional increase in coercivity after first cycle of hysteresis loop, while the exchange bias decreases sharply, and for subsequent cycles the exchange bias follows the empirical relation based on the energy dissipation in the AF layer. The ferromagnetic resonance (FMR) measurements also exhibited the in-plane azimuthal angle dependence of the magnetic resonance field indicating that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. However, no misalignment between the unidirectional anisotropy and the exchange bias direction is observed. The misalignment angle between the uniaxial and unidirectional anisotropy, as measured by FMR, is found to be 10° and 14° for CoFeB and NiFe, respectively. This misalignment is attributed to the interface roughness as revealed by x-ray reflectance measurements.

  14. An Investigation of Magnetically Induced Structural Phase Transitions Near a Magnetic Phase Boundary

    Science.gov (United States)

    Brown, D. E.; Hoffmann, C. A.; Hua, J.; Totapally, S.; Mais, J.; Chmaissem, O.; Dabrowski, B.; Ren, Yang

    2004-03-01

    The structural properties of the perovskite La_1-xSr_xMnO_3, x = 0.55, have been studied using synchrotron powder x-ray diffraction under high magnetic fields (up to 6 Tesla) for zero field cooled and field cooled conditions. This compound has an interesting phase transition point where both structural and magnetic properties change. As temperature decreases, it undergoes a tetragonal (I4/mcm) to orthorhombic (Fmmm) first-order structural phase transition while simultaneously undergoing a ferromagnetic to an A-type antiferromagnetic magnetic phase transition. Under the application of a strong magnetic field, the structure can be forced from the ferromagnetic tetragonal structure to the antiferromagnetic orthorhombic structure, which is nearly a reversible process. Thus the strong competition between the magnetic phases can be significantly affected by applying an external magnetic field. The magnetic perovskites, such as the colossal magnetoresistive materials, appear to be susceptible to such large and surprising magnetically induced phase transitions. Work at NIU is supported by the State of Illinois under HECA. Work at APS/ANL is supported by the US DOE-BES No. W-31-109-ENG-38.

  15. Study of angular dependence of exchange bias and misalignment in uniaxial and unidirectional anisotropy in NiFe(111)/FeMn(111)/CoFeB(amorphous) stack

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Braj Bhusan; Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in

    2015-07-01

    We report the investigation of the in-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/CoFeB(amorphous) stack. Compared to the as-deposited case, the magnetic annealing resulted in 3 fold enhancement in exchange bias but decrease in coercivity. The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. The training effect associated with the exchange bias showed unconventional increase in coercivity after first cycle of hysteresis loop, while the exchange bias decreases sharply, and for subsequent cycles the exchange bias follows the empirical relation based on the energy dissipation in the AF layer. The ferromagnetic resonance (FMR) measurements also exhibited the in-plane azimuthal angle dependence of the magnetic resonance field indicating that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. However, no misalignment between the unidirectional anisotropy and the exchange bias direction is observed. The misalignment angle between the uniaxial and unidirectional anisotropy, as measured by FMR, is found to be 10° and 14° for CoFeB and NiFe, respectively. This misalignment is attributed to the interface roughness as revealed by x-ray reflectance measurements. - Highlights: • In-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/ CoFeB(amorphous) stack. • The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. • In-plane azimuthal angle dependence of the magnetic resonance field indicates that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. • The misalignment angle between the uniaxial and

  16. Characterization and interpretation of a fractured rocky massif from borehole data. Boreholes of geothermal project at Soultz-sous-Forets and other examples of unidirectional sampling; Caracterisation et interpretation d`un volume rocheux fracture a partir de donnees de forages. Les forages geothermiques de Soultz-sous-Forets et autres exemples d`echantillonnages unidirectionnels

    Energy Technology Data Exchange (ETDEWEB)

    Dezayes, CH.

    1995-12-18

    In this thesis, we study fractures from borehole data on two sites: in one, located at Soultz-sous-Forets (Alsace) in the Rhine graben, boreholes reach a delta Jurassic series forming a petroleum reservoir. At Soultz, fractures have been studied on cores and borehole images. Striated faults present on cores permit to determine the tectonic history of the granite, completed by field study in Vosges Massif. This history corresponds to the Rhine graben history knowing by different authors. The analysis of vertical induced fractures observed on borehole images indicates a present-day NW-SE to NNW-SSE compression. These variations of stress direction are confirmed by others in situ measurements, as hydraulic injection, micro-seismicity, etc... On cores and borehole images, numerous fractures have been observed. Most of them are linked to the E-W distension, which permits the Rhine graben opening at Oligocene. At greatest scale, in quartz minerals, the micro-fractures are constitute by fluid inclusion trails. Several sets are related to the E-W distension, but others sets are linked to compressive stages. These sets are not observed on cores. This is a under-sampling of some fractures by the boreholes, but theses fractures exit into to rock massif. On borehole images, fracture density is weakest than the cores, however the set organisation is the same. At Ravenscar, the distribution of fracture spacing along different unidirectional sampling shows a exponential negative law. However, the fracture density varies with sampling. (author) 199 refs.

  17. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Directory of Open Access Journals (Sweden)

    Igor A Vereninov

    Full Text Available Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  18. Comparison of a unidirectional panoramic 3D endoluminal interpretation technique to traditional 2D and bidirectional 3D interpretation techniques at CT colonography: preliminary observations

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, D.K.; Babb, J.; Bonavita, J.; Kim, D. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Bini, E.J. [Department of Medicine, NYU School of Medicine, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Megibow, A.J. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Macari, M., E-mail: michael.macari@med.nyu.ed [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States)

    2010-02-15

    Aim: To compare the evaluation times and accuracy of unidirectional panoramic three-dimensional (3D) endoluminal interpretation to traditional two-dimensional (2D) and bidirectional 3D endoluminal techniques. materials and methods: Sixty-nine patients underwent computed tomography colonography (CTC) after bowel cleansing. Forty-five had no polyps and 24 had at least one polyp >=6 mm. Patients underwent same-day colonoscopy with segmental unblinding. Three experienced abdominal radiologists evaluated the data using one of three primary interpretation techniques: (1) 2D; (2) bidirectional 3D; (3) panoramic 3D. Mixed model analysis of variance and logistic regression for correlated data were used to compare techniques with respect to time and sensitivity and specificity. Results: Mean evaluation times were 8.6, 14.6, and 12.1 min, for 2D, 3D, and panoramic, respectively. 2D was faster than either 3D technique (p < 0.0001), and the panoramic technique was faster than bidirectional 3D (p = 0.0139). The overall sensitivity of each technique per polyp and per patient was 68.4 and 76.7% for 2D, 78.9 and 93.3% for 3D; and 78.9 and 86.7% for panoramic 3D. Conclusion: 2D interpretation was the fastest overall, the panoramic technique was significantly faster than the bidirectional with similar sensitivity and specificity. The sensitivity for a single reader was significantly lower using the 2D technique. Each reader should select the technique with which they are most successful.

  19. Effect of switching off unidirectional downflow systems of operating theaters during prolonged inactivity on the period before the operating theater can safely be used.

    Science.gov (United States)

    Traversari, A A L; Bottenheft, C; van Heumen, S P M; Goedhart, C A; Vos, M C

    2017-02-01

    Switching off air handling systems in operating theaters during periods of prolonged inactivity (eg, nights, weekends) can produce a substantial reduction of energy expenditure. However, little evidence is available regarding the effect of switching off the air handling system during periods of prolonged inactivity on the air quality in operating theaters during operational periods. The aim of this study is to determine the amount of time needed after restarting the ventilation system to return to a stable situation, with air quality at least equal to the situation before switching off the system. Measurements were performed in 3 operating theaters, all of them equipped with a unidirectional downflow (UDF) system. Measurements (particle counts of emitted particles with a particle size ≥0.5 µm) were taken during the start-up of the ventilation system to determine when prespecified degrees of protection were achieved. Temperature readings were taken to determine when a stable temperature difference between the periphery and the protected area was reached, signifying achievement of a stable condition. After starting up the system, the protected area achieved the required degrees of protection within 20 minutes (95% upper confidence limit). A stable temperature difference was achieved within 23 minutes (95% upper confidence limit). Both findings lie well within the period of 25 minutes normally required for preparations before the start of surgical procedures. Switching off the ventilation system during prolonged inactivity (during the night and weekend) has no negative effect on the air quality in UDF operating theaters during normal operational hours. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Science.gov (United States)

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  1. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion.

    Science.gov (United States)

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C

    2016-03-22

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.

  2. Replikasi Unidirectional pada Heterogen Database

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2013-12-01

    Full Text Available The use of diverse database technology in enterprise today can not be avoided. Thus, technology is needed to generate information in real time. The purpose of this research is to discuss a database replication technology that can be applied in heterogeneous database environments. In this study we use Windows-based MS SQL Server database to Linux-based Oracle database as the goal. The research method used is prototyping where development can be done quickly and testing of working models of the interaction process is done through repeated. From this research it is obtained that the database replication technolgy using Oracle Golden Gate can be applied in heterogeneous environments in real time as well.

  3. Unidirectional dyslexia in a polyglot

    Science.gov (United States)

    Leker, R; Biran, I

    1999-01-01

    Alexia is usually seen after ischaemic insults to the dominant parietal lobe. A patient is described with a particular alexia to reading Hebrew (right to left), whereas no alexia was noted when reading in English. This deficit evolved after a hypertensive right occipitoparietal intracerebral haemorrhage, and resolved gradually over the ensuing year as the haematoma was resorbed. The deficit suggests the existence of a separate, language associated, neuronal network within the right hemisphere important to different language reading modes.

 PMID:10201427

  4. REPLIKASI UNIDIRECTIONAL PADA HETEROGEN DATABASE

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2013-11-01

    where development can be done quickly and testing of working models of the interaction process is done through repeated. From this research it is obtained that the database replication technology using Oracle Golden Gate can be applied in heterogeneous environments in real time as well.

  5. Changes in triglycerides and high-density lipoprotein cholesterol may precede peripheral insulin resistance, with 2-h insulin partially mediating this unidirectional relationship: a prospective cohort study.

