WorldWideScience

Sample records for field theory applications

  1. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  2. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  3. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  4. Gauge field theories an introduction with applications

    CERN Document Server

    Guidry, Mike

    1991-01-01

    Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises

  5. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  6. Noether's theorems applications in mechanics and field theory

    CERN Document Server

    Sardanashvily, Gennadi

    2016-01-01

    The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

  7. Some applications of renormalized RPA in bosonic field theories

    International Nuclear Information System (INIS)

    Hansen, H.; Chanfray, G.

    2003-01-01

    We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Φ 4 theory and discuss its phase structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA. (authors)

  8. Grand partition function in field theory with applications to sine-Gordon field theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1978-01-01

    Certain relativistic field theories are shown to be equivalent to the grand partition function of an interacting gas. Using the physical insight given by this analogy many field-theoretic results are obtained, particularly for the sine-Gordon field theory. The main results are enumerated in the summary to which the reader is referred

  9. Cosmological applications of algebraic quantum field theory in curved spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  10. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  11. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  12. An application of information theory to stochastic classical gravitational fields

    Science.gov (United States)

    Angulo, J.; Angulo, J. C.; Angulo, J. M.

    2018-06-01

    The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.

  13. Probabilistic theory of mean field games with applications

    CERN Document Server

    Carmona, René

    2018-01-01

    This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...

  14. Conformal field theory and its application to strings

    International Nuclear Information System (INIS)

    Verlinde, E.P.

    1988-01-01

    Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes

  15. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory

    International Nuclear Information System (INIS)

    Schlingemann, D.

    1996-10-01

    Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)

  16. Field theory

    CERN Multimedia

    1999-11-08

    In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.

  17. Unified field theory

    International Nuclear Information System (INIS)

    Prasad, R.

    1975-01-01

    Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)

  18. The application of mean field theory to image motion estimation.

    Science.gov (United States)

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  19. Bound state quantum field theory application to atoms and ions

    CERN Document Server

    Sapirstein, Jonathan

    2019-01-01

    Two aspects of the book should appeal to a wide audience. One aspect would be the comprehensive coverage on the latest updates and developments this book provides, besides Bethe and Salpeter's handbook on hydrogen and helium, which is still widely regarded as useful. The other aspect would be that a major part of the book uses “effective field theory”, a way of including quantum electrodynamics (QED) that starts with the familiar Schrödinger equation, and then adds perturbing operators derived in a rather simple manner that incorporates QED. Effective field theory is used in a number of fields including particle physics and nuclear physics, and readership is targeted at these communities too.Additionally, students using this book in conjunction with Peskin's textbook could learn to carry out fairly sophisticated calculations in QED in order to learn the technique, as this book comes with practical calculations.Also included is a very clear exposition of the Bethe–Salpeter equation, which is simply either ...

  20. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  1. Keldysh theory of strong field ionization: history, applications, difficulties and perspectives

    International Nuclear Information System (INIS)

    V Popruzhenko, S

    2014-01-01

    The history and current status of the Keldysh theory of strong field ionization are reviewed. The focus is on the fundamentals of the theory, its most important applications and those aspects which still raise difficulties and remain under discussion. The Keldysh theory is compared with other nonperturbative analytic methods of strong field atomic physics and its important generalizations are discussed. Among the difficulties, the gauge invariance problem, the tunneling time concept, the conditions of applicability and the application of the theory to ionization of systems more complex than atoms, including molecules and dielectrics, are considered. Possible prospects for the future development of the theory are also discussed. (review article)

  2. Algebric generalization of symmetry Dirac bracket. Application to field theory

    International Nuclear Information System (INIS)

    Rocha Filho, T.M. da.

    1987-01-01

    The A set of observable of a physical system with finite e infinite number of degrees of freedom and submitted to certain constraint conditions, is considered. Using jordan algebra structure on A in relation to bymmetric Poisson bracket obtained by Droz-Vincent, a jordan product is obtained on the A/I quocient set with regard to I ideal generated by constraints of second class. It is shown that this product on A/I corresponds to symmetric Dirac bracket. The developed formulation is applied to a system corresponding to harmonic oscillators, non relativistic field, Rarita-Schwinger field and the possibility of its utilization in fermionic string theories is discussed. (M.C.K.)

  3. Two applications of Berry's phase in fermionic field theory

    International Nuclear Information System (INIS)

    Goff, W.E.

    1989-01-01

    When quantized fermions are coupled to a background field, nontrivial effects may arise due to the geometry and/or topology of the space of background field configurations. In this thesis, two examples of Berry's geometrical phase in a fermionic sea are studied: the anomalous commutator in gauge field theory and the intrinsic orbital angular momentum in superfluid 3 He-A. Chapter 1 is a brief introduction. Chapter 2 reviews Berry's Phase and several toy models. Effective actions are calculated for two models in gradient expansions and the role of a geometric term is discussed. Chapter 3 investigates the anomalous commutator in the generators of gauge symmetry in field theory. Using an idea introduced by Sonoda, the Berry phase of the vacuum state is found to be the sum of the Berry phases of the individual states in the sea plus a piece due to the infinite nature of the Dirac sea. The latter is the anomalous commutator. Also found is a relative minus sign between the commutator of the total gauge symmetry generators and the commutator of the fermionic charge generators. Examples are given. In Chapter 4, a geometric way of deriving the intrinsic orbital angular momentum term in the 3 He-A equations of motion is presented. Homogeneous, adiabatically evolving textures at zero temperature are found to pick up a nonzero groundstate Berry phase, where the ground state is taken to be a filled sea of Bogoliubov quasiparticles. Interpreting the phase as a Wess-Zumino effective action for the condensate provides a geometric origin for the intrinsic angular momentum. The idea of a ground-state phase is then extended to other gap functions and a more general result is obtained. Chapter 5 concludes with a discussion of the possibility of unifying the two problems in a more general framework and directions for further work

  4. Test-particle motion in Einstein's unified field theory. I. General theory and application to neutral test particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1985-01-01

    We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field

  5. Applications of the absolute reaction rate theory to biological responses in electric and magnetic fields

    International Nuclear Information System (INIS)

    Brannen, J.P.; Wayland, J.R.

    1976-01-01

    This paper develops a theoretical foundation for the study of biological responses of electric and magnetic fields. The basis of the development is the absolute reaction rate theory and the effects of fields on reaction rates. A simple application to the response of Bacillus subtilis var niger in a microwave field is made. Potential areas of application are discussed

  6. Application of the nuclear field theory to superfluid nuclei

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1980-01-01

    The quasiparticle-phonon multiplet of superfluid spherical nuclei is investigated in the framework of the nuclear field theory (NFT), using the pairing plus quadrupole force. In leading order of the NFT expansion there exists a simple relation between the energy splitting of the multiplet and the ground state B(E lambda) transitions from the multiplet. This relation states that the reduced matrix elements for the B(E lambda) transition decrease linearly with increasing energies of the multiplet states. The extent to which this relation is fulfilled by available experimental data is checked. The influence of the spurious correlations involved in the NFT treatment due to the BCS approximation is estimated. The numerical calculations are performed for 93 Nb where the ground state B(E lambda) transitions are measured for all multiplet states. (orig.)

  7. Extremes in random fields a theory and its applications

    CERN Document Server

    Yakir, Benjamin

    2013-01-01

    Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on the analytical approximations of the statistical significance of extreme values. Several relatively complex applications of the technique to problems that emerge in practical situations are presented.  All the examples are difficult to analyze using classical methods, and as a result, the author pr

  8. Field theories with subcanonical fields

    International Nuclear Information System (INIS)

    Bigi, I.I.Y.

    1976-01-01

    The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de

  9. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  10. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  11. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  12. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  13. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  14. Testing and application of the nuclear field theory: the nuclei 91Nb and 211Pb

    International Nuclear Information System (INIS)

    Liotta, R.J.; Silvestre-Brac, B.A.

    1978-01-01

    A method is presented for summing up the whole nuclear field theory series for the case of three particles outside a closed shell. The method is first illustrated within a simple model and then applied to the nucleus 91 Nb. In all the cases it is shown that the theory properly corrects the Pauli principle violations and the resulting overcompleteness of the basis. Finally, the application of the method in the analysis of the spectrum of 211 Pb gives a reasonable account of the experimental features. This last application also shows that the first-order perturbation method is in good agreement with the full application of the theory. (Auth.)

  15. WORKSHOP: Thermal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    The early history of the Universe is a crucial testing ground for theories of elementary particles. Speculative ideas about the constituents of matter and their interactions are reinforced if they are consistent with what we suppose happened near the beginning of time and discarded if they are not. The cosmological consequences of these theories are usually deduced using a general statistical approach called thermal field theory. Thus, 75 physicists from thirteen countries met in Cleveland, Ohio, last October for the first 'Workshop on Thermal Field Theories and their Applications'.

  16. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  17. Tensor categories and endomorphisms of von Neumann algebras with applications to quantum field theory

    CERN Document Server

    Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning

    2015-01-01

    C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).

  18. Marketing at Superior: Theory meets application in the field

    International Nuclear Information System (INIS)

    Jeffrey, S.

    1992-01-01

    The field marketing practices of Superior Propane in rural Ontario are illustrated. In the Smithville area, Superior's customer base consists of agricultural, industrial, commercial, and residential customers, plus a large market for auto propane. A 6,900 ft 2 showroom presents a representative selection of the wide range of appliances using propane. Superior's Smithville branch is one of the top five in Canada, in terms of volume. To expand business beyond its traditional branch structures, Superior has an Independent Partners Program which is aimed at all phases of business including independent sales agents, conversions, propane fuel stops, appliance installations, and building contractors. In Keswick, located in the summer resort region on the south shore of Lake Simcoe, Superior's base load is 40% commercial and 20% each agricultural, residential, and automotive. A new 4,100 ft 2 showroom was recently constructed with separate display units for each appliance. The new building has brought increases in auto propane and appliance sales. The different branches of Superior Propane are able to tailor their marketing programs according to local needs by choosing the appropriate programs from those available at head office. 5 figs

  19. Shielding Flowers Developing under Stress: Translating Theory to Field Application

    Directory of Open Access Journals (Sweden)

    Noam Chayut

    2014-07-01

    Full Text Available Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.

  20. Functional stochastic differential equations: mathematical theory of nonlinear parabolic systems with applications in field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Doering, C.R.

    1985-01-01

    Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory

  1. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  2. Comments on lightlike translations and applications in relativistic quantum field theory

    International Nuclear Information System (INIS)

    Driessler, W.

    1975-01-01

    In the algebraic framework of quantum field theory we consider one parameter subgroups of lightlike translations. After establishing a few preliminary properties we prove a certain cluster property and then exhibit the close connection between such subgroups and a class of type III factors. A few applications of this connection are also discussed. (orig.) [de

  3. Effective field theories

    International Nuclear Information System (INIS)

    Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.

    1992-05-01

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  4. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  5. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1986-01-01

    This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications

  6. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  7. Unitary field theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1980-01-01

    A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion

  8. Advances in dynamic and mean field games theory, applications, and numerical methods

    CERN Document Server

    Viscolani, Bruno

    2017-01-01

    This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...

  9. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  10. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  11. Covariant Noncommutative Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)

    2008-07-02

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.

  12. Covariant Noncommutative Field Theory

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced

  13. Selected Topics in Light Front Field Theory and Applications to the High Energy Phenomena

    Science.gov (United States)

    Kundu, Rajen

    1999-10-01

    In this thesis, we have presented some of the aspects of light-front (LF) field theory through their successful application in the Deep Inelastic Scattering (DIS). We have developed a LFQCD Hamiltonian description of the DIS structure functions starting from Bjorken-Johnson-Low limit of virtual forward Compton scattering amplitude and using LF current commutators. We worked in the LF gauge A^+=0 and used the old-fashioned LFQCD perturbation theory in our calculations. The importance of our work are summarized below. Our approach shares the intution of parton model and addresses directly the structure functions, which are experimental objects, instead of its moments as in OPE method. Moreover, it can potentially incorporate the non-perturbative contents of the structure functions as we have demonstrated by introducing a new factorization scheme. In the context of nucleonic helicity structure, the well known gauge fixed LF helicity operator is shown to provide consistent physical information and helps us defining new relevant structure functions. The anomalous dimensions relevant for the Q^2-evolution of such structure functions are calculated. Our study is important in establishing the equivalance of LF field theory and the usual equal-time one through perturbative calculations of the dressed parton structure functions reproducing the well known results. Also the importance of Gallilean boost symmetry in understanding the correctness of any higher order calculation using (x^+)-ordered LFQCD perturbation theory are emphasized.

