WorldWideScience

Sample records for field pressure results

  1. Pressure locking test results

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  2. Pressure locking test results

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-01-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, open-quotes Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.close quotes Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions

  3. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  4. Droplet condensation in rapidly decaying pressure fields

    International Nuclear Information System (INIS)

    Peterson, P.F.; Bai, R.Y.; Schrock, V.E.; Hijikata, K.

    1992-01-01

    Certain promising schemes for cooling inertial confinement fusion reactors call for highly transient condensation in a rapidly decaying pressure field. After an initial period of condensation on a subcooled droplet, undesirable evaporation begins to occur. Recirculation within the droplet strongly impacts the character of this condensation-evaporation cycle, particularly when the recirculation time constant is of the order of the pressure decay time constant. Recirculation can augment the heat transfer, delay the onset of evaporation, and increase the maximum superheat inside the drop by as much as an order of magnitude. This numerical investigation identifies the most important parameters and physics characterizing transient, high heat flux droplet condensation. The results can be applied to conceptual designs of inertial confinement fusion reactors, where initial temperature differences on the order of 1,500 K decay to zero over time spans the order of tens of milliseconds

  5. Results of reactor pressure vessels ISI

    International Nuclear Information System (INIS)

    Cepcek, S.

    1994-01-01

    To find out the possible influence of the annealing process to reactor pressure vessel integrity, a large in-service inspection programme has been implemented as an associated activity to reactor pressure vessel annealing. In this paper the approach to the RPV in-service inspection is shown. Also, the main results and conclusions following in-service inspection are presented. (author). 3 refs, 1 fig

  6. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  7. Side abutment pressure distribution by field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lian-guo Wang; Yang Song; Xing-hua He; Jian Zhang [State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou (China)

    2008-12-15

    Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrangement, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the position of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall. 14 refs., 6 figs.

  8. Low-pressure gas breakdown in longitudinal combined electric fields

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  9. Light pressure of time-dependent fields in plasmas

    International Nuclear Information System (INIS)

    Zeidler, A.; Schnabl, H.; Mulser, P.

    1985-01-01

    An expression of the light pressure Pi is derived for the case of a nearly monochromatic electromagnetic wave with arbitrarily time-dependent amplitude. Thereby Pi is defined as the time-averaged force density exerted on a plasma by the wave. The resulting equations are valid for both transverse and longitudinal waves. The light pressure turns out to consist of two components: the well-known gradient-type term and a new nonstationary solenoidal term. This is true for warm as well as cold plasmas. The importance of the new term for the generation of static magnetic fields is shown, and a model in which shear forces may result is given. Formulas for the nonstationary light pressure developed previously are discussed

  10. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  11. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  12. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  13. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  14. Simulations of pressure and salinity fields at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1997-04-01

    The primary objective of this study was to examine whether the geochemical field data from Aespoe could be interpreted and understood by means of numerical simulations for flow and transport. A site-specific simulation model for groundwater flow and salt transport was developed on the basis of the field investigations. Both steady-state and transient simulations of flow and transport were performed. In the transient simulations, land uplift and the effect of diffusion into/from the matrix blocks with stagnant water were taken into account. The computational results were evaluated on the basis of the experimental values for the pressure and salt concentration.

  15. Simulations of pressure and salinity fields at Aespoe

    International Nuclear Information System (INIS)

    Loefman, J.

    1997-01-01

    The primary objective of this study was to examine whether the geochemical field data from Aespoe could be interpreted and understood by means of numerical simulations for flow and transport. A site-specific simulation model for groundwater flow and salt transport was developed on the basis of the field investigations. Both steady-state and transient simulations of flow and transport were performed. In the transient simulations, land uplift and the effect of diffusion into/from the matrix blocks with stagnant water were taken into account. The computational results were evaluated on the basis of the experimental values for the pressure and salt concentration

  16. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  17. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  18. Equivalent effect of neutral gas pressure and transverse magnetic field in low-pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Toma, M.; Rusu, Ioana; Pohoata, V.; Mihaila, I.