    Science.gov (United States)

    Han, Tianshu; Cheng, Yu; Tian, Shuang; Wang, Li; Liang, Xi; Duan, Wei; Na, Lixin; Sun, Changhao

    2016-11-04

    Results of longitudinal researches regarding the temporal relationship between dyslipidemia and insulin resistance (IR) are inconsistent. This study assessed temporal relationships of blood lipids with IR and determined whether there are any mediating effects existed in these temporal relationships. This study examined a longitudinal cohort of 3325 subjects aged 20-74 years from China with an average of 4.2 years follow-up. Measurements of fasting blood lipids, as well as fasting and 2-h serum glucose and insulin, were obtained at two time points. The Gutt index and HOMA-IR were calculated as indicators of peripheral IR and hepatic IR. A cross-lagged path analysis was performed to examine the temporal relationships between blood lipids and IR. A mediation analysis was used to examine mediating effect. After adjusting for covariates, the cross-lagged path coefficients from baseline TG and HDL-C to follow-up Gutt index were significantly greater than those from baseline Gutt index to follow-up TG and HDL-C (β1 = -0.131 vs β2 = -0.047, P < 0.001 for TG; β1 = 0.134 vs β2 = 0.023, P < 0.001 for HDL-C). The path coefficients from baseline TG and HDL-C to follow-up 2-h insulin were significantly greater than those from baseline 2-h insulin to follow-up TG and HDL-C (β1 = 0.125 vs β2 = 0.040, P < 0.001 for TG; β1 = -0.112 vs β2 = -0.026, P < 0.001 for HDL-C). 2-h insulin partially mediated the effect of TG/HDL-C on Gutt index with a 59.3% mediating effect for TG and 61.0% for HDL-C. These findings provide strong evidence that dyslipidemia probably precede peripheral IR and that 2-h insulin partially mediates this unidirectional temporal relationship.

  6. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    Science.gov (United States)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses

  7. The Use of Unidirectional Barbed Suture for Urethrovesical Anastomosis during Robot-Assisted Radical Prostatectomy: A Systematic Review and Meta-Analysis of Efficacy and Safety.

    Directory of Open Access Journals (Sweden)

    Huixin Li

    Full Text Available Unidirectional barbed suture (UBS has been widely used for surgery in recent years, especially for urethrovesical anastomosis (UVA during robot-assisted radical prostatectomy (RARP. However, the efficacy and safety comparing it with conventional non-barbed suture (CS for UVA is still controversial.The objective of this study is to assess the current evidence regarding the efficacy and safety of UBS compared with CS for UVA during RARP.We comprehensively searched PubMed, Embase, The Cochrane Library, SinoMed (Chinese and other databases on Oct. 9, 2014 to conduct a systematic review and meta-analysis of all randomized controlled trials (RCTs and other comparative studies evaluating these two types of suture. The outcome measures included anastomosis time operative time, posterior reconstruction (PR time, postoperative leakage (PL rate and continence rates at different time points (4-6 weeks, 3 months, 6-12 months after surgery. Secondary outcomes included estimated blood loss (EBL and length of catheterization (LOC.Three RCTs and six observational studies including 786 cases were identified. Meta-analysis of extractable data showed that use of UBS could significantly reduce anastomosis time (weighted mean difference [WMD]:-3.98min; 95% confidence interval [CI], -6.02 -1.95; p = 0.0001, operative time (WMD:-10.06min; 95% CI, -15.45--4.67; p = 0.0003 and PR time (WMD:-0.93min; 95% CI, -1.52--0.34; p = 0.002. No significant difference was found in PL rate, EBL, LOC, or continence rates at 4-6 weeks, 3 months and 6-12 months after surgery.Our meta-analysis indicates that UBS appears to be safe and efficient as CS for UVA during RARP with not only shorter anastomosis time, operative time, PR time, but also equivalent PL rate, EBL, LOC, and continence rates at 4-6 weeks, 3 months and 6-12 months after surgery. For the inherent limitations of the eligible studies, future more persuasive RCTs are needed to confirm and update our findings.

  8. 单向驱动非圆齿轮差动轮系实现可调摆幅输出的研究%Study on Realizing of Adjustable Swing Output with Unidirectional Drive Non-circular Differential Gear Train

    Institute of Scientific and Technical Information of China (English)

    孙以涛; 王生泽

    2013-01-01

    A method of noncircular gear-circular gear differential gear train with unidirectional drive that could realize adjustable swing output is proposed,the condition that non-circular isn't concave is discussed,and suitable non-circular pitch curve and non-circular differential gear train are designed under this condition.Through simulation analysis different swing amplitude output can be obtained by changing the unidirectional servo drive input reasonably,especially the swing center movement of the swing output,the purpose of acquiring the adjustable output swing amplitude with unidirectional servo drive can be achieved.%提出了一种单向驱动非圆齿轮——圆齿轮差动轮系实现可调摆幅输出的方案;讨论了非圆齿轮不出现凹形的条件,并在此条件下设计出合适的非圆齿轮节曲线及非圆齿轮差动轮系;通过仿真分析合理改变单向伺服驱动输入运动规律可获得不同摆动幅值的输出,尤其是摆动中心运动的摆动输出,以达到伺服电机直接单向驱动便能实现摆幅可调输出的目的.

  9. YbNiAl{sub 2}: A new Yb-based antiferromagnet with a field-induced ferromagnetic order

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, D.P., E-mail: rojasd@unican.e [Departamento CITIMAC, Av de los Castros S/N, Santander 39005 (Spain); Rodriguez Fernandez, J.; Espeso, J.I.; Gomez Sal, J.C. [Departamento CITIMAC, Av de los Castros S/N, Santander 39005 (Spain)

    2009-10-15

    We report measurements on the thermal and magnetic properties in the temperature range 2-300 K for the YbNiAl{sub 2} compound which crystallizes in the orthorhombic MgCuAl{sub 2}-type structure (space group Cmcm). At zero magnetic field, AC-magnetic susceptibility data show a peak in the real component consistent with an antiferromagnetic order below T{sub N}=4.8K. A field-induced ferromagnetic order is observed from the zero field cooled and field cooled curves of DC-magnetic susceptibility at different magnetic fields with a transition to a ferromagnetic state between 9 and 10 kOe. It is further confirmed by the isothermal magnetization curves as a function of the magnetic field at several temperatures, showing two metamagnetic transitions at H{sub 1}=8kOe and H{sub 2}=9.3kOe. The results are compared to those reported for other Yb-Ni-Al compounds.

  10. The effect of hot-rolling on chill-cast AI-AI3Ni, chill-cast AI-AI2Cu, and Unidirectionally Solidified AI-AI3Ni Eutectic Alloys

    Science.gov (United States)

    Jardine, F. S. J.; Cantor, B.

    1986-11-01

    The effect of hot-rolling on the mechanical properties and microstructures of chill-cast Al-Al3Ni, chill-cast Al-Al2Cu, and unidirectionally solidified Al-Al3Ni eutectic alloys has been studied. The chill-cast eutectic alloys were produced by casting into preheated mild steel molds placed on copper chills. This system promoted growth along the length of the ingot and not radially from the mold wall. Cellular microstructures resulted with good alignment of Al3Ni fibers or Al2Cu lamellae within the cells and an interfiber/lamellar spacing of ~ 1 /urn. In contrast, the Al-Al3Ni eutectic alloy was also unidirectionally solidified at a growth rate of 3 x 10-1 m s-1 in a conventional horizontal crystal grower. This produced well-aligned Al3Ni fibers with an interfiber spacing of 1.2 ώm. Both the unidirectionally solidified and chill-cast Al-Al3Ni eutectic alloy can be hot-rolled at 773 K to reductions in area of greater than 95 pct. Deformation was achieved by Al3Ni fiber fracturing followed by separation of the broken fiber fragments in the rolling direction. Additionally, for the chill-cast eutectic the cellular microstructure disappeared and the Al3Ni fibers were homogeneously distributed throughout the matrix, after area reductions of 60 to 70 pct. In both cases, the eutectic microstructure was deformed with a constant volume fraction of Al3Ni/unit volume being maintained during rolling. The chill-cast Al-Al2Cu eutectic alloy can be hot-rolled at 773 K to an area reduction of ~50 pct, after the continuous brittle Al2Cu phase within the cells has been ‘broken up’ by coarsening at high temperature. The variations of room temperature tensile properties for the chill-cast and unidirectionally solidified eutectic alloys were measured as a function of reduction of thickness during hot-rolling and the results were compared with predicted strengths from discontinuous fiber reinforcement theory.

  11. Wave-induced dynamics of flexible blades

    CERN Document Server

    Luhar, M

    2015-01-01

    We present an experimental and numerical study that describes the motion of flexible blades, scaled to be dynamically similar to natural aquatic vegetation, forced by wave-induced oscillatory flows. For the conditions tested, blade motion is governed primarily by two dimensionless variables: (i) the Cauchy number, $Ca$, which represents the ratio of the hydrodynamic forcing to the restoring force due to blade stiffness, and (ii) the ratio of the blade length to the wave orbital excursion, $L$. For flexible blades with $Ca \\gg 1$, the relationship between drag and velocity can be described by two different scaling laws at the large- and small-excursion limits. For large excursions ($L \\ll 1$), the flow resembles a unidirectional current and the scaling laws developed for steady-flow reconfiguration studies hold. For small excursions ($L \\gg 1$), the beam equations may be linearized and a different scaling law for drag applies. The experimental force measurements suggest that the small-excursion scaling applies...

  12. Study on Neutron Amplification Factor of Fast-Zone in VENUS 1# on Unidirectional Coupling Mode%"启明星1#"单向耦合快区外中子源放大系数研究

    Institute of Scientific and Technical Information of China (English)

    谢金森; 于涛; 钱金栋

    2011-01-01

    计算分析"快-热"耦合加速器驱动次临界实验装置"启明星1#"在252Cf,Am-Be和氚--氚(2H-3H)中子源驱动下,单向耦合时快区泄漏中子数、净中子产额和泄漏中子谱随快区层数与外中子源能量的变化关系.结果表明,从反应堆产能和嬗变角度考虑,"启明星1#"实验装置快区燃料元件单向耦合时存在最优化的元件装载量.%VENUS 1# was the first fast-thermal coupled accelerator driven sub-critical experimental facility of the world built by China Atomic Energy Institute-CIAE. In this paper, the leakage and net neutron yield of fast zone and leakage neutron spectrum driven by 252Cf, Am-Be and D-T neutron sources with different loading layers was calculated based on VENUS 1# unidirectional coupling mode. The results show that, from the view of energy production and transmutation, there exists optimized fuel loadings of fast-zone,which will provide theoretical basis for designing "fast-thermal" unidirectional coupling systems.