  14. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  15. The application of Regge calculus to quantum gravity and quantum field theory in a curved background

    International Nuclear Information System (INIS)

    Warner, N.P.

    1982-01-01

    The application of Regge calculus to quantum gravity and quantum field theory in a curved background is discussed. A discrete form of exterior differential calculus is developed, and this is used to obtain Laplacians for p-forms on the Regge manifold. To assess the accuracy of these approximations, the eigenvalues of the discrete Laplacians were calculated for the regular tesselations of S 2 and S 3 . The results indicate that the methods obtained in this paper may be used in curved space-times with an accuracy comparing with that obtained in lattice gauge theories on a flat background. It also becomes evident that Regge calculus provides particularly suitable lattices for Monte-Carlo techniques. (author)

  16. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  17. Correcting Improper Uses of Perspectives, Pronouns, and Dualities in Wilberian Integral Theory: An Application of Holarchical Field Theory

    Directory of Open Access Journals (Sweden)

    Kevin J. Bowman

    2014-03-01

    Full Text Available This article uses my pre-existing extension of Wilberian metatheory, holarchical field theory, to diagnose and work towards overcoming the confusion within attempts to analyze action, events, and communication using Ken Wilber’s AQAL model. In holarchical field theory, holarchical fields become the fundamental component of reality. These fields comprise 1 holons in relation to one another and to their potential, and 2 their interpenetrating forces engaged by their interactions. In light of the theory, problems in the Wilberian literature have included inconsistent uses of certain dualities (subject-object, interior-exterior, and inside-outside as well as person perspectives and pronouns. Previous attempts to overcome these issues without precise diagnoses suffer from a conflation of the dual definitions of the subjective-objective duality, one a philosophical definition, the other grammatical. State versus action language is classified within the dualities of holarchical field theory.

  18. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  19. Causality and superluminal behavior in classical field theories: Applications to k-essence theories and modified-Newtonian-dynamics-like theories of gravity

    International Nuclear Information System (INIS)

    Bruneton, Jean-Philippe

    2007-01-01

    Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories

  20. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  1. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  2. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  3. Field theory approach to gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1978-01-01

    A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable

  4. Electron traps in polar liquids. An application of the formalism of the random field theory

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1992-01-01

    The potential energy surface in a disordered medium is described, using the concepts of the mathematical theory of random fields. The statistics of trapping sites (the regions of an excursion of the random field) is obtained for liquid methanol as a numerical example of the theory. (author). 15 refs, 4 figs

  5. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  6. Thermal field theory in a layer: Applications of thermal field theory methods to the propagation of photons in a two-dimensional electron sheet

    International Nuclear Information System (INIS)

    Nieves, Jose F.

    2010-01-01

    We apply the thermal field theory methods to study the propagation of photons in a plasma layer, that is a plasma in which the electrons are confined to a two-dimensional plane sheet. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.

  7. Finite discrete field theory

    International Nuclear Information System (INIS)

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  8. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  9. Methods of thermal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)

    1998-11-01

    We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.

  10. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  11. An application of random field theory to analysis of electron trapping sites in disordered media

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1993-01-01

    The potential energy surface in a disordered medium is considered a random field and described using the concepts of the mathematical theory of random fields. The preexisting traps for excess electrons are identified with certain regions of excursion (extreme regions) of the potential field. The theory provides an analytical method of statistical analysis of these regions. Parameters of the cavity-averaged potential field, which are provided by computer simulation of a given medium, serve as input data for the analysis. The statistics of preexisting traps are obtained for liquid methanol as a numerical example of the random field method. 26 refs., 6 figs

  12. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  13. Hyperfunction quantum field theory

    International Nuclear Information System (INIS)

    Nagamachi, S.; Mugibayashi, N.

    1976-01-01

    The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de

  14. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  15. Dual double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-06-06

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  16. Noncommutative field theory

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Nekrasov, Nikita A.

    2001-01-01

    This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level

  17. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  18. [Topics in field theory and string theory

    International Nuclear Information System (INIS)

    1990-01-01

    In the past year, I have continued to investigate the relations between conformal field theories and lattice statistical mechanical models, and in particular have been studying two dimensional models coupled to quantum gravity. I have continued as well to consider possible extension of these results to higher dimensions and potential applications in other contexts

  19. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  20. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  1. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  2. Some applicationS of non-Hermitian operators in quantum mechanics and quantum field theory

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A. Jr.; Smrz, P.

    1983-01-01

    Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some work done in the past in collaboration with A., Agodi, M., Baldo and V.S., Olkhovsky is here reported. Such work led to the introduction of non-Hermitian operators in (classical and relativistic) quantum theory. In particular: (i) the association of unstable states (decaying 'Resonances') with the eigenvectors of non-Hermitian hamiltonians; (ii) the problem of the four position operators for relativistic spin-zero particles are dealth with

  3. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  4. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  5. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  6. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  7. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  8. Gauge field theories

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1981-01-01

    The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)

  9. Application of the random field theory in PET imaging - injection dose optimization

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Jiří; Boldyš, Jiří; Skopalová, M.; Bělohlávek, O.

    2013-01-01

    Roč. 49, č. 2 (2013), s. 280-300 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional support: RVO:67985556 Keywords : random field theory * Euler characteristic * PET imaging * PET image quality Subject RIV: BD - Theory of Information Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/boldys-0397176.pdf

  10. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  11. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  12. Gauge field theories

    International Nuclear Information System (INIS)

    Pokorski, S.

    1987-01-01

    Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry

  13. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  14. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  15. Unified field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1976-01-01

    A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de

  16. Theoretical physics. Field theory

    International Nuclear Information System (INIS)

    Landau, L.; Lifchitz, E.

    2004-01-01

    This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)

  17. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, David; Love, Alexander

    1986-01-01

    The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)

  18. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy

    2004-01-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  19. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  20. Gauge field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Slavnov, A.A.

    1981-01-01

    This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru

  1. Applications of the renormalization group approach to problems in quantum field theory

    International Nuclear Information System (INIS)

    Renken, R.L.

    1985-01-01

    The presence of fluctuations at many scales of length complicates theories of quantum fields. However, interest is often focused on the low-energy consequences of a theory rather than the short distance fluctuations. In the renormalization-group approach, one takes advantage of this by constructing an effective theory with identical low-energy behavior, but without short distance fluctuations. Three problems of this type are studied here. In chapter 1, an effective lagrangian is used to compute the low-energy consequences of theories of technicolor. Corrections to weak-interaction parameters are found to be small, but conceivably measurable. In chapter 2, the renormalization group approach is applied to second order phase transitions in lattice gauge theories such as the deconfining transition in the U(1) theory. A practical procedure for studying the critical behavior based on Monte Carlo renormalization group methods is described in detail; no numerical results are presented. Chapter 3 addresses the problem of computing the low-energy behavior of atoms directly from Schrodinger's equation. A straightforward approach is described, but is found to be impractical

  2. Unitary unified field theories

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1976-01-01

    This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)

  3. Covariant density functional theory beyond mean field and applications for nuclei far from stability

    International Nuclear Information System (INIS)

    Ring, P

    2010-01-01

    Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.

  4. Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications

    International Nuclear Information System (INIS)

    Cardy, John

    2013-01-01

    We describe an approach to logarithmic conformal field theories as limits of sequences of ordinary conformal field theories with varying central charge c. Logarithmic behaviour arises from degeneracies in the spectrum of scaling dimensions at certain values of c. The theories we consider are all invariant under some internal symmetry group, and logarithmic behaviour occurs when the decomposition of the physical observables into irreducible operators becomes singular. Examples considered are quenched random magnets using the replica formalism, self-avoiding walks as the n → 0 limit of the O(n) model, and percolation as the limit Q → 1 of the Potts model. In these cases we identify logarithmic operators and pay particular attention to how the c → 0 paradox is resolved and how the b-parameter is evaluated. We also show how this approach gives information on logarithmic behaviour in the extended Ising model, uniform spanning trees and the O( − 2) model. Most of our results apply to general dimensionality. We also consider massive logarithmic theories and, in two dimensions, derive sum rules for the effective central charge and the b-parameter. (review)

  5. Bucharest PhD Training School : Modern Aspects of Quantum Field Theory and Applications

    CERN Document Server

    2015-01-01

    Bucharest 2015 – Modern Aspects of Quantum Field Theory is part of the CERN – SEENET-MTP PhD Training Program, which consists of a number of seminars in theoretical high energy Physics. This is the second seminar organized by this Program. Here are some photos from this event held in Bucharest between 8-14 November 2015. The previous seminar was organized in Belgrade, under the name Belgrade 2015 - Supergravity.

  6. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  7. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  8. Parafermionic conformal field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1989-09-01

    Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt

  9. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  10. Topics in conformal field theory

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1988-01-01

    In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail

  11. Differential algebras in field theory

    International Nuclear Information System (INIS)

    Stora, R.

    1988-01-01

    The applications of differential algebras, as mathematical tools, in field theory are reviewed. The Yang-Mills theories are recalled and the free bosonic string model is treated. Moreover, in the scope of the work, the following topics are discussed: the Faddeev Popov fixed action, in a Feynman like gauge; the structure of local anomalies, including the algebric and the topological theories; the problem of quantizing a degenerate state; and the zero mode problem, in the treatment of the bosonic string conformal gauge. The analysis leads to the conclusion that not much is known about situations where a non involutive distribution is involved

  12. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  13. The utility of quantum field theory

    International Nuclear Information System (INIS)

    Dine, Michael

    2001-01-01

    This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)

  14. Introduction to field theory

    CERN Multimedia

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  15. Finite fields and applications

    CERN Document Server

    Mullen, Gary L

    2007-01-01

    This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...

  16. On the application of the field-redefinition theorem to the heterotic superstring theory

    Science.gov (United States)

    Pollock, M. D.

    2015-05-01

    The ten-dimensional effective action which defines the heterotic superstring theory at low energy is constructed by hypothesis in such a way that the resulting classical equation of motion for the space-time metric simultaneously implies the vanishing of the beta-function for the N = 1 supersymmetric non-linear sigma-model on the world sheet. At four-loop order it was found by Grisaru and Zanon (see also Freeman et al.) that the effective Lagrangian so constructed differs in the numerical coefficient of the term from that obtained directly from the four-point gravitational scattering amplitude. The two expressions can be related via a metric field redefinition , activation of which, however, results in the appearance of ghosts at higher gravitational order , n > 4, as shown by Lawrence. Here, we prove, after reduction of to the physical dimensionality D = 4, that the corresponding field redefinition yields the identity g' ij = g ij , signified by L 3/ R = 0, in a Friedmann space-time generated by a perfect-fluid source characterized by adiabatic index γ ≡ 1 + p/ ρ, where p is the pressure and ρ is the energy density, if, and only if, κ 6 ρ 3 γ 2( γ - 1) = 0. That is, the theory remains free of ghosts in Minkowski space ρ = 0, in a maximally symmetric space-time γ = 0, or in a dust Universe γ = 1. Further aspects of ghost freedom and dimensional reduction, especially to D = 4, are discussed.

  17. Introduction to string field theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1989-01-01

    A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)

  18. Central limit theorem in quantum field theory, generalized partons and application to deep-inelastic scattering

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1986-01-01

    We prove the following elementary theorem. If diameter 1 ,...,diametersub(N) is a sequence of fields having identical, though arbitrary, interactions but not interacting with each other and =0, i=1,...,N, then the generating functional of the ''average'' field diametersup((N))=(diameter 1 +...+diametersub((N))/√N, for N->infinite, may be explicitly obtained and may be written in terms of the two-point function of any of the fields diametersub(i). The theorem is then applied to define generalized parton fields PSIsub(j)=Σsup(N)sub(i)=1 PSIij/√N as ''averages'' of basic fields PSIsub(ij) having arbitrary interactions but not interacting with each other. We show that in the limit N->infinite Bjorken scaling, as observed at energies not too high, may be obtained if only quanta associated with generalized parton fields are excited in the hadron by the virtual photon with no reference to the details of the underlying dynamics. For N< infinite, and the excitation of other quanta as well lead to a systematic breaking of scale invariance and the details of the dynamics are necessarily recovered which are expected to be applicable at higher energy regimes. (orig.)