    2001-01-01

    In the paper it is emphasized the equivalent effect of the neutral gas pressure and the action of a transverse magnetic field (TMF), respectively, on a striated positive plasma column. Experimental and theoretical results prove that the distance between striations has the same variation under the influence of both neutral gas pressure and the action of TMF. The pressure modification as well as the action of a TMF can induce ionization instability in the plasma column which explains the standing striation appearance. (authors)

  19. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Pressure Field Around Underwater Negative Streamers

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Koláček, Karel; Lukeš, Petr; Stelmashuk, Vitaliy

    2015-01-01

    Roč. 43, č. 5 (2015), s. 1787-1792 ISSN 0093-3813 R&D Projects: GA ČR(CZ) GA15-12987S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : Interferometry * plasma generation * pressure measurement * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.958, year: 2015

  1. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  2. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  3. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  4. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  5. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  6. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Effects of pressurization procedures on calibration results for precise pressure transducers

    International Nuclear Information System (INIS)

    Kajikawa, Hiroaki; Kobata, Tokihiko

    2010-01-01

    The output of electromechanical pressure gauges depends on not only the currently applied pressure, but also the pressurization history. Thus, the calibration results of gauges are affected by the pressurization procedure. In this paper, among several important factors influencing the results, we report the effects of the interval between the calibration cycles and the effects of the preliminary pressurizations. In order to quantitatively evaluate these effects, we developed a fully automated system that uses a pressure balance to calibrate pressure gauges. Subsequently, gauges containing quartz Bourdon-type pressure transducers were calibrated in a stepwise manner for pressures between 10 MPa and 100 MPa. The typical standard deviation of the data over three cycles was reduced to a few parts per million (ppm). The interval between the calibration cycles, which ranges from zero to more than 12 h, exerts a strong influence on the results in the process of increasing the pressure, where at 10 MPa the maximum difference between the results was approximately 40 ppm. The preliminary pressurization immediately before the calibration cycle reduces the effects of the interval on the results in certain cases. However, in turn, the influence of the waiting time between the preliminary pressurization and the main calibration cycle becomes strong. In the present paper, we outline several possible measures for obtaining calibration results with high reproducibility

  8. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  9. Field trials results of guided wave tomography

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van; Leden, Edwin van der

    2015-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations

  10. Field trials results of guided wave tomography

    Science.gov (United States)

    Volker, Arno; van Zon, Tim; van der Leden, Edwin

    2015-03-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  11. Aleph Field Solver Challenge Problem Results Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

  12. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  13. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  14. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    Qian Kaiyou; Chen Ting; Yan Bingyong; Lin Yangkui; Xu Dong; Sun Zhuo; Cai Bingchu

    2006-01-01

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  15. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    International Nuclear Information System (INIS)

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-01

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations (ε≡ΔB/2B parallel is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force parallel > by a factor of O(1/ε). A high-frequency limit (ω>>ν) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions

  16. Mars Science Laboratory (MSL) - First Results of Pressure Observations

    Science.gov (United States)

    Harri, Ari-Matti; Kahanpää, Henrik; Kemppinen, Osku; Genzer, Maria; Gómez-Elvira, Javier; Haberle, Robert M.; Schmidt, Walter; Savijärvi, Hannu; Rodríquez-Manfredi, Jose Antonio; Rafkin, Scott; Polkko, Jouni; Richardson, Mark; Newman, Claire; de la Torre Juárez, Manuel; Martín-Torres, Javier; Paz Zorzano-Mier, Maria; Atlaskin, Evgeny; Kauhanen, Janne; Paton, Mark; Haukka, Harri

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS pressure observations and comparison of the measurements with modeling results. The REMS pressure device is provided by the Finnish Meteorological Institute. It is based on silicon micro-machined capacitive pressure sensors developed by Vaisala Inc. The pressure device makes use of two transducer electronics sections placed on a single multi-layer PCB inside the REMS Instrument Control Unit (ICU) with a filter-protected ventilation inlet to the ambient atmosphere. The absolute accuracy of the pressure device (< 3 Pa) and zero-drift (< 1 Pa/year) enables the investigations of long term and seasonal cycles of the Martian atmosphere. The relative accuracy, or repeatability, in the diurnal time scale is < 1.5 Pa, less than 2 % of the observed diurnal pressure variation at the landing site. The pressure device has special sensors with very high precision (less than 0.2 Pa) that makes it a good tool to study short-term atmospheric phenomena, e.g., dust devils and other convective vortices. The observed MSL pressure data enable us to study both the long term and short-term phenomena of the Martian atmosphere. This would add knowledge of these phenomena to that gathered by earlier Mars missions and modeling experiments [2,3]. Pressure observations are revealing new information on the local atmosphere and climate at Gale crater, and will shed light on the mesoscale and micrometeorological phenomena. Pressure observations show also

  17. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Methodology to estimate the relative pressure field from noisy experimental velocity data

    International Nuclear Information System (INIS)

    Bolin, C D; Raguin, L G

    2008-01-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  20. Experimental verification of the role of electron pressure in fast magnetic reconnection with a guide field

    International Nuclear Information System (INIS)

    Fox, W.; Sciortino, F.; Stechow, A. von; Jara-Almonte, J.