  13. Flux-pinning-induced stress and magnetostriction in a functionally graded long rectangular superconductor slab

    Science.gov (United States)

    Feng, W. J.; Han, X.; Ma, P.

    2011-09-01

    The flux-pinning-induced stress and magnetostriction of a functionally graded type-II superconductor shaped as a rectangular slab are analyzed. By using the plane strain approach, the exact solution of the three-dimensional (3D) magneto-elastic problem is found. All the stresses, strains, and magnetostriction in the graded direction are first expressed in terms of the flux-density profile in the slab, and all these expressions are valid for any critical-state model jc=jc(B ). Then, based on the Bean model, i.e., jc=const, an extensive analysis is made for three cases of applied magnetic fields, i.e., increasing field, decreasing field, and field cooling. And the emphasis is put on the effects of both the applied magnetic field and the graded index of the slab on the maximum tensile stress and the magnetostriction.

  14. Flux pinning induced stress and magnetostriction in a long elliptic cylindrical superconductor

    Science.gov (United States)

    Yong, Huadong; Zhou, Youhe

    2013-07-01

    In this paper, stress and magnetostriction induced by flux pinning are studied numerically for a long elliptic cylinder superconductor. The cylinder is placed in a parallel magnetic field. Based on the critical state Bean model and variational formulation, critical current and flux distributions are obtained for zero field cooling process first. Then, the mechanical response problem of the elliptic cylinder is investigated using the finite element method, and the problem is assumed to be plane strain case. The results show that the stress depends on magnetic field and aspect ratio of ellipse. In addition, the maximum stress of semi-major axis is different from that of semi-minor axis. The aspect ratio has different effects on the stress distribution for semi-major and semi-minor axes.

  15. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.

    Science.gov (United States)

    André, Marcel J

    2013-08-01

    Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by (18)O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of (18)O2 and (16)O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of

  16. Interfacial exchange coupling induced anomalous anisotropic magnetoresistance in epitaxial γ'-Fe₄N/CoN bilayers.

    Science.gov (United States)

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-02-18

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ'-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ'-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ'-Fe4N layer and interfacial spin scattering.

  17. Deep-water bedforms induced by refracting Internal Solitary Waves

    Science.gov (United States)

    Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco

    2017-04-01

    Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  18. 单向复合材料矩形截面圆柱弹簧的自由振动%Free Vibration of Unidirectional Composite Cylindrical Helical Springs with Rectangular Cross-section

    Institute of Scientific and Technical Information of China (English)

    郝颖; 虞爱民

    2012-01-01

    The naturally curved and twisted beam theory was applied to the beams for anisotropic materials, and an analytical expression for the warping function of Saint-Venant' s torsion of unidirectional composite bars with rectangular cross-section was obtained. Then, the differential equations of motion for unidirectional composite cylindrical helical springs with noncircular cross-sections, which consist of 14 first order partial differential equations, were further derived. In the formulation, the warping effect upon natural frequencies and vibration mode shapes was first studied in addition to considering the rotary inertia, the shear and axial deformation effects. Improved Riccati transfer matrix method was introduced to solve the free vibration differential equations of the springs which presented a strong rigidity. Calculation results show that, for unidirectional composite cylindrical helical springs with rectangular cross-section, the warping deformation has a significant influence on the free vibration characteristics of such springs, which should be considered in the free vibration analysis. Finally, the effects of various parameters on the natural frequencies of the springs were investigated.%把自然弯扭梁理论推广到材料为各向异性的情况,并得到了单向复合材料矩形截面杆件的圣维南扭转翘曲函数的解析公式.在此基础上,进一步导出了单向复合材料非圆截面圆柱螺旋弹簧的运动微分方程,它们由14个1阶偏微分方程组成.方程中不仅考虑了转动惯量、轴向和剪切变形的影响,而且首次考虑了簧丝横截面的翘曲变形对弹簧固有频率和振动模态的影响.由于方程呈现出很强的刚性,这里采用改进的Riccati传递矩阵法对弹簧的自由振动微分方程进行求解.计算表明,对于单向复合材料矩形截面圆柱螺旋弹簧,翘曲变形对其自由振动特性具有重大的影响,是必须考虑的重要因素.最后,研究了各种设

  19. <1 1 0> Directional growth of polycrystalline magnetostrictive Tb{sub x}Dy{sub 1-x}Fe{sub y} compounds by casting in a strong unidirectional gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, Olivier E-mail: bonino@labs.polycnrs-gre.frolivier.bonino@cea.fr; Rango, Patricia de; Tournier, Robert

    2000-03-01

    Rods of highly magnetostrictive polycrystalline Tb{sub x}Dy{sub 1-x}Fe{sub y} materials are elaborated by casting in a cylindrical mould with cooling imposed from the bottom which leads to a fast vertical unidirectional growth. A <1 1 0> orientation is obtained along the axis of the rods parallel to the growth direction. The magnetostrictive properties are remarkable along the rods axis comparable to those of <1 1 1> rods. The saturated magnetostriction measured in a parallel magnetic field is {lambda}{sub parallel}=1124x10{sup -6} under 0 MPa and increases to 1760x10{sup -6} under a compressive stress of 25 MPa. The pseudolinear variation of the magnetostriction with the internal magnetic field {delta}{lambda}{sub parallel}/{mu}{sub 0}{delta}H{sub int} reaches 640x10{sup -6}/0.04 T under 9.9 MPa. The texture and the good magnetostrictive properties are reproducible.

  20. Design and Implementation of Unidirectional Transmission System of Security Segregation Based on USB%基于USB总线的安全隔离单向传输系统设计实现

    Institute of Scientific and Technical Information of China (English)

    肖晓; 钱滨冰; 王振华

    2014-01-01

    This paper introduces the unidirectional transmission system with security isolation data based on USB bus which adopts private protocol standard and depth detection technology of transmission information.A universal data transmission module,which consists of high speed USB2.0 control chip CY7C68001 and ARM microprocessor STM32F103,can realize USB direct communication between the hosts.By the data diode transmission technology,the unidirectional transmission of information flow can be achieved.Using the special physical channel and private transmission protocol,data files can be transmitted securely.Finally,the data communication between different security network computer can be realized uniaxially,reliably,fastly,real-timely.%介绍了采用私有协议标准和传输信息深度检测技术,基于USB总线的数据安全隔离单向传输系统。选用高速USB2.0控制芯片CY7C68001和ARM微处理器STM32F103组成一个通用的数据传输模块,实现主机间的USB直接通信;通过数据二极管单向传输技术,实现了信息流的单向传输;利用专用的物理信道和特殊的私有传输协议,保证文件数据的安全传输。最终实现处于不同密级网络计算机间的单向、可靠、高速、实时数据通讯。

  1. Induced Abortion

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  2. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang [State Key laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan, Ren-Gang [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  3. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  4. The study of UHMWPEF surface modification with plasma- induced polymerization

    Science.gov (United States)

    Zhang, Yu-Fang; Jia, Qing-Xiu; Wang, Xin; Zhang, Pei-Ran

    2015-07-01

    In order to improve the surface activity levels of the ultrahigh molecular weight polyethylene fiber (UHMWPEF), as well as enhancing the interface strength of the UHMWPEF based composite materials, the method of plasma-induced polymerization was applied to modify the UHMWPEF surface. In this study, the plasma's power, time, pressure and the grafting monomer concentration were introduced. Also, through a well-conducted comparison and analysis of the grafting rate, fabric surface functional groups and the microcosmic morphology, the most suitable plasma modification process was discovered and determined. The mechanics performance of hybrid composites with the modified UHMWPEF and unidirectional carbon fiber cloth (CF) was tested to reveal that, compared with the unmodified composites, the tensile strength and the laminar shear strength could be improved.

  5. Magnetic relaxation effects in zero field cooled Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Hasanain, S.K.; Mumtaz, A.; Ali, T.; Husain, M.; Bhatti, G.S. (Dept. of Physics, Quaid-i-Azam Univ., Islamabad (PK))

    1990-03-10

    This paper reports on results of the magnetic relaxation in 1:2:3 superconductors initiated by a very slow field reversal. The authors find that the relaxation at earlier times follows a stretched exponential type function, while at longer times it has a logarithmic behavior. The onset time of lnt behavior depends on the applied field. The data is interpreted in terms of a two-stage relaxation process.

  6. Second step in the field-cooled magnetization of Bi-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koblischka, M.R.; Murakami, M. [International Superconductivity Technology Center (ISTEC), Tokyo (Japan). Superconductivity Research Lab.

    2000-03-01

    In all Bi-based superconductors [Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212), (Pb,Bi){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}}] the critical current density, j{sub c}, is found to increase steeply when decreasing the temperature below {approx}25 K (see, e.g.). In the case of Bi-2223 tapes, the pinning-dominated intragranular current density is found to increase considerably, whereas the transport current density shows only a small increase. Furthermore, determinations of the irreversibility line (IL) showed that there are two different regimes, a high field one with the irreversibility field H{sub irr}{proportional_to}exp(-T/T{sub 0}), and a low field regime. (orig.)

  7. Effect of metal impregnation in the field cool magnetization of bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kita, M. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)]. E-mail: kita@istec.or.jp; Nariki, S. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Sakai, N. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Hirabayashi, I. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2006-10-01

    Gd-Ba-Cu-O bulk superconductors have significant potential for various applications due to the high critical current density and the highly trapped magnetic fields. Recently we have developed a large sized bulk superconductor using Gd210, which is discovered in the microgravity experiment. We investigated the mechanical properties and the cryostability of the Gd-Ba-Cu-O bulk superconductor to determine how to improve toughness and heat conduction of the large sized bulk superconductor. We introduced a stainless ring around the circumference of the bulk to increase the fracture strength of the bulk. Also, we introduced Al wires inserted in the hole along the c-axis of the bulk, and then the sample was subjected to the impregnation by using Bi-Sn-Cd alloy. We measured the trapped magnetic fields and the repulsive forces of the samples. The trapped magnetic field distributions were 1.13-1.36 T. The repulsive forces at 1 mm gap between the sample bulk and the permanent magnet with the surface magnetic induction of 0.37 T were about 70 N at 77 K. We have also measured the temperature dependence of the trapped magnetic field, and confirmed the effect of metal impregnation.

