Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Closed superstring field theory and its applications
de Lacroix, Corinne; Erbin, Harold; Kashyap, Sitender Pratap; Sen, Ashoke; Verma, Mritunjay
2017-10-01
We review recent developments in the construction of heterotic and type II string field theories and their various applications. These include systematic procedures for determining the shifts in the vacuum expectation values of fields under quantum corrections, computing renormalized masses and S-matrix of the theory around the shifted vacuum and a proof of unitarity of the S-matrix. The S-matrix computed this way is free from all divergences when there are more than 4 noncompact space-time dimensions, but suffers from the usual infrared divergences when the number of noncompact space-time dimensions is 4 or less.
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
Noether's theorems applications in mechanics and field theory
Sardanashvily, Gennadi
2016-01-01
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Cosmological applications of algebraic quantum field theory in curved spacetimes
Hack, Thomas-Paul
2016-01-01
This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.
Probabilistic theory of mean field games with applications
Carmona, René
2018-01-01
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...
Application of KBc Subalgebra in String Field Theory
Zeze, S.
Recently, a classical solution of open cubic string field theory (CSFT) which corresponds to the closed string vacuum is found by Erler and Schnabl. In their work, a very simple subalgebra of open string star algebra --- called K B c subalgebra --- plays a crucial role. In this talk, we demonstrate two applications of the K B c subalgebra. One is evaluation of classical and effective tachyon potential. It turns out that the level expansion in the K B c subalgebra terminates at a certain level, so that analytic evaluation of effective potential is available. The other application is regularization of the identity based solutions. It is demonstrated that the Okawa-Erler-Schnabl type solution naturally includes gauge invariant regularization of identity based solutions.
Conformal field theory and its application to strings
International Nuclear Information System (INIS)
Verlinde, E.P.
1988-01-01
Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes
Post Modernity Theory and Its Educational Applications in School Fields
El-Baz, Maaly Bent Mohamed Saleh
2017-01-01
This paper aims to identify the fundamental principles on which the post modernity theory is based and to notice this in the field of Education, since this theory deals with two basic rules on which the postmodernist orientation is based, one of them denies on the absolute truth on Ontology level (related to the existence nature), and the other…
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Bound state quantum field theory application to atoms and ions
Sapirstein, Jonathan
2019-01-01
Two aspects of the book should appeal to a wide audience. One aspect would be the comprehensive coverage on the latest updates and developments this book provides, besides Bethe and Salpeter's handbook on hydrogen and helium, which is still widely regarded as useful. The other aspect would be that a major part of the book uses effective field theory, a way of including quantum electrodynamics (QED) that starts with the familiar Schrödinger equation, and then adds perturbing operators derived in a rather simple manner that incorporates QED. Effective field theory is used in a number of fields including particle physics and nuclear physics, and readership is targeted at these communities too.Additionally, students using this book in conjunction with Peskin's textbook could learn to carry out fairly sophisticated calculations in QED in order to learn the technique, as this book comes with practical calculations.Also included is a very clear exposition of the BetheSalpeter equation, which is simply either ...
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Applicability of self-consistent mean-field theory
International Nuclear Information System (INIS)
Guo Lu; Sakata, Fumihiko; Zhao Enguang
2005-01-01
Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case
International Nuclear Information System (INIS)
Johnson, C.R.
1985-01-01
We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field
Algebric generalization of symmetry Dirac bracket. Application to field theory
International Nuclear Information System (INIS)
Rocha Filho, T.M. da.
1987-01-01
The A set of observable of a physical system with finite e infinite number of degrees of freedom and submitted to certain constraint conditions, is considered. Using jordan algebra structure on A in relation to bymmetric Poisson bracket obtained by Droz-Vincent, a jordan product is obtained on the A/I quocient set with regard to I ideal generated by constraints of second class. It is shown that this product on A/I corresponds to symmetric Dirac bracket. The developed formulation is applied to a system corresponding to harmonic oscillators, non relativistic field, Rarita-Schwinger field and the possibility of its utilization in fermionic string theories is discussed. (M.C.K.)
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Extremes in random fields a theory and its applications
Yakir, Benjamin
2013-01-01
Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on the analytical approximations of the statistical significance of extreme values. Several relatively complex applications of the technique to problems that emerge in practical situations are presented. All the examples are difficult to analyze using classical methods, and as a result, the author pr
Probabilistic theory of mean field games with applications I mean field FBSDEs, control, and games
Carmona, René
2018-01-01
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Ketov, Sergei V
1995-01-01
Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general
Microwave field-efffect transistors theory, design, and application
Pengelly, Raymond
1994-01-01
This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Shielding Flowers Developing under Stress: Translating Theory to Field Application
Directory of Open Access Journals (Sweden)
Noam Chayut
2014-07-01
Full Text Available Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.
Petrov, Alexey A
2016-01-01
This book is a broad-based text intended to help the growing student body interested in topics such as gravitational effective theories, supersymmetric effective theories, applications of effective theory techniques to problems in condensed matter physics (superconductivity) and quantum chromodynamics (such as soft-collinear effective theory). It begins with a review of the use of symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to solve physical problems. A detailed discussion of canonical examples of effective field theories with increasing complexity is then conducted. Special cases such as supersymmetry and lattice EFT are discussed, as well as recently-found applications to problems in gravitation and cosmology. An appendix includes various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Quantum field theory of material properties. Its application to models of Rashba spin splitting
International Nuclear Information System (INIS)
Schober, Giulio Albert Heinrich
2016-01-01
In this thesis, we argue that microscopic field theories - which as such are already scientifically established - have emerged as a new paradigm in materials physics. We hence seek to elaborate on such field theories which underlie modern ab initio calculations, and we apply them to the bismuth tellurohalides (BiTeX with X=I,Br,Cl) as a prototypical class of spin-based materials. For this purpose, we begin by constructing tight-binding models which approximately describe the spin-split conduction bands of BiTeI. Following this, we derive the theory of temperature Green functions systematically from their fundamental equations of motion. This in turn enables us to develop a combined functional renormalization and mean-field approach which is suitable for application to multiband models. For the Rashba model including an attractive, local interaction, this approach yields an unconventional superconducting phase with a singlet gap function and a mixed singlet-triplet order parameter. We further investigate the unusual electromagnetic response of BiTeI, which is caused by the Rashba spin splitting and which includes, in particular, an orbital paramagnetism. Finally, we conclude by summarizing the Functional Approach to electrodynamics of media as a microscopic field theory of electromagnetic material properties which sits in accordance with ab initio physics.
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Advances in dynamic and mean field games theory, applications, and numerical methods
Viscolani, Bruno
2017-01-01
This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...
Application of self-consistent field theory to self-assembled bilayer membranes
International Nuclear Information System (INIS)
Zhang Ping-Wen; Shi An-Chang
2015-01-01
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes. (topical review)
The application of Regge calculus to quantum gravity and quantum field theory in a curved background
International Nuclear Information System (INIS)
Warner, N.P.
1982-01-01
The application of Regge calculus to quantum gravity and quantum field theory in a curved background is discussed. A discrete form of exterior differential calculus is developed, and this is used to obtain Laplacians for p-forms on the Regge manifold. To assess the accuracy of these approximations, the eigenvalues of the discrete Laplacians were calculated for the regular tesselations of S 2 and S 3 . The results indicate that the methods obtained in this paper may be used in curved space-times with an accuracy comparing with that obtained in lattice gauge theories on a flat background. It also becomes evident that Regge calculus provides particularly suitable lattices for Monte-Carlo techniques. (author)
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Field theory and particle physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1990-01-01
This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions
Electron traps in polar liquids. An application of the formalism of the random field theory
International Nuclear Information System (INIS)
Hilczer, M.; Bartczak, W.M.
1992-01-01
The potential energy surface in a disordered medium is described, using the concepts of the mathematical theory of random fields. The statistics of trapping sites (the regions of an excursion of the random field) is obtained for liquid methanol as a numerical example of the theory. (author). 15 refs, 4 figs
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Carmeli, Moshe
2000-01-01
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory.There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups
An application of random field theory to analysis of electron trapping sites in disordered media
International Nuclear Information System (INIS)
Hilczer, M.; Bartczak, W.M.
1993-01-01
The potential energy surface in a disordered medium is considered a random field and described using the concepts of the mathematical theory of random fields. The preexisting traps for excess electrons are identified with certain regions of excursion (extreme regions) of the potential field. The theory provides an analytical method of statistical analysis of these regions. Parameters of the cavity-averaged potential field, which are provided by computer simulation of a given medium, serve as input data for the analysis. The statistics of preexisting traps are obtained for liquid methanol as a numerical example of the random field method. 26 refs., 6 figs
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Analytical Thermal Field Theory Applicable to Oil Hydraulic Fluid Film Lubrication
DEFF Research Database (Denmark)
Johansen, Per; Roemer, Daniel Beck; Pedersen, Henrik C.
2014-01-01
An analytical thermal field theory is derived by a perturbation series expansion solution to the energy conservation equation. The theory is valid for small values of the Brinkman number and the modified Peclet number. This condition is sufficiently satisfied for hydraulic oils, whereby...... expansion of the thermal field. The series solution is truncated at first order in order to obtain a closed form approximation. Finally a numerical thermohydrodynamic simulation of a piston-cylinder interface is presented, and the results are used for a comparison with the analytical theory in order...
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Application of the random field theory in PET imaging - injection dose optimization
Czech Academy of Sciences Publication Activity Database
Dvořák, Jiří; Boldyš, Jiří; Skopalová, M.; Bělohlávek, O.
2013-01-01
Roč. 49, č. 2 (2013), s. 280-300 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : random field theory * Euler characteristic * PET imaging * PET image quality Subject RIV: BD - Theory of Information Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397176.pdf
International Nuclear Information System (INIS)
Perez, A.; Simon, P.
1996-01-01
A 2D fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super-Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 5/3. Finally, we analyze the form that a local invariant action should take. (orig.)
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Wentzel, Gregor
1949-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
DEFF Research Database (Denmark)
Jensen, Karsten Høgh; Mantoglou, Aristotelis
1992-01-01
A stochastic unsaturated flow theory and a numerical simulation model have been coupled in order to estimate the large-scale mean behavior of an unsaturated flow system in a spatially variable soil. On the basis of the theoretical developments of Mantoglou and Gelhar (1987a, b, c), the theory...... unsaturated flow equation representing the mean system behavior is solved using a finite difference numerical solution technique. The effective parameters are evaluated from the stochastic theory formulas before entering them into the numerical solution for each iteration. The stochastic model is applied...... to a field site in Denmark, where information is available on the spatial variability of soil parameters and variables. Numerical simulations have been carried out, and predictions of the mean behavior and the variance of the capillary tension head and the soil moisture content have been compared to field...
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Theory of electromagnetic fields
Wolski, Andrzej
2011-01-01
We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)
2004-12-01
MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati
Applications of the renormalization group approach to problems in quantum field theory
International Nuclear Information System (INIS)
Renken, R.L.
1985-01-01
The presence of fluctuations at many scales of length complicates theories of quantum fields. However, interest is often focused on the low-energy consequences of a theory rather than the short distance fluctuations. In the renormalization-group approach, one takes advantage of this by constructing an effective theory with identical low-energy behavior, but without short distance fluctuations. Three problems of this type are studied here. In chapter 1, an effective lagrangian is used to compute the low-energy consequences of theories of technicolor. Corrections to weak-interaction parameters are found to be small, but conceivably measurable. In chapter 2, the renormalization group approach is applied to second order phase transitions in lattice gauge theories such as the deconfining transition in the U(1) theory. A practical procedure for studying the critical behavior based on Monte Carlo renormalization group methods is described in detail; no numerical results are presented. Chapter 3 addresses the problem of computing the low-energy behavior of atoms directly from Schrodinger's equation. A straightforward approach is described, but is found to be impractical
Euclidean quantum field theory
International Nuclear Information System (INIS)
Jaffe, A.
1985-01-01
In four seminal papers, written from 1963 to 1968, Kurt Symanzik laid the foundations for his euclidean quantum field theory program (EQFT). His original goal was to use EQFT as a tool to approach the existence question for interacting quantum fields. In 1968, when other methods appeared better suited for the existence question, Symanzik abandoned this heroic attempt and redirected his research toward different questions. (orig./HSI)
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Covariant density functional theory beyond mean field and applications for nuclei far from stability
International Nuclear Information System (INIS)
Ring, P
2010-01-01
Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO2
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel
2017-03-01
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5 f manifold, with Mott-localized Γ8 and extended Γ7 electrons.
Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel
2017-03-24
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.
Bucharest PhD Training School : Modern Aspects of Quantum Field Theory and Applications
2015-01-01
Bucharest 2015 – Modern Aspects of Quantum Field Theory is part of the CERN – SEENET-MTP PhD Training Program, which consists of a number of seminars in theoretical high energy Physics. This is the second seminar organized by this Program. Here are some photos from this event held in Bucharest between 8-14 November 2015. The previous seminar was organized in Belgrade, under the name Belgrade 2015 - Supergravity.
Carmona, René
2018-01-01
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map t...
Neural field theory of synaptic metaplasticity with applications to theta burst stimulation.
Fung, P K; Robinson, P A
2014-01-07
Transcranial magnetic stimulation (TMS) is characterized by strong nonlinear plasticity effects. Experimental results that highlight such nonlinearity include continuous and intermittent theta-burst stimulations (cTBS and iTBS, respectively), where depression is induced in the continuous case, but insertion of an off period of around 8s for every 2s of stimulation changes the induced plasticity to potentiation in the intermittent case. Another nonlinearity is that cTBS and iTBS exhibit dosage dependency, where doubling of the stimulation duration changes the direction of induced plasticity. Guided by previous experimental results, this study postulates on the characteristics of metaplasticity and formulates a physiological system-level plasticity theory to predict TMS experiments. In this theory, plasticity signaling induces plasticity in NMDA receptors to modulate further plasticity signals, and is followed by a signal transduction delayed plasticity expression. Since this plasticity in NMDA receptor affects subsequent plasticity induction, it is a form of metaplasticity. Incorporating this metaplasticity into a recent neural field theory of calcium dependent plasticity gives a physiological basis for the theory of Bienenstock, Cooper, Munro (1982), where postsynaptic intracellular calcium level becomes the measure of temporal averaged postsynaptic activity, and converges to the plasticity threshold to give homeostatic effects. Simulations of TMS protocol responses show that intracellular calcium oscillations around the threshold predicts the aforementioned nonlinearities in TMS-induced plasticity, as well as the interpersonal TBS response polarity found experimentally, where the same protocol may induce opposite plasticity effect for different subjects. Thereby, recommendations for future experiments and TMS protocol optimizations are made. Input selectivity via spatially extended, mean field neural dynamics is also explored. © 2013 Elsevier Ltd. All rights
Theory and applications of internal photoemission in the MOS system at low electric fields
Przewlocki, Henryk M.