    2017-01-01

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.

  1. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  2. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  3. Plane-stress fields for sharp notches in pressure-sensitive materials

    International Nuclear Information System (INIS)

    Al-Abduljabbar, Abdulhamid

    2003-01-01

    The effect of pressure sensitive yield on materials toughness can be determined by investigating stress fields around cracks and notches. In this work, fully-developed plastic stress fields around sharp wedge-shaped notches of perfectly-plastic pressure-sensitive materials are investigated for plane-stress case and Mode 1 loading condition. The pressure-sensitive yielding behavior is represented using the Drucker-Prager criterion. Using equilibrium equations, boundary conditions, and the yield criterion, closed-form expressions for stress fields are derived. The analysis covers the gradual change in the notch angle and compares it with the limiting case of a pure horizontal crack. Effects of notch geometry and pressure sensitivity on stress fields are examined by considering different specimen geometries, as well as different levels of pressure sensitivity. Results indicate that while the stress values directly ahead of the notch-tip are not affected, the extent of stress sector at notch front is reduced, thereby causing increase in the radial stress value around the notch. As the pressure sensitivity increases the reduction of the stress sector directly ahead of the notch tip is more evident. Also, for high pressure sensitivity values, introduction of the notch angle reduces the variation of the stress levels. Results are useful for design of structural components. (author)

  4. Experimental characterization of MHD pressure drop of liquid sodium flow under uniform magnetic field

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun

    2001-01-01

    Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density

  5. Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Czarnetzki, Uwe

    2010-01-01

    Electric field measurements at near-atmospheric pressure environments based on electric-field induced Raman scattering are applied to repetitively pulsed nanosecond discharges. The results have revealed that the peak electric field near the centre of the gap is almost independent of the applied voltage. Minimum sustainable voltage measurements suggests that, at each discharge pulse, charged particles that remain from the previous pulse serve as discharge seeds and play an important role for generation of uniform glow-like discharges.

  6. On the extraction of pressure fields from PIV velocity measurements in turbines

    Science.gov (United States)

    Villegas, Arturo; Diez, Fancisco J.

    2012-11-01

    In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.

  7. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  8. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  9. Improvement of the prediction of fluid pressure from the results of techno-geophysical studies under complex geological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, B.L.; Esipko, O.A.; Dakhkilgov, T.D.

    1981-12-01

    Results of statistical processing of the data of prediction of pore pressures in the course of well sinking, according to the material of oil field and geophysical investigations in different areas, are presented. Likewise, the errors of pressure prediction, their causes, geological models of series with anomalously high formation pressure, and methods for prediction of pore and formation pressures under different geological conditions are considered. 12 refs.

  10. Hydrogenic donor impurity in parallel-triangular quantum wires: Hydrostatic pressure and applied electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Giraldo, E.; Miranda, G.L.; Ospina, W.; Duque, C.A.

    2009-01-01

    The combined effects of the hydrostatic pressure and in-growth direction applied electric field on the binding energy of hydrogenic shallow-donor impurity states in parallel-coupled-GaAs-Ga 1-x Al x As-quantum-well wires are calculated using a variational procedure within the effective-mass and parabolic-band approximations. Results are obtained for several dimensions of the structure, shallow-donor impurity positions, hydrostatic pressure, and applied electric field. Our results suggest that external inputs such us hydrostatic pressure and in-growth direction electric field are two useful tools in order to modify the binding energy of a donor impurity in parallel-coupled-quantum-well wires.