  8. 海藻酸钠离子凝胶法制备直通孔氧化铝多孔陶瓷%Porous Alumina Ceramics with Unidirectional Oriented Pores Fabricated by Ionotropic Process of Sodium Alginate

    Institute of Scientific and Technical Information of China (English)

    孙阳; 薛伟江; 孙加林; 周国治; 黄勇

    2015-01-01

    利用海藻酸钠的离子凝胶过程,采用溶剂置换结合冷冻干燥的工艺,成功制备了具有高度有序六方排列的直通孔多孔氧化铝陶瓷,整个工艺过程及所使用的原料都是环境友好的。研究结果表明,1500℃烧结2 h样品的孔径尺寸在200μm左右,且与固相含量的关系不大,而孔壁上存在0.3μm~0.5μm的小孔。通过控制浆料中氧化铝的固相含量可以对材料的性能进行有效地调控,研究表明,随着固相含量从5wt%提高到15wt%,材料的密度从0.87 g/cm3提高到1.16 g/cm3,渗透率从2.57×10-11m2下降到2.16×10-11m2,而抗压强度从(18.9±3.2) MPa提高到(44.2±5.4) MPa,平行孔道方向的热导率从2.1 W/(m·K)提高到3.1 W/(m·K),而垂直孔道方向的热导率从1.3 W/(m•K)提高到1.7 W/(m·K),并且平行孔道方向热导率的增加幅度要明显大于垂直孔道方向。%Alumina ceramic bodies with high porosity characterized by highly ordered and unidirectional oriented pores were successfully fabricated using the ionotropic process of sodium alginate by solvent exchange subsequently with freeze-drying. It is important to point out that the whole process and raw materials are eco-friendly. The average unidirectional pore size of samples sintered at 1500℃ for 2 h is 200μm with minor porosity in the pore walls with average pore size of 0.3-0.5μm. The properties of samples can be adjusted by controlling the solid loading in slurry. As the solid loading increasing from 5wt% to 15wt%, the density and compressive strength increased from 0.87 g/cm3 to 1.16 g/cm3 and from (18.9±3.2) MPa to (44.2±5.4) MPa, respectively with permeability de-creasing from 2.57×10-11m2 to 2.16×10-11m2. In addition, with the solid loading increasing from 5wt% to 15wt%, the conductivity of the direction parallel and perpendicular to the unidirectional pores increased from 2.1 W/(m·K) to 3.1 W/(m·K) and from 1.3 W/(m·K) to 1.7 W/(m·K), respectively.

  9. 单向与双向情绪下风险资产的认知价格及其投资策略%Risky Asset Cognitive Price and Investment Strategy Based on Unidirectional and Bidirectional Sentiment

    Institute of Scientific and Technical Information of China (English)

    杨春鹏; 闫伟

    2012-01-01

    Based on the investor sentiment theory, this paper investigates the sentiment cognitive price models and the investment strategy from three aspects including theoretical model deduction, simulation analysis and historical data inspection. Firstly, this paper establishes the unidirectional sentiment cognitive price model and the bidirectional sentiment cognitive price model, and obtains their price expressions by mathematical induction. Secondly, the numerical simulation and parameter analysis verifies the conclusion of many behavioral finance experiments. That is, when the high sentiment investors gamble with the low sentiment investors, the increase of the numbers of high sentiment investors will lead the market average sentiment level to climb up, and ultimately cause the asset price to rise up. Finally, this paper designs an investment strategy according to the unidirectional sentiment cognitive price model. The effectiveness of this investment strategy to Shanghai composite index is validated by using the optimization procedure for measuring the sentiment. The parameter analysis testifies the steadiness for returns of this investment strategy.%基于投资者情绪理论,从理论模型推导、仿真模拟分析和历史数据检验3个方面探讨认知价格模型及其投资策略.依次构建单向情绪投资者认知价格理论模型和双向情绪投资者认知价格理论模型,通过数理推导得到两类模型资产认知价格的解析表达式.通过仿真模拟和参数分析验证行为金融实验的重要结论,即正向情绪投资者与负向情绪投资者权衡博弈时,正向情绪投资者数量的增加将引致市场平均情绪水平高涨,并最终导致资产价格升高.根据单向情绪投资者认知价格模型设计一套投资策略,利用提出的投资者情绪指数构建优化程序,以上证综指历史数据验证该投资策略的有效性,参数灵敏度分析证明该情绪投资策略赢利率具有稳健性.

  10. 准单级单向Buck直流变换器型高频链并网逆变器%Quasi single-stage unidirectional Buck DC-DC converter mode grid-connected inverters with high frequency link

    Institute of Scientific and Technical Information of China (English)

    陈道炼; 严斌; 陈峰; 左巧安; 林真

    2012-01-01

    A circuit configuration and circuit topological family of quasi single-stage unidirectional buck dc-dc converter mode grid-connected inverters with high frequency link are proposed in this paper. Its circuit configuration is composed of the unidirectional isolated buck dc-dc converter and polarity reversal inverting bridge, and its circuit topology includes single-transistor forward, interleaving single-transistor forward, push-pull, push-pull forward, two-transistor forward, interleaving two-transistor forward, half-bridge, and full-bridge mode circuit. The circuit topology, instantaneous current control strategy, steady principle properties, and design criteria for the key circuit parameters were deeply investigated. Taking push-pull forward mode topology as an example, 1 kW 48VDC/220V50 HzAC grid-connected inverter prototype was developed. The research results show that this kind of inverter has the advantages such as high frequency electrical isolation, simple topology, quasi single-stage conversion, high conversion efficiency , the polarity reversal inverting bridge' s power switches having low voltage stress and ZVZCS, high quality grid-connected current etc.%提出准单级单向Buck直流变换器型高频链并网逆变器电路结构与拓扑族.其电路结构是由单向隔离Buck直流变换器和极性反转逆变桥级联构成;其拓扑族包括推挽正激式、双管正激式、并联交错双管正激式、半桥式和全桥式电路.深入分析研究类逆变器的电路拓扑、电流瞬时值控制策略、稳态原理特性和关键电路参数设计准则.以推挽正激式拓扑为例,设计并研制出1kW48VDC/220V50HzAC并网逆变器样机.研究结果表明,此类逆变器具有高频电气隔离、电路结构简洁、准单级功率变换、变换效率高、极性反转逆变桥功率开关电压应力低且为ZVZCS、并网电流质量高等优点.

  11. Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn-50 wt%Pb alloy: An in situ observation

    Science.gov (United States)

    Cao, Fei; Yang, Fenfen; Kang, Huijun; Zou, Cunlei; Xiao, Tiqiao; Huang, Wanxia; Wang, Tongmin

    2016-09-01

    Synchrotron X-ray radiography was used to in situ study the solute distribution and the dendritic growth during the bottom-up solidification of Sn-50 wt%Pb alloy under a traveling magnetic field (TMF) for the first time. The buoyance driven evolution and motion of the plumes containing Sn-rich melt are directly observed in the solidification front before the application of TMF. A forced melt flow from left to right is induced with the application of TMF, which results in the redistribution of the solute concentration (facilitate the solute transportation and reduce the local fluctuations considerably) and the change of the dendrite morphologies (promote/suppress the growth of the secondary arms, remelting and fragmentation of dendrites). Meanwhile, the concentration variations of Sn around the solidification front are quantitatively analyzed through the extraction of gray level from sequenced X-ray images.

  12. Break-induced telomere synthesis underlies alternative telomere maintenance.

    Science.gov (United States)

    Dilley, Robert L; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D; Wondisford, Anne R; Greenberg, Roger A

    2016-11-03

    Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

  13. Design of a New Type Unidirectional Flow Forward-Reverse Cycloid Rotor Pump%一种新型单流向正反转摆线转子泵的设计

    Institute of Scientific and Technical Information of China (English)

    邱文刚

    2012-01-01

    The text introduces structural features and application fields of a new type unidirectional flow forward-reverse cycloid rotor pump. The pump consists of a drive shaft, inner and outer rotors, housing of the hydraulic pump, check valve, lid and top plate of the pump, with the inner and outer rotors, plus the check valve, are installed inside the hydraulic pump housing. The inner and outer rotors change the rotating direction, respectively, and the check valve does monopolize the hydraulic pump delivery to flow always in one and same direction. And the pump is simple and compact in construction, good at manufacturing processes, and high for reliability.%介绍一种新型单流向正反转摆线转子泵的结构特点及其应用领域.该转子泵包括传动轴、内外转子、液压泵壳体、单向阀、泵盖和顶板,内外转子和单向阀安装在液压泵壳体内.当内外转子改变旋转方向时,通过单向阀的作用,使液压泵排出的压力油始终向同一方向流动.该泵结构简单紧凑,工艺性好,可靠性高.

  14. STUDY ON PROPERTIES OF UNIDIRECTIONAL CARBON FTBER PREPREGS FOR WIND TURBINE BLADE%风机叶片用单向碳纤维预浸料性能研究

    Institute of Scientific and Technical Information of China (English)

    褚国伟; 张锦南; 李海涛; 杨萍; 李炜

    2012-01-01

    为了提高风机功率,叶片的长度不断增加,因此碳纤维在风机叶片中的应用成为了必然趋势.本文研究了三种单向碳纤维预浸料的拉伸、弯曲、压缩以及纵横剪切性能,通过性能测试和断口微观观察分析发现,三种碳纤维/环氧树脂预浸料的纤维和树脂在性能上存在一定的差异,为合理选用风机叶片材料提供了一定的实验基础.%In order to reach higher turbine power, the length of the blade is increasingly getting larger. It is compulsory to use carbon fiber in wind turbine blade. In this paper, the mechanical properties of three unidirectional carbon fiber prepergs were studied. The tests were made to study the tensile, flexural properties, compressive properties and in-plane shear properties. The interface of cross sections of tensile fracture were studied. The test results and microscope analysis show the differences among the three carbon fibre/epoxy resin composites, which helps to make the right choice for the wind blade manufacture.