2001-08-01
A new theory is presented of the photoelectric phenomena, which take place in UV illuminated MOS structures, in the presence of weak electric fields (|E|photoelectric measurement methods of the MOS system parameters. Two of such methods are shortly presented. The first is the measurement method of the φMS factor of the MOS system, which has already been fully verified experimentally and has been shown to be the most accurate of the existing methods of this parameter determination. The second is the method to determine trapping properties of the dielectric in the MOS system, which is currently being optimized and verified experimentally.
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
On the application of the field-redefinition theorem to the heterotic superstring theory
Pollock, M. D.
2015-05-01
The ten-dimensional effective action which defines the heterotic superstring theory at low energy is constructed by hypothesis in such a way that the resulting classical equation of motion for the space-time metric simultaneously implies the vanishing of the beta-function for the N = 1 supersymmetric non-linear sigma-model on the world sheet. At four-loop order it was found by Grisaru and Zanon (see also Freeman et al.) that the effective Lagrangian so constructed differs in the numerical coefficient of the term from that obtained directly from the four-point gravitational scattering amplitude. The two expressions can be related via a metric field redefinition , activation of which, however, results in the appearance of ghosts at higher gravitational order , n > 4, as shown by Lawrence. Here, we prove, after reduction of to the physical dimensionality D = 4, that the corresponding field redefinition yields the identity g' ij = g ij , signified by L 3/ R = 0, in a Friedmann space-time generated by a perfect-fluid source characterized by adiabatic index γ ≡ 1 + p/ ρ, where p is the pressure and ρ is the energy density, if, and only if, κ 6 ρ 3 γ 2( γ - 1) = 0. That is, the theory remains free of ghosts in Minkowski space ρ = 0, in a maximally symmetric space-time γ = 0, or in a dust Universe γ = 1. Further aspects of ghost freedom and dimensional reduction, especially to D = 4, are discussed.
International Nuclear Information System (INIS)
Green, M.B.
1984-01-01
Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)
A superstring field theory for supergravity
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
Beyond mean field theory: statistical field theory for neural networks.
Buice, Michael A; Chow, Carson C
2013-03-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi-Peliti-Janssen formalism, are particularly useful in this regard.
Media Accountability Online in Israel. An application of Bourdieu’s field theory
Directory of Open Access Journals (Sweden)
Ronja Kniep
2015-12-01
Full Text Available Due to structural changes in journalism, such as deregulation, privatisation and the influence of new technologies, it has become increasingly important to study media accountability (MA. By applying Bourdieu’s theory of social fields, this paper proposes a new approach to do so: MA is defined as a function of both journalistic autonomy and influence in the media field. Here, online communication potentially widens the scope of action for media’s transparency, responsiveness as well as the articulation of media criticism by a variety of actors. In Israel, media criticism is driven by the agent’s struggle for interpretive authority over public discourse in a politically polarized society. Semi-structured interviews with Israeli journalists, media activists and experts suggest that journalistic agents who have yet to earn credibility and reputation exploit online communication to its full potential, while agents in the field of power tend to dismiss online criticism. The influence of the audience’s media criticism is not solely dependent on the technical ability of connecting and hearing the voices of the masses; it has to be in combination with symbolic or political capital. However, the demand for media’s social responsibility is also related to being more careful and less critical, which is very evident in Israel. Thus, it is important to critically reflect on what happens when media accountability practices become more efficient and a stronger sense for “being watched” develops.
Thermal Field Theory in Equilibrium
Andersen, Jens O.
2000-01-01
In this talk, I review recent developments in equilibrium thermal field theory. Screened perturbation theory and hard-thermal-loop perturbation theory are discussed. A self-consistent $\\Phi$-derivable approach is also briefly reviewed.
Artin, Emil
2009-01-01
This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory, and the authors accomplished this goal spectacularly: for more than 40 years since its first publication, the book has served as an ultimate source for many generations of mathematicians. In this revised edition, two mathematical additions complementing the exposition in the original text are made. The new edition also contains several new foot
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Yong, Daeseong; Kim, Jaeup U.
2017-12-01
For the purpose of checking material conservation of various numerical algorithms used in the self-consistent-field theory (SCFT) of polymeric systems, we develop an algebraic method using matrix and bra-ket notation, which traces the Hermiticity of the product of the volume and evolution matrices. Algebraic tests for material conservation reveal that the popular pseudospectral method in the Cartesian grid conserves material perfectly, while the finite-volume method (FVM) is the proper tool when real-space SCFT with the Crank-Nicolson method is adopted in orthogonal coordinate systems. We also find that alternating direction implicit methods combined with the FVM exhibit small mass errors in the SCFT calculation. By introducing fractional cells in the FVM formulation, accurate SCFT calculations are performed for systems with irregular geometries and the results are consistent with previous experimental and theoretical works.
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Gross, Markus; Gambassi, Andrea; Dietrich, S
2017-08-01
The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Control theory in physics and other fields of science concepts, tools and applications
Schulz, Michael
2006-01-01
This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.
Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field
International Nuclear Information System (INIS)
Neal, R.D.
1975-01-01
Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable
Study of the convergence of the nuclear field theory and its application on the lead isotopes
International Nuclear Information System (INIS)
Scoccola, N.N.
1985-01-01
It is shown that highly satisfactory results can be obtained not only in schematic problems (four particles in a degenerate j-shell), but in realistic ones (low lying 204 Pb spectrum), provided second order diagrams and/or diagonalization procedures are used. In both cases energies and two-body transfer amplitudes are calculated and compared with exact and other approximate results. In the second part, the electromagnetic emission of the giant quadrupole resonance (GQR) in 208 Pb after its excitation by inelastic scattering of 17 O to 380 MeV is studied. As the GQR is unstable with respect to the decay to compound nucleous, the reaction mechanism is carefully analized. A formalism is proposed in which the emission probability is factorized in three independent contributions: one due to the electromagnetic field, another to the nuclear reaction and the third to the nuclear structure. The last one is carefully studied in the lowest order of the nuclear field theory, taking into account the mixture of the different isospin states. The results are consistent with the upper experimental limit of the ratio between the transition populating the 3 - (2.62 MeV) state and the one that populates the ground state. However, they failed to reproduce the strong dipole transition to the 3 - (4.97 MeV) state. (Author) [es
International Nuclear Information System (INIS)
Gelis, Francois
1998-12-01
The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green's functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the 'retarded-advanced' version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green's functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author)
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
International Nuclear Information System (INIS)
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Relativistic quantum mechanics and field theory
Gross, Franz
1999-01-01
An accessible, comprehensive reference to modern quantum mechanics and field theory.In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field.
Worked examples in engineering field theory
Fuller, A J Baden
1976-01-01
Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d
Advanced number theory with applications
Mollin, Richard A
2009-01-01
Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
An Empirical Study on the Application of Theme Theory in the Field of Writing Pedagogy
Jingxia, Liu; Li, Liu
2013-01-01
English writing instruction is an important part in college English pedagogy. Traditional way of teaching English writing lays much emphasis on word, grammar and sentence rather than the level of discourse. Under the traditional way, the students have difficulties to yield well-organized and coherent compositions. Theme Theory provides a…
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Ito, Kazuhiro; Shimahara, Hiroshi
2016-02-01
We examine the mean field theory of a uniaxial coupled Heisenberg antiferromagnet with two subsystems, one of which consists of strongly interacting small spins and the other consists of weakly interacting large spins. We reanalyze the experimental data of specific heat and magnetic susceptibility obtained by previous authors for the organic compound λ-(BETS)2FeCl4 at low temperatures, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. The model parameters for this compound are evaluated, where the applicability of the theory is checked. As a result, it is found that J1 ≫ J12 ≫ J2, where J1, J2, and J12 denote the exchange coupling constant between π spins, that between 3d spins, and that between π and 3d spins, respectively. At the low-temperature limit, both sublattice magnetizations of the 3d and π spins are saturated, and the present model is reduced to the Schottky model, which successfully explains experimental observations in previous studies. As temperature increases, fluctuations of 3d spins increase, while π spins remain almost saturated. Near the critical temperature, both spins fluctuate significantly, and thus the mean field approximation breaks down. It is revealed that the magnetic anisotropy, which may be crucial to the antiferromagnetic long-range order, originates from J12 rather than from J2 and that the angle between the magnetic easy-axis and the crystal c-axis is approximately 26-27° in the present effective model.
Class field theory from theory to practice
Gras, Georges
2003-01-01
Global class field theory is a major achievement of algebraic number theory, based on the functorial properties of the reciprocity map and the existence theorem. The author works out the consequences and the practical use of these results by giving detailed studies and illustrations of classical subjects (classes, idèles, ray class fields, symbols, reciprocity laws, Hasse's principles, the Grunwald-Wang theorem, Hilbert's towers,...). He also proves some new or less-known results (reflection theorem, structure of the abelian closure of a number field) and lays emphasis on the invariant (/cal T) p, of abelian p-ramification, which is related to important Galois cohomology properties and p-adic conjectures. This book, intermediary between the classical literature published in the sixties and the recent computational literature, gives much material in an elementary way, and is suitable for students, researchers, and all who are fascinated by this theory. In the corrected 2nd printing 2005, the author improves s...
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Introductory lectures on quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Vasquez-Mozo, M.A.
2011-01-01
In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)
International Nuclear Information System (INIS)
Zinn-Justin, J.; Freie Univ. Berlin
1981-01-01
In this review I present a method to estimate the large order behavior of perturbation theory in quantum mechanics and field theory. The basic idea, due to Lipatov, is to relate the large order behavior to (in general complex) instanton contributions to the path integral representation of Green's functions. I explain the method first in the case of a simple integral and of the anharmonic oscillator and recover the results of Bender and Wu. I apply it then to the PHI 4 field theory. I study general potentials and boson field theories. I show, following Parisi, how the method can be generalized to theories with fermions. Finally I outline the implications of these results for the summability of the series. In particular I explain a method to sum divergent series based on a Borel transformation. In a last section I compare the larger order behavior predictions to actual series calculation. I present also some numerical examples of series summation. (orig.)
Acoustic array systems theory, implementation, and application
Bai, Mingsian R; Benesty, Jacob
2013-01-01
Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic
Múnera, Héctor A.
2016-07-01
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger's first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich's unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
An application of modular inclusion to quantum field theory in curved space-time
International Nuclear Information System (INIS)
Summers, S.J.; Verch, R.
1993-09-01
Applying recent results by Borchers connecting geometric modular action, modular inclusion and the spectrum condition, earlier results by Kay and Wald concerning the temperature of physically significant states of the linear Hermitean scalar field propagating in the background of a space-time with a bifurcate Killing horizon are generalized. (orig.)
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Bayesian theory and applications
Dellaportas, Petros; Polson, Nicholas G; Stephens, David A
2013-01-01
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Embedding classical fields in quantum field theories
International Nuclear Information System (INIS)
Blaha, S.
1978-01-01
We describe a procedure for quantizing a classical field theory which is the field-theoretica analog of Sudarshan's method for embedding a classical-mechanical system in a quantum-mechanical system. The essence of the difference between our quantization procedure and Fock-space quantization lies in the choice of vacuum states. The key to our choice of vacuum is the procedure we outline for constructing Lagrangians which have gradient terms linear in the field varialbes from classical Lagrangians which have gradient terms which are quadratic in field variables. We apply this procedure to model electrodynamic field theories, Yang-Mills theories, and a vierbein model of gravity. In the case of electrodynamics models we find a formalism with a close similarity to the coherent-soft-photon-state formalism of QED. In addition, photons propagate to t = + infinity via retarded propagators. We also show how to construct a quantum field for action-at-a-distance electrodynamics. In the Yang-Mills case we show that a previously suggested model for quark confinement necessarily has gluons with principle-value propagation which allows the model to be unitary despite the presence of higher-order-derivative field equations. In the vierbein-gravity model we show that our quantization procedure allows us to treat the classical and quantum parts of the metric field in a unified manner. We find a new perturbation scheme for quantum gravity as a result
Topological field theories and duality
International Nuclear Information System (INIS)
Stephany, J.; Universidad Simon Bolivar, Caracas
1996-05-01
Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs
Renormalization in classical field theory
International Nuclear Information System (INIS)
Corbo, Guido
2010-01-01
We discuss simple examples in which renormalization is required in classical field theory. The presentation is accessible to undergraduate students with a knowledge of the basic notions of classical electromagnetism. (letters and comments)
Games, theory and applications
Thomas, L C
2011-01-01
Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition
Finite-temperature field theory
International Nuclear Information System (INIS)
Kapusta, J.I.; Landshoff, P.V.
1989-01-01
Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)
Supersymmetric field theories and generalized cohomology
Teichner, Peter; Stolz, Stephan
2011-01-01
This survey discusses our results and conjectures concerning supersymmetric field theories and their relationship to cohomology theories. A careful definition of supersymmetric Euclidean field theories is given, refining Segal's axioms for conformal field theories. We state and give an outline of the proof of various results relating field theories to cohomology theories.
Octonionic methods in field theory
International Nuclear Information System (INIS)
Duendarer, A.R.
1987-01-01
Some applications of octonion algebra and octonionic analysis to group theory and higher dimensional field theories are presented. To this end an eight dimensional covariant treatment of the octonion algebra is needed. The existing formulations which are covariant only in seven dimensions are reviewed. In this work the eight dimensional formulation is developed through the introduction of fourth rank tensors f abcd and f' abcd in eight dimensions that generalize the octonionic structure constants. The seven octonion units e α are generalized to an 8-vector e a and two second rank tensors e ab and e' ab . Higher rank tensors associated with e α are also introduced. Chirality and duality properties of the structure tensors, f,f' and the octonionic tensors e a , e ab , etc. are discussed and various new identities relating these quantities are derived. New vector products for two, three and four octonions are introduced and their duality properties with respect to the eight-dimensional Levi-Civita tensor as well as their orthogonality properties are studied
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
Dimensional continuation in field theory
International Nuclear Information System (INIS)
Lee, T.