  11. A simple model for the pressure field from a distribution of hotspots

    International Nuclear Information System (INIS)

    Lambourn, B D; Lacy, H J; Handley, C A; James, H R

    2014-01-01

    At the APS SCCM in 2009, Hill, Zimmermann and Nichols showed that assuming burn fronts propagate at constant speed from individual point hotspots distributed randomly in a volume, the reaction rate history could be determined. In this paper a simple analytic approximation is found for the time history of the pressure in the volume. Using acoustic theory, the time history of the pressure field for burning from a single spherical, isolated hotspot of finite radius is developed. Then at any point in the volume, the overall pressure history is determined from the sum of the pressure fields from all the individual hotspots. The results are shown to be in qualitative agreement with 1D mesoscale hydrocode calculations of the reaction and burning from a finite size spherical hotspot.

  12. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  13. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  14. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  15. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  16. Field line mapping results in the CNT stellarator

    International Nuclear Information System (INIS)

    Sarasola, X.; Pedersen, T. Sunn; Kremer, J.P.; Lefrancois, R.G.; Marksteiner, Q.; Ahmad, N.

    2005-01-01

    The Columbia Non-neutral Torus (CNT), located at Columbia University, is a toroidal, ultra-high vacuum stellarator designed to confine pure electron and other non-neutral plasmas. Its coil configuration is the simplest of any stellarator constructed, since it consists only of two pairs of circular planar copper coils. CNT started operation in November 2004. During its first months of operation a detailed mapping of the nested magnetic surfaces has been developed using the fluorescent method. An electron beam was emitted along a field line by a small moveable electron gun. Different beam energies (ranging from 50 to 200 eV) were used to perform the field line mapping. The e- beam emitted by the electron gun followed the field lines around the torus and hit two moveable ZnO coated aluminum rods that emit visible light when struck by the e-beam. For each position of the e- gun, the phosphor rods scanned the cross-section of the torus allowing a standard digital camera to record a single magnetic surface in a five second exposure. Multiple photos were taken and then manipulated and superposed using IDL software to create composite images of the nested magnetic surfaces. Detailed mapping of the magnetic flux surfaces was completed at a variety of magnetic configurations and at pressures in the 10 -8 Torr range. The experimental results were compared with numerical calculations demonstrating that the obtained measurements agree very well with numerical predictions. In particular, the current configuration has an ultralow aspect ratio (A≤ 1.9) and excellent magnetic surface quality with no detectable island structures or stochastic regions, except at the edge of the plasma where a predicted island chain is present. These experimental results will be presented along with details of the field line mapping system. (author)

  17. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2002-01-01

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient) 2 P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  18. Dynamic of vapor bubble growth in fields of variable pressure

    International Nuclear Information System (INIS)

    Pedroso, H.K.

    1982-01-01

    A mathematical model for the description of the growth from an initial nucleus of a vapor bubble imersed in liquid, subjected to a loss of pressure is presented. The model is important for analysing LOCA (Loss of Coolant Acident) in P.W.R. type reactors. Several simplifications were made in the phenomenum governing equations. With such simplifications the heat diffusion equation became the determining factor for the bubble growth, and the problem was reduced to solve the heat diffusion equation for semi infinite solid whose surface temperature is a well known function of time (it is supposed that the surface temperature is equal to the saturation temperature of the liquid at the system pressure at a given moment). The model results in an analytical expression for the bubble radius as a function of time. Comparisons with experimental data and previous models were made, with reasonable agreement. (author) [pt

  19. Pressure and temperature fields and water released by concrete submitted to high heat fluxes

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1982-01-01

    Inovations are introduced in the original program USINT considering thermal conductivity variations with the temperature. A subroutine - PLOTTI - is incorporate to the program aiming to obtain a graphic for results. The new program - USINTG - is used for calculating the field of pressure and temperature and the water released from the concrete structure during a simulation of sodium leak. The theoretical results obtained with USINTG are in good agreement with the experimental results previously obtained. (E.G.) [pt

  20. Magnetic-field control of low-pressure diffuse discharges

    International Nuclear Information System (INIS)

    Cooper, J.R.