  19. Gyrokinetic field theory

    International Nuclear Information System (INIS)

    Sugama, H.

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  20. Superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1984-01-01

    Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)

  1. Media Accountability Online in Israel. An application of Bourdieu’s field theory

    Directory of Open Access Journals (Sweden)

    Ronja Kniep

    2015-12-01

    Full Text Available Due to structural changes in journalism, such as deregulation, privatisation and the influence of new technologies, it has become increasingly important to study media accountability (MA. By applying Bourdieu’s theory of social fields, this paper proposes a new approach to do so: MA is defined as a function of both journalistic autonomy and influence in the media field. Here, online communication potentially widens the scope of action for media’s transparency, responsiveness as well as the articulation of media criticism by a variety of actors. In Israel, media criticism is driven by the agent’s struggle for interpretive authority over public discourse in a politically polarized society. Semi-structured interviews with Israeli journalists, media activists and experts suggest that journalistic agents who have yet to earn credibility and reputation exploit online communication to its full potential, while agents in the field of power tend to dismiss online criticism. The influence of the audience’s media criticism is not solely dependent on the technical ability of connecting and hearing the voices of the masses; it has to be in combination with symbolic or political capital. However, the demand for media’s social responsibility is also related to being more careful and less critical, which is very evident in Israel. Thus, it is important to critically reflect on what happens when media accountability practices become more efficient and a stronger sense for “being watched” develops.

  2. A superstring field theory for supergravity

    Science.gov (United States)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  3. Topics in field theory

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.

  4. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  5. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shtabovenko, Vladyslav

    2017-05-22

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m{sub e}α (with m{sub e} being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m{sub e}α{sup 2}), long (R>>1/m{sub e}α{sup 2}) and intermediate (R∝1/m{sub e}α{sup 2}) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α{sup 0}{sub s}υ{sup 2}) (with α{sub s} being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ {sub cJ} and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m{sub Q} >> m{sub Q}υ >> m{sub Q

  6. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    International Nuclear Information System (INIS)

    Shtabovenko, Vladyslav

    2017-01-01

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m e α (with m e being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m e α 2 ), long (R>>1/m e α 2 ) and intermediate (R∝1/m e α 2 ) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α 0 s υ 2 ) (with α s being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ cJ and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m Q >> m Q υ >> m Q υ 2 , where m Q is the heavy quark mass and υ is the relative

  7. Control theory in physics and other fields of science concepts, tools and applications

    CERN Document Server

    Schulz, Michael

    2006-01-01

    This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.

  8. Quantum field theory

    International Nuclear Information System (INIS)

    Mancini, F.

    1986-01-01

    Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)

  9. Studies in quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Mandula, J.E.; Shrauner, J.E.

    1982-01-01

    Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD

  10. Study of the convergence of the nuclear field theory and its application on the lead isotopes

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1985-01-01

    It is shown that highly satisfactory results can be obtained not only in schematic problems (four particles in a degenerate j-shell), but in realistic ones (low lying 204 Pb spectrum), provided second order diagrams and/or diagonalization procedures are used. In both cases energies and two-body transfer amplitudes are calculated and compared with exact and other approximate results. In the second part, the electromagnetic emission of the giant quadrupole resonance (GQR) in 208 Pb after its excitation by inelastic scattering of 17 O to 380 MeV is studied. As the GQR is unstable with respect to the decay to compound nucleous, the reaction mechanism is carefully analized. A formalism is proposed in which the emission probability is factorized in three independent contributions: one due to the electromagnetic field, another to the nuclear reaction and the third to the nuclear structure. The last one is carefully studied in the lowest order of the nuclear field theory, taking into account the mixture of the different isospin states. The results are consistent with the upper experimental limit of the ratio between the transition populating the 3 - (2.62 MeV) state and the one that populates the ground state. However, they failed to reproduce the strong dipole transition to the 3 - (4.97 MeV) state. (Author) [es

  11. Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Neal, R.D.

    1975-01-01

    Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable

  12. Digestible quantum field theory

    CERN Document Server

    Smilga, Andrei

    2017-01-01

    This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...

  13. Correlation functions in finite temperature field theories: formalism and applications to quark-gluon plasma

    International Nuclear Information System (INIS)

    Gelis, Francois

    1998-12-01

    The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green's functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the 'retarded-advanced' version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green's functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author)

  14. Topics in field theory

    International Nuclear Information System (INIS)

    Velasco, E.S.

    1986-01-01

    This dissertation deals with several topics of field theory. Chapter I is a brief outline of the work presented in the next chapters. In chapter II, the Gauss-Bonnet-Chern theorem for manifolds with boundary is computed using the path integral representation of the Witten index for supersymmetric quantum mechanical systems. In chapter III the action of N = 2 (Poincare) supergravity is obtained in terms of N = 1 superfields. In chapter IV, N = 2 supergravity coupled to the (abelian) vector multiplet is projected into N - 1 superspace. There, the resulting set of constraints is solved in terms of unconstrained prepotential and the action in terms of N = 1 superfields is constructed. In chapter V the set of constraints for N = 2 conformal supergravity is projected into N = 1 superspace and solved in terms of N = 1 conformal supergravity fields a d matter prepotentials. In chapter VI the role of magnetic monopoles in the phase structure of the change one fixed length abelian Higgs model ins the latticer is investigated using analytic and numerical methods. The technique of monopole suppression is used to determine the phase transition lines that are monopole driven. Finally in chapter VII, the role of the charge of the Higgs field in the abelian Higgs model in the lattice is investigated

  15. Topics in quantum field theory

    International Nuclear Information System (INIS)

    Svaiter, N.F.

    2006-11-01

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method

  16. Fractional Stochastic Field Theory

    Science.gov (United States)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  17. Chameleon field theories

    International Nuclear Information System (INIS)

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)

  18. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  19. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1995-01-01

    The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)

  20. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1979-01-01

    The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de

  1. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  2. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  3. QCD Effective Field Theories for Heavy Quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora

    2006-01-01

    QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT

  4. Advanced number theory with applications

    CERN Document Server

    Mollin, Richard A

    2009-01-01

    Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...

  5. Naturality in conformal field theory

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)

  6. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    Science.gov (United States)

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  7. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  8. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  9. Application of Stochastic Unsaturated Flow Theory, Numerical Simulations, and Comparisons to Field Observations

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Mantoglou, Aristotelis

    1992-01-01

    unsaturated flow equation representing the mean system behavior is solved using a finite difference numerical solution technique. The effective parameters are evaluated from the stochastic theory formulas before entering them into the numerical solution for each iteration. The stochastic model is applied...... seems to offer a rational framework for modeling large-scale unsaturated flow and estimating areal averages of soil-hydrological processes in spatially variable soils....

  10. Topological quantum field theory and four manifolds

    CERN Document Server

    Marino, Marcos

    2005-01-01

    The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...

  11. A variational approach to operator and matrix Pade approximation. Applications to potential scattering and field theory

    International Nuclear Information System (INIS)

    Mery, P.

    1977-01-01

    The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed

  12. Theory of Weak Bipolar Fields and Electron Holes with Applications to Space Plasmas

    International Nuclear Information System (INIS)

    Goldman, Martin V.; Newman, David L.; Mangeney, Andre

    2007-01-01

    A theoretical model of weak electron phase-space holes is used to interpret bipolar field structures observed in space. In the limit eφ max /T e max sech 4 (x/α), where φ max depends on the derivative of the trapped distribution at the separatrix, while α depends only on a screening integral over the untrapped distribution. Idealized trapped and passing electron distributions are inferred from the speed, amplitude, and shape of satellite waveform measurements of weak bipolar field structures

  13. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  14. An application of modular inclusion to quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Summers, S.J.; Verch, R.

    1993-09-01

    Applying recent results by Borchers connecting geometric modular action, modular inclusion and the spectrum condition, earlier results by Kay and Wald concerning the temperature of physically significant states of the linear Hermitean scalar field propagating in the background of a space-time with a bifurcate Killing horizon are generalized. (orig.)

  15. Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation

    International Nuclear Information System (INIS)

    Zinn-Justin, J.; Freie Univ. Berlin

    1981-01-01

    In this review I present a method to estimate the large order behavior of perturbation theory in quantum mechanics and field theory. The basic idea, due to Lipatov, is to relate the large order behavior to (in general complex) instanton contributions to the path integral representation of Green's functions. I explain the method first in the case of a simple integral and of the anharmonic oscillator and recover the results of Bender and Wu. I apply it then to the PHI 4 field theory. I study general potentials and boson field theories. I show, following Parisi, how the method can be generalized to theories with fermions. Finally I outline the implications of these results for the summability of the series. In particular I explain a method to sum divergent series based on a Borel transformation. In a last section I compare the larger order behavior predictions to actual series calculation. I present also some numerical examples of series summation. (orig.)

  16. Introductory lectures on quantum field theory

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Vasquez-Mozo, M.A.

    2011-01-01

    In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)

  17. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  18. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  19. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  20. Elementary quantum field theory

    International Nuclear Information System (INIS)

    Thirring, W.; Henley, E.M.

    1975-01-01

    The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de

  1. Semiclassical methods in field theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt

  2. Bayesian theory and applications

    CERN Document Server

    Dellaportas, Petros; Polson, Nicholas G; Stephens, David A

    2013-01-01

    The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and devel...

  3. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  4. Austerity and geometric structure of field theories

    International Nuclear Information System (INIS)

    Kheyfets, A.

    1986-01-01

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories

  5. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  6. Hermitian (ϵ,δ)-Freudenthal-Kantor Triple Systems and Certain Applications of *-Generalized Jordan Triple Systems to Field Theory

    International Nuclear Information System (INIS)

    Kamiya, Noriaki; Sato, Matsuo

    2014-01-01

    We define Hermitian (ϵ,δ)-Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the u(N)⊕u(M) and sp(2N)⊕u(1) Hermitian 3-algebras. We apply a *-generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit

  7. Conformal dimension theory and application

    CERN Document Server

    Mackay, John M

    2010-01-01

    Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...

  8. A landscape of field theories

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2016-11-28

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  9. Games, theory and applications

    CERN Document Server

    Thomas, L C

    2011-01-01

    Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition

  10. Topological field theories and duality

    International Nuclear Information System (INIS)

    Stephany, J.; Universidad Simon Bolivar, Caracas

    1996-05-01

    Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs

  11. Finite-temperature field theory

    International Nuclear Information System (INIS)

    Kapusta, J.I.; Landshoff, P.V.

    1989-01-01

    Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)

  12. Elasticity theory and applications

    CERN Document Server

    Saada, Adel S; Hartnett, James P; Hughes, William F

    2013-01-01

    Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...

  13. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.

    Science.gov (United States)

    Murray, James M; Tesanović, Zlatko

    2010-07-16

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.

  14. Introduction to classical and quantum field theory

    International Nuclear Information System (INIS)

    Ng, Tai-Kai

    2009-01-01

    This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)

  15. On finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  16. [Studies in quantum field theory

    International Nuclear Information System (INIS)

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity

  17. Probability theory and applications

    CERN Document Server

    Hsu, Elton P

    1999-01-01

    This volume, with contributions by leading experts in the field, is a collection of lecture notes of the six minicourses given at the IAS/Park City Summer Mathematics Institute. It introduces advanced graduates and researchers in probability theory to several of the currently active research areas in the field. Each course is self-contained with references and contains basic materials and recent results. Topics include interacting particle systems, percolation theory, analysis on path and loop spaces, and mathematical finance. The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.

  18. Field theory of strings

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-01-01

    We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)

  19. Quantum theory of noncommutative fields

    International Nuclear Information System (INIS)

    Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.

    2003-01-01

    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)

  20. Wavelet theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  1. Toward finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  2. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  3. Modular groups in quantum field theory

    International Nuclear Information System (INIS)

    Borchers, H.-J.