  15. Isovalent Bi3+ substitution induced structural and magnetic transitions in LaMnO3

    Science.gov (United States)

    Joseph, D. Paul; Lin, J. W.; Kumar, N. Pavan; Chen, W. C.; Lin, J. G.

    2016-11-01

    Rare earth perovskite manganites have attracted renewed attention due to scientific aspect and prospective device applications. This work explores the structural and magnetic properties of La(1-x)BixMnO3 (x=0-0.5) with isovalent Bi3+ ions substituted at the La3+site synthesized through solid state reaction method. Doping of 'Bi3+' in LaMnO3 induces transition from orthorhombic to cubic phase for x≥ 0.3. Decrease in the magnetic transition temperature in ZFC-FC data is correlated to the distortion induced by 'Bi3+' doping. Spin glass like feature is witnessed in orthorhombic phase and it diminished appreciably for x≥0.3 in the cubic symmetry. At 10 K, coercivity decreases in orthorhombic phase, whereas it increases marginally in cubic phase. Thus, isovalent Bi3+ doping in LaMnO3 is found to induce structural change from orthorhombic to cubic which is also reflected in the magnetic properties as a change over from hard to soft magnetic phase. In addition, a phenomenological model is applied for fitting the field cooled magnetization data. The results of fitting and the related magneto-caloric effect are also discussed in this paper.

  16. In vitro studies of theophylline-induced changes in Na, K and Cl transport in hen (Gallus domesticus) colon suggesting bidirectional, basolateral NaK2Cl cotransport

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G; Munck, L K;

    1990-01-01

    1. In isolated mucosa from a NaCl-loaded hen theophylline stimulates both unidirectional chloride fluxes (JmsCl and JsmCl). Conductive and electroneutral exchange processes, besides a bumetanide-sensitive, rheogenic process contribute. 2. The bumetanide-sensitive fraction of the theophylline......-induced delta JcmCl is sodium-dependent. 3. Incubation in nominally K(+)-free solutions reduces the bumetanide-sensitive fraction delta JsmCl more than treatment with ouabain. 4. With respect to chloride the bumetanide-sensitive fraction of delta JsmCl has a Hill coefficient of 1.93 +/- 0.03, a Jmax of 12...

  17. Noise-Induced Transitions in a Population Growth Model Based on Size-Dependent Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Neeme Lumi

    2014-01-01

    Full Text Available The stochastic dynamics of a population growth model with size-dependent carrying capacity is considered. The effect of a fluctuating environment on population growth is modeled as a multiplicative dichotomous noise. At intermediate values of population size the deterministic counterpart of the model behaves similarly to the Von Foerster model for human population, but at small and very large values of population size substantial differences occur. In the stochastic case, an exact analytical solution for the stationary probability distribution is found. It is established that variation of noise correlation time can cause noise-induced transitions between three different states of the system characterized by qualitatively different behaviors of the probability distributions of the population size. Also, it is shown that, in some regions of the system parameters, variation of the amplitude of environmental fluctuations can induce single unidirectional abrupt transitions of the mean population size.

  18. Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis.

    Science.gov (United States)

    Estelmann, Sebastian; Boll, Matthias

    2014-11-01

    Glutaryl-CoA dehydrogenases (GDHs) are FAD containing acyl-CoA dehydrogenases that usually catalyze the dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA with an electron transferring flavoprotein (ETF) acting as natural electron acceptor. In anaerobic bacteria, GDHs play an important role in the benzoyl-CoA degradation pathway of monocyclic aromatic compounds. In the present study, we identified, purified and characterized the benzoate-induced BamOP as the electron accepting ETF of GDH (BamM) from the Fe(III)-respiring Geobacter metallireducens. The BamOP heterodimer contained FAD and AMP as cofactors. In the absence of an artificial electron acceptor, at pH values above 8, the BamMOP-components catalyzed the expected glutaryl-CoA oxidation to crotonyl-CoA and CO2 ; however, at pH values below 7, the redox-neutral glutaryl-CoA conversion to butyryl-CoA and CO2 became the dominant reaction. This previously unknown, strictly ETF-dependent coupled glutaryl-CoA oxidation/crotonyl-CoA reduction activity was facilitated by an unexpected two-electron transfer between FAD(BamM) and FAD(BamOP) , as well as by the similar redox potentials of the two FAD cofactors in the substrate-bound state. The strict order of electron/proton transfer and C-C-cleavage events including transient charge-transfer complexes did not allow an energetic coupling of electron transfer and decarboxylation. This explains why it was difficult to release the glutaconyl-CoA intermediate from reduced GDH. Moreover, it provides a kinetic rational for the apparent inability of BamM to catalyze the reverse reductive crotonyl-CoA carboxylation, even under thermodynamically favourable conditions. For this reason reductive crotonyl-CoA carboxylation, a key reaction in C2-assimilation via the ethylmalonyl-CoA pathway, is accomplished by a different crotonyl-CoA carboxylase/reductase via a covalent NADPH/ene-adduct.

  19. Inducing labor

    Science.gov (United States)

    Labor induction; Pregnancy - inducing labor; Prostaglandin - inducing labor; Oxytocin - inducing labor ... threaten the health of you or your baby. Oxytocin may also be started after a woman's labor has started, but her contractions have not been ...

  20. 市内建筑间无线光通信GPS辅助单向捕获研究%Research on unidirectional acquisition in free-space optical communication between buildings in cities based on GPS

    Institute of Scientific and Technical Information of China (English)

    肖永军; 董冉; 熊准; 杨智

    2012-01-01

    为减小无线光通信链路建立时间及增加系统捕获可靠性,提出将GPS技术应用于光通信实验系统中.以TMS320F2812为控制核心,搭建了无线光通信定点单向捕获实验系统.系统采用用户界面统一控制,双方GPS坐标手工输入至用户界面,解算出需调整的方位及俯仰角后送于F2812,驱动二维转台完成初始捕获,据此选择多点进行了多次单向初始捕获实验.结果表明,采用GPS导航定位技术,可快速实现信标光的初始捕获,且具有较高的捕获成功概率.%To reduce of setup time of communication link and increase of acquisition reliability for free-space optical communication, the GPS technology is applied in the optical communication, and the unidirectional acquisition experiment system, controlled through user interface, is established with the control core of TMS320F2812. the coordinate from GPS is input to user interface by manual, formed into the horizontal- and vertical- Angle to adjust based on the GPS coordinate and sent to F2812 for driving of two-dimension platform to finish initial acquisition. The acquisition experiment is done many times and the result show that the quick and high probability acquisition could be achieved based on GPS technology.

  1. Unidirectional diagonal order and three-dimensional stacking of charge stripes in orthorhombic Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4

    Science.gov (United States)

    Hücker, M.; Zimmermann, M. V.; Klingeler, R.; Kiele, S.; Geck, J.; Bakehe, S. N.; Zhang, J. Z.; Hill, J. P.; Revcolevschi, A.; Buttrey, D. J.; Büchner, B.; Tranquada, J. M.

    2006-08-01

    The interplay between crystal symmetry and charge stripe order in Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 has been studied by means of single crystal x-ray diffraction. In contrast to tetragonal La1.67Sr0.33NiO4 , these crystals are orthorhombic. The corresponding distortion of the NiO2 planes is found to dictate the direction of the charge stripes, similar to the case of diagonal spin stripes in the insulating phase of La2-xSrxCuO4 . In particular, diagonal stripes seem to always run along the short a axis, which is the direction of the octahedral tilt axis. In contrast, no influence of the crystal symmetry on the charge stripe ordering temperature itself was observed, with TCO˜240K for La, Pr, and Nd. The coupling between lattice and stripe degrees of freedom allows one to produce macroscopic samples with unidirectional stripe order. In samples with stoichiometric oxygen content and a hole concentration of exactly 1/3 , charge stripes exhibit a staggered stacking order with a period of three NiO2 layers, previously only observed with electron microscopy in domains of mesoscopic dimensions. Remarkably, this stacking order starts to melt about 40K below TCO . The melting process can be described by mixing the ground state, which has a three-layer stacking period, with an increasing volume fraction with a two-layer stacking period.

  2. Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal

    Science.gov (United States)

    Yin, L. H.; Yang, J.; Kan, X. C.; Song, W. H.; Dai, J. M.; Sun, Y. P.

    2015-04-01

    We report on a systematic study of the single-crystal GdCrO3, which shows various novel magnetic features, such as temperature-induced magnetization reversal (TMR), temperature-induced magnetization jump (TMJ), spin reorientation, and giant magnetocaloric effect (MCE). In the field-cooled cooling process with modest magnetic field along the c axis, GdCrO3 first shows a TMR at T c o m p ˜ 120 - 130 K and then an abrupt TMJ with a sign change of magnetization at T j u m p ˜ 52 - 120 K , and finally a spin reorientation at T S R ˜ 4 - 7 K . Interestingly, the remarkable TMJ behavior, which was not reported ever before, persists at higher fields up to 10 kOe even when TMR disappears. In addition, giant MCE with the maximum value of magnetic entropy change reaching ˜31.6 J/kg K for a field change of 44 kOe was also observed in GdCrO3 single crystal, suggesting it could be a potential material for low-T magnetic refrigeration. A possible mechanism for these peculiar magnetic behaviors is discussed based on the various competing magnetic interactions between the 3d electrons of Cr3+ ions and 4f electrons of Gd3+ ions.

  3. Observation of exchange bias and spin-glass-like ordering in -Fe2.8Cr0.2N nanoparticles

    Indian Academy of Sciences (India)

    N S Gajbhiye; Sayan Bhattacharyya; Sachil Sharma

    2008-02-01

    Nanoparticles of -Fe2.8Cr0.2N system exhibit the exchange bias phenomenon due to the exchange coupling of the spins of the antiferromagnetic (AF) oxide/oxynitride surface layer and the ferromagnetic (FM) nitride core. Exchange bias is observed at 10 K both in the absence and presence of cooling field. Due to the interface disorder, a mixture of parallel and anti-parallel/perpendicular coupling of the AF and FM spins is observed. The roughness of AF-FM interface induces disorder due to the random exchange anisotropy. The saturation magnetization is also found to be drastically lowered as compared to parent -Fe3N. Below 58 K, the broad peak (E ≅ f) in zero-field cooled (ZFC) magnetization curves indicates the presence of unidirectional anisotropy and spin-glass-like ordering, that arises from the freezing of localized frustrated spins.