    1986-01-01

    Application of a magnetic field in a direction transverse to the electric field in a diffuse discharge can have a strong effect on the transport parameters in the discharge medium and on the external characteristics of the discharge as a whole. Deviations in these transport parameters were investigated in this work by means of Monte Carlo calculations, and the electrical characteristics of the total discharge were observed experimentally. Results of the theoretical investigation show that, in attaching gas mixtures, both the ionization and attachment-rate coefficients in the positive column of the discharge are changed such that the combined effect results in an increase in resistivity. Experimentally, it is seen that application of a crossed magnetic field to an abnormal glow discharge in attaching gases in a certain parameter range causes the discharge voltage to increase significantly. The effect seems to be most strongly influenced by processes in the cathode-fall region

  1. Shallow-crack toughness results for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Shum, D.K.M.; Rolfe, S.T.

    1992-01-01

    The Heavy Section Steel Technology Program (HSST) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. To complete this investigation, techniques were developed to determine the fracture toughness from shallow-crack specimens. A total of 38 deep and shallow-crack tests have been performed on beam specimens about 100 mm deep loaded in 3-point bending. Two crack depths (a ∼ 50 and 9 mm) and three beam thicknesses (B ∼ 50, 100, and 150 mm) have been tested. Techniques were developed to estimate the toughness in terms of both the J-integral and crack-tip opening displacement (CTOD). Analytical J-integral results were consistent with experimental J-integral results, confirming the validity of the J-estimation schemes used and the effect of flaw depth on fracture toughness. Test results indicate a significant increase in the fracture toughness associated with the shallow flaw specimens in the lower transition region compared to the deep-crack fracture toughness. There is, however, little or no difference in toughness on the lower shelf where linear-elastic conditions exist for specimens with either deep or shallow flaws. The increase in shallow-flaw toughness compared with deep-flaw results appears to be well characterized by a temperature shift of 35 degree C

  2. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  3. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    Science.gov (United States)

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  4. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  5. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  6. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  7. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  8. Analysis of the pressure fields in a swirling annular jet flow

    Science.gov (United States)

    Percin, M.; Vanierschot, M.; Oudheusden, B. W. van

    2017-12-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional time-resolved pressure fields using the governing flow equations. Both time-averaged and instantaneous flow structures are discussed, including a characterization of the first- and second-order statistical moments. A Reynolds decomposition of the flow field shows that the time-averaged flow is axisymmetric with regions of high anisotropic Reynolds stresses. Two recirculation zones exist that are surrounded by regions of very intense mixing. Notwithstanding the axisymmetric nature of the time-averaged flow, a non-axisymmetric structure of the instantaneous flow is revealed, comprising a central vortex core which breaks up into a precessing vortex core. The winding sense of this helical structure is opposite to the swirl direction and it is wrapped around the vortex breakdown bubble. It precesses around the central axis of the flow at a frequency corresponding to a Strouhal number of 0.27. The precessing vortex core is associated with a low-pressure region along the central axis of the jet and the maximum pressure fluctuations occur upstream of the vortex breakdown location, where the azimuthal velocity component also reaches peak values as a result of the inward motion of the fluid and the conservation of angular momentum. The POD analysis of the pressure fields suggests that the precessing helical vortex formation is the dominant coherent structure in the instantaneous flow.

  9. Radon reduction techniques for suspended timber floors and pressure field extension assessment of hardcore specifications

    International Nuclear Information System (INIS)

    Gregory, T.J.; Stephen, R.K.

    1994-01-01

    This paper comprises two case studies. The first describes a series of mitigation measures carried out in a small primary school fitted with a suspended timber floor. Radon levels had been successfully reduced but the floor subsequently collapsed due to an outbreak of dry-rot. The floor was replaced with a ground-bearing concrete slab fitted with a typical example of one of 200 or so sump-and-fan systems fitted by Cornwall County Council (CCC). Following consultation with the Building Research Establishment (BRE) a network of small bore pipes was fitted below the floor during construction to record variations in radon levels and pressures. The second case study describes the floor replacement at a second, similar school but with a permeable layer of material under the concrete slab and more pressure measurement points. The pressure measurements and their subsequent analysis are described and the performance of the two installations compared. Using BRE and CCC expertise, this technique is now being applied to a number of other replacement floors in order to assess pressure field extension in a variety of hardcore and blinding materials. It is hoped that by careful selection of hardcore and blinding specifications the increased pressure field extension obtained could result in a new-build properties requiring fewer underfloor suction points and/or a reduction in fan power consumption with a greater degree of confidence of success than at present. The selection and design of suction systems to date has been on a very pragmatic basis. (author)

  10. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  11. Chronically implanted pressure sensors: challenges and state of the field.

    Science.gov (United States)

    Yu, Lawrence; Kim, Brian J; Meng, Ellis

    2014-10-31

    Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.

  12. [Results of treatment for high-pressure injection hand injuries].