    2000-01-01

    The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)

  4. Generalized field theory of gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1976-01-01

    It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1

  5. Renormalization of topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Rakowski, M.; Thompson, G.

    1988-11-01

    One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs

  6. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  7. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  8. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  9. Phenomenology of noncommutative field theories

    International Nuclear Information System (INIS)

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model

  10. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  11. Gravitation and bilocal field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1975-01-01

    The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de

  12. Statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Samuel, S.A.

    1979-05-01

    Field theory methods are applied to statistical mechanics. Statistical systems are related to fermionic-like field theories through a path integral representation. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, this is the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems. By the above methods a new model named the 128 pseudo-free vertex model is solved. Statistical mechanics intuition is applied to field theories. It is shown that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the Sine-Gordon field theory. Quark confinement is considered. Although not a proof of confinement, a logical, esthetic, and simple picture is presented of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks. 64 references

  13. Informetrics theory, methods and applications

    CERN Document Server

    Qiu, Junping; Yang, Siluo; Dong, Ke

    2017-01-01

    This book provides an accessible introduction to the history, theory and techniques of informetrics. Divided into 14 chapters, it develops the content system of informetrics from the theory, methods and applications; systematically analyzes the six basic laws and the theory basis of informetrics and presents quantitative analysis methods such as citation analysis and computer-aided analysis. It also discusses applications in information resource management, information and library science, science of science, scientific evaluation and the forecast field. Lastly, it describes a new development in informetrics- webometrics. Providing a comprehensive overview of the complex issues in today's environment, this book is a valuable resource for all researchers, students and practitioners in library and information science.

  14. Gasdynamics: theory and applications

    International Nuclear Information System (INIS)

    Emanuel, G.

    1986-01-01

    The fundamental principles and applications of gasdynamic theory are presented in an introductory textbook intended for senior and graduate engineering students. The emphasis is on supersonic inviscid adiabatic flows with negligible body forces, and the approach aims to bridge the gap between traditional gasdynamics and CFD. Topics examined include thermodynamics, one-dimensional conservation equations, steady streamtube flows, normal and oblique shock waves, nozzle and diffuser flows, exact solutions for the steady homentropic flow of a perfect gas, and waverider aerodynamics. A glossary of symbols, summaries of the equations for each aspect of the theory, and fully worked problems for each chapter are provided. 82 references

  15. Dimensional analysis in field theory

    International Nuclear Information System (INIS)

    Stevenson, P.M.

    1981-01-01

    Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms

  16. Computers for lattice field theories

    International Nuclear Information System (INIS)

    Iwasaki, Y.

    1994-01-01

    Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)

  17. Topics in quantum field theory

    NARCIS (Netherlands)

    Dams, C.J.F.

    2006-01-01

    In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and

  18. Quantum field theory and parastatistics

    International Nuclear Information System (INIS)

    Ohnuki, Y.; Kamefuchi, S.

    1982-01-01

    This book is an introduction to the second quantization of the wave functions of particles obeying the parastatistics. After a general introduction to the canonical quantization for the case of paracommutation relations the nonrelativistic field theory is considered. Thereafter the extension to the relativistic range is discussed. Finally some special problems in connection with parafields are considered. (HSI)

  19. Supercomputers and quantum field theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1985-01-01

    A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs

  20. Developments in superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1987-01-01

    In this article the structure of superstring theories is outlined. The one-loop quantum superstring gauge anomalies are then described and it is shown that their absence leads to an interesting theory with gauge group SO(32). The one-loop infinities also cancel for this gauge group. The anomaly cancellation can be understood in terms of the low-energy effective supergravity-Yang-Mills field theory, from which it is shown that E 8 x E 8 is an equally good gauge group, which suggests that there should also be an interesting E 8 x E 8 superstring theory. A new type of superstring theory, known as the 'heterotic' string theory, which only describes strings with gauge groups E 8 x E 8 or SO(32) is described. Finally some very exciting prospects for obtaining a sensible description of four-dimensional physics from a ten-dimensional superstring theory with gauge group E 8 x E 8 is outlined. (author)

  1. Text Mining Applications and Theory

    CERN Document Server

    Berry, Michael W

    2010-01-01

    Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives.  The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning

  2. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  3. Multifractals theory and applications

    CERN Document Server

    Harte, David

    2001-01-01

    Although multifractals are rooted in probability, much of the related literature comes from the physics and mathematics arena. Multifractals: Theory and Applications pulls together ideas from both these areas using a language that makes them accessible and useful to statistical scientists. It provides a framework, in particular, for the evaluation of statistical properties of estimates of the Renyi fractal dimensions.The first section provides introductory material and different definitions of a multifractal measure. The author then examines some of the various constructions for describing multifractal measures. Building from the theory of large deviations, he focuses on constructions based on lattice coverings, covering by point-centered spheres, and cascades processes. The final section presents estimators of Renyi dimensions of integer order two and greater and discusses their properties. It also explores various applications of dimension estimation and provides a detailed case study of spatial point patte...

  4. Growing up with field theory

    International Nuclear Information System (INIS)

    Vajskopf, V.F.

    1982-01-01

    The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy

  5. Cutkosky rules for superstring field theory

    International Nuclear Information System (INIS)

    Pius, Roji; Sen, Ashoke

    2016-01-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.

  6. Plasmonics theory and applications

    CERN Document Server

    Shahbazyan, Tigran V

    2014-01-01

    This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.

  7. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru

    2012-01-01

    The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...... electric field. The dependence of the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation wave function for H2+, very accurate...... Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule...

  8. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  9. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  10. Einstein's theory of unified fields

    CERN Document Server

    Tonnelat, Marie Antoinette

    2014-01-01

    First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic

  11. Supersymmetric rings in field theory

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Redi, Michele

    2006-01-01

    We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension

  12. A course in field theory

    CERN Document Server

    Baal, Pierre Van

    2014-01-01

    ""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the

  13. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  14. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that 'this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic. But the reviewers should add a few more remarks: (1) There are very few references. Of course, this is because the work is largely original. Even where the work of other researchers is presented, it has mostly been transformed by the DeWittian point of view. (2) There are very few diagrams, which sometimes hinders the exposition. In summary, in our opinion, this is one of the best books dealing with quantum field theory existing today. It will be of great interest for graduate and postgraduate students as well as workers in the domains of quantum field theory in flat and in curved spacetime and string theories. But we believe that the reader must have previously studied standard textbooks on quantum field theory and general relativity. Even with this preparation, it is by no means an easy book to read. However, the reward is to be able to share the deep and unique vision of the quantum theory of fields and its formalism by one of its greatest expositors. (book review)

  15. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Science.gov (United States)

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  16. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  17. Wilson lines in quantum field theory

    International Nuclear Information System (INIS)

    Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der

    2014-01-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  18. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  19. Euler-Poincare reduction for discrete field theories

    International Nuclear Information System (INIS)

    Vankerschaver, Joris

    2007-01-01

    In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed

  20. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  1. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  2. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  3. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    International Nuclear Information System (INIS)

    Schroeder, Markus; Brown, Alex

    2009-01-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  4. Dynamic random walks theory and applications

    CERN Document Server

    Guillotin-Plantard, Nadine

    2006-01-01

    The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

  5. Electricity markets theories and applications

    CERN Document Server

    Lin, Jeremy

    2017-01-01

    Electricity Markets: Theories and Applications offers students and practitioners a clear understanding of the fundamental concepts of the economic theories, particularly microeconomic theories, as well as information on some advanced optimization methods of electricity markets. The authors--noted experts in the field--cover the basic drivers for the transformation of the electricity industry in both the United States and around the world and discuss the fundamentals of power system operation, electricity market design and structures, and electricity market operations. The text also explores advanced topics of power system operations and electricity market design and structure including zonal versus nodal pricing, market performance and market power issues, transmission pricing, and the emerging problems electricity markets face in smart grid and micro-grid environments. The authors also examine system planning under the context of electricity market regime. They explain the new ways to solve problems with t...

  6. Astrophysical data analysis with information field theory

    International Nuclear Information System (INIS)

    Enßlin, Torsten

    2014-01-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented

  7. Astrophysical data analysis with information field theory

    Science.gov (United States)

    Enßlin, Torsten

    2014-12-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  8. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  9. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  10. Group field theory with noncommutative metric variables.

    Science.gov (United States)

    Baratin, Aristide; Oriti, Daniele

    2010-11-26

    We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.

  11. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  12. Progress on The GEMS (Gravity Electro-Magnetism-Strong) Theory of Field Unification and Its Application to Space Problems

    International Nuclear Information System (INIS)

    Brandenburg, J. E.

    2008-01-01

    Progress on the GEMS (Gravity Electro-Magnetism-Strong), theory is presented as well as its application to space problems. The GEMS theory is now validated through the Standard Model of physics. Derivation of the value of the Gravitation constant based on the observed variation of α with energy: results in the formula G congruent with (ℎ/2π)c/M ηc 2 exp(-1/(1.61α)), where α is the fine structure constant,(ℎ/2π), is Planck's constant, c, is the speed of light, and M ηc is the mass of the η cc Charmonium meson that is shown to be identical to that derived from the GEM postulates. Covariant formulation of the GEM theory is now possible through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: g ab = 4(F c a F cb )/(F ab F ab ), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential φ = 1/2 E 2 /B 2 . It is also found that a Lorentz or flat-space metric is recovered in the limit of a full spectrum ZPF

  13. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  14. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  15. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  16. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  17. Renormalons in effective field theories

    International Nuclear Information System (INIS)

    Luke, M.; Manohar, A.V.; Savage, M.J.

    1995-01-01

    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar

  18. Classification of networks of automata by dynamical mean field theory

    International Nuclear Information System (INIS)

    Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.

    1990-01-01

    Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)

  19. Exclusion Statistics in Conformal Field Theory Spectra

    International Nuclear Information System (INIS)

    Schoutens, K.

    1997-01-01

    We propose a new method for investigating the exclusion statistics of quasiparticles in conformal field theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest SU(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest Z N -invariant CFTs. In special examples, our approach reproduces distributions based on 'fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories. copyright 1997 The American Physical Society

  20. Group theory and lattice gauge fields

    International Nuclear Information System (INIS)

    Creutz, M.

    1988-09-01

    Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs

  1. Asymptotic behaviour in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H.

    1980-07-01

    Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.

  2. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  3. Effective-field theories for heavy quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2005-01-01

    This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production

  4. About Applications of the Fixed Point Theory

    Directory of Open Access Journals (Sweden)

    Bucur Amelia

    2017-06-01

    Full Text Available The fixed point theory is essential to various theoretical and applied fields, such as variational and linear inequalities, the approximation theory, nonlinear analysis, integral and differential equations and inclusions, the dynamic systems theory, mathematics of fractals, mathematical economics (game theory, equilibrium problems, and optimisation problems and mathematical modelling. This paper presents a few benchmarks regarding the applications of the fixed point theory. This paper also debates if the results of the fixed point theory can be applied to the mathematical modelling of quality.

  5. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  6. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  7. Twisted conformal field theories and Morita equivalence

    Energy Technology Data Exchange (ETDEWEB)

    Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it

    2009-04-01

    The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].

  8. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    be noted that DeWitt's book is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that 'this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic. (book review)[abstract truncated

  9. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  10. Noncommutative Geometry in M-Theory and Conformal Field Theory

    International Nuclear Information System (INIS)

    Morariu, Bogdan

    1999-01-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U q (SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun q (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models

  11. Topics in low-dimensional field theory

    International Nuclear Information System (INIS)

    Crescimanno, M.J.

    1991-01-01

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density

  12. Application of the nuclear field theory to monopole interactions which include all the vertices of a general force

    International Nuclear Information System (INIS)

    Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Sofia, H.M.; Broglia, R.A.

    1976-01-01

    The field treatment is applied to the monopole pairing and monopole particle-hole interactions in a two-level model. All the vertices of realistic interactions appear, and the problems treated here have most of the complexities of real nuclei. Yet, the model remains sufficiently simple, so that a close comparison with the results of a (conventional) treatment in which only the fermion degrees of freedom are considered is possible. The applicability to actual physical situations appears to be feasible, both for schematic or realistic forces. The advantage of including the exchange components of the interaction in the construction of the phonon is discussed. (Auth.)