1988-01-01
The continuation of space-time dimension to an arbitrary complex number is discussed. The ultra-violet and infra-red divergences are simply regularized by analytically continuing to some proper dimension n. Combined with functional integral quantization, it provides a simple and elegant description of quantum field theory. Two well known field theories are discussed. Scalar field theory and quantum electrodynamics. In the scalar theory, the focus is on the operator product expansion. It is showed that a renormalization scheme (minimal subtraction) clearly defines the operator product expansion. In the quantum electrodynamics, it is shown that BRS symmetry can simplify the renormalization process. Composite operators are the renormalized and renormalized stress-energy tensor is formed
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
International Nuclear Information System (INIS)
Ramond, P.
1986-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 - L 0 -bar = 0 should not be imposed on all the fields of the closed string in the gauge invariant formalism: we show that it can be incorporated in the invariant formalism at the price of being unable to extract the equations of motion from a Lagrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. 20 refs
Probability theory and applications
Hsu, Elton P
1999-01-01
This volume, with contributions by leading experts in the field, is a collection of lecture notes of the six minicourses given at the IAS/Park City Summer Mathematics Institute. It introduces advanced graduates and researchers in probability theory to several of the currently active research areas in the field. Each course is self-contained with references and contains basic materials and recent results. Topics include interacting particle systems, percolation theory, analysis on path and loop spaces, and mathematical finance. The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.
Classical field theory with fermions
International Nuclear Information System (INIS)
Borsanyi, Sz.; Hindmarsh, M.
2009-01-01
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.
Wavelet theory and its applications
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Energy Technology Data Exchange (ETDEWEB)
Saviankou, Pavel
2009-05-15
In the thesis the effective field theory in NLO and NNLO order is applied. The order NLO still knows no three-particle forces. The theory yields however already in this order the saturation behaviour of nuclear matter. This is due to the fact that in the NLO order the scattering phases are qualitatively correctly reproduced, especially the scattering phases {sup 1}S{sub 0} and {sup 3}S{sub 1} are for energies above 200 MeV negative, which is in all potentials by a so called hard core represented. In the NNLO orde three-particle forces occur, which lead to a larger improvement of the saturation curve, however the saturation point lies still at too high densities. A correction of the low-energy constants by scarcely three percent of the value in the vacuum generates however a saturation curve, which reproduces the empirical binding energy per particle, the density and the compressibility of nuclear matter. About the equation of state of neutron matter is empirically few known. At small densities of neutron matter (k{sub f}<1 fm{sup -1}) the NLO and NNLO orders scarcely differ, but indeed from the free Fermi gas. For applications in finite nuclei a simplified parametrization of the nucleon-nucleon interactions was developed, which reproduces both the known scattering phases with an NLO-comparable accuracy and the empirical saturation behaviour. [German] In der Arbeit wird die Effektive Feldtheorie in der Ordnung NLO und NNLO angewandt. Die Ordnung NLO kennt noch keine Dreiteilchenkraefte. Die Theorie liefert jedoch bereits in dieser Ordnung das Saettigungsverhalten von Kernmaterie. Dies liegt daran, dass bereits in der Ordnung NLO die Streuphasen qualitativ korrekt reproduziert werden, insbesondere sind die Streuphasen {sup 1}S{sub 0} und {sup 3}S{sub 1} fuer Energien oberhalb 200 MeV negativ, was in allen Potentialen durch einen sogenannten ''hard core'' dargestellt wird. In der Ordnung NNLO treten Dreiteilchenkraefte auf, die zu einer grossen
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
Gauge and supergauge field theories
International Nuclear Information System (INIS)
Slavnov, A.
1977-01-01
The most actual problems concerning gauge fields are reviwed. Theoretical investigations conducted since as early as 1954 are enclosed. Present status of gauge theories is summarized, including intermediate vector mesons, heavy leptons, weak interactions of hadrons, V-A structure, universal interaction, infrared divergences in perturbation theory, particle-like solutions in gauge theories, spontaneous symmetry breaking. Special emphasis is placed on strong interactions, or more precisely, on the alleged unobservability of ''color'' objects (quark confinement). Problems dealing with the supersymmetric theories invariant under gauge transformations and spontaneous breaking of supersymmetry are also discussed. Gauge theories are concluded to provide self-consistent apparatus for weak and electromagnetic interactions. As to strong interactions such models are still to be discovered
Fornace, Mark E; Lee, Joonho; Miyamoto, Kaito; Manby, Frederick R; Miller, Thomas F
2015-02-10
We introduce embedded mean-field theory (EMFT), an approach that flexibly allows for the embedding of one mean-field theory in another without the need to specify or fix the number of particles in each subsystem. EMFT is simple, is well-defined without recourse to parameters, and inherits the simple gradient theory of the parent mean-field theories. In this paper, we report extensive benchmarking of EMFT for the case where the subsystems are treated using different levels of Kohn-Sham theory, using PBE or B3LYP/6-31G* in the high-level subsystem and LDA/STO-3G in the low-level subsystem; we also investigate different levels of density fitting in the two subsystems. Over a wide range of chemical problems, we find EMFT to perform accurately and stably, smoothly converging to the high-level of theory as the active subsystem becomes larger. In most cases, the performance is at least as good as that of ONIOM, but the advantages of EMFT are highlighted by examples that involve partitions across multiple bonds or through aromatic systems and by examples that involve more complicated electronic structure. EMFT is simple and parameter free, and based on the tests provided here, it offers an appealing new approach to a multiscale electronic structure.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
Informetrics theory, methods and applications
Qiu, Junping; Yang, Siluo; Dong, Ke
2017-01-01
This book provides an accessible introduction to the history, theory and techniques of informetrics. Divided into 14 chapters, it develops the content system of informetrics from the theory, methods and applications; systematically analyzes the six basic laws and the theory basis of informetrics and presents quantitative analysis methods such as citation analysis and computer-aided analysis. It also discusses applications in information resource management, information and library science, science of science, scientific evaluation and the forecast field. Lastly, it describes a new development in informetrics- webometrics. Providing a comprehensive overview of the complex issues in today's environment, this book is a valuable resource for all researchers, students and practitioners in library and information science.
Goldwyn, Joshua H.; Rinzel, John
2015-01-01
The ongoing activity of neurons generates a spatially- and time-varying field of extracellular voltage ($V_e$). This $V_e$ field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates $V_e$ and how this $V_e$ feeds back and influences membrane potential ($V_m$). We find that these "ephaptic interactions" are small but not negligible. The model neur...
Text Mining Applications and Theory
Berry, Michael W
2010-01-01
Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives. The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Double field theory: a pedagogical review
International Nuclear Information System (INIS)
Aldazabal, Gerardo; Marqués, Diego; Núñez, Carmen
2013-01-01
Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive symmetry of string theory, as a symmetry of a field theory defined on a double configuration space. The aim of this review is to provide a pedagogical presentation of DFT and its applications. We first introduce some basic ideas on T-duality and supergravity in order to proceed to the construction of generalized diffeomorphisms and an invariant action on the double space. Steps towards the construction of a geometry on the double space are discussed. We then address generalized Scherk–Schwarz compactifications of DFT and their connection to gauged supergravity and flux compactifications. We also discuss U-duality extensions and present a brief parcours on worldsheet approaches to DFT. Finally, we provide a summary of other developments and applications that are not discussed in detail in the review. (topical review)
International Nuclear Information System (INIS)
Vajskopf, V.F.
1982-01-01
The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy
Cutkosky rules for superstring field theory
International Nuclear Information System (INIS)
Pius, Roji; Sen, Ashoke
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Cutkosky rules for superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Pius, Roji [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)
2016-10-06
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Effective field theory for triaxially deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)
2017-10-15
Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)
Exceptional field theory: SL(5)
International Nuclear Information System (INIS)
Musaev, Edvard T.
2016-01-01
In this work the exceptional field theory formulation of supergravity with SL(5) gauge group is considered. This group appears as a U-duality group of D=7 maximal supergravity. In the formalism presented the hidden global duality group is promoted into a gauge group of a theory in dimensions 7+number of extended directions. This work is a continuation of the series of works for E 8,7,6 ,SO(5,5) and SL(3)×SL(2) duality groups.
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Multifractals theory and applications
Harte, David
2001-01-01
Although multifractals are rooted in probability, much of the related literature comes from the physics and mathematics arena. Multifractals: Theory and Applications pulls together ideas from both these areas using a language that makes them accessible and useful to statistical scientists. It provides a framework, in particular, for the evaluation of statistical properties of estimates of the Renyi fractal dimensions.The first section provides introductory material and different definitions of a multifractal measure. The author then examines some of the various constructions for describing multifractal measures. Building from the theory of large deviations, he focuses on constructions based on lattice coverings, covering by point-centered spheres, and cascades processes. The final section presents estimators of Renyi dimensions of integer order two and greater and discusses their properties. It also explores various applications of dimension estimation and provides a detailed case study of spatial point patte...
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that 'this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic. But the reviewers should add a few more remarks: (1) There are very few references. Of course, this is because the work is largely original. Even where the work of other researchers is presented, it has mostly been transformed by the DeWittian point of view. (2) There are very few diagrams, which sometimes hinders the exposition. In summary, in our opinion, this is one of the best books dealing with quantum field theory existing today. It will be of great interest for graduate and postgraduate students as well as workers in the domains of quantum field theory in flat and in curved spacetime and string theories. But we believe that the reader must have previously studied standard textbooks on quantum field theory and general relativity. Even with this preparation, it is by no means an easy book to read. However, the reward is to be able to share the deep and unique vision of the quantum theory of fields and its formalism by one of its greatest expositors. (book review)
Plasmonics theory and applications
Shahbazyan, Tigran V
2014-01-01
This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.
Graphs Theory and Applications
Fournier, Jean-Claude
2008-01-01
This book provides a pedagogical and comprehensive introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the traveling salesman problem, to name but a few. Exercises at various levels are given at the end of each chapter, and a final chapter presents a few general problems with hints for solutions, thus providing the reader with the opportunity to test and refine their knowledge on the
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
Goldwyn, Joshua H; Rinzel, John
2016-04-01
The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.
Euler-Poincare reduction for discrete field theories
International Nuclear Information System (INIS)
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Variational methods for field theories
International Nuclear Information System (INIS)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Types of two-dimensional N = 4 superconformal field theories
Indian Academy of Sciences (India)
Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
Electricity markets theories and applications
Lin, Jeremy
2017-01-01
Electricity Markets: Theories and Applications offers students and practitioners a clear understanding of the fundamental concepts of the economic theories, particularly microeconomic theories, as well as information on some advanced optimization methods of electricity markets. The authors--noted experts in the field--cover the basic drivers for the transformation of the electricity industry in both the United States and around the world and discuss the fundamentals of power system operation, electricity market design and structures, and electricity market operations. The text also explores advanced topics of power system operations and electricity market design and structure including zonal versus nodal pricing, market performance and market power issues, transmission pricing, and the emerging problems electricity markets face in smart grid and micro-grid environments. The authors also examine system planning under the context of electricity market regime. They explain the new ways to solve problems with t...
On incompleteness of classical field theory
Sardanashvily, G.
2009-01-01
Classical field theory is adequately formulated as Lagrangian theory on fibre bundles and graded manifolds. One however observes that non-trivial higher stage Noether identities and gauge symmetries of a generic reducible degenerate Lagrangian field theory fail to be defined. Therefore, such a field theory can not be quantized.
Holography for field theory solitons
Domokos, Sophia K.; Royston, Andrew B.
2017-07-01
We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 × S 2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 × S 2 spacetimes, which are invariant under eight supersymmetries. With future holographic applications in mind, we analyze the vacuum structure and perturbative spectrum of the Yang-Mills theory on AdS4 × S 2, as well as systems of BPS equations for finite-energy solitons. Finally, we demonstrate that the classical Yang-Mills theory has a consistent truncation on the two-sphere, resulting in maximally supersymmetric Yang-Mills on AdS4.
International Nuclear Information System (INIS)
Schroeder, Markus; Brown, Alex
2009-01-01
We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Classification of networks of automata by dynamical mean field theory
International Nuclear Information System (INIS)
Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.
1990-01-01
Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)
International Nuclear Information System (INIS)
Brandenburg, J. E.
2008-01-01
Progress on the GEMS (Gravity Electro-Magnetism-Strong), theory is presented as well as its application to space problems. The GEMS theory is now validated through the Standard Model of physics. Derivation of the value of the Gravitation constant based on the observed variation of α with energy: results in the formula G congruent with (ℎ/2π)c/M ηc 2 exp(-1/(1.61α)), where α is the fine structure constant,(ℎ/2π), is Planck's constant, c, is the speed of light, and M ηc is the mass of the η cc Charmonium meson that is shown to be identical to that derived from the GEM postulates. Covariant formulation of the GEM theory is now possible through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: g ab = 4(F c a F cb )/(F ab F ab ), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential φ = 1/2 E 2 /B 2 . It is also found that a Lorentz or flat-space metric is recovered in the limit of a full spectrum ZPF
Energy Technology Data Exchange (ETDEWEB)
Pasadas, Francisco, E-mail: Francisco.Pasadas@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain)
2015-12-28
Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
About Applications of the Fixed Point Theory
Directory of Open Access Journals (Sweden)
Bucur Amelia
2017-06-01
Full Text Available The fixed point theory is essential to various theoretical and applied fields, such as variational and linear inequalities, the approximation theory, nonlinear analysis, integral and differential equations and inclusions, the dynamic systems theory, mathematics of fractals, mathematical economics (game theory, equilibrium problems, and optimisation problems and mathematical modelling. This paper presents a few benchmarks regarding the applications of the fixed point theory. This paper also debates if the results of the fixed point theory can be applied to the mathematical modelling of quality.
Regularization of quantum field theories
International Nuclear Information System (INIS)
Rayski, J.