  4. Modeling Unidirectional Composite Laminates Using XFEM

    Science.gov (United States)

    2015-06-30

    failing to comply with a collection of information if it does not display a currently valid OPM control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...Assessment of Subsea Equipment,” Chalmers University of Technology, Thesis 35, Gӧteborg, 2012. 21. D. M. Grogan, S. B. Leen, C. M. Ó Brádaigh, “An

  5. Prediction of Hydrodynamics for Unidirectional Flow

    Science.gov (United States)

    2009-01-01

    representation of the flow field can be obtained. These methods have also recently been used to correct initial estimates of model parameters (e.g. Losa et...estimation for stochastic systems. Non-linear Processes in Geophysics, 10, 253. Losa , S., Kivman, G., Ryabchenko, V., 2001, Weak constraint parameter

  6. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  7. Neutron diffraction of unidirectional fiber-composites

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Shojiro; Hojo, Masaki; Iwasaki, Naoya; Sawada, Takehiro; Inoue, Takashi; Tanaka, Mototsugu; Okumura, Ikuo; Ono, Masayoshi [Kyoto Univ. (Japan)

    1997-06-01

    Nb-Ti/Cu and Nb{sub 3}Al/Cu superconductive fiber-composites were studied by a neutron diffraction method. The results obtained showed that the aggregate structures were formed in the direction of <100> and <111> for copper and <110> for Nb-Ti filament. Nb{sub 3}Al grew up to the radius direction and formed the side face (210). Residual strain and stress of Cu in Nb-Ti/Cu and Nb{sub 3}Al/Cu composite were measured by TOF and PSD method. The value before smoothing treatment was 96 MPa, but the value after smoothing treatment became 40 MPa, near estimated value. (S.Y.)

  8. Instability of Unidirectional Fiber Composites in Compression

    DEFF Research Database (Denmark)

    Wind, Jens Lycke

    Plastisk mikrobuling, ogsa kaldet kinkbandsformation, i enakset berkomposit er behandlet. En individuel ber og matrix 2D nite element model er bygget og sammenlignet med med en 2D konstitutiv model anvendt pa en kvadratisk geometri. Sammenligningen er lavet med patrykt spnding, bervinkel og kinkb...

  9. Mechanism for unidirectional movement of kinesin

    Science.gov (United States)

    Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2005-04-01

    Kinesin motors have been studied extensively both experimentally and theoretically. However, the microscopic mechanism of the processive movement of kinesin is still an open question. In this paper, we propose a hand-over-hand model for the processivity of kinesin, which is based on chemical, mechanical and electrical couplings. In the model the ATPase rates of the two kinesin heads are regulated by forces, both from internal elasticity and external load, exerted on their necks. At a low external load, the ATPase rate of the trailing head is much higher than the leading head and the two heads are coordinated in their ATP hydrolysis and mechanical cycles. The motor walks processively with one ATP being hydrolyzed per step. At a higher forward external load, the ATPase rates of the two heads become comparable and thus the two heads are no longer well coordinated in their ATP hydrolysis and mechanical cycles. The model is consistent with the structural study of kinesin and the measured pathway of the kinesin ATPase. Using the model we have estimated the driving force to be ~5.8pN, which is in agreement with the experimental results (5-7.5pN). The estimated time for moving one step (~10μs) is also consistent with the measured values of 0-50μs. The previous observation of substeps within the 8nm step is explained. The shapes of velocity versus load (both positive and negative) curves show close resemblance to previous experimental results.

  10. Mechanism for unidirectional movement of kinesin

    Institute of Scientific and Technical Information of China (English)

    Xie Ping; Dou Shuo-Xing; Wang Peng-Ye

    2005-01-01

    Kinesin motors have been studied extensively both experimentally and theoretically. However, the microscopic mechanism of the processive movement of kinesin is still an open question. In this paper, we propose a hand-over-hand model for the processivity of kinesin, which is based on chemical, mechanical, and electrical couplings. In the model the ATPase rates of the two kinesin heads are regulated by forces, both from internal elasticity and external load, exerted on their necks. At a low external load, the ATPase rate of the trailing head is much higher than the leading head and the two heads are coordinated in their ATP hydrolysis and mechanical cycles. The motor walks processively with one ATP being hydrolyzed per step. At a higher forward external load, the ATPase rates of the two heads become comparable and thus the two heads are no longer well coordinated in their ATP hydrolysis and mechanical cycles. The model is consistent with the structural study of kinesin and the measured pathway of the kinesin ATPase. Using the model we have estimated the driving force to be ~5.8pN, which is in agreement with the experimental results (5-7.5pN).The estimated time for moving one step (~10μs) is also consistent with the measured values of 0-50μs. The previous observation of substeps within the 8nm step is explained. The shapes of velocity versus load (both positive and negative)curves show close resemblance to previous experimental results.

  11. Prediction of Hydrodynamics for Unidirectional Flow

    Science.gov (United States)

    2013-09-30

    the Regional Ocean Modeling System, J. Comp. Phys, 227, 3595-3624. Wilson, G., H.T. Ozkan-Haller and R.A. Holman , Data assimilation and bathymetric...R.A. Holman , Data assimilation and bathymetric inversion in 2DH surf zone model, J. Geophys. Res., 115, C12057, doi:10.1029/2010JC006286. Wilson

  12. Interactions between unidirectional quantized vortex rings

    CERN Document Server

    Zhu, T; Brown, R A; Walmsley, P M; Golov, A I

    2016-01-01

    We have used the vortex filament method to numerically investigate the interactions between pairs of quantized vortex rings that are initially traveling in the same direction but with their axes offset by a variable impact parameter. The interaction of two circular rings of comparable radii produce outcomes that can be categorized into four regimes, dependent only on the impact parameter; the two rings can either miss each other on the inside or outside, or they can reconnect leading to final states consisting of either one or two deformed rings. The fraction of of energy went into ring deformations and the transverse component of velocity of the rings are analyzed for each regime. We find that rings of very similar radius only reconnect for a very narrow range of the impact parameter, much smaller than would be expected from geometrical cross-section alone. In contrast, when the radii of the rings are very different, the range of impact parameters producing a reconnection is close to the geometrical value. A...

  13. 整饰因子为6的波分多路圈同步光纤网络的设备最少化%Minimizing AMDs in unidirectional WDM rings with grooming factor 6

    Institute of Scientific and Technical Information of China (English)

    徐允庆; 常彦勋

    2005-01-01

    In wavelength division multiplexing for unidirectional rings ,traffic grooming is used to pack low rate signals into higher rate streams to share a wavelength. The grooming chosen determines the number of add-drop multiplexers used for the optical-to-electric conversion. The determination of groomings to use the fewest multiplexers is equivalent to a graph design problem:find a partition of the edges of the complete graph on n vertices (Kn) into subgraphs having at most C edges and in which the total number of vertices has to be minimized. It has been solved when up to C=5. In this paper,we deal with the case of n≡1 (mod 3) and C=6 with minimum drop cost and minimum number of wavelengths when n≠19.%在波分多路技术的无向圈光网络中,通讯流的整饰就是要将多个低速率的信号压缩为一个波长下的高速率信号流.整饰方式的选择决定着光网络中用于光电转换的多路器的使用个数.选择适当的整饰方式使多路器的使用数达到最少等价于一个图设计问题,即:寻找n(网络结点数)个点的完全图(Kn)的一个边划分,使之分为一些有不多于C条边的子图,并使这些子图的顶点个数的和达到最小.对C=5,这个问题已得到解决.本文我们给出当C=6,n≡1(mod 3)(n≠19)时,使得光网络中使用多路器达到最少,同时所使用的波长数也达到最少的整饰方法.

  14. Motion-induced interruptions and postural equilibrium in linear lateral accelerations.

    Science.gov (United States)

    Matsangas, P; McCauley, M E; Gehl, G; Kiser, J; Bandstra, A; Blankenship, J; Pierce, E

    2014-01-01

    This study assesses lateral tipping motion-induced interruptions (MIIs) in a simulated motion environment. The objective is to revisit MII occurrence and sway motion relationship by focusing on the frequency and acceleration of the lateral motion stimulus. Results verify that MIIs increase with increasing peak sway acceleration, but the effect of sway frequency is not as clear as that of acceleration. Complex multidirectional motions create more tipping MIIs than unidirectional motion. Research should incorporate acceleration, frequency and motion complexity as factors influencing MII occurrence. To describe a temporary loss of balance without tipping, the term 'probable' MII is introduced. This term fills the gap between the theoretical definition and a human-centred perception of an MII where loss of balance is not a binary phenomenon. The 'probable' MIIs were 16-67% more common than the 'definite' MIIs. The developed mathematical model of MII occurrence versus sway acceleration (amplitude, frequency) approximated the observed MIIs with less than 9% difference.

  15. Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences.

    Science.gov (United States)

    Hussein, Samer M I; Elbaz, Judith; Nagy, Andras A

    2013-03-01

    In 2006, Shinya Yamanaka and colleagues discovered how to reprogram terminally differentiated somatic cells to a pluripotent stem cell state. The resulting induced pluripotent stem cells (iPSCs) made a paradigm shift in the field, further nailing down the disproval of the long-held dogma that differentiation is unidirectional. The prospect of using iPSCs for patient-specific cell-based therapies has been enticing. This promise, however, has been questioned in the last two years as several studies demonstrated intrinsic epigenetic and genomic anomalies in these cells. Here, we not only review the recent critical studies addressing the genome integrity during the reprogramming process, but speculate about the underlying mechanisms that could create de novo genome damage in iPSCs. Finally, we discuss how much an elevated mutation load really matters considering the safety of future therapies with cells heavily cultured in vitro.