  13. Generalized Field Theory and Kasner universe

    International Nuclear Information System (INIS)

    Klotz, A.H.

    1986-01-01

    It is shown that the only Kasner-like solution of the Generalized Field Theory field equations with a nonzero electromagnetic field corresponds to an empty field geometry of the space-time. In this case, the electromagnetic field tensors of the theory coincide as could be expected from general considerations. 6 refs. (author)

  14. On quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Haag, R.; Narnhofer, H.; Stein, U.

    1984-02-01

    We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)

  15. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  16. Light front field theory: an advanced primer

    International Nuclear Information System (INIS)

    Martinovic, L.

    2007-01-01

    We present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two/dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a 'light-like' limit of the usual field theory quantized on a initial space-like surface. A simple LF formulation of the Higgs mechanism is then given Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and number of technical details and derivations are contained in the appendices (Author)

  17. L_∞ algebras and field theory

    International Nuclear Information System (INIS)

    Hohm, Olaf; Zwiebach, Barton

    2017-01-01

    We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  19. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  20. Hamiltonian Anomalies from Extended Field Theories

    Science.gov (United States)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  1. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  2. Gaussian processes and constructive scalar field theory

    International Nuclear Information System (INIS)

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  3. PPP mode’s applications motivation in the field of water conservancy project - based on the “money service” theory of Milton Friedman

    Science.gov (United States)

    Chen, Zurong; Feng, Jingchun; Wang, Yuting; Xue, Song

    2017-06-01

    We study on PPP mode’s applications motivation in the field of water conservancy project, on the basis of analyzing Friedman’s “money service” theory, for the disadvantages of traditional investment mode in water conservancy project field. By analyzing the way of government and social capital spending money in PPP projects, we get conclusion that both of which are the way of “spending their own money to do their own thing”, which fully reflects that the two sides are a win-win partnership in PPP mode. From the application motivation, PPP mode can not only compensate for the lack of local funds, improve the investment efficiency of the government, but also promote marketization and the supply-side structural reforms.

  4. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  5. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  6. Differential pseudoconnections and field theories

    International Nuclear Information System (INIS)

    Modugno, Marco; Ragionieri, Rodolfo; Stefani, Gianna

    1981-01-01

    Several general field theories have been successful in describing fundamental physical fields by a unique schema. Our purpose is to present the first step of an attempt based on differential pseudoconnections on jet bundles. In this paper we are dealing with the essential elements of such an approach and with the testing of a certain number of important examples. We define a 'differential pseudoconnection of order k' on a bundle p:E→M as a translation morphism on the affine bundle. Such concept is a generalization of usual connections. Then we study in the framework of jet spaces several important differential operators used in physics. In this context an interest arises naturally for the second order affine differential equations, called 'special'. Particular cases of special equations are both the geodesics equation (an ordinary equation) and any Kind of Laplace equation (a partial equation) even modified by the addition of physical terms. So special equations are candidate to fit a lot of fundamental physical fields

  7. Logarithmic conformal field theory: beyond an introduction

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    studied here by first determining its irreducible spectrum, which turns out to be continuous, as well as a selection of natural reducible, but indecomposable, modules. This is followed by a detailed description of how to obtain character formulae for each irreducible, a derivation of the action of the modular group on the characters, and an application of the Verlinde formula to compute the Grothendieck fusion rules. In each case, the (genuine) fusion rules are known, so comparisons can be made and favourable conclusions drawn. In addition, each example admits an infinite set of simple currents, hence extended symmetry algebras may be constructed and a series of bulk modular invariants computed. The spectrum of such an extended theory is typically discrete and this is how the triplet model W(1,2) arises, for example. Moreover, simple current technology admits a derivation of the extended algebra fusion rules from those of its continuous parent theory. Finally, each example is concluded by a brief description of the computation of some bulk correlators, a discussion of the structure of the bulk state space, and remarks concerning more advanced developments and generalizations. The final part gives a very short account of the theory of staggered modules, the (simplest class of) representations that are responsible for the logarithmic singularities that distinguish logarithmic theories from their rational cousins. These modules are discussed in a generality suitable to encompass all the examples met in this review and some of the very basic structure theory is proven. Then, the important quantities known as logarithmic couplings are reviewed for Virasoro staggered modules and their role as fundamentally important parameters, akin to the three-point constants of rational conformal field theory, is discussed. An appendix is also provided in order to introduce some of the necessary, but perhaps unfamiliar, language of homological algebra. (review)

  8. Instantons in Lifshitz field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2015-10-05

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.

  9. Quantum field theory of universe

    International Nuclear Information System (INIS)

    Hosoya, Akio; Morikawa, Masahiro.

    1988-08-01

    As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)

  10. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  11. The use of random walk in field theory

    International Nuclear Information System (INIS)

    Brydges, D.

    1984-01-01

    Ferromagnetic spin systems and gauge theories where the gauge group is topologically a sphere, e.g. Z 2 , U(1) and SU(2) are related to the theory of random walk and random surfaces respectively. I survey some applications of this theme to the phi 4 field theories. (orig.)

  12. Dynamical mean-field theory of noisy spiking neuron ensembles: Application to the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2003-01-01

    A dynamical mean-field approximation (DMA) previously proposed by the present author [H. Hasegawa, Phys. Rev E 67, 041903 (2003)] has been extended to ensembles described by a general noisy spiking neuron model. Ensembles of N-unit neurons, each of which is expressed by coupled K-dimensional differential equations (DEs), are assumed to be subject to spatially correlated white noises. The original KN-dimensional stochastic DEs have been replaced by K(K+2)-dimensional deterministic DEs expressed in terms of means and the second-order moments of local and global variables: the fourth-order contributions are taken into account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-Huxley (HH) neurons (K=4), for which effects of the noise, the coupling strength, and the ensemble size on the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory are in good agreement with those obtained by direct simulations, although the former computation is about a thousand times faster than the latter for a typical HH neuron ensemble with N=100

  13. Dependence logic theory and applications

    CERN Document Server

    Kontinen, Juha; Väänänen, Jouko; Vollmer, Heribert

    2016-01-01

    In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning ...

  14. N=1 field theory duality from M theory

    International Nuclear Information System (INIS)

    Schmaltz, M.; Sundrum, R.

    1998-01-01

    We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society

  15. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  16. A search for light gluinos, and, Heavy quark effective field theory and B-physics with applications to the collider detector at Fermilab

    International Nuclear Information System (INIS)

    Cakir, M.B.

    1993-01-01

    In the first part of this dissertation a search for light gluinos in the 0(1 GeV) region - especially in radiative decays of vector quarkonia - is presented. It is shown that light gluinos have not been excluded by experiments to date. In fact some evidence contrary to that fact is presented. In the second part the recent Heavy Quark Effective Field Theory methods are used in calculating rare decays of vector and pseudoscalar mesons of b-quarks. Applications to the Collider Detector at Fermilab environment are discussed

  17. Supersymmetric extensions of K field theories

    Science.gov (United States)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2012-02-01

    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.

  18. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  19. Fuzzy pharmacology: theory and applications.

    Science.gov (United States)

    Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan

    2002-09-01

    Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.

  20. Morse theory interpretation of topological quantum field theories

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    1989-01-01

    Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)

  1. Application of the life cycle theory of leadership in nursing field%领导生命周期理论在护理领域的应用

    Institute of Scientific and Technical Information of China (English)

    张明月; 程云

    2011-01-01

    This paper reviewed the concepts, the development process and maturity classification of life cycle theory of leadership, and summarized the present application situation of this theory in clinical nursing,nursing management and nursing education in the domestic and foreign area,and put forward some suggestions in nursing field.%文章从概念、发展过程和成熟度分类方面对领导生命周期理论进行概述,归纳了国内外领导生命周期理论在临床护理、护理管理、护理教育方面的应用现状,并围绕以上方面提出相应建议.

  2. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  3. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  4. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  5. String fields, higher spins and number theory

    CERN Document Server

    Polyakov, Dimitri

    2018-01-01

    The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.

  6. Group theory and its applications

    CERN Document Server

    Loebl, Ernest M

    1975-01-01

    Group Theory and its Applications, Volume III covers the two broad areas of applications of group theory, namely, all atomic and molecular phenomena, as well as all aspects of nuclear structure and elementary particle theory.This volume contains five chapters and begins with an introduction to Wedderburn's theory to establish the structure of semisimple algebras, algebras of quantum mechanical interest, and group algebras. The succeeding chapter deals with Dynkin's theory for the embedding of semisimple complex Lie algebras in semisimple complex Lie algebras. These topics are followed by a rev

  7. Superconformal partial waves in Grassmannian field theories

    Energy Technology Data Exchange (ETDEWEB)

    Doobary, Reza; Heslop, Paul [Department of Mathematical Sciences, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)

    2015-12-23

    We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the 〈2222〉, 〈2233〉 and 〈3333〉 cases in an SU(N) gauge theory at finite N. The 〈2233〉 correlator predicts a non-trivial protected twist four sector for 〈3333〉 which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.

  8. A philosophical approach to quantum field theory

    CERN Document Server

    Öttinger, Hans Christian

    2015-01-01

    This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

  9. Generalized locally Toeplitz sequences theory and applications

    CERN Document Server

    Garoni, Carlo

    2017-01-01

    Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of...

  10. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  11. Further Development of HS Field Theory

    Science.gov (United States)

    Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud

    2006-04-01

    We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.

  12. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  13. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  14. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2004-01-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction

  15. Issues of effective field theories with resonances

    International Nuclear Information System (INIS)

    Gegelia, J.; Japaridze, G.

    2014-01-01

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)

  16. Field theory and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E [Orsay, LPT (France)

    2014-07-01

    This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.

  17. Nonequilibrium molecular dynamics theory, algorithms and applications

    CERN Document Server

    Todd, Billy D

    2017-01-01

    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  18. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  19. The general theory of quantized fields in the 1950s

    International Nuclear Information System (INIS)

    Wightman, A.S.

    1989-01-01

    This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)

  20. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  1. Analytic aspects of rational conformal field theories

    International Nuclear Information System (INIS)

    Kiritsis, E.B.; Lawrence Berkeley Lab., CA

    1990-01-01

    The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)

  2. Alternative approaches to maximally supersymmetric field theories

    International Nuclear Information System (INIS)

    Broedel, Johannes

    2010-01-01

    The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated

  3. Advanced electromagnetism foundations, theory and applications

    CERN Document Server

    Barrett, Terence W

    1995-01-01

    Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electro

  4. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  5. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  6. Singularity theory and N = 2 superconformal field theories

    International Nuclear Information System (INIS)

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs

  7. Field Extension by Galois Theory

    OpenAIRE

    Md Taufiq Nasseef

    2017-01-01

    Galois Theory, a wonderful part of mathematics with historical roots date back to the solution of cubic and quantic equations in the sixteenth century. However, beside understanding the roots of polynomials, Galois Theory also gave birth to many of the central concepts of modern algebra, including groups and fields. In particular, this theory is further great due to primarily for two factors: first, its surprising link between the group theory and the roots of polynomials and second,the eleganc...

  8. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  9. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  10. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  11. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  12. Applications of polyfold theory I

    CERN Document Server

    Hofer, H; Zehnder, E

    2017-01-01

    In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.

  13. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  14. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  15. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  16. Lectures on classical and quantum theory of fields

    CERN Document Server

    Arodz, Henryk

    2017-01-01

    This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  17. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  18. Theory and computation of the matrix elements of the full interaction of the electromagnetic field with an atomic state: Application to the Rydberg and the continuous spectrum

    International Nuclear Information System (INIS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2002-01-01

    We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states

  19. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  20. Finiteness of quantum field theories and supersymmetry

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  1. Improved theory of forced magnetic reconnection due to error field and its application to seed island formation for NTM

    International Nuclear Information System (INIS)

    Ishizawa, A.; Tokuda, S.; Wakatani, M.