1985-01-01
General idea of regularization and renormalization in quantum field theory is presented. It is postulated that it is possible not to go to infinity with the auxiliary masses of regularization but to attach to them a certain physical meaning, but it is equivalent with a violation of unitarity of the operator of evolution in time. It may be achieved in two different ways: it might be simply assumed that only the direction but not the length of the state vector possesses a physical meaning and that not all possible physical events are predictable. 3 refs., 1 fig. (author)
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
be noted that DeWitt's book is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that 'this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic. (book review)[abstract truncated
Twisted conformal field theories and Morita equivalence
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it
2009-04-01
The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].
Topics in low-dimensional field theory
Energy Technology Data Exchange (ETDEWEB)
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Number theory arising from finite fields analytic and probabilistic theory
Knopfmacher, John
2001-01-01
""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.
International Nuclear Information System (INIS)
Altherr, T.
1989-12-01
The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
Light front field theory: an advanced primer
International Nuclear Information System (INIS)
Martinovic, L.
2007-01-01
We present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two/dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a 'light-like' limit of the usual field theory quantized on a initial space-like surface. A simple LF formulation of the Higgs mechanism is then given Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and number of technical details and derivations are contained in the appendices (Author)
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
International Nuclear Information System (INIS)
Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Sofia, H.M.; Broglia, R.A.
1976-01-01
The field treatment is applied to the monopole pairing and monopole particle-hole interactions in a two-level model. All the vertices of realistic interactions appear, and the problems treated here have most of the complexities of real nuclei. Yet, the model remains sufficiently simple, so that a close comparison with the results of a (conventional) treatment in which only the fermion degrees of freedom are considered is possible. The applicability to actual physical situations appears to be feasible, both for schematic or realistic forces. The advantage of including the exchange components of the interaction in the construction of the phonon is discussed. (Auth.)
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
Logarithmic conformal field theory: beyond an introduction
Creutzig, Thomas; Ridout, David
2013-12-01
of the underlying chiral algebra and the modular data pertaining to the characters of the representations. Each of the archetypal logarithmic conformal field theories is studied here by first determining its irreducible spectrum, which turns out to be continuous, as well as a selection of natural reducible, but indecomposable, modules. This is followed by a detailed description of how to obtain character formulae for each irreducible, a derivation of the action of the modular group on the characters, and an application of the Verlinde formula to compute the Grothendieck fusion rules. In each case, the (genuine) fusion rules are known, so comparisons can be made and favourable conclusions drawn. In addition, each example admits an infinite set of simple currents, hence extended symmetry algebras may be constructed and a series of bulk modular invariants computed. The spectrum of such an extended theory is typically discrete and this is how the triplet model \\mathfrak {W} (1,2) arises, for example. Moreover, simple current technology admits a derivation of the extended algebra fusion rules from those of its continuous parent theory. Finally, each example is concluded by a brief description of the computation of some bulk correlators, a discussion of the structure of the bulk state space, and remarks concerning more advanced developments and generalizations. The final part gives a very short account of the theory of staggered modules, the (simplest class of) representations that are responsible for the logarithmic singularities that distinguish logarithmic theories from their rational cousins. These modules are discussed in a generality suitable to encompass all the examples met in this review and some of the very basic structure theory is proven. Then, the important quantities known as logarithmic couplings are reviewed for Virasoro staggered modules and their role as fundamentally important parameters, akin to the three-point constants of rational conformal field
Negative power spectra in quantum field theory
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Wu, Chun-Hsien; Ford, L.H.
2011-01-01
We consider the spatial power spectra associated with fluctuations of quadratic operators in field theory, such as quantum stress tensor components. We show that the power spectrum can be negative, in contrast to most fluctuation phenomena where the Wiener-Khinchin theorem requires a positive power spectrum. We show why the usual argument for positivity fails in this case, and discuss the physical interpretation of negative power spectra. Possible applications to cosmology are discussed. -- Highlights: → Wiener-Khinchin theorem usually implies a positive power spectrum of fluctuations. → We show this is not always the case in quantum field theory. → Quantum stress tensor fluctuations can have a negative power spectrum. → Negative power interchanges correlations and anticorrelations.
Chen, Zurong; Feng, Jingchun; Wang, Yuting; Xue, Song
2017-06-01
We study on PPP mode’s applications motivation in the field of water conservancy project, on the basis of analyzing Friedman’s “money service” theory, for the disadvantages of traditional investment mode in water conservancy project field. By analyzing the way of government and social capital spending money in PPP projects, we get conclusion that both of which are the way of “spending their own money to do their own thing”, which fully reflects that the two sides are a win-win partnership in PPP mode. From the application motivation, PPP mode can not only compensate for the lack of local funds, improve the investment efficiency of the government, but also promote marketization and the supply-side structural reforms.
N=1 field theory duality from M theory
International Nuclear Information System (INIS)
Schmaltz, M.; Sundrum, R.
1998-01-01
We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Dependence logic theory and applications
Kontinen, Juha; Väänänen, Jouko; Vollmer, Heribert
2016-01-01
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning ...
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
BRST field theory of relativistic particles
International Nuclear Information System (INIS)
Holten, J.W. van
1992-01-01
A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs
Large N Field Theories, String Theory and Gravity
Aharony, O; Maldacena, J M; Ooguri, H; Oz, Y
2000-01-01
We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N=4 supersymmetric gauge theory in four dimensions, but we discuss also field theories in other dimensions, conformal and non-conformal, with or without supersymmetry, and in particular the relation to QCD. We also discuss some implications for black hole physics.
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2017-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Generalized locally Toeplitz sequences theory and applications
Garoni, Carlo
2017-01-01
Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of...
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Gauge field theories: various mathematical approaches
Jordan, François; Serge, Lazzarini; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common...
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
Nonlinear boundary value problems in quantum field theory
International Nuclear Information System (INIS)
Schrader, R.
1989-01-01
We discuss the general structure of a quantum field theory which is free in the interior of a bounded set B of R n . It is shown how to recover the field theory in the interior of B from a certain quantum field theory on the boundary. With an application to string theory in mind, we discuss the example where B equals an interval and the boundary value problem is given in terms of a euclidean functional integral with a P(var phi) interaction restricted to the boundary. copyright 1989 Academic Press, Inc
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Singularity theory and N = 2 superconformal field theories
International Nuclear Information System (INIS)
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs
Advanced electromagnetism foundations, theory and applications
Barrett, Terence W
1995-01-01
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electro
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Fundamental number theory with applications
Mollin, Richard A
2008-01-01
An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition Removal of all advanced material to be even more accessible in scope New fundamental material, including partition theory, generating functions, and combinatorial number theory Expa
Classical gravity and quantum matter fields in unified field theory
von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen
1996-01-01
The Einstein-Schrödinger purely affine field theory of the non-symmetric field provides canonical field equations without constraints. These equations imply the Heisenberg-Pauli commutation rules of quantum field theory. In the Schrödinger gauging of the Einstein field coordinatesU {/kl i }=Γ{/kl i }-δ{/l i }Γ{/km m }, this unified geometric field theory becomes a model of the coupling between a quantized Maxwellian field in a medium and classical gravity. Therefore, independently of the question as to the physical truth of this model, its analysis performed in the present paper demonstrates that, in the framework of a quantized unified field theory, gravity can appear as a genuinely classical field.
Applications of polyfold theory I
Hofer, H; Zehnder, E
2017-01-01
In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Lectures on classical and quantum theory of fields
Arodz, Henryk
2017-01-01
This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
New results in topological field theory and Abelian gauge theory
International Nuclear Information System (INIS)
Thompson, G.
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs
International Nuclear Information System (INIS)
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2002-01-01
We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references
Calculations in perturbative string field theory
International Nuclear Information System (INIS)
Thorn, C.B.
1987-01-01
The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules
Using field theory in hadron physics
Energy Technology Data Exchange (ETDEWEB)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references. (JFP)
Semiclassical Quantization of Classical Field Theories
Cattaneo, A.; Mnev, P.; Reshetikhin, N.; Calaque, D.; Strobi, Th.
2015-01-01
Abstract These lectures are an introduction to formal semiclassical quantization of classical field theory. First we develop the Hamiltonian formalism for classical field theories on space time with boundary. It does not have to be a cylinder as in the usual Hamiltonian framework. Then we outline
Neoclassical Theory and Its Applications
Energy Technology Data Exchange (ETDEWEB)
Shaing, Ker-Chung [Univ. of Wisconsin, Madison, WI (United States)
2015-11-20
The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.
On the interplay between string theory and field theory
International Nuclear Information System (INIS)
Brunner, I.
1998-01-01
In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Introduction to field theory of strings
International Nuclear Information System (INIS)
Kikkawa, K.
1987-01-01
The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed
Variational Wigner-Kirkwood approach to relativistic mean field theory
International Nuclear Information System (INIS)
Del Estal, M.; Centelles, M.; Vinas, X.
1997-01-01
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach. copyright 1997 The American Physical Society
Constrained variational calculus for higher order classical field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn
2010-01-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Random measures, theory and applications
Kallenberg, Olav
2017-01-01
Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Quantum scattering from classical field theory
International Nuclear Information System (INIS)
Gould, T.M.; Poppitz, E.R.
1995-01-01
We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))
Supersymmetry and Duality in Field Theory and String Theory
Kiritsis, Elias B
1999-01-01
This is a set of lectures given at the 99' Cargese Summer School, "Particle Physics : Ideas and Recent Developments". They contain a pedestrian exposition of recent theoretical progress in non-perturbative field theory and string theory based on ideas of duality.
Introduction to conformal field theory and string theory
International Nuclear Information System (INIS)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs
Introduction to conformal field theory and string theory
Energy Technology Data Exchange (ETDEWEB)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
DEFF Research Database (Denmark)
Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru
2012-01-01
Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule...... with respect to the field, are tabulated. Our results, which are exact in the weak-field limit for H2+ and, in addition, under the Hartree-Fock approximation for the diatomics, are compared with results from the recent literature....
String field theory in curved space
International Nuclear Information System (INIS)
Kikkawa, Keiji; Maeno, Masahiro; Sawada, Shiro
1988-01-01
The purely cubic action in the string field theory is shown to provide a set of equations of motion for background fields which agree to those obtained by the vanishing condition of β-functions in the non-linear sigma model. Using the sigma model as an auxiliary tool, a systematic method for solving the string field theory in curved space is proposed. (author)
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Bennett, Susanne; Saks, Loretta Vitale
2006-01-01
This article conceptualizes an attachment-based model of the student-field instructor relationship, based on empirical research concerning internal working models of attachment, which continue into adulthood and serve as templates for life-long relating. Supportive relationships within a noncritical context are salient for effective supervision;…
Lorente, M.
2003-01-01
We explore the mathematical consequences of the assumption of a discrete space-time. The fundamental laws of physics have to be translated into the language of discrete mathematics. We find integral transformations that leave the lattice of any dimension invariant and apply these transformations to field equations.
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Field theory of relativistic strings: I. Trees
International Nuclear Information System (INIS)
Kaku, M.; Kikkawa, K.
1985-01-01
The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Mass corrections in string theory and lattice field theory
International Nuclear Information System (INIS)
Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo
2009-01-01
Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
Elements of the theory of Markov processes and their applications
Bharucha-Reid, A T
2010-01-01
This graduate-level text and reference in probability, with numerous applications to several fields of science, presents nonmeasure-theoretic introduction to theory of Markov processes. The work also covers mathematical models based on the theory, employed in various applied fields. Prerequisites are a knowledge of elementary probability theory, mathematical statistics, and analysis. Appendixes. Bibliographies. 1960 edition.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
International Nuclear Information System (INIS)
Peter, I. J.
1995-06-01
The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
[Studies in quantum field theory]: Progress report
International Nuclear Information System (INIS)
Polmar, S.K.
1988-01-01
The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Directory of Open Access Journals (Sweden)
Jeremić-Molnar Dragana
2006-01-01
Full Text Available The Stage festival in Bauyeuth (Bayreuther Festspiele, established in 1876. by German composer Richard Wagner (1813-1883, is, even nowadays, a complex and unique phenomenon which continually attracts the attention of scholars from various (mainly humanistic and social scientific fields. In many different methodological approaches to Bayreuther Festspiele, including those made by social scientists, one can not find the application of the sociological theory of Peter Berger and Thomas Luckmann. However, one has to bare in mind the important fact that Richard Wagner founded his completely innovative festive institution mainly in order to carry out and to spread his regenerative Weltanschauung - already formulated in his numerous theoretical writings and incorporated into his musical dramas. The fact that Wagner’s Weltanschauung was based on the idea of changing the reality of everyday life by constructing the new reality, is of equal importance. Considering all this, it becomes appropriate to explain Wagner’s motivation for establishing the stage festival, as well as his idea of festival, from the standpoint of the theory of social construction of reality.
Polynomial field theories and nonintegrability
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.; Cyrus, K.
1990-01-01
The nonintegrability of the nonlinear field equation v ηξ = v 3 is studied with the help of the Painleve test. The condition at the resonance is discussed in detail. Particular solutions are given. (orig.)
Workshop on Thermal Field Theory to Neural Networks
Veneziano, Gabriele; Aurenche, Patrick
1996-01-01
Tanguy Altherr was a Fellow in the Theory Division at CERN, on leave from LAPP (CNRS) Annecy. At the time of his accidental death in July 1994, he was only 31.A meeting was organized at CERN, covering the various aspects of his scientific interests: thermal field theory and its applications to hot or dense media, neural networks and its applications to high energy data analysis. Speakers were among his closest collaborators and friends.
Graph theory with applications
Vasudev, C
2006-01-01
Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Rheology v.3 theory and applications
Eirich, Frederick
1960-01-01
Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist
Solitons and their interactions in classical field theory
International Nuclear Information System (INIS)
Belova, T.I.; Kudryavtsev, A.E.
1997-01-01
Effects of nonlinearity in the classical field theory for non-integrated systems are considered, such as soliton scattering, soliton bound states, the fractal nature of resonant structures, kink scattering by inhomogeneities, and domain bladder collapse. The results are presented in both (1 + 1) and higher dimensions. Both neutral and charged scalar fields are considered. Possible applications areas for the nonlinearity effects are discussed
Global integrability of field theories. Proceedings
International Nuclear Information System (INIS)
Calmet, J.; Seiler, W.M.; Tucker, R.W.