  16. Did glacially induced TPW end the ice age? A reanalysis

    Science.gov (United States)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  17. Effect of phase separation induced supercooling on magnetotransport properties of epitaxial La5/8−yPryCa3/8MnO3 (y≈0.4 thin film

    Directory of Open Access Journals (Sweden)

    Sandeep Singh

    2015-02-01

    Full Text Available Thin films of La5/8−yPryCa3/8MnO3 (y≈0.4 have been grown on single crystal SrTiO3 (001 by RF sputtering. The structural and surface characterizations confirm the epitaxial nature of these film. However, the difference between the ω-scan of the (002 and (110 peaks and the presence of pits/holes in the step-terrace type surface morphology suggests high density of defect in these films. Pronounced hysteresis between the field cooled cooling (FCC and field cooled warming (FCW magnetization measurements suggest towards the non-ergodic magnetic state. The origin of this nonergodicity could be traced to the magnetic liquid like state arising from the delicacy of the coexisting magnetic phases, viz., ferromagnetic and antiferromagnetic-charge ordered (FM/AFM-CO. The large difference between the insulator metal transitions during cooling and warming cycles (TIMC ∼ 64 K and TIMW ∼ 123 K could be regarded as a manifestation of the nonergodicity leading to supercooling of the magnetic liquid while cooling. The nonergodicity and supercooling are weakened by the AFM-FM phase transition induced by an external magnetic field. TIM and small polaron activation energy corresponding the magnetic liquid state (cooling cycle vary nonlinearly with the applied magnetic field but become linear in the crystalline solid state (warming cycle. The analysis of the low temperature resistivity data shows that electron-phonon interaction is drastically reduced by the applied magnetic field. The resistivity minimum in the lower temperature region of the self-field warming curve has been explained in terms of the Kondo like scattering in the magnetically inhomogeneous regime.

  18. Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing.

    Science.gov (United States)

    Yoshigi, Masaaki; Clark, Edward B; Yost, H Joseph

    2003-10-01

    Reorientation of the cell axis induced by cyclic stretching is an early response to mechanical forces in vitro. However, quantitative assay for this phenomenon has been difficult due to lack of robust methods. We hypothesized that cell orientation may be redefined by the orientation of actin fibers. We developed image processing methods to quantitate the orientation and density of actin fibers. A convolution filter using Sobel kernels was adapted to determine the orientation and density of actin fibers in human endothelial cells. Unidirectional stretching (10%, 0.5 Hz) was applied to induce cytoskeletal remodeling by varying the duration of stimulation (control, 0.5, 1, 2, 5, 10, and 20 h). Actin fibers were visualized by fluorescent phalloidin. The image processing method was compared with the manual method for reproducibility. Both confluent and subconfluent cells were tested to assess the efficacy of the methods. Cyclic stretch-induced dense and uninterrupted actin cabling formed across the cell body and, later, the actin fibers became aligned perpendicular to the stretch direction. The variance of actin fiber orientation became smaller after 2 h of stretch (F method was extremely good. Applicability of the method was not compromised by cell density. Our method is reliable for quantifying cytoskeletal remodeling induced by mechanical force. Copyright 2003 Wiley-Liss, Inc.

  19. Origin of magnetization-induced anisotropy of magnetic films

    Institute of Scientific and Technical Information of China (English)

    Jin Han-Min; Chong-Oh Kim; Taek-Dong Lee; Hyo-Jin Kim

    2007-01-01

    It is proposed that the magnetization-induced anisotropy of magnetic films of cubic crystal structure originates from the anisotropy of atomic pair ordering, shape anisotropy, and strain anisotropy resulting from the constraint of the magnetostriction strain imposed on the film by the substrate. Calculated are the three anisotropy constants and their sum K vs temperature for Ni, Fe, and 55%Ni-Fe films; the room temperature (RT) constants vs the substrate temperature Tt during deposition or annealing after deposition for Ni and 50%Ni-Co films; the RT constants vs composition fraction for Fe-Ni films with Tt = RT, 250℃ and 450℃, Co-Ni films at Tt = RT, 100℃ and 320℃, and Fe-Co films with Tt = RT and 300℃; the spread of RT K vs composition fraction for Fe-Ni films; and RT △K/K vs composition fraction for Fe-Ni and Co-Ni films, where △K denotes the variation of K of the film that is detached from its substrate. The calculated curves well accord with the measurements. The irrelevancy of K to the substrate material and the fast kinetics of the annealing in a field applied in the direction of the hard axis are explained reasonably.The anisotropies of Fe and Ni films originate mainly from the shape anisotropy and the strain anisotropy, respectively. The major anisotropy component in many cases depends not only on composition fraction but also on Tt . For example, the RT anisotropy of 40-70%Ni-Fe films, when Tt is RT, mostly comes from the anisotropy of atomic pair ordering while it stems mostly from the shape anisotropy when Tt is 450 ℃. The most important cause of the spread in values of K is the spread of the intrinsic anisotropic stresses superimposed on the intrinsic isotropic planar stress. It is suggested that the field cooling induced magnetic anisotropy originating from the induced crystal texture observed in the bulk alloys is also a major origin for Co and Co-rich alloy films of hexagonal crystal structure.

  20. 单向复合材料矩形截面非圆柱螺旋弹簧固有频率的参数研究%Parametric effect on natural frequencies of unidirectional composite non-cylindrical helical springs with rectangular cross-section

    Institute of Scientific and Technical Information of China (English)

    郝颖; 虞爱民

    2012-01-01

    The differential equations of motion for unidirectional composite non-cylindrical helical springs with rectangular cross-section including warping deformation of wire cross-section were derived using the naturally curved and twisted anisotropic beam theory. They consisted of 14 first-order partial differential equations with variable coefficients. An explicit analytical expression for warping function of Saint-Venant's torsion of unidirectional composite bars with rectangular cross-section was also obtained. The natural frequencies and vibration modal shapes of the springs were determined by using improved Riccati transfer matrix method. The element transfer matrix used in the solution was calculated using the Scaling and Squaring method and Pad'e approximations. Numerical results showed that the warping deformation has a significant influence on the natural frequencies of such springs, it should be considered in their free vibration analysis. Finally, the effects of various parameters on the natural frequencies of unidirectional composite conical springs with rectangular cross-section were investigated.%以各向异性自然弯扭梁理论为基础,首次导出了考虑簧丝截面翘曲变形的单向复合材料矩形截面非圆柱(锥形、双曲形和桶形)螺旋弹簧的运动微分方程,它们由14个变系数的一阶偏微分方程组成.同时得到了单向复合材料矩形截面杆件扭转翘曲函数的显式表达式.弹簧的固有频率和振动模态可以使用改进的Riccati传递矩阵法确定,单元传递矩阵则采用Scaling-Squaring方法以及Pad'e逼近表达式进行计算.数值结果表明,对于单向复合材料矩形截面的非圆柱螺旋弹簧,翘曲变形对其固有频率有着重大的影响,在自由振动分析中必须加以考虑.最后研究了各种设计参数对单向复合材料矩形截面锥形弹簧固有频率的影响.

  1. 通过单向队列自动机对适应性移动计算系统中组合事件的分析%Analysis of Composite Events in Adaptive Mobile Computing System by Unidirectional Queue Automata

    Institute of Scientific and Technical Information of China (English)

    李国东; 张德富

    2002-01-01

    Mobile computing attracts more and more attention in recent years. Adaptive mobile computing systems need to process a broad range of composite events, which are combinations of primitive events such as logic event, time events, and temporal events, etc. This paper focuses on the design and implementation of composite events and composite actions in mobile computing systems, the sophisticated cases of event stream, time event and various operators are taken into consideration. Detection for composite events is supported efficiently by new kinds of extended automaton?Unidirectional Queue Automata and Bounded Unidirectional Queue Automata, which are defined and discussed in detail. The data structures and the mechanisms adopted by these new automata are described and how they can be efficiently applicable to adaptive mobile environments is illustrated.%近年来,移动计算吸引着越来越多的注意力.适应性移动计算系统要求大范围的事件组合,这些事件包括逻辑事件、时间事件和暂时事件等.致力于组合事件和组合反应的设计和实现,考虑了事件流、时间事件和不同操作符等情况.组合事件的检测由一种新的扩展自动机??单向队列自动机来有效地支持,详细定义和讨论了单向队列自动机,并具体描述了使用它来检测组合事件的机制和所使用的数据结构.

  2. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Science.gov (United States)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    We reported long-range ferromagnetic interactions in La doped Zn0.95Fe0.05O nanoparticles that mediated through lattice defects or vacancies. Zn0.92Fe0.05La0.03O (ZFLaO53) nanoparticles were synthesized by a sol-gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn0.95Fe0.05O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn0.95Fe0.05O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described.

  3. Quantifying biologically and physically induced flow and tracer dynamics in permeable sediments

    Directory of Open Access Journals (Sweden)

    F. J. R. Meysman

    2007-08-01

    Full Text Available Insight in the biogeochemistry and ecology of sandy sediments crucially depends on a quantitative description of pore water flow and the associated transport of various solutes and particles. We show that widely different problems can be modelled by the same flow and tracer equations. The principal difference between model applications concerns the geometry of the sediment-water interface and the pressure conditions that are specified along this boundary. We illustrate this commonality with four different case studies. These include biologically and physically induced pore water flows, as well as simplified laboratory set-ups versus more complex field-like conditions: [1] lugworm bio-irrigation in laboratory set-up, [2] interaction of bio-irrigation and groundwater seepage on a tidal flat, [3] pore water flow induced by rotational stirring in benthic chambers, and [4] pore water flow induced by unidirectional flow over a ripple sequence. The same two example simulations are performed in all four cases: (a the time-dependent spreading of an inert tracer in the pore water, and (b the computation of the steady-state distribution of oxygen in the sediment. Overall, our model comparison indicates that model development for sandy sediments is promising, but within an early stage. Clear challenges remain in terms of model development, model validation, and model implementation.

  4. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...