    Science.gov (United States)

    Zyluk, A; Walaszek, I

    2000-01-01

    High-pressure injection injuries of the hand have a reputation for being dangerous for individual fingers and even for whole hand. Usually appearing innocuous at presentation because of small puncture entry wound, these injuries result in severe damage of most internal structures in finger and hand due to extensive penetration of injected substance. This paper reviews the outcome of the treatment of such injuries in 10 patients: 9 sustained injection of toxic paint, and one lead shot. All the patients were operated on: eight a few hours after injury and two with 3 days delay. The surgical technique included wide exposure from site of injection up to the farthest place in which foreign substance was seen. Thorough debridment of injected material and contaminated tissue was performed with careful preservation of neurovascular structures and tendons. Wounds were not closed, but managed by open technique. In all patients wounds healed well: in 3 by secondary intention, in 6 by delayed closure and 2 were covered by skin grafts. No amputation was performed. Final results were assessed form 1.5 to 3.5 years after initial injury (mean at 2.5 years). Two patients complained of moderate pain related to the weather, five of cold intolerance and two of impaired sensation on fingertips. Active range of motion of affected fingers was in whole group from 90% to 104% (mean 97%) of the range of motion of unaffected fingers from the other side. Range of motion of the wrist (2 patients) was 76% and 117% of range of motion of the other side. Pinch grip strength was from 81% to 116% (mean 99%), and global grip strength from 77% to 119% (mean 97%) of the other side. All patients went back to their previous jobs and periods of sick leave were from 2 weeks to 6 months (mean 3 mo). Excellent results achieved in this study--full functional recovery in 9 of 10 patients confirm the effectiveness of aggressive treatment by open wound technique of such injuries.

  13. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  14. Mechanics Evolution Characteristics Analysis of Pressure-arch in Fully-mechanized Mining Field

    Directory of Open Access Journals (Sweden)

    S.R. Wang

    2014-09-01

    Full Text Available Based on a practical engineering, the three-dimension computational model was built using FLAC3D under the fullymechanized mining condition. Considering four variation factors, such as the distance of mining advancing, the strength of the surrounding rock, the speed of mining advancing and the dip angle of the coal seam, the mechanics evolution characteristics of the pressure-arch were analyzed. The result showed that for the horizontal seam, the geometric shape of the pressure-arch varied from flat arch to round arch gradually and the height and thickness of the pressure-arch also increased; the maximum principal stress in the skewback also increased with the working face advancing. With the strength of the surrounding rock from soft to hard, the arch thickness reduced, and the arch loading decreased. To improve the mining speed can do some contributions to the stability of the pressure-arch in the mining field. With the increase of dip angle of the seam, the pressure-arch displayed an asymmetric shape, the vault was tilted and moved to the upward direction. At the same time, the thickness of the pressure-arch increased, and the stress concentration in the skewback tended to be further intensified.

  15. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  16. Simultaneous compared with sequential blood pressure measurement results in smaller inter-arm blood pressure differences.

    Science.gov (United States)

    van der Hoeven, Niels V; Lodestijn, Sophie; Nanninga, Stephanie; van Montfrans, Gert A; van den Born, Bert-Jan H

    2013-11-01

    There are currently few recommendations on how to assess inter-arm blood pressure (BP) differences. The authors compared simultaneous with sequential measurement on mean BP, inter-arm BP differences, and within-visit reproducibility in 240 patients stratified according to age (simultaneous and three sequential BP measurements were taken in each patient. Starting measurement type and starting arm for sequential measurements were randomized. Mean BP and inter-arm BP differences of the first pair and reproducibility of inter-arm BP differences of the first and second pair were compared between both methods. Mean systolic BP was 1.3±7.5 mm Hg lower during sequential compared with simultaneous measurement (Psequential measurement was on average higher than the second, suggesting an order effect. Absolute systolic inter-arm BP differences were smaller on simultaneous (6.2±6.7/3.3±3.5 mm Hg) compared with sequential BP measurement (7.8±7.3/4.6±5.6 mm Hg, PSimultaneous measurement of BP at both arms reduces order effects and results in smaller inter-arm BP differences, thereby potentially reducing unnecessary referral and diagnostic procedures. ©2013 Wiley Periodicals, Inc.