2006-01-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
The Mie Theory Basics and Applications
Wriedt, Thomas
2012-01-01
This book presents in a concise way the Mie theory and its current applications. It begins with an overview of current theories, computational methods, experimental techniques, and applications of optics of small particles. There is also some biographic information on Gustav Mie, who published his famous paper on the colour of Gold colloids in 1908. The Mie solution for the light scattering of small spherical particles set the basis for more advanced scattering theories and today there are many methods to calculate light scattering and absorption for practically any shape and composition of particles. The optics of small particles is of interest in industrial, atmospheric, astronomic and other research. The book covers the latest developments in divers fields in scattering theory such as plasmon resonance, multiple scattering and optical force.
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H
2014-03-01
Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.
String theory inspired deformations of quantum field theories
Chiou, Dah-Wei
In this dissertation, some extensions on field theories with deformations inspired by string theory are explored and their implications are investigated. These are: (i) noncommutative dipole field theory (DFT) and unitarity; (ii) three dimensional super Yang-Mills theory and mini-twistor string theory; (iii) massive super Yang-Mills theory and twistor string theory; and (iv) a deformation of twistor space and N = 4 super Yang-Mills theory with a chiral mass term. The DFT with fixed spacetime vectors ("dipole-vectors") is formulated for gauge theory coupled with a scalar field of adjoint charge. The argument for the violation of unitarity in field theories on a noncommutative spacetime is extended to the case of DFT: with a timelike dipole vector, 1-loop amplitudes are shown not to obey the optical theorem and thus violate unitarity. Likewise, a simple 0 + 1D quantum mechanical system with nonlocal potential of finite extent in time also gives violation of unitarity. Associated with D = 3 super Yang-Mills theory, the topological B-model is constructed for the twistor string theory, of which the target space is the (super-)mini-twistor space. As the D = 4 twistor space can be considered as a fibration over D = 3 mini-twistor space, the dimensional reduction from D = 4 to D = 3 is conducted to obtain the scattering amplitudes for D = 3 super Yang-Mills theory. The result shows that, analogous to the D = 4 case, the twistor transformed D = 3 amplitudes are supported on holomorphic curves in the (super-)mini-twistor space. Another alternative twistor description---Berkovits's open string theory---is also analyzed. By the prescription which interrelates Witten's B-model and Berkovits's open string theory, the dimensional reduction can be made for Berkovits's model as well, in which the enhanced R-symmetry Spin(7) is recognized, whereas only the subgroup SU(4) is manifest in the B-model. The extension of the twistor string theory by adding mass terms is then proposed and
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
Lectures on interacting string field theory
International Nuclear Information System (INIS)
Jevicki, A.
1986-09-01
We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Recent progress in reggeon field theory
International Nuclear Information System (INIS)
Sugar, R.L.
1977-01-01
The present status of the pomeron theory in the reggeon field theory is summarized. For α 0 ( 0 -a bare intercept, αsub(oc) - a certain critical value) the theory is in a very good shape. It appears to satisfy both S and t-channel unitarity, and to avoid all of the decreases which plagued the simple pole model of the pomeron. For α 0 >αsub(oc) the situation is less clear
Pure field theories and MACSYMA algorithms
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
Axion topological field theory of topological superconductors
Qi, Xiao-Liang; Witten, Edward; Zhang, Shou-Cheng
2013-04-01
Topological superconductors are gapped superconductors with gapless and topologically robust quasiparticles propagating on the boundary. In this paper, we present a topological field theory description of three-dimensional time-reversal invariant topological superconductors. In our theory the topological superconductor is characterized by a topological coupling between the electromagnetic field and the superconducting phase fluctuation, which has the same form as the coupling of “axions” with an Abelian gauge field. As a physical consequence of our theory, we predict the level crossing induced by the crossing of special “chiral” vortex lines, which can be realized by considering s-wave superconductors in proximity with the topological superconductor. Our theory can also be generalized to the coupling with a gravitational field.
An introduction to relativistic quantum field theory
Schweber, Silvan S
1961-01-01
Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.
Mathematical game theory and applications
Mazalov, Vladimir
2014-01-01
An authoritative and quantitative approach to modern game theory with applications from diverse areas including economics, political science, military science, and finance. Explores areas which are not covered in current game theory texts, including a thorough examination of zero-sum game.Provides introductory material to game theory, including bargaining, parlour games, sport, networking games and dynamic games.Explores Bargaining models, discussing new result such as resource distributions, buyer-seller instructions and reputation in bargaining models.Theoretical results are presented along
Quantum field theory with infinite component local fields as an alternative to the string theories
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-05-01
We show that the introduction of the infinite component local fields with higher order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ 5 -anomalous theories the introduction of the infinite component field makes the theory renormalizable or superrenormalizable. (orig.)
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
Renormalizability of effective scalar field theory
Ball, R D
1994-01-01
We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...
Klein Topological Field Theories from Group Representations
Directory of Open Access Journals (Sweden)
Sergey A. Loktev
2011-07-01
Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Field theories with multiple fermionic excitations
International Nuclear Information System (INIS)
Crawford, J.P.
1978-01-01
The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation
Simple recursion relations for general field theories
International Nuclear Information System (INIS)
Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.
Huang, Zhi-Feng; Elder, K R; Provatas, Nikolas
2010-08-01
The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Best matching theory & applications
Moghaddam, Mohsen
2017-01-01
Mismatch or best match? This book demonstrates that best matching of individual entities to each other is essential to ensure smooth conduct and successful competitiveness in any distributed system, natural and artificial. Interactions must be optimized through best matching in planning and scheduling, enterprise network design, transportation and construction planning, recruitment, problem solving, selective assembly, team formation, sensor network design, and more. Fundamentals of best matching in distributed and collaborative systems are explained by providing: § Methodical analysis of various multidimensional best matching processes § Comprehensive taxonomy, comparing different best matching problems and processes § Systematic identification of systems’ hierarchy, nature of interactions, and distribution of decision-making and control functions § Practical formulation of solutions based on a library of best matching algorithms and protocols, ready for direct applications and apps development. Design...
Unified-field theory: yesterday, today, tomorrow
International Nuclear Information System (INIS)
Bergman, P.G.
1982-01-01
Beginning with the expounding of Einstein understanding of advantages and disadvantages of general relativity theory, the authors proceed to consideration of what the complete unified theory have to be according to Einstein. The four theories which can be considered as ''unified'', namely weyl and Calutsa ones, worked out a half of century ago, and twistor twisting and supersymmetry theories, nowadays attracting attention, are briefly described and discussed. The authors come to a conclusion that achievements in elementary-particle physics have to affect any future theory, that this theory has to explain the principle contradictions between classical and quantum field theories, and that finally it can lead to change of the modern space-time model as a four-dimensional variety
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Superstring field theory equivalence: Ramond sector
International Nuclear Information System (INIS)
Kroyter, Michael
2009-01-01
We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Magnetic Catalysis in Graphene Effective Field Theory.
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
2016-12-23
We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle.
Supersymmetric gauge theories, quantization of Mflat, and conformal field theory
International Nuclear Information System (INIS)
Teschner, J.; Vartanov, G.S.
2013-02-01
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Random light beams theory and applications
Korotkova, Olga
2013-01-01
Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic par
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1989-01-01
Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)
Towards field theory in spaces with multivolume junctions
Fomin, P I
2002-01-01
We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.
Theory of semigroups and applications
Sinha, Kalyan B
2017-01-01
The book presents major topics in semigroups, such as operator theory, partial differential equations, harmonic analysis, probability and statistics and classical and quantum mechanics, and applications. Along with a systematic development of the subject, the book emphasises on the explorations of the contact areas and interfaces, supported by the presentations of explicit computations, wherever feasible. Designed into seven chapters and three appendixes, the book targets to the graduate and senior undergraduate students of mathematics, as well as researchers in the respective areas. The book envisages the pre-requisites of a good understanding of real analysis with elements of the theory of measures and integration, and a first course in functional analysis and in the theory of operators. Chapters 4 through 6 contain advanced topics, which have many interesting applications such as the Feynman–Kac formula, the central limit theorem and the construction of Markov semigroups. Many examples have been given in...
Sinusoids theory and technological applications
Kythe, Prem K
2014-01-01
A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...
Gravitation Field Dynamics in Jeans Theory
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description ...
Field theory of polar continua
International Nuclear Information System (INIS)
Heinz, C.
1988-01-01
A Lagrangian density in the polar space X 1+3+3 depending of the potentials and their derivativs and of the fluxes is introduced. The potentials are then the mechanical and electromagnetic potentials, the potentials of gravity and in the polar space X 1+3+3 the components of affine connection. The fluxes are essentially the tangential motors of the mechanical and electromagnetic world-lines multiplied with the density of mass and electric charge. The Hamilton principle gives, with the in variational calculus usual integrations by part, here done via the theorem of Gauss, the equations of motion and the field equations. The conditions of integrability for these equations are discussed. (author)
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Circuit complexity in quantum field theory
Jefferson, Robert A.; Myers, Robert C.
2017-10-01
Motivated by recent studies of holographic complexity, we examine the question of circuit complexity in quantum field theory. We provide a quantum circuit model for the preparation of Gaussian states, in particular the ground state, in a free scalar field theory for general dimensions. Applying the geometric approach of Nielsen to this quantum circuit model, the complexity of the state becomes the length of the shortest geodesic in the space of circuits. We compare the complexity of the ground state of the free scalar field to the analogous results from holographic complexity, and find some surprising similarities.
Dark Matter, Elko Fields and Weinberg's Quantum Field Theory Formalism
Gillard, Adam; Martin, Benjamin
2012-02-01
The Elko quantum field was introduced by Ahluwalia and Grumiller, who proposed it as a candidate for dark matter. We study the Elko field in Wemberg's formalism for quantum field theory. We prove that if one takes the symmetry group to be the full Pomcaré group then the Elko field is not a quantum field in the sense of Weinberg. This confirms results of Ahluwalia, Lee and Schritt, who showed using a different approach that the Elko field does not transform covariantly under rotations and hence has a preferred axis.
Coadjoint orbits and conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Taylor, IV, Washington [Univ. of California, Berkeley, CA (United States)
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Torsten
2012-07-11
In the first part of the this doctoral thesis the perturbative unitarity in the complex-mass scheme (CMS) is analysed. To that end a procedure for calculating cutting rules for loop integrals containing propagators with finite widths is presented. A toy-model Lagrangian describing the interaction of a heavy vector boson with a light fermion is used to demonstrate that the CMS respects unitarity order by order in perturbation theory provided that the renormalized coupling constant remains real. The second part of the thesis deals with various applications of the CMS to chiral effective field theory (EFT). In particular, mass and width of the delta resonance, elastic electromagnetic form factors of the Roper resonance, form factors of the nucleon-to-Roper transition, pion-nucleon scattering, and pion photo- and electroproduction for center-of-mass energies in the region of the Roper mass are calculated. By choosing appropriate renormalization conditions, a consistent chiral power counting scheme for EFT with resonant degrees of freedom can be established. This allows for a systematic investigation of the above processes in terms of an expansion in small quantities. The obtained results can be applied to the extrapolation of corresponding simulations in the context of lattice QCD to the physical value of the pion mass. Therefore, in addition to the Q{sup 2} dependence of the form factors, also the pion-mass dependence of the magnetic moment and electromagnetic radii of the Roper resonance is explored. Both a partial wave decomposition and a multipole expansion are performed for pion-nucleon scattering and pion photo- and electroproduction, respectively. In this connection the P11 partial wave as well as the M{sub 1-} and S{sub 1-} multipoles are fitted via non-linear regression to empirical data.
The space-time operator product expansion in string theory duals of field theories
International Nuclear Information System (INIS)
Aharony, Ofer; Komargodski, Zohar
2008-01-01
We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories
Tephra: field, theory and application
Pouget, Solene
In this work we briefly introduced the current state of the art for plume dynamics and plume modelling (chapters 1 and 2). From these, it was found that several questions remained unanswered. One of them what about adding some quantitative methodology to tephra identification when using geochemistry. Using discontinuous two tephra layers discovered at Burney Spring Mountain, northern California, this aspect was explored. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis in log-ratio transformed data to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers (chapter 3). After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565-610 ka, and the second layer is likely from Mt Mazama, the Trego Hot Springs tephra, aged ~29 ka. Using cluster analysis on several vectors of chemical elements another quantitative methodology was explored (chapter 4). It was found that in most cases, geochemical analysis of a tephra layer will be assign to a single cluster, however in some cases the analysis are spread over several clusters. This spreading is a direct result of mixing and reworking happening in the tephra layer. The dynamics of volcanic plumes were also investigated. We introduce a new method to estimate mass eruption rate (MER) and mass loading from the growth of a volcanic umbrella cloud or downwind plume using satellite images, or photographs where ground-based observations are available with a gravity current model (chapter 5). The results show a more fully characterised MER as a function of time than do the results given by pre-existing methods, and allow a faster, remote assessment of the mass eruption rate, even for volcanoes that are difficult to study. A new gravity current model for umbrella cloud was tested which allows to transition from one regime to another against measured data from several eruptions (chapter 6). Once the model was proved to be accurate, the different variables were tested to observed their impact on the spreading of the umbrella cloud. As a result it was found that the evolution of the radius changes not only in power-law with time but also indicates transitions in regimes. Chapter 7 is an end-to-end framework to probabilistic forecasting of volcanic ash transport and improved eruption source parameters. In summary, this dissertation demonstrates four main contributions to volcanology: 1. The importance of bringing quantitative methods to tephra identification and how these methods can help in characterization of tephra. 2. The importance of the spread of volcanic cloud in the atmosphere as a gravity current. Particularly for prediction of the ash dispersal since the spreading as a gravity current happens over large distances from the volcano and even upwind. But also because it can help in getting a first and fast estimation of the mass eruption rate of an eruption which can be followed with time. 3. The importance of studying the structures and features on volcanic plume as they can reveal information about the dynamics of spreading and improve the estimation of regime transitions. 4. The need for the different communities working on tephra to communicate and understand each others approach fo better collaboration and multi-approach work.