    2001-01-01

    A seed island is required for destabilizing the neo-classical tearing mode (NTM), which degrades confinement in long sustained, high-confinement, high beta plasmas. The seed island formation due to an MHD event, such as a sawtooth crash, is investigated by applying the improved boundary layer theory of forced magnetic reconnection. This improved theory introduces the non-constant-ψ matching and reveals the complicated feature of the reconnection described by two reconnected fluxes. In the initial evolution, these reconnected fluxes grow on the time scale including the ideal time scale, typical time scale of the MHD event and the time scale of resistive kink mode. The surface current is negative, Δ' (t) A S 1/3 . (author)

  2. Neoclassical Theory and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, Ker-Chung [Univ. of Wisconsin, Madison, WI (United States)

    2015-11-20

    The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.

  3. Empirical processes: theory and applications

    OpenAIRE

    Venturini Sergio

    2005-01-01

    Proceedings of the 2003 Summer School in Statistics and Probability in Torgnon (Aosta, Italy) held by Prof. Jon A. Wellner and Prof. M. Banerjee. The topic presented was the theory of empirical processes with applications to statistics (m-estimation, bootstrap, semiparametric theory).

  4. New results in topological field theory and Abelian gauge theory

    International Nuclear Information System (INIS)

    Thompson, G.

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs

  5. New results in topological field theory and Abelian gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs.

  6. Statistical predictions from anarchic field theory landscapes

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad

    2010-01-01

    Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.

  7. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  8. Introduction to algebraic quantum field theory

    International Nuclear Information System (INIS)

    Horuzhy, S.S.

    1990-01-01

    This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs

  9. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  10. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  11. Two problems in thermal field theory

    Indian Academy of Sciences (India)

    In this talk, I review recent progress made in two areas of thermal field theory. In par- ticular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate. Keywords. Thermal field theory; quark-gluon plasma. PACS Nos 11.10.Wx; 12.38.

  12. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1978-03-01

    Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references

  13. Progress on study of nuclear data theory and related fields at the Theory Group of CNDC

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang, Ge [China Nuclear Data Center, CIAE (China)

    1996-06-01

    The Theory Group of CNDC (China Nuclear Data Center) has made a lot of progress in nuclear reaction theory and its application as well as many other related fields in 1995. The recent progress in nuclear reaction theory study and its applications, the recent progress in the nuclear data calculation and related code development are introduced. The production rate of radioactive nuclear beam induced by 70 MeV protons on {sup 72}Ge target were calculated. The calculated results are presented.

  14. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  15. Vacuum instability in scalar field theories

    International Nuclear Information System (INIS)

    McKane, A.J.

    1978-09-01

    Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)

  16. Z/NZ conformal field theories

    International Nuclear Information System (INIS)

    Degiovanni, P.

    1990-01-01

    We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)

  17. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  18. Game theory and its applications

    CERN Document Server

    Matsumoto, Akio

    2015-01-01

    This book integrates the fundamentals, methodology and major application fields of noncooperative and cooperative games, including conflict resolution. It includes a wide range of applications in many different areas, from economics to homeland security.

  19. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  20. On the interplay between string theory and field theory

    International Nuclear Information System (INIS)

    Brunner, I.

    1998-01-01

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  1. Constrained variational calculus for higher order classical field theories

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)

    2010-11-12

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  2. Constrained variational calculus for higher order classical field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn

    2010-01-01

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  3. Schrodinger representation in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-01-01

    The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

  4. Local algebras in Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Guerra, Francesco.

    1975-06-01

    The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr

  5. Random measures, theory and applications

    CERN Document Server

    Kallenberg, Olav

    2017-01-01

    Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.

  6. Aspects of affine Toda field theory

    International Nuclear Information System (INIS)

    Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.

    1990-05-01

    The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)

  7. Representations of classical groups on the lattice and its application to the field theory on discrete space-time

    OpenAIRE

    Lorente, M.

    2003-01-01

    We explore the mathematical consequences of the assumption of a discrete space-time. The fundamental laws of physics have to be translated into the language of discrete mathematics. We find integral transformations that leave the lattice of any dimension invariant and apply these transformations to field equations.

  8. A Conceptual Application of Attachment Theory and Research to the Social Work Student-Field Instructor Supervisory Relationship

    Science.gov (United States)

    Bennett, Susanne; Saks, Loretta Vitale

    2006-01-01

    This article conceptualizes an attachment-based model of the student-field instructor relationship, based on empirical research concerning internal working models of attachment, which continue into adulthood and serve as templates for life-long relating. Supportive relationships within a noncritical context are salient for effective supervision;…

  9. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  10. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  11. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  12. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  13. On the local field method with the account of spatial dispersion. Application to the optical activity theory

    Science.gov (United States)

    Tyu, N. S.; Ekhilevsky, S. G.

    1992-07-01

    For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.

  14. Cosmology in Gauge Field Theory and String Theory

    International Nuclear Information System (INIS)

    Garcia Compean, H

    2005-01-01

    This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce

  15. Quantum field theory in curved space-times: with an application to the reduced model of deSitter universe

    International Nuclear Information System (INIS)

    Peter, I. J.

    1995-06-01

    The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)

  16. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  17. Light-front quantization of field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.

  18. Light-front quantization of field theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs

  19. Solving topological field theories on mapping tori

    International Nuclear Information System (INIS)

    Blau, M.; Jermyn, I.; Thompson, G.

    1996-05-01

    Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs

  20. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas

    2014-01-01

    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  1. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  2. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  3. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  4. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  5. Mass corrections in string theory and lattice field theory

    International Nuclear Information System (INIS)

    Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo

    2009-01-01

    Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.

  6. Elements of the theory of Markov processes and their applications

    CERN Document Server

    Bharucha-Reid, A T

    2010-01-01

    This graduate-level text and reference in probability, with numerous applications to several fields of science, presents nonmeasure-theoretic introduction to theory of Markov processes. The work also covers mathematical models based on the theory, employed in various applied fields. Prerequisites are a knowledge of elementary probability theory, mathematical statistics, and analysis. Appendixes. Bibliographies. 1960 edition.

  7. A new approach to spectrum calculations in lattice Hamiltonian field theories. 1. Introduction and application to lambda phi4 in (1+1) dimensions

    International Nuclear Information System (INIS)

    Barnes, T.; Daniell, G.J.

    1982-09-01

    A finite lattice technique is introduced for calculating the spectrum of fluctuating Bose theories in the continuum limit. The method gives the continuum spectrum to an estimated approximately 1% accuracy in (1+1) dimensions using available computer memory. The spectrum of lambda phi 4 theory in (1+1) dimensions is studied as a trial application; results are found consistent with a free theory spectrum. (author)

  8. Bayreuther festspiele as a field for application of Peter Berger’s and Thomas Luckmann’s Theory of social construction of reality

    Directory of Open Access Journals (Sweden)

    Jeremić-Molnar Dragana

    2006-01-01

    Full Text Available The Stage festival in Bauyeuth (Bayreuther Festspiele, established in 1876. by German composer Richard Wagner (1813-1883, is, even nowadays, a complex and unique phenomenon which continually attracts the attention of scholars from various (mainly humanistic and social scientific fields. In many different methodological approaches to Bayreuther Festspiele, including those made by social scientists, one can not find the application of the sociological theory of Peter Berger and Thomas Luckmann. However, one has to bare in mind the important fact that Richard Wagner founded his completely innovative festive institution mainly in order to carry out and to spread his regenerative Weltanschauung - already formulated in his numerous theoretical writings and incorporated into his musical dramas. The fact that Wagner’s Weltanschauung was based on the idea of changing the reality of everyday life by constructing the new reality, is of equal importance. Considering all this, it becomes appropriate to explain Wagner’s motivation for establishing the stage festival, as well as his idea of festival, from the standpoint of the theory of social construction of reality.

  9. Magnetic charge in an octonionic field theory

    International Nuclear Information System (INIS)

    Lassig, C.C.; Jashi, G.C.

    1996-01-01

    The violation of the Jacobi identity by the presence of magnetic charge is accommodated by using an explicitly nonassociative theory of octonionic fields. Lagrangian and Hamiltonian formalisms are constructed, and issues of the quantisation discussed. Finally an extension of these concepts to string theory is contemplated. The two main problems that seems to arise in this octonionic field theory are the difficulty of constructing an appropriate action to suit the desired equations of motion, and the failure to complete a Hamiltonian formalism and hence quantize the theory. 8 refs

  10. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  11. Abelian gauge theories with tensor gauge fields

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)

  12. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  13. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  14. Justification: theory and application

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1979-01-01

    The concept of justification implies that a specific decision as to the relative merits of benefits and costs and detriment be made whenever: (1) a new practice is introduced that involves an indirect or direct increase in radiation exposure; or (2) an existing practice affecting radiation exposure is modified; or (3) an increase in radiation protection of an existing practice is to be considered. Such decisions are imprecise and involve intangible values. ICRP has, however, developed a mathematical model to express the structure of such decisions. The utility of this model for making the key paramters of justification decisions visible is explored in this paper in two ways. First, the structure of the model and its implications are explored in the abstract. Secondly, several specific applications are studied to determine if the model has utility in structuring application decisions, and the extent to which conclusions can be evolved in a meaningful, visible manner. (author)

  15. Graph theory with applications

    CERN Document Server

    Vasudev, C

    2006-01-01

    Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.

  16. Polynomial field theories and nonintegrability

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.; Cyrus, K.

    1990-01-01

    The nonintegrability of the nonlinear field equation v ηξ = v 3 is studied with the help of the Painleve test. The condition at the resonance is discussed in detail. Particular solutions are given. (orig.)

  17. Towards chaos criterion in quantum field theory

    OpenAIRE

    Kuvshinov, V. I.; Kuzmin, A. V.

    2002-01-01

    Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.

  18. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  19. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  20. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  1. Relating c 0 conformal field theories

    International Nuclear Information System (INIS)

    Guruswamy, S.; Ludwig, A.W.W.

    1998-03-01

    A 'canonical mapping' is established between the c = -1 system of bosonic ghosts at the c = 2 complex scalar theory and, a similar mapping between the c = -2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries. (author)

  2. Clifford algebra in finite quantum field theories

    International Nuclear Information System (INIS)

    Moser, M.

    1997-12-01

    We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)

  3. Nonlocal quantum field theory and stochastic quantum mechanics

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)

  4. Effective field theory for cold atoms

    International Nuclear Information System (INIS)

    Hammer, H.-W.

    2005-01-01

    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed

  5. Workshop on Thermal Field Theory to Neural Networks

    CERN Document Server

    Veneziano, Gabriele; Aurenche, Patrick

    1996-01-01

    Tanguy Altherr was a Fellow in the Theory Division at CERN, on leave from LAPP (CNRS) Annecy. At the time of his accidental death in July 1994, he was only 31.A meeting was organized at CERN, covering the various aspects of his scientific interests: thermal field theory and its applications to hot or dense media, neural networks and its applications to high energy data analysis. Speakers were among his closest collaborators and friends.

  6. Current topics in summability theory and applications

    CERN Document Server

    Rhoades, Billy

    2016-01-01

    This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world. .

  7. Rheology v.3 theory and applications

    CERN Document Server

    Eirich, Frederick

    1960-01-01

    Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist

  8. Blockspin transformations for finite temperature field theories with gauge fields

    International Nuclear Information System (INIS)

    Kerres, U.

    1996-08-01

    A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)

  9. Metric quantum field theory: A preliminary look

    International Nuclear Information System (INIS)

    Watson, W.N.

    1988-01-01

    Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics

  10. The Mie Theory Basics and Applications

    CERN Document Server

    Wriedt, Thomas

    2012-01-01

    This book presents in a concise way the Mie theory and its current applications. It begins with an overview of current theories, computational methods, experimental techniques, and applications of optics of small particles. There is also some biographic information on Gustav Mie, who published his famous paper on the colour of Gold colloids in 1908. The Mie solution for the light scattering of small spherical particles set the basis for more advanced scattering theories and today there are many methods to calculate light scattering and absorption for practically any shape and composition of particles. The optics of small particles is of interest in industrial, atmospheric, astronomic and other research. The book covers the latest developments in divers fields in scattering theory such as plasmon resonance, multiple scattering and optical force.

  11. Global integrability of field theories. Proceedings

    International Nuclear Information System (INIS)

    Calmet, J.; Seiler, W.M.; Tucker, R.W.