  5. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  6. Exercise-Induced Bronchoconstriction

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  7. GROWTH OF Al3Fe IN Al-2.0%Fe EUTECTIC ALLOY UNDER UNIDIRECTIONAL SOLIDIFICATION%定向凝固条件下Al-2.0%Fe共晶合金中Al3Fe相的生长过程

    Institute of Scientific and Technical Information of China (English)

    李荣德; 李述军; 于海朋; 周振平; 白彦华; 徐玉桥

    2000-01-01

    利用定向凝固技术研究生长速度、合金元素Mn对共晶Al3Fe相生长过程的影响。研究表明:随着生长速度的增加,共晶Al3Fe相将发生由退化共晶向片状→针片状→针状的转变。加入合金元素Mn后,共晶Al3Fe相的形貌由片状、针片状向汉字状、树枝状转变。同时,讨论了各种形貌共晶组织的形成机理。%Effect of growth velocity and Mn on the growth of eutectic Al3Fe is investigated with help of unidirectional solidification techniques.It is found from the experimental results that the morphology of eutectic Al3Fe changes from plate-like to degenerated eutectics,to plate-like,to needle plate-like,and to needle-like. The morphology of eutectic Al3Fe changes from plate-like,needle plate like to Chinese characters-like,dendritic-like after Mn addition.the formation of eutectic Al3Fe with different shapes is also discussed.

  8. Strong Pinned-Spin-Mediated Memory Effect in NiO Nanoparticles

    Science.gov (United States)

    Gandhi, Ashish Chhaganlal; Chan, Ting Shan; Pant, Jayashree; Wu, Sheng Yun

    2017-03-01

    After a decade of effort, a large number of magnetic memory nanoparticles with different sizes and core/shell compositions have been developed. While the field-cooling memory effect is often attributed to particle size and distribution effects, other magnetic coupling parameters such as inter- and intra-coupling strength, exchange bias, interfacial pinned spins, and the crystallinity of the nanoparticles also have a significant influence on magnetization properties and mechanisms. In this study, we used the analysis of static- and dynamic-magnetization measurements to investigate NiO nanoparticles with different sizes and discussed how these field-cooling strengths affect their memory properties. We conclude that the observed field-cooling memory effect from bare, small size NiO nanoparticles arises because of the unidirectional anisotropy which is mediated by the interfacial strongly pinned spins.

  9. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    Science.gov (United States)

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  10. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160 014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-05-15

    We reported long-range ferromagnetic interactions in La doped Zn{sub 0.95}Fe{sub 0.05}O nanoparticles that mediated through lattice defects or vacancies. Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn{sub 0.95}Fe{sub 0.05}O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn{sub 0.95}Fe{sub 0.05}O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic

  11. Low-temperature high magnetic field powder x-ray diffraction setup for field-induced structural phase transition studies from 2 to 300 K and at 0 to 8-T field

    Science.gov (United States)

    Shahee, Aga; Sharma, Shivani; Kumar, Dhirendra; Yadav, Poonam; Bhardwaj, Preeti; Ghodke, Nandkishor; Singh, Kiran; Lalla, N. P.; Chaddah, P.

    2016-10-01

    A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-Kα x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°-115° of 2θ with a resolution of ˜0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB6 (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like Pr0.5Sr0.5MnO3, Nd0.49Sr0.51MnO3-δ and La0.175Pr0.45Ca0.375MnO3 by collecting data in zero field cool and field cool conditions.

  12. Vacuum-Induced Surface Freezing to Produce Monoliths of Aligned Porous Alumina

    Directory of Open Access Journals (Sweden)

    Sandra Großberger

    2016-12-01

    Full Text Available Vacuum-induced surface freezing has been used to produce uni-directional freezing of colloidal aluminum oxide dispersions. It leads to zones of different structure within the resulting sintered monoliths that are highly similar to those known for freeze casting using a cryogen cold source. A more-or-less dense surface layer and a cellular sub-surface region are formed, beneath which is a middle region of aligned lamellae and pores that stretches through most of the depth of the monolith. This is the case even at a volume fraction of dispersed phase as low as 0.032. A more-dense but still porous base layer is formed by accumulation of rejected nanoparticles preceding the freezing front and differs from previous reports in that no ice lenses are observed. X-ray micro-computed tomography reveals a uniform aligned pore structure vertically through the monolith. The pores close to the periphery are oriented radially or as chords, while the center region contains domains of parallel pores/lamellae. The domains are randomly oriented to one another, as already reported for regular freeze casting. This technique for directional freezing is convenient and easy to perform, but requires further refinement in that the temperature gradient and freezing rates remain yet to be measured. Also, control of the temperature gradient by varying chamber vacuum and shelf temperature needs to be evaluated.

  13. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster.

    Science.gov (United States)

    Lin, Chun-Chieh; Potter, Christopher J

    2016-08-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the H: omology A: ssisted C: RISPR K: nock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available.

  14. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films.

    Science.gov (United States)

    Chen, Xinxin; Zhu, Xiaojian; Xiao, Wen; Liu, Gang; Feng, Yuan Ping; Ding, Jun; Li, Run-Wei

    2015-04-28

    Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories.

  15. Effect of MSi{sub 2}/Si(111) (M = Co, Ni) interface structure on metal induced lateral crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ji-Su [Nano Device Lab., Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143–747 (Korea, Republic of); Yoon, Yeo-Geon [Samsung Display Co., Ltd., Nongseo-dong, Kiheung, Yongin-si, Gyeonggi-do 446–920 (Korea, Republic of); Kim, Deok-kee, E-mail: deokkeekim@sejong.ac.kr [Nano Device Lab., Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143–747 (Korea, Republic of); Joo, Seung-Ki [School of Materials Science and Engineering, Seoul National University, San 56–1, Shinrim-Dong, Kwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-09-02

    MSi{sub 2}/Si(111) (M = Co, Ni) crystallographic interface structure influenced metal-induced lateral crystallization (MILC) significantly. MILC growth with Ni, wherein only half the Si atoms in NiSi{sub 2} are required to change positions, was preferred to that with Co, where all the Si atoms in CoSi{sub 2} are required to change positions, which was corroborated by the experimental result. In case of pure Ni, unidirectional growth of the MILC needlelike grain at the front of MILC region became dominant and the bi-directional division was restrained. The so-called “Ni ion Ni vacancy hopping model” was modified by adding metal atom migration into the a-Si region, before Si atom adsorption at the MSi{sub 2}/a-Si interface. - Highlights: • Effect of MSi{sub 2}/Si (M = Co, Ni) interface structure on crystallization was examined. • Ni-induced lateral crystallization rate was retarded by Co addition significantly. • Only half the Si atoms in NiSi{sub 2} change positions during crystallization. • All the Si atoms in CoSi{sub 2} are required to change positions during crystallization.

  16. Focusing of mammalian cells under an ultrahigh pH gradient created by unidirectional electropulsation in a confined microchamber†Electronic supplementary information (ESI) available: Figures S1-S5 and videos S1-S2. See DOI: 10.1039/c4sc00319eClick here for additional data file.Click here for additional data file.Click here for additional data file.

    Science.gov (United States)

    Loufakis, Despina Nelie; Cao, Zhenning; Ma, Sai; Mittelman, David; Lu, Chang

    2014-08-30

    The transport and manipulation of cells in microfluidic structures are often critically required in cellular analysis. Cells typically make consistent movement in a dc electric field in a single direction, due to their electrophoretic mobility or electroosmotic flow or the combination of the two. Here we demonstrate that mammalian cells focus to the middle of a closed microfluidic chamber under the application of unidirectional direct current pulses. With experimental and computational data, we show that under the pulses electrochemical reactions take place in the confined microscale space and create an ultrahigh and nonlinear pH gradient (∼2 orders of magnitude higher than the ones in protein isoelectric focusing) at the middle of the chamber. The varying local pH affects the cell surface charge and the electrophoretic mobility, leading to focusing in free solution. Our approach provides a new and simple method for focusing and concentrating mammalian cells at the microscale.

  17. Inflammation-induced loss of Pdcd4 is mediated by phosphorylation-dependent degradation.

    Science.gov (United States)

    Schmid, Tobias; Bajer, Magdalena M; Blees, Johanna S; Eifler, Lisa K; Milke, Larissa; Rübsamen, Daniela; Schulz, Kathrin; Weigert, Andreas; Baker, Alyson R; Colburn, Nancy H; Brüne, Bernhard

    2011-10-01

    The tumor suppressor programmed cell death 4 (Pdcd4) is lost in various tumor tissues. Loss of Pdcd4 has been associated with increased tumorigenic potential and tumor progression. While various mechanisms of Pdcd4 regulation have been described, the effect of an inflammatory tumor microenvironment on Pdcd4 protein expression has not been characterized so far. In the present study, we aimed to elucidate the molecular mechanisms of Pdcd4 protein regulation in tumor cells under inflammatory conditions. 12-O-tetradecanoylphorbol 13-acetate-induced differentiation of human U937 monocytes increased the expression and secretion of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-6 and IL-8. Exposure to conditioned medium (CM) of these activated macrophages markedly decreased Pdcd4 protein expression in various tumor cells. Similarly, indirect coculture with such activated U937 monocyte-derived macrophages resulted in the loss of Pdcd4 protein in tumor cells. Decreased Pdcd4 protein levels were attributable to enhanced proteasomal degradation, diminishing Pdcd4 protein half-life. Proteasomal degradation required activation of phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling. Since macrophage-CM sufficed to induce Pdcd4 degradation, Pdcd4 downregulation was determined to be an indirect unidirectional effect of the macrophages on the tumor cells. Pdcd4 protein expression was also attenuated in vivo in mouse colon tissue in response to dextran sodium sulfate-induced colitis. In summary, we characterized PI3K-mTOR-dependent proteasome-mediated Pdcd4 degradation in tumor cells in the inflammatory tumor microenvironment. Consequently, stabilization of Pdcd4 protein could provide a promising novel avenue for therapeutics targeting inflammation-associated tumors.

  18. Exercise-Induced Asthma

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Exercise-Induced Asthma KidsHealth > For Parents > Exercise-Induced Asthma A A ... previous continue Tips for Kids With Exercise-Induced Asthma For the most part, kids with exercise-induced ...

  19. Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes

    NARCIS (Netherlands)

    Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising

  20. Unidirectional light-driven molecular motors based on overcrowded alkenes.

    Science.gov (United States)

    Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L

    2014-01-01

    Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.