Distributed hash table theory, platforms and applications
Zhang, Hao; Xie, Haiyong; Yu, Nenghai
2013-01-01
This SpringerBrief summarizes the development of Distributed Hash Table in both academic and industrial fields. It covers the main theory, platforms and applications of this key part in distributed systems and applications, especially in large-scale distributed environments. The authors teach the principles of several popular DHT platforms that can solve practical problems such as load balance, multiple replicas, consistency and latency. They also propose DHT-based applications including multicast, anycast, distributed file systems, search, storage, content delivery network, file sharing and c
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
International Nuclear Information System (INIS)
Gottschalk, Hanno; Hack, Thomas-Paul
2009-12-01
Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)
Experimental signature of scaling violation implied by field theories
International Nuclear Information System (INIS)
Tung, W.
1975-01-01
Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated
Nonequilibrium statistical field theory for classical particles: Basic kinetic theory.
Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias
2015-06-01
Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010); J. Stat. Phys. 149, 643 (2012); J. Stat. Phys. 152, 159 (2013); Phys. Rev. E 83, 041125 (2011)] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
Further studies in aesthetic field theory
International Nuclear Information System (INIS)
Muraskin, M.
1984-01-01
We study different facets of Aesthetic Field Theory. First, we have found within the complex version of the theory a bounded particle system which has more structure than what we have previously observed. The particle is built from planar 3 maxima--minima confluence regions. The confluence region closes in 3 spatial dimensions, so once again we have a ''topological'' particle. If we characterize bound stats by the number of large magnitude regions in close proximity, then the simplest interpretation of what we are seeing is that of a 3 particle bound system. Secondly, again within the framework of complex Aesthetic Field Theory, but using a more symmetric system of equations, we observe a confluence type topological particle spontaneously arising out of the vacuum (creation effect). The particle again has a loop shape. The extended particles thus far found in 4 dimensional Aesthetic Field Theory have always had problems with the spreading of the particle system as time went on. Thirdly, we found a bounded confluence particle system, which in addition to confinement and non attenuation shows the desirable property of not spreading in time. In this case, we work exclusively with real fields. The particle system has a dipole looking shape. We also studied complex null Aesthetic Field Theory in 8 dimensions having a 4 direct-sum 4 structure. We were not able to find a bound to our particle system here
Massive deformations of Type IIA theory within double field theory
Çatal-Özer, Aybike
2018-02-01
We obtain massive deformations of Type IIA supergravity theory through duality twisted reductions of Double Field Theory (DFT) of massless Type II strings. The mass deformation is induced through the reduction of the DFT of the RR sector. Such reductions are determined by a twist element belonging to Spin+(10, 10), which is the duality group of the DFT of the RR sector. We determine the form of the twists and give particular examples of twists matrices, for which a massive deformation of Type IIA theory can be obtained. In one of the cases, requirement of gauge invariance of the RR sector implies that the dilaton field must pick up a linear dependence on one of the dual coordinates. In another case, the choice of the twist matrix violates the weak and the strong constraints explicitly in the internal doubled space.
Recent Developments in D=2 String Field Theory
Kaku, Michio
1994-01-01
In this review article, we review the recent developments in constructing string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. These include: (a) free fermion field theory (b) collective string field theory (c) temporal gauge string field theory (d) non-polynomial string field theory. We analyze discrete states, the $w(\\infty)$ symmetry, and correlation functions in terms of these different string field the...
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs
Field theory of the Eulerian perfect fluid
Ariki, Taketo; Morales, Pablo A.
2018-01-01
The Eulerian perfect-fluid theory is reformulated from its action principle in a pure field-theoretic manner. Conservation of the convective current is no longer imposed by Lin’s constraints, but rather adopted as the central idea of the theory. Our formulation, for the first time, successfully reduces redundant degrees of freedom promoting one half of the Clebsch variables to true dynamical fields. Interactions on these fields allow for the exchange of the convective current of quantities such as mass and charge, which are uniformly understood as the breaking of the underlying symmetry of the force-free fluid. The Clebsch fields play the essential role of exchanging angular momentum with the force field producing vorticity.
A general field-covariant formulation of quantum field theory
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Quantum field theory in generalised Snyder spaces
International Nuclear Information System (INIS)
Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.
2017-01-01
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Quantum field theory in generalised Snyder spaces
Energy Technology Data Exchange (ETDEWEB)
Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2017-05-10
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Magnetic monopoles in field theory and cosmology.
Rajantie, Arttu
2012-12-28
The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.
Catastrophe theory and its application status in mechanical engineering
Directory of Open Access Journals (Sweden)
Jinge LIU
Full Text Available Catastrophe theory is a kind of mathematical method which aims to apply and interpret the discontinuous phenomenon. Since its emergence, it has been widely used to explain a variety of emergent phenomena in the fields of natural science, social science, management science and some other science and technology fields. Firstly, this paper introduces the theory of catastrophe in several aspects, such as its generation, radical principle, basic characteristics and development. Secondly, it summarizes the main applications of catastrophe theory in the field of mechanical engineering, focusing on the research progress of catastrophe theory in revealing catastrophe of rotor vibration state, analyzing friction and wear failure, predicting metal fracture, and so on. Finally, it advises that later development of catastrophe theory should pay more attention to the combination of itself with other traditional nonlinear theories and methods. This paper provides a beneficial reference to guide the application of catastrophe theory in mechanical engineering and related fields for later research.
Adsorption refrigeration technology theory and application
Wang, Ruzhu; Wu, Jingyi
2014-01-01
Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri
Wireless network security theories and applications
Chen, Lei; Zhang, Zihong
2013-01-01
Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dierigl, Markus; Dudas, Emilian; Schweizer, Julian
2017-04-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N = 1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus; Schweizer Julian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian [Univ. Paris-Saclay, Palaiseau (France). Ecole Polytechnique
2016-12-15
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Group theory for chemists fundamental theory and applications
Molloy, K C
2010-01-01
The basics of group theory and its applications to themes such as the analysis of vibrational spectra and molecular orbital theory are essential knowledge for the undergraduate student of inorganic chemistry. The second edition of Group Theory for Chemists uses diagrams and problem-solving to help students test and improve their understanding, including a new section on the application of group theory to electronic spectroscopy.Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory t
Classical field theory on electrodynamics, non-abelian gauge theories and gravitation
Scheck, Florian
2018-01-01
Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...
Conformal field theory with gauge symmetry
Ueno, Kenji
2008-01-01
This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of
Reggeon field theory for large Pomeron loops
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2014-01-01
We analyze the range of applicability of the high energy Reggeon Field Theory H RFT derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H RFT does not reduce to either H JIMWLK or H KLWMIJ . When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H RFT can be simplified. We derive the simpler version of H RFT and in the large N c limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H RFT is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom
Supergauge Field Theory of Covariant Heterotic Strings
Michio, KAKU; Physics Department, Osaka University : Physics Department, City College of the City University of New York
1986-01-01
We present the gauge covariant second quantized field theory for free heterotic strings, which is leading candidate for a unified theory of all known particles. Our action is invariant under the semi-direct product of the super Virasoro and the Kac-Moody E_8×E_8 or Spin(32)/Z_2 group. We derive the covariant action by path integrals in the same way that Feynman originally derived the Schrodinger equation. By adding an infinite number of auxiliary fields, we can also make the action explicitly...
Field theory a path integral approach
Das, Ashok
2006-01-01
This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.
A geometric formulation of exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Bosque, Pascal du [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Hassler, Falk [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Department of Physics, Columbia University, Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)
2017-03-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5)×ℝ{sup +}-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5)×ℝ{sup +}-structure is not locally flat.
Statistical field theory of futures commodity prices
Baaquie, Belal E.; Yu, Miao
2018-02-01
The statistical theory of commodity prices has been formulated by Baaquie (2013). Further empirical studies of single (Baaquie et al., 2015) and multiple commodity prices (Baaquie et al., 2016) have provided strong evidence in support the primary assumptions of the statistical formulation. In this paper, the model for spot prices (Baaquie, 2013) is extended to model futures commodity prices using a statistical field theory of futures commodity prices. The futures prices are modeled as a two dimensional statistical field and a nonlinear Lagrangian is postulated. Empirical studies provide clear evidence in support of the model, with many nontrivial features of the model finding unexpected support from market data.
From topological quantum field theories to supersymmetric gauge theories
International Nuclear Information System (INIS)
Bossard, G.
2007-10-01
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Uncertainty quantification theory, implementation, and applications
Smith, Ralph C
2014-01-01
The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers ca...
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
On space of integrable quantum field theories
Directory of Open Access Journals (Sweden)
F.A. Smirnov
2017-02-01
Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
Singular traces theory and applications
Sukochev, Fedor; Zanin, Dmitriy
2012-01-01
This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.
Asymptotic functions and their application in quantum theory
International Nuclear Information System (INIS)
Khristov, Kh.Ya.; Damyanov, B.P.
1979-01-01
An asymptotic function introduced as a limit for a certain class of successions has been determined. The basic properties of the functions are given: continuity, differentiability, integrability. The fields of application of the asymptotic functions in the quantum field theory are presented. The shortcomings and potentialities of further development of the theory are enumerated
Wavelets theory, algorithms, and applications
Montefusco, Laura
2014-01-01
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applicat
Diatomic interaction potential theory applications
Goodisman, Jerry
2013-01-01
Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des
The nonlinearity of the scalar field in a relativistic mean-field theory of the nucleus
International Nuclear Information System (INIS)
Reinhard, P.G.
1987-10-01
The form of the nonlinear selfcoupling of the scalar meson field in a nuclear relativistic mean-field theory is investigated. The conventional ansatz is shown to produce instabilities in critical applications. A modified selfcoupling is proposed which guarantees stability under all conditions. (orig.)
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Maslow's theory and its application to librarianship
Sridhar, M. S.
1981-01-01
Explains the basis for Maslow’s theory, enumerates Maslow’s hierarchy of needs, describes implications of the theory and finally presents application of Maslow’s theory to librarianship with suitable examples and illustrations.
The path integral method in quantum field theory
International Nuclear Information System (INIS)
Burden, C.J.
1990-01-01
Richard Feynman is reputed to have once the that in his whole life he had only ever had two really clever ideas. As it has turned out, these two ideas, the path integral formulation of quantum mechanics and the diagrammatic representation of perturbation theory have become the cornerstone of modern quantum field theory and particle physics. The path integral, first hinted at by Dirac in the thirties but developed fully by Feynman in the late 40's provides us with an alternative, though equivalent, description of quantum mechanics to canonical quantization. It was not until the seventies that it found broad application in quantum field theory (QFT), leading of gauge theories. It has also lead to the invention of non-perturbative techniques such as lattice gauge theory and has revealed an intimate connection between QFT and statistical mechanics. This paper, the author develops the basic of QFT form the path integral formalism and introduce the idea of Feynman diagrams for calculating perturbation expansions. I will concentrate mainly on the example of φ 4 theory since it is probably the simplest example of an interacting field theory, though the methods generalize readily to more sophisticated theories
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Anomalies in Witten's NSR superstring field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Medvedev, P.B.
1988-01-01
The action of Witten's NSR superstring field theory if shown to depend on the regularization being choosen to define its value on non-smooth states that are generated by supertransformation. The necessity of additional regularization originates from the appearance of products of picture-changing operators in coincident points. Two different regularization are described, one corresponding to Witten's scheme and the other to the scheme based on the notion of truncated fields
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Grassmann methods in lattice field theory and statistical mechanics
International Nuclear Information System (INIS)
Bilgici, E.; Gattringer, C.; Huber, P.
2006-01-01
Full text: In two dimensions models of loops can be represented as simple Grassmann integrals. In our work we explore the generalization of these techniques to lattice field theories and statistical mechanic systems in three and four dimensions. We discuss possible strategies and applications for representations of loop and surface models as Grassmann integrals. (author)
Compositional Data Analysis Theory and Applications
Pawlowsky-Glahn, Vera
2011-01-01
This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code
Integrable structures in quantum field theory
International Nuclear Information System (INIS)
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
String amplitudes: from field theories to number theory
CERN. Geneva
2017-01-01
In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...
Energy Technology Data Exchange (ETDEWEB)
Gelis, Francois [Savoie Univ., 73 - Chambery (France)
1998-12-01
The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green`s functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the `retarded-advanced` version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green`s functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author) 366 refs., 109 figs.
Cross Sections From Scalar Field Theory
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Gravitational descendants in symplectic field theory
Fabert, O.
2011-01-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic
Quantum field theory with soliton conservation laws
Schrör, B
1978-01-01
Field theories with soliton conservation laws are the most promising candidates for explicitly constructable models. The author exemplifies in the case of the massive Thirring model how the old S matrix bootstrap idea, supplemented with a soliton factorization property, may be used as a systematic starting point for the construction of the S matrix, form factors and (hopefully) correlation functions. (34 refs).
Covariant field theory of closed superstrings
International Nuclear Information System (INIS)
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Fusion rules in conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.
1993-06-01
Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Reconstructing bidimensional scalar field theory models
International Nuclear Information System (INIS)
Flores, Gabriel H.; Svaiter, N.F.
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)
General relativity invariance and string field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1987-04-01
The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs
Construction of topological field theories using BV
Jonghe, F. de; Vandoren, S.
1993-01-01
We discuss in detail the construction of topological field theories us- ing the Batalin–Vilkovisky (BV) quantisation scheme. By carefully examining the dependence of the antibracket on an external metric, we show that differentiating with respect to the metric and the BRST charge do not commute
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
Translationally invariant self-consistent field theories
International Nuclear Information System (INIS)
Shakin, C.M.; Weiss, M.S.
1977-01-01
We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables
Causality and analyticity in quantum fields theory
International Nuclear Information System (INIS)
Iagolnitzer, D.