    2006-01-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  12. Global integrability of field theories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)

    2006-07-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  13. Lectures on classical and quantum theory of fields

    Energy Technology Data Exchange (ETDEWEB)

    Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics

    2010-07-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  14. Lectures on classical and quantum theory of fields

    International Nuclear Information System (INIS)

    Arodz, Henryk; Hadasz, Leszek

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  15. Lectures on Classical and Quantum Theory of Fields

    CERN Document Server

    Arodź, Henryk

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  16. Functional analysis theory and applications

    CERN Document Server

    Edwards, RE

    2011-01-01

    ""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the

  17. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  18. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  19. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge

    2000-01-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)

  20. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  1. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  2. Mathematical game theory and applications

    CERN Document Server

    Mazalov, Vladimir

    2014-01-01

    An authoritative and quantitative approach to modern game theory with applications from diverse areas including economics, political science, military science, and finance. Explores areas which are not covered in current game theory texts, including a thorough examination of zero-sum game.Provides introductory material to game theory, including bargaining, parlour games, sport, networking games and dynamic games.Explores Bargaining models, discussing new result such as resource distributions, buyer-seller instructions and reputation in bargaining models.Theoretical results are presented along

  3. Summability theory and its applications

    CERN Document Server

    Feyzi, Basar

    2012-01-01

    The theory of summability has many uses throughout analysis and applied mathematics. Engineers and physicists working with Fourier series or analytic continuation will also find the concepts of summability theory valuable to their research. The concepts of summability have been extended to the sequences of fuzzy numbers and also to the theorems of ergodic theory. This e-book explains various aspects of summability and demonstrates applications in a coherent manner. The content can readily serve as a useful series of lecture notes on the subject. This e-book comprises of 8 chapters starting

  4. Some applications of the field theory to condensed matter physics: the different sides of the quantum Hall effect

    International Nuclear Information System (INIS)

    Chandelier, F.

    2003-12-01

    The quantum Hall effect appears in low temperature electron systems submitted to intense magnetic fields. Electrons are trapped in a thin layer (∼ 100.10 -8 cm thick) at the interface between 2 semiconductors or between a semiconductor and an insulating material. This thesis presents 3 personal contributions to the physics of plane systems and particularly to quantum Hall effect systems. The first contribution is a topological approach, it involves the study of Landau's problem in a geometry nearing that of Hall effect experiments. A mathematical formalism has been defined and by using the Kubo's formula, the quantification of the Hall conductivity can be linked to the Chern class of threaded holes. The second contribution represents a phenomenological approach based on dual symmetries and particularly on modular symmetries. This contribution uses visibility diagrams that have already produced right predictions concerning resistivity curves or band structures. The introduction of a physical equivalence has allowed us to build a phase diagram for the quantum Hall effect at zero temperature. This phase diagram agrees with the experimental facts concerning : -) the existence of 2 insulating phases, -) direct transitions between an insulating phase and any Hall phase through integer or fractionary values of the filling factor (ν), -) selection rules, and -) classification of the Hall states and their distribution around a metal state. The third contribution concerns another phenomenological approach based on duality symmetries. We have considered a class of (2+1)-dimensional effective models with a Maxwell-Chern-Simons part that includes a non-locality. This non-locality implies the existence of a hidden duality symmetry with a Z 2 component: z → 1/z. This symmetry has allowed us to meet the results of the Fisher's law concerning the components of the resistivity tensor. (A.C.)

  5. Best matching theory & applications

    CERN Document Server

    Moghaddam, Mohsen

    2017-01-01

    Mismatch or best match? This book demonstrates that best matching of individual entities to each other is essential to ensure smooth conduct and successful competitiveness in any distributed system, natural and artificial. Interactions must be optimized through best matching in planning and scheduling, enterprise network design, transportation and construction planning, recruitment, problem solving, selective assembly, team formation, sensor network design, and more. Fundamentals of best matching in distributed and collaborative systems are explained by providing: § Methodical analysis of various multidimensional best matching processes § Comprehensive taxonomy, comparing different best matching problems and processes § Systematic identification of systems’ hierarchy, nature of interactions, and distribution of decision-making and control functions § Practical formulation of solutions based on a library of best matching algorithms and protocols, ready for direct applications and apps development. Design...

  6. Lectures on interacting string field theory

    International Nuclear Information System (INIS)

    Jevicki, A.

    1986-09-01

    We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs

  7. Recent progress in reggeon field theory

    International Nuclear Information System (INIS)

    Sugar, R.L.

    1977-01-01

    The present status of the pomeron theory in the reggeon field theory is summarized. For α 0 ( 0 -a bare intercept, αsub(oc) - a certain critical value) the theory is in a very good shape. It appears to satisfy both S and t-channel unitarity, and to avoid all of the decreases which plagued the simple pole model of the pomeron. For α 0 >αsub(oc) the situation is less clear

  8. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  9. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  10. An introduction to relativistic quantum field theory

    CERN Document Server

    Schweber, Silvan S

    1961-01-01

    Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.

  11. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  12. Indices for 6 dimensional superconformal field theories

    International Nuclear Information System (INIS)

    Kim, Seok; Lee, Kimyeong

    2017-01-01

    We review some recent developments in the 6 dimensional (2, 0) superconformal field theories, focusing on their Bogomol’nyi–Prasad–Sommerfield (BPS) spectra in the Coulomb and symmetric phases computed by various Witten indices. We shall discuss the instanton partition function of 5d maximal super-Yang–Mills theory, and the 6d superconformal index. (topical review)

  13. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2005-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental

  14. Infrared difficulties with thermal quantum field theories

    International Nuclear Information System (INIS)

    Grandou, T.

    1997-01-01

    Reviewing briefly the two main difficulties encountered in thermal quantum field theories at finite temperature when dealing with the Braaten-Pisarski (BP) resummation program, the motivation is introduced of an analysis relying on the bare perturbation theory, right from the onset. (author)

  15. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  16. Quantum field theory and link invariants

    International Nuclear Information System (INIS)

    Cotta-Ramusino, P.; Guadagnini, E.; Mintchev, M.; Martellini, M.

    1990-01-01

    A skein relation for the expectation values of Wilson line operators in three-dimensional SU(N) Chern-Simons gauge theory is derived at first order in the coupling constant. We use a variational method based on the properties of the three-dimensional field theory. The relationship between the above expectation values and the known link invariants is established. (orig.)

  17. Quantum field theory with infinite component local fields as an alternative to the string theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-05-01

    We show that the introduction of the infinite component local fields with higher order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ 5 -anomalous theories the introduction of the infinite component field makes the theory renormalizable or superrenormalizable. (orig.)

  18. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  19. Field theories with multiple fermionic excitations

    International Nuclear Information System (INIS)

    Crawford, J.P.

    1978-01-01

    The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation

  20. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  1. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  2. Metastability in Field Theory and Statistical Mechanics

    International Nuclear Information System (INIS)

    Carvalho, C.A. de.

    1984-01-01

    After a phase transition analysis which can occur in the framework of a scalar field theory, at finite temperature and in presence of a external field, possibles metastable situations are studied and also how is their relationship with the transitions. In both cases it is used a semiclassical approximation to the theory which, in Statistical Mechanics, corresponds to the droplet-bubble model. (L.C.) [pt

  3. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  4. Unified-field theory: yesterday, today, tomorrow

    International Nuclear Information System (INIS)

    Bergman, P.G.

    1982-01-01

    Beginning with the expounding of Einstein understanding of advantages and disadvantages of general relativity theory, the authors proceed to consideration of what the complete unified theory have to be according to Einstein. The four theories which can be considered as ''unified'', namely weyl and Calutsa ones, worked out a half of century ago, and twistor twisting and supersymmetry theories, nowadays attracting attention, are briefly described and discussed. The authors come to a conclusion that achievements in elementary-particle physics have to affect any future theory, that this theory has to explain the principle contradictions between classical and quantum field theories, and that finally it can lead to change of the modern space-time model as a four-dimensional variety

  5. On spin chains and field theories

    International Nuclear Information System (INIS)

    Roiban, Radu

    2004-01-01

    We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the q-deformation of N = 4 SYM theory. (author)

  6. Quantum field theory in a semiotic perspective

    International Nuclear Information System (INIS)

    Dosch, H.G.

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  7. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  8. From Landau's hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter

    International Nuclear Information System (INIS)

    Cooper, F.

    1996-01-01

    We review the assumptions and domain of applicability of Landau's Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear σ model, we demonstrate that many of Landau's ideas are verified in explicit field theory calculations

  9. Superstring field theory equivalence: Ramond sector

    International Nuclear Information System (INIS)

    Kroyter, Michael

    2009-01-01

    We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.

  10. Quantum groups, quantum categories and quantum field theory

    CERN Document Server

    Fröhlich, Jürg

    1993-01-01

    This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

  11. On the interplay between string theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, I.

    1998-07-08

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  12. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  13. Statistical mechanics of lattice Boson field theory

    International Nuclear Information System (INIS)

    1976-01-01

    A lattice approximation to Euclidean, boson quantum field theory is expressed in terms of the thermodynamic properties of a classical statistical mechanical system near its critical point in a sufficiently general way to permit the inclusion of an anomalous dimension of the vacuum. Using the thermodynamic properties of the Ising model, one can begin to construct nontrivial (containing scattering) field theories in 2, 3 and 4 dimensions. It is argued that, depending on the choice of the bare coupling constant, there are three types of behavior to be expected: the perturbation theory region, the renormalization group fixed point region, and the Ising model region

  14. Noncommutative time in quantum field theory

    International Nuclear Information System (INIS)

    Salminen, Tapio; Tureanu, Anca

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.

  15. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  16. Statistical mechanics of lattice boson field theory

    International Nuclear Information System (INIS)

    Baker, G.A. Jr.

    1977-01-01

    A lattice approximation to Euclidean, boson quantum field theory is expressed in terms of the thermodynamic properties of a classical statistical mechanical system near its critical point in a sufficiently general way to permit the inclusion of an anomalous dimension of the vacuum. Using the thermodynamic properties of the Ising model, one can begin to construct nontrivial (containing scattering) field theories in 2, 3, and 4 dimensions. It is argued that, depending on the choice of the bare coupling constant, there are three types of behavior to be expected: the perturbation theory region, the renormalization group fixed point region, and the Ising model region. 24 references

  17. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  18. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  19. Theory of semigroups and applications

    CERN Document Server

    Sinha, Kalyan B

    2017-01-01

    The book presents major topics in semigroups, such as operator theory, partial differential equations, harmonic analysis, probability and statistics and classical and quantum mechanics, and applications. Along with a systematic development of the subject, the book emphasises on the explorations of the contact areas and interfaces, supported by the presentations of explicit computations, wherever feasible. Designed into seven chapters and three appendixes, the book targets to the graduate and senior undergraduate students of mathematics, as well as researchers in the respective areas. The book envisages the pre-requisites of a good understanding of real analysis with elements of the theory of measures and integration, and a first course in functional analysis and in the theory of operators. Chapters 4 through 6 contain advanced topics, which have many interesting applications such as the Feynman–Kac formula, the central limit theorem and the construction of Markov semigroups. Many examples have been given in...

  20. Supersymmetric gauge theories, quantization of Mflat, and conformal field theory

    International Nuclear Information System (INIS)

    Teschner, J.; Vartanov, G.S.

    2013-02-01

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  1. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  2. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  3. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  4. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  5. Applications of the complex-mass renormalization scheme in effective field theory; Anwendungen des Komplexe-Masse-Renormierungsschemas in effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Torsten

    2012-07-11

    In the first part of the this doctoral thesis the perturbative unitarity in the complex-mass scheme (CMS) is analysed. To that end a procedure for calculating cutting rules for loop integrals containing propagators with finite widths is presented. A toy-model Lagrangian describing the interaction of a heavy vector boson with a light fermion is used to demonstrate that the CMS respects unitarity order by order in perturbation theory provided that the renormalized coupling constant remains real. The second part of the thesis deals with various applications of the CMS to chiral effective field theory (EFT). In particular, mass and width of the delta resonance, elastic electromagnetic form factors of the Roper resonance, form factors of the nucleon-to-Roper transition, pion-nucleon scattering, and pion photo- and electroproduction for center-of-mass energies in the region of the Roper mass are calculated. By choosing appropriate renormalization conditions, a consistent chiral power counting scheme for EFT with resonant degrees of freedom can be established. This allows for a systematic investigation of the above processes in terms of an expansion in small quantities. The obtained results can be applied to the extrapolation of corresponding simulations in the context of lattice QCD to the physical value of the pion mass. Therefore, in addition to the Q{sup 2} dependence of the form factors, also the pion-mass dependence of the magnetic moment and electromagnetic radii of the Roper resonance is explored. Both a partial wave decomposition and a multipole expansion are performed for pion-nucleon scattering and pion photo- and electroproduction, respectively. In this connection the P11 partial wave as well as the M{sub 1-} and S{sub 1-} multipoles are fitted via non-linear regression to empirical data.