1992-01-01
This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Superconformal quantum field theories in string. Gauge theory dualities
Energy Technology Data Exchange (ETDEWEB)
Wiegandt, Konstantin
2012-08-14
In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
A periodic table of effective field theories
Energy Technology Data Exchange (ETDEWEB)
Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
International Nuclear Information System (INIS)
Schenkel, Alexander
2011-01-01
quantum field theory at short distances, i.e. in the ultraviolet. In the third part we develop elements of a more powerful, albeit more abstract, mathematical approach to noncommutative gravity. The goal is to better understand global aspects of homomorphisms between and connections on noncommutative vector bundles, which are fundamental objects in the mathematical description of noncommutative gravity. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of modules is clarified, and as a consequence we are able to add tensor fields of arbitrary type to the noncommutative gravity theory of Wess et al. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
noncommutative quantum field theory at short distances, i.e. in the ultraviolet. In the third part we develop elements of a more powerful, albeit more abstract, mathematical approach to noncommutative gravity. The goal is to better understand global aspects of homomorphisms between and connections on noncommutative vector bundles, which are fundamental objects in the mathematical description of noncommutative gravity. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of modules is clarified, and as a consequence we are able to add tensor fields of arbitrary type to the noncommutative gravity theory of Wess et al. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
A symplectic framework for field theories
International Nuclear Information System (INIS)
Kijowski, J.; Tulczyjew, W.M.
1979-01-01
These notes are concerned with the formulation of a new conceptual framework for classical field theories. Although the formulation is based on fairly advanced concepts of symplectic geometry these notes cannot be viewed as a reformulation of known structures in more rigorous and elegant torns. Our intention is rather to communicate to theoretical physicists a set of new physical ideas. We have chosen for this purpose the language of local coordinates which is more elementary and more widely known than the abstract language of modern differntial geometry. Our emphasis is directed more to physical intentions than to mathematical vigour. We start with a symplectic analysis of staties. Both discrete and continuous systems are considered on a largely intuitive level. The notion of reciprocity and potentiality of the theory is discussed. Chapter II is a presentation of particle dynamics together with more rigorous definitions of the geometric structure. Lagrangian-Submanifolds and their generating function 3 are defined and the time evolution of particle states is studied. Chapter II form the main part of these notes. Here we describe the construction of canonical momenta and discuss the field dynamics in finite domains of space-time. We also establish the relation between our symplectic framework and the geometric formulation of the calculus of variations of multiple integrals. In the following chapter we give a few examples of field theories selected to illustrate various features of the new approach. A new formulation of the theory of gravity consists of using the affine connection in space-time as the field configuration. In the past section we present an analysis of hydrodynamics within our framework which reveals a formal analogy with electrodynamics. The discovery of potentials for hydrodynamics and the subsequent formulation of a variational principle provides an excellent example for the fruitfulness of the new approach to field theory. A short review of
Management applications of discontinuity theory
Angeler, David G.; Allen, Craig R.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance H.; Knutson, Melinda; Nash, Kirsty L.; Nelson, R. John; Nystrom, Magnus; Spanbauer, Trisha; Stow, Craig A.; Sundstrom, Shana M.
2015-01-01
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.
Quantum field theory in topology changing spacetimes
International Nuclear Information System (INIS)
Bauer, W.
2007-03-01
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Continuous and distributed systems theory and applications
Sadovnichiy, Victor
2014-01-01
In this volume, the authors close the gap between abstract mathematical approaches, such as abstract algebra, number theory, nonlinear functional analysis, partial differential equations, methods of nonlinear and multi-valued analysis, on the one hand, and practical applications in nonlinear mechanics, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in hydromechanics, geophysics and mechanics of continua. This compilation will be of interest to mathematicians and engineers working at the interface of these field. It presents selected works of the open seminar series of Lomonosov Moscow State University and the National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Germany, Italy, Spain, Russia, Ukraine, and the USA.
Scattering of decuplet baryons in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)
2017-11-15
A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)
Symmetry aspects of nonholonomic field theories
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris [Control and Dynamical Systems, California Institute of Technology, MC 107-81, Pasadena, CA 91125 (United States); Diego, David MartIn de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)
2008-01-25
The developments in this paper are concerned with nonholonomic field theories in the presence of symmetries. Having previously treated the case of vertical symmetries, we now deal with the case where the symmetry action can also have a horizontal component. As a first step in this direction, we derive a new and convenient form of the field equations of a nonholonomic field theory. Nonholonomic symmetries are then introduced as symmetry generators whose virtual work is zero along the constraint submanifold, and we show that for every such symmetry, there exists a so-called momentum equation, describing the evolution of the associated component of the momentum map. Keeping up with the underlying geometric philosophy, a small modification of the derivation of the momentum lemma allows us to also treat generalized nonholonomic symmetries, which are vector fields along a projection. Such symmetries arise for example in practical examples of nonholonomic field theories such as the Cosserat rod, for which we recover both energy conservation (a previously known result) and a modified conservation law associated with spatial translations.
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Interaction vertices in reduced string field theories
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)
Extending Gurwitsch's field theory of consciousness.
Yoshimi, Jeff; Vinson, David W
2015-07-01
Aron Gurwitsch's theory of the structure and dynamics of consciousness has much to offer contemporary theorizing about consciousness and its basis in the embodied brain. On Gurwitsch's account, as we develop it, the field of consciousness has a variable sized focus or "theme" of attention surrounded by a structured periphery of inattentional contents. As the field evolves, its contents change their status, sometimes smoothly, sometimes abruptly. Inner thoughts, a sense of one's body, and the physical environment are dominant field contents. These ideas can be linked with (and help unify) contemporary theories about the neural correlates of consciousness, inattention, the small world structure of the brain, meta-stable dynamics, embodied cognition, and predictive coding in the brain. Published by Elsevier Inc.
Quantum field theory the why, what and how
Padmanabhan, Thanu
2016-01-01
This book describes, in clear terms, the Why, What and the How of Quantum Field Theory. The raison d'etre of QFT is explained by starting from the dynamics of a relativistic particle and demonstrating how it leads to the notion of quantum fields. Non-perturbative aspects and the Wilsonian interpretation of field theory are emphasized right from the start. Several interesting topics such as the Schwinger effect, Davies-Unruh effect, Casimir effect and spontaneous symmetry breaking introduce the reader to the elegance and breadth of applicability of field theoretical concepts. Complementing the conceptual aspects, the book also develops all the relevant mathematical techniques in detail, leading e.g., to the computation of anomalous magnetic moment of the electron and the two-loop renormalisation of the self-interacting scalar field. It contains nearly a hundred problems, of varying degrees of difficulty, making it suitable for both self-study and classroom use.
A Generalized Field Theory: Charged Spherical Symmetric Solution
Wanas, M. I.
1985-06-01
Three solutions with spherical symmetry are obtained for the field equations of the generalized field theory established recently by Mikhail and Wanas. The solutions found are in agreement with classical known results. The solution representing a generalized field, outside a spherical symmetric charged body, is found to have an extra term compared with the Reissner-Nordström metric. The space used for application is of type FIGI, so the solutions obtained correspond to a field in a matter-free space. A brief comparison between the solutions obtained and those given by other field theories is given. Two methods have been used to get physical results: the first is the type analysis, and the second is the comparison with classical known results by writing down the metric of the associated Riemannian space.
Cosmological field theory for observational astronomers
International Nuclear Information System (INIS)
Zel'Dovich, Y.B.
1987-01-01
Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly
Copula Theory and Its Applications
Jaworski, Piotr; Hardle, Wolfgang Karl; Rychlik, Tomasz
2010-01-01
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - 'Surveys' contains 11 chapters that provide an up-to-date account o
Relating the archetypes of logarithmic conformal field theory
International Nuclear Information System (INIS)
Creutzig, Thomas; Ridout, David
2013-01-01
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought
Relating the archetypes of logarithmic conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)
2013-07-21
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.
Noncommutative analysis, operator theory and applications
Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc
2016-01-01
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
Social signals: from theory to applications.
Poggi, Isabella; D'Errico, Francesca; Vinciarelli, Alessandro
2012-10-01
The Special Issue Editorial introduces the research milieu in which Social Signal Processing originates, by merging computer scientists and social scientists and giving rise to this field in parallel with Human-Computer Interaction, Affective Computing, and Embodied Conversational Agents, all similarly characterized by high interdisciplinarity, stress on multimodality of communication, and the continuous loop from theory to simulation and application. Some frameworks of the cognitive and social processes underlying social signals are identified as reference points (Theory of Mind and Intersubjectivity, mirror neurons, and the ontogenesis and phylogenesis of communication), while three dichotomies (automatic vs. controlled, individualistic vs. intersubjective, and meaning vs. influence) are singled out as leads to navigate within the theoretical and applicative studies presented in the Special Issue.
BRST quantization of topological field theories
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-07-01
We consider in detail the construction of a variety of topological quantum field theories through BRST quantization. In particular, we show that supersymmetric quantum mechanics on an arbitrary Riemannian manifold can be obtained as the BRST quantization of a purely bosonic theory. The introduction of a new local symmetry allows for the possibility of different gauge choices, and we show how this freedom can simplify the evaluation of the Witten index in certain cases. Topological sigma models are also constructed via the same mechanism. In three dimensions, we consider a Yang-Mills-Higgs model related to the four dimensional TQFT of Witten. (author). 24 refs
Thermo field theory versus imaginary time formalism
International Nuclear Information System (INIS)
Fujimoto, Y.; Nishino, H.; Grigjanis, R.
1983-11-01
We calculate a two-loop diagram at finite temperature to compare Thermo Field Theory (=Th.F.Th.) with the conventional imaginary time formalism (=Im.T.F.). The summation over the Matsubara frequency in Im.T.F. is carried out at two-loop level, and the result is shown to coincide with that of Th.F.Th. We confirm that in Im.T.F. the temperature dependent divergences cancel out at least in the calculation of effective potential of phi 4 theory, as in Th.F.Th. (author)
Recursion equations in gauge field theories
International Nuclear Information System (INIS)
Migdal, A.A.
1975-01-01
An approximate recursive equation describing scale transformation of the effective action of a gauging field has been formulated. The equation becomes exact in the two-dimensional space-time. In the four-dimensional theory it reproduces the asymptotic freedom with an accuracy of 30% in β-function coefficients. In the region of strong coupling β-function remains negative, that leads to an asymptotic ''prison'' in the infrared range. Some possible generalizations and appendices to the colour quark-gluon gauging theory are being discussed
Twistors and supertwistors for exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Cederwall, Martin [Dept. of Fundamental Physics, Chalmers University of Technology, Gothenburg, SE 412 96 (Sweden)
2015-12-18
As a means of examining the section condition and its possible solutions and relaxations, we perform twistor transforms related to versions of exceptional field theory with Minkowski signature. The spinor parametrisation of the momenta naturally solves simultaneously both the mass-shell condition and the (weak) section condition. It is shown that the incidence relations for multi-particle twistors force them to share a common section, but not to be orthogonal. The supersymmetric extension contains additional scalar fermionic variables shown to be kappa-symmetry invariants. We speculate on some implications, among them a possible relation to higher spin theory.
Biometrics Theory, Methods, and Applications
Boulgouris, N V; Micheli-Tzanakou, Evangelia
2009-01-01
An in-depth examination of the cutting edge of biometrics. This book fills a gap in the literature by detailing the recent advances and emerging theories, methods, and applications of biometric systems in a variety of infrastructures. Edited by a panel of experts, it provides comprehensive coverage of:. Multilinear discriminant analysis for biometric signal recognition;. Biometric identity authentication techniques based on neural networks;. Multimodal biometrics and design of classifiers for biometric fusion;. Feature selection and facial aging modeling for face recognition;. Geometrical and
Quantile regression theory and applications
Davino, Cristina; Vistocco, Domenico
2013-01-01
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and
Surface chemistry theory and applications
Bikerman, J J
2013-01-01
Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t
Self-consistent normal ordering of gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1987-01-01
Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs
Protective relaying theory and applications
Elmore, Walter A
2003-01-01
Targeting the latest microprocessor technologies for more sophisticated applications in the field of power system short circuit detection, this revised and updated source imparts fundamental concepts and breakthrough science for the isolation of faulty equipment and minimization of damage in power system apparatus. The Second Edition clearly describes key procedures, devices, and elements crucial to the protection and control of power system function and stability. It includes chapters and expertise from the most knowledgeable experts in the field of protective relaying, and describes micropro
Effective field theory for halo nuclei
International Nuclear Information System (INIS)
Hagen, Philipp Robert
2014-01-01
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6 He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for such
Automata theory and its applications
Khoussainov, Bakhadyr
2001-01-01
The theory of finite automata on finite stings, infinite strings, and trees has had a dis tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's ...
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Propositional systems in local field theories
International Nuclear Information System (INIS)
Banai, M.
1980-07-01
The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)
Propositional systems in local field theories
Energy Technology Data Exchange (ETDEWEB)
Banai, M.
1981-03-01
We investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The space-time covariance can be implemented in a natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these there is enough structure to characterize the classical and quantum, nonrelativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics.
Magnetic fields and density functional theory
International Nuclear Information System (INIS)
Salsbury, Freddie Jr.
1999-01-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules
New ideas about unified field theory
International Nuclear Information System (INIS)
Gleiser, M.
1986-01-01
An outline of the physical concepts evolution is given from the ancient philosophers to the present time. With qualitative explanations about the meaning of the theories that is the milestones of these concepts evolution, it mentions the ideas which lead the studies to the conception of a unified field theory. Chronologically, it has brief information about the ideas of Laplace (mechanical determinism), Maxwell (the field concept), Einsten (the space-time structure), Heisenberg and Schroedinger (the quantum mechanics), Dirac (the relativistic quantum and the antiparticles), Gell-Mann (the quarks), Weinberg-Salam (Weak interactions and eletromagnetic unification), H. Georgi and S. Glashon (strong interactions plus Weinberg-Salam), Kaluza-Klein (a fifth space-time coordinate), and Zumino-Weiss (supersymmetry and supergravity). (G.D.F.) [pt
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Consistency relations in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
New framework for gauge field theories
International Nuclear Information System (INIS)
Blaha, S.
1979-01-01
Gauge theories are formulated within the framework of a generalization of quantum field theory. In particular, models of electrodynamics and of Yang-Mills theories, we discuss a model of the strong interaction with higher-order derivatives and quark confinement and a renormalizable model of pure quantum gravity with Einstein Lagrangian. In the case of electrodynamics it is shown that two models are possible: one with predictions which are identical to QED and one which is a quantum action-at-a-distance model of electrodynamics. In the case of Yang-Mills theories a model is constructed which is identical in predictions to any conventional model, or a quantum action-at-a-distance model. In the second case it is possible to eliminate all loops of Yang-Mills particles (in all gauges) in a manner consistent with unitarity. A variation of Yang-Mills models exists in this formulation which has higher-order derivative field equations. It is unitary and has positive probabilities. It can be used to construct a model of the strong interactions which has a linear potential and manifest quark confinement. Finally, it is shown how to construct an action-at-a-distance model of pure quantum gravity (whose classical limit is the dynamics of the Einstein Lagrangian) coupled to an external classical source. The model is trivially renormalizable. (author)
Why are tensor field theories asymptotically free?
Rivasseau, V.
2015-09-01
In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a 1/p2 propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex, whereas in the vector case, the lack of asymptotic freedom (“Landau ghost”), as in the ordinary scalar φ^44 case, is simply due to the absence of any wave function renormalization at one loop.
Arnaudon, Alexis; López, Marco Castrillón; Holm, Darryl D
2018-01-01
The un-reduction procedure introduced previously in the context of classical mechanics is extended to covariant field theory. The new covariant un-reduction procedure is applied to the problem of shape matching of images which depend on more than one independent variable (for instance, time and an additional labelling parameter). Other possibilities are also explored: nonlinear [Formula: see text]-models and the hyperbolic flows of curves.
Two problems in thermal field theory
Indian Academy of Sciences (India)
F can be calculated perturbatively as a sum of vacuum ... F / F id eal d c b a. Figure 4. Results of the screened perturbative expansion for the free energy as a func- tion of the coupling constant in scalar field theory [8]. (a) and (b): first ... for the pressure of a SU(3) Yang–Mills gas just by introducing a mass in the propagator.
Special relativity and classical field theory
Susskind, Leonard
2017-01-01
Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.
Multibrane solutions in open string field theory
Czech Academy of Sciences Publication Activity Database
Murata, Masaki; Schnabl, Martin
2012-01-01
Roč. 2012, č. 7 (2012), 1-26 ISSN 1126-6708 R&D Projects: GA MŠk(CZ) LH11106 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP07%282012%29063
Topics on field theories at finite temperature
International Nuclear Information System (INIS)
Eboli, O.J.P.
1985-01-01
The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt
Numerical studies of gauge field theories
International Nuclear Information System (INIS)
Creutz, M.
1981-06-01
Monte Carlo simulation of statistical systems is a well established technique of the condensed matter physicist. In the last few years, particle theorists have rediscovered this method and are having a marvelous time applying it to quantized gauge field theories. The main result has been strong numerical evidence that the standard SU(3) non-Abelian gauge theory of the strong interaction is capable of simultaneously confining quarks into the physical hadrons and exhibiting asymptotic freedom, the phenomenon of quark interactions being small at short distances. In four dimensions, confinement is a non-perturbative phenomenon. Essentially all models of confinement tie widely separated quarks together with strings of gauge field flux. This gives rise to a linear potential at long distances. A Monte Carlo program generates a sequence of field configuration by a series of random changes of the fields. The algorithm is so constructed that ultimately the probability density for finding any given configuration is proportional to the Boltzmann weighting. We bring our lattices into thermal equilibrium with a heat bath at a temperature specified by the coupling constant. Thus we do computer experiments with four-dimensional crystals stored in a computer memory. As the entire field configuration is stored, we have access to any correlation function desired. These lectures describe the kinds of experiments being done and the implications of these results for strong interaction physics
Heavy Quarks, QCD, and Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
Nonlinear analysis approximation theory, optimization and applications
2014-01-01
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Tachyon condensation in superstring field theory
International Nuclear Information System (INIS)
Berkovits, Nathan; Sen, Ashoke; Zwiebach, Barton
2000-01-01
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.
2016-09-14
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Lattice theory special topics and applications
Wehrung, Friedrich
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich W...
Topics in string theory and quantum field theory
Giombi, Simone
In this dissertation we study several topics in string theory and quantum field theory, which we collect into three main parts. The first part contains some studies in the context of twistor string theory. Witten proposed that the perturbative expansion of N = 4 super Yang-Mills theory has a dual formulation in terms of a topological string theory on the supertwistor space CP3|4 . We discuss extensions of this construction in two directions. First, we make some preliminary considerations on the possibility of having a similar twistor approach to perturbative gravity. Then we extend the construction to theories with lower supersymmetry by taking orbifolds in the fermionic directions of CP3|4 . We consider N = 1 and N = 2 superconformal quiver gauge theories as specific examples. In the second part of the dissertation we study worldline methods in curved space. In particular, we use the N = 2 spinning particle to describe antisymmetric tensors of arbitrary rank propagating in a curved background. The path integral quantization of the N = 2 particle produces a novel and compact representation of the one loop effective action for generic differential p-forms, including the vector field as a special example. We study both the massless and massive case, and show that the worldline representation of the one loop effective action can be used to efficiently study various quantum effects for antisymmetric tensor fields of arbitrary rank in arbitrary dimension. In the last and final part we study some topics in the context of the AdS/CFT correspondence. We start by investigating the recently discovered description of half-BPS supergravity backgrounds in terms of one-dimensional free fermions. We study a generalization of this construction obtained by considering free fermions at non-zero temperature. The ADM mass of the corresponding supergravity background is shown to agree with the fermion thermal energy, and we propose a way to qualitatively match the entropy in the two
Undergraduate Lecture Notes in Topological Quantum Field Theory
Ivancevic, Vladimir G.; Ivancevic, Tijana T.
2008-01-01
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
Particle versus field structure in conformal quantum field theories
International Nuclear Information System (INIS)
Schroer, Bert
2000-06-01
I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)
On the background independence of string field theory
International Nuclear Information System (INIS)
Sen, A.
1990-01-01
Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)
An application of Anthony Giddens' structuration theory
African Journals Online (AJOL)
The aim of this article is to discuss the structuration theory of Anthony Giddens with regard to its applicability to translation studies. Key concepts of Giddens' sociological theory as agent, agency, structure, system and structuration will be explored in terms of their applicability to translation. In this article, structuration theory ...
DEFF Research Database (Denmark)
Lindgård, P.-A.; Schmid, B.
1993-01-01
In the singlet ground-state systems CsFeCl3 and CsFeBr3 a large single-ion anisotropy causes a singlet ground state and a doubly degenerate doublet as the first excited states of the Fe2+ ion. In addition the magneteic interaction is anisotropic being much larger along the z axis than perpendicular...... to it. Therefore, these quasi-one-dimensional magnetic model systems are ideal to demonstrate unique correlation effects. Within the framework of the correlation theory we derive the expressions for the excitation spectrum. When a magnetic field is applied parallel to the z axis both substances have...
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Motion of small bodies in classical field theory
International Nuclear Information System (INIS)
Gralla, Samuel E.
2010-01-01
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2015-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2017-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Triboluminescence theory, synthesis, and application
Okoli, Okenwa; Fontenot, Ross; Hollerman, William
2016-01-01
This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology — measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure — sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircraf...
Conformal Field Theory, Automorphic Forms and Related Topics
Weissauer, Rainer; CFT 2011
2014-01-01
This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster, and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the MAThematics Center Heidelberg (MATCH).
An invitation to quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A.
2012-01-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
An invitation to quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Gaume, Luis [CERN, Geneva (Switzerland). Physics Dept.; Vazquez-Mozo, Miguel A. [Salamanca Univ. (Spain). Dept. de Fisica Fundamental
2012-07-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
Monoidal categories and topological field theory
Turaev, Vladimir
2017-01-01
This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...
Introduction to soliton theory applications to mechanics
Munteanu, Ligia
2005-01-01
This monograph provides the application of soliton theory to solve certain problems selected from the fields of mechanics. The work is based of the authors' research, and on some specified, significant results existing in the literature. The present monograph is not a simple translation of its predecessor appeared in Publishing House of the Romanian Academy in 2002. Improvements outline the way in which the soliton theory is applied to solve some engineering problems. The book addresses concrete resolution methods of certain problems such as the motion of thin elastic rod, vibrations of initial deformed thin elastic rod, the coupled pendulum oscillations, dynamics of left ventricle, transient flow of blood in arteries, the subharmonic waves generation in a piezoelectric plate with Cantor-like structure, and some problems related to Tzitzeica surfaces. This comprehensive study enables the readers to make connections between the soliton physical phenomenon and some partical, engineering problems.
Relativistic mean field theory for unstable nuclei
International Nuclear Information System (INIS)
Toki, Hiroshi
2000-01-01
We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)
GNSS remote sensing theory, methods and applications
Jin, Shuanggen; Xie, Feiqin
2014-01-01
This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.
Game Theory: An Application to Tanners and 'Pomo' Wholesalers in ...
African Journals Online (AJOL)
Game Theory: An Application to Tanners and 'Pomo' Wholesalers in Hides Marketing Competition in Nigeria. ... Agricultural economics is an applied social science so game theory was applied practically from a field survey to determine the level of competition between tanners and 'pomo' wholesalers in Nigeria. All the ...
Bare coupling constants and asymptotic behaviour in reggeon field theory
International Nuclear Information System (INIS)
Baig, M.
1983-01-01
A relation between the values of bare coupling constants and the asymptotic behaviour of the reggeon field theory (RFT) is discussed. It is shown how the numerical values of bare coupling constants fix the starting point of renormalization group trajectories which, in turn, determine the asymptotic behaviour of the RFT. Applications to a pure pomeron theory and a pomeron plus f-pole model are discussed. Some nontrivial phenomenological information concerning the values of bare triple-Regge pomeron-f-pole coupling constants is obtained
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Theory of field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1993-01-01
This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Di Leo, Claudio V.; Rejovitzky, Elisha; Anand, Lallit
2014-10-01
We formulate a unified framework of balance laws and thermodynamically-consistent constitutive equations which couple Cahn-Hilliard-type species diffusion with large elastic deformations of a body. The traditional Cahn-Hilliard theory, which is based on the species concentration c and its spatial gradient ∇c, leads to a partial differential equation for the concentration which involves fourth-order spatial derivatives in c; this necessitates use of basis functions in finite-element solution procedures that are piecewise smooth and globally C1-continuous. In order to use standard C0-continuous finite-elements to implement our phase-field model, we use a split-method to reduce the fourth-order equation into two second-order partial differential equations (pdes). These two pdes, when taken together with the pde representing the balance of forces, represent the three governing pdes for chemo-mechanically coupled problems. These are amenable to finite-element solution methods which employ standard C0-continuous finite-element basis functions. We have numerically implemented our theory by writing a user-element subroutine for the widely used finite-element program Abaqus/Standard. We use this numerically implemented theory to first study the diffusion-only problem of spinodal decomposition in the absence of any mechanical deformation. Next, we use our fully coupled theory and numerical-implementation to study the combined effects of diffusion and stress on the lithiation of a representative spheroidal-shaped particle of a phase-separating electrode material.
Vortex operators in gauge field theories
International Nuclear Information System (INIS)
Polchinski, J.G.
1980-01-01
We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
Towers of algebras in rational conformal field theories
International Nuclear Information System (INIS)
Gomez, C.; Sierra, G.
1991-01-01
This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors
Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)
International Nuclear Information System (INIS)
Anon.
1995-01-01
The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
Coarse grainings and irreversibility in quantum field theory
International Nuclear Information System (INIS)
Anastopoulos, C.
1997-01-01
In this paper we are interested in studying coarse graining in field theories using the language of quantum open systems. Motivated by the ideas of Hu and Calzetta on correlation histories we employ the Zwanzig projection technique to obtain evolution equations for relevant observables in self-interacting scalar field theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation functions of degree less than n, a treatment which corresponds to the familiar truncation of the BBKGY hierarchy at the nth level. We derive the equations governing the evolution of mean-field and two-point functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of our formalism, the emergence of classical behavior, and the connection to the decoherent histories framework. copyright 1997 The American Physical Society
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Field theory approach to quantum hall effect
International Nuclear Information System (INIS)
Cabo, A.; Chaichian, M.
1990-07-01
The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig
Theory of microemulsions in a gravitational field
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
The Effective Field Theory of nonsingular cosmology
International Nuclear Information System (INIS)
Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2017-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Exact integrability in quantum field theory
International Nuclear Information System (INIS)
Thacker, H.B.
1980-08-01
The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen
2015-01-01
In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps...... on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....
Spectral theory and nonlinear analysis with applications to spatial ecology
Cano-Casanova, S; Mora-Corral , C
2005-01-01
This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
Quantum field theory lectures of Sidney Coleman
Derbes, David; Griffiths, David; Hill, Brian; Sohn, Richard; Ting, Yuan-Sen
2018-01-01
Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the ancient Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
Advanced concepts in particle and field theory
Hübsch, Tristan
2015-01-01
Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Willig, Ida; Waltorp, Karen; Hartley, Jannie Møller
2015-01-01
This special issue of MedieKultur specifically addresses new media practices and asks how field theory approaches can help us understand how culture is (prod)used via various digital platforms. In this article introducing the theme of the special issue, we argue that studies of new media practices...... could benefit particularly from Pierre Bourdieu’s research on cultural production. We introduce some of the literature that concerns digital media use and has been significant for field theory’s development in this context. We then present the four thematic articles in this issue and the articles...... of a reflexive sociology are capable of prompting important questions without necessarily claiming to offer a complete and self-sufficient sociology of media, including new media....
Histories and observables in covariant field theory
Paugam, Frédéric
2011-09-01
Motivated by DeWitt's viewpoint of covariant field theory, we define a general notion of a non-local classical observable that applies to many physical Lagrangian systems (with bosonic and fermionic variables), by using methods that are now standard in algebraic geometry. We review the methods of local functional calculus, as they are presented by Beilinson and Drinfeld, and relate them to our construction. We partially explain the relation of these with Vinogradov's secondary calculus. The methods present here are all necessary to understand mathematically properly, and with simple notions, the full renormalization of the standard model, based on functional integral methods. Our approach is close in spirit to non-perturbative methods since we work with actual functions on spaces of fields, and not only formal power series. This article can be seen as an introduction to well-grounded classical physical mathematics, and as a good starting point to study quantum physical mathematics, which make frequent use of non-local functionals, like for example in the computation of Wilson's effective action. We finish by describing briefly a coordinate-free approach to the classical Batalin-Vilkovisky formalism for general gauge theories, in the language of homotopical geometry.