  6. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  7. Smooth massless limit of field theories

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1980-01-01

    The massless limit of Fierz-Pauli field theories, describing fields with fixed mass and spin interacting with external sources, is examined. Results are obtained for spins, 1, 3/2, 2 and 3 using conventional models, and then for all half-integral spins in a relatively model-independent manner. It is found that the massless limit is smooth provided that the sources satisfy certain conditions. In the massless limit these conditions reduce to the conservation laws required by internal consistency of massless field theory. Smoothness simply requires that quantities that vanish in the massless case approach zero in a certain well-defined manner. (orig.)

  8. Phase-space quantization of field theory

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1999-01-01

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999

  9. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    International Nuclear Information System (INIS)

    Gottschalk, Hanno; Hack, Thomas-Paul

    2009-12-01

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  10. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  11. Coadjoint orbits and conformal field theory

    International Nuclear Information System (INIS)

    Taylor, W. IV.

    1993-08-01

    This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription

  12. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  13. Distributed hash table theory, platforms and applications

    CERN Document Server

    Zhang, Hao; Xie, Haiyong; Yu, Nenghai

    2013-01-01

    This SpringerBrief summarizes the development of Distributed Hash Table in both academic and industrial fields. It covers the main theory, platforms and applications of this key part in distributed systems and applications, especially in large-scale distributed environments. The authors teach the principles of several popular DHT platforms that can solve practical problems such as load balance, multiple replicas, consistency and latency. They also propose DHT-based applications including multicast, anycast, distributed file systems, search, storage, content delivery network, file sharing and c

  14. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  15. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  16. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  17. Experimental signature of scaling violation implied by field theories

    International Nuclear Information System (INIS)

    Tung, W.

    1975-01-01

    Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated

  18. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  19. Massive deformations of Type IIA theory within double field theory

    Science.gov (United States)

    Çatal-Özer, Aybike

    2018-02-01

    We obtain massive deformations of Type IIA supergravity theory through duality twisted reductions of Double Field Theory (DFT) of massless Type II strings. The mass deformation is induced through the reduction of the DFT of the RR sector. Such reductions are determined by a twist element belonging to Spin+(10, 10), which is the duality group of the DFT of the RR sector. We determine the form of the twists and give particular examples of twists matrices, for which a massive deformation of Type IIA theory can be obtained. In one of the cases, requirement of gauge invariance of the RR sector implies that the dilaton field must pick up a linear dependence on one of the dual coordinates. In another case, the choice of the twist matrix violates the weak and the strong constraints explicitly in the internal doubled space.

  20. Superconvergent perturbation theory for euclidean scalar field theories

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1984-01-01

    It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)

  1. A non-linear field theory

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs

  2. A general field-covariant formulation of quantum field theory

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2013-01-01

    In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)

  3. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  4. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  5. Bell-type quantum field theories

    International Nuclear Information System (INIS)

    Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2005-01-01

    In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)

  6. Catastrophe theory and its application status in mechanical engineering

    Directory of Open Access Journals (Sweden)

    Jinge LIU

    Full Text Available Catastrophe theory is a kind of mathematical method which aims to apply and interpret the discontinuous phenomenon. Since its emergence, it has been widely used to explain a variety of emergent phenomena in the fields of natural science, social science, management science and some other science and technology fields. Firstly, this paper introduces the theory of catastrophe in several aspects, such as its generation, radical principle, basic characteristics and development. Secondly, it summarizes the main applications of catastrophe theory in the field of mechanical engineering, focusing on the research progress of catastrophe theory in revealing catastrophe of rotor vibration state, analyzing friction and wear failure, predicting metal fracture, and so on. Finally, it advises that later development of catastrophe theory should pay more attention to the combination of itself with other traditional nonlinear theories and methods. This paper provides a beneficial reference to guide the application of catastrophe theory in mechanical engineering and related fields for later research.

  7. Quantum field theory in generalised Snyder spaces

    International Nuclear Information System (INIS)

    Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.

    2017-01-01

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  8. Quantum field theory in generalised Snyder spaces

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2017-05-10

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  9. Magnetic monopoles in field theory and cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  10. Staircase Models from Affine Toda Field Theory

    CERN Document Server

    Dorey, P; Dorey, Patrick; Ravanini, Francesco

    1993-01-01

    We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.

  11. Vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Gieres, F.; Grimstrup, J.; Pisar, T.; Schweda, M.

    2000-01-01

    We present a simple derivation of vector supersymmetry transformations for topological field theories of Schwarz- and Witten-type. Our method is similar to the derivation of BRST-transformations from the so-called horizontality conditions or Russian formulae. We show that this procedure reproduces in a concise way the known vector supersymmetry transformations of various topological models and we use it to obtain some new transformations of this type for 4d topological YM-theories in different gauges. (author)

  12. Neutrix calculus and finite quantum field theory

    International Nuclear Information System (INIS)

    Ng, Y Jack; Dam, H van

    2005-01-01

    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)

  13. The amplitude of quantum field theory

    International Nuclear Information System (INIS)

    Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.

    1989-01-01

    General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number

  14. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  15. Light cone sum rules in nonabelian gauge field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1981-03-24

    The author examines, in the context of nonabelian gauge field theory, the derivation of the light cone sum rules which were obtained earlier on the assumption of dominance of canonical singularity in the current commutator on the light cone. The retarded scaling functions appearing in the sum rules are numbers known in terms of the charges of the quarks and the number of quarks and gluons in the theory. Possible applications of the sum rules are suggested.

  16. New numerical methods for quantum field theories on the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Emirdag, P.; Easter, R.; Guralnik, G.S.; Hahn, S.C

    2000-03-01

    The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear {sigma} model is outlined.

  17. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  18. On the derivation of effective field theories

    International Nuclear Information System (INIS)

    Uzunov, Dimo I.

    2004-12-01

    A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)

  19. Group theory for chemists fundamental theory and applications

    CERN Document Server

    Molloy, K C

    2010-01-01

    The basics of group theory and its applications to themes such as the analysis of vibrational spectra and molecular orbital theory are essential knowledge for the undergraduate student of inorganic chemistry. The second edition of Group Theory for Chemists uses diagrams and problem-solving to help students test and improve their understanding, including a new section on the application of group theory to electronic spectroscopy.Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory t

  20. Progress in the axiomatic quantum field theory

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Polivanov, M.K.

    1975-01-01

    The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras

  1. Fundamental problems of gauge field theory

    International Nuclear Information System (INIS)

    Velo, G.; Wightman, A.S.

    1986-01-01

    As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now provides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lecture notes collected in this volume concentrate on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the exploration of the extraordinary enigmatic connections between Kac-Moody-Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories are mentioned

  2. Entanglement entropy in scalar field theory on the fuzzy sphere

    International Nuclear Information System (INIS)

    Okuno, Shizuka; Suzuki, Mariko; Tsuchiya, Asato

    2016-01-01

    We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy

  3. Global effects in quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  4. New perturbative approach to renormalizable field theories

    International Nuclear Information System (INIS)

    Dhar, A.; Gupta, V.

    1984-01-01

    A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach

  5. Reggeon field theory for large Pomeron loops

    Energy Technology Data Exchange (ETDEWEB)

    Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela,E-15782 Santiago de Compostela, Galicia (Spain); Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside road, Storrs, CT 06269 (United States); Levin, Eugene [Departamento de Física, Universidad Técnica Federico Santa María, and Centro Científico-Tecnolgico de Valparaíso,Avda. España 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel)

    2014-04-10

    We analyze the range of applicability of the high energy Reggeon Field Theory H{sub RFT} derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H{sub RFT} does not reduce to either H{sub JIMWLK} or H{sub KLWMIJ}. When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H{sub RFT} can be simplified. We derive the simpler version of H{sub RFT} and in the large N{sub c} limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H{sub RFT} is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom.

  6. Reggeon field theory for large Pomeron loops

    International Nuclear Information System (INIS)

    Altinoluk, Tolga; Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2014-01-01

    We analyze the range of applicability of the high energy Reggeon Field Theory H RFT derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H RFT does not reduce to either H JIMWLK or H KLWMIJ . When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H RFT can be simplified. We derive the simpler version of H RFT and in the large N c limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H RFT is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom

  7. Classical field theory on electrodynamics, non-abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2018-01-01

    Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...

  8. Uncertainty quantification theory, implementation, and applications

    CERN Document Server

    Smith, Ralph C

    2014-01-01

    The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers ca...

  9. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  10. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  11. Topics in quantum field theory and cosmology

    International Nuclear Information System (INIS)

    Brandenberger, R.H.

    1983-01-01

    This thesis contains a study of topics in quantum field theory and cosmology in the context of the new inflationary universe scenario. It presents a review of the quantum field theory methods used in the new cosmological models. The following chapters are a detailed study of energy density fluctuations in the early universe. Hawking radiation is derived as the source of initial perturbations in two complementary ways. The following section presents a new gauge invariant framework to study the growth of fluctuations outside the horizon. This framework is applied to the new inflationary universe in the final chapter. The introduction gives a brief outline of the new cosmological models

  12. Renormalization group study of scalar field theories

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  13. Quantum field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    1975-01-01

    At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de

  14. A geometric formulation of exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bosque, Pascal du [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Hassler, Falk [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Department of Physics, Columbia University, Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)

    2017-03-01

    We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5)×ℝ{sup +}-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5)×ℝ{sup +}-structure is not locally flat.

  15. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  16. Field theory a path integral approach

    CERN Document Server

    Das, Ashok

    2006-01-01

    This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.

  17. Statistical field theory of futures commodity prices

    Science.gov (United States)

    Baaquie, Belal E.; Yu, Miao

    2018-02-01

    The statistical theory of commodity prices has been formulated by Baaquie (2013). Further empirical studies of single (Baaquie et al., 2015) and multiple commodity prices (Baaquie et al., 2016) have provided strong evidence in support the primary assumptions of the statistical formulation. In this paper, the model for spot prices (Baaquie, 2013) is extended to model futures commodity prices using a statistical field theory of futures commodity prices. The futures prices are modeled as a two dimensional statistical field and a nonlinear Lagrangian is postulated. Empirical studies provide clear evidence in support of the model, with many nontrivial features of the model finding unexpected support from market data.

  18. Recent progress in irrational conformal field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1993-09-01

    In this talk, I will review the foundations of irrational conformal field theory (ICFT), which includes rational conformal field theory as a small subspace. Highlights of the review include the Virasoro master equation, the Ward identities for the correlators of ICFT and solutions of the Ward identities. In particular, I will discuss the solutions for the correlators of the g/h coset construction and the correlators of the affine-Sugawara nests on g contains h 1 contains hor-ellipsis contains h n . Finally, I will discuss the recent global solution for the correlators of all the ICFT's in the master equation

  19. Photoionization by a bichromatic field: Adiabatic theory

    International Nuclear Information System (INIS)

    Pazdzersky, V.A.; Yurovsky, V.A.

    1995-01-01

    Atom photoionization by the superposition of a fundamental field and its second harmonic is considered. The finite analytical expressions for the photoionization probability are obtained using the adiabatic approximation. They demonstrate that the photoelectron angular distribution has a polar symmetry when the electrical field strength has a maximal polar asymmetry and the distribution is asymmetrical when the field is symmetrical. A strict proof of the polar symmetry of the photoionization probability in the case of the electrical field with maximal asymmetry is deduced using the Keldysh-Faisal-Reiss theories. The obtained results are in agreement with the experimental data available

  20. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des