  17. On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Garbet, X.; Bourdelle, C.

    2009-01-01

    This paper describes the structure of the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field. The parallel momentum balance equation is derived from magnetohydrodynamic equations by an expansion in the inverse magnetic field 1/B as a small parameter. Contributions of the gyroviscosity and inertia terms are clarified. It is shown that magnetic field curvature leads to important coupling of parallel flow with fluctuations of the electric field and plasma pressure.

  18. Finite element simulation of pressure-loaded phase-field fractures

    NARCIS (Netherlands)

    Singh, N.; Verhoosel, C.V.; van Brummelen, E.H.

    2018-01-01

    A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary

  19. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    Science.gov (United States)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  20. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  1. Simultaneous compared with sequential blood pressure measurement results in smaller inter-arm blood pressure differences

    NARCIS (Netherlands)

    van der Hoeven, Niels V.; Lodestijn, Sophie; Nanninga, Stephanie; van Montfrans, Gert A.; van den Born, Bert-Jan H.

    2013-01-01

    There are currently few recommendations on how to assess inter-arm blood pressure (BP) differences. The authors compared simultaneous with sequential measurement on mean BP, inter-arm BP differences, and within-visit reproducibility in 240 patients stratified according to age ( <50 or ≥60 years) and

  2. Results of pressurized-slot measurements in the G-Tunnel underground facility

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Mann, K.L.; Dodds, D.J.

    1989-01-01

    A rock-mechanics field-testing program is underway at Sandia National Laboratories (SNL) as part of the YMP. SNL has the responsibility for assessing the repository design and performance as well as characterizing the geomechanical behavior of the rock. SNL has conducted field experiments in G-Tunnel in Rainier Mesa at the NTS, where tuffs similar to those at Yucca Mountain, the potential repository site, are found. Later experiments are planned as part of the YMP Exploratory Shaft investigations at Yucca Mountain. Major geomechanical factors in repository developments are determinations of the stress state and the deformability of the rock mass (described by the modulus of deformation). One feature of SNL's rock-mechanics program was the development of a testing program for cutting thin slots in a jointed welded tuff and utilizing flatjacks for pressurizing these thin-slots on a relatively, large scale. Objectives in the pressurized-slot testing in G-Tunnel have been to apply and possibly improve methods for (1) utilizing the flatjack cancellation (FC) method for measuring stresses normal to the slot and (2) measuring the modulus of deformation of the jointed rock surrounding the slot. This paper discusses the results of field measurements in and around a single slot and evaluates potential applications and limitations. 10 refs., 1 fig., 4 tabs

  3. A field performance evaluation of drip emitters: pressure versus ...

    African Journals Online (AJOL)

    Field evaluation of irrigation systems (drip) can form a basis for decision making as to whether the irrigation system needs rehabilitation, overhaul or even dismantling if found to be very uneconomical. A comprehensive field evaluation of irrigation systems involves determining the overall efficiency of the system, for example, ...

  4. High pressure apparatus transport properties study in high magnetic field

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Sechovský, V.; Mikulina, O.; Kamarád, Jiří; Alsmadi, A. M.; Nakotte, H.; Lacerda, A. H.

    2002-01-01

    Roč. 16, 20, 21 & 22 (2002), s. 3330-3333 ISSN 0217-9792 R&D Projects: GA ČR GP202/01/D045; GA ČR GA202/00/1217; GA MŠk ME 165 Grant - others:NSF(XX) DMR-0094241 Institutional research plan: CEZ:AV0Z1010914 Keywords : high-pressure apparatus Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.604, year: 2002

  5. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  6. Light-pressure-induced nonlinear dispersion of a laser field interacting with an atomic gas

    International Nuclear Information System (INIS)

    Grimm, R.; Mlynek, J.

    1990-01-01

    We report on detailed studies of the effect of resonant light pressure on the optical response of an atomic gas to a single monochromatic laser field. In this very elementary situation of laser spectroscopy, the redistribution of atomic velocities that is induced by spontaneous light pressure leads to a novel contribution to the optical dispersion curve of the medium. This light-pressure-induced dispersion phenomenon displays a pronounced nonlinear dependence on the laser intensity. Moreover, for a given intensity, its strength is closely related to the laser beam diameter. As most important feature, this light-pressure-induced dispersion displays an even symmetry with respect to the optical detuning from line center. As a result, the total Doppler-broadened dispersion curve of the gas can become asymmetric, and a significant shift of the dispersion line center can occur. In addition to a detailed theoretical description of the phenomenon, we report on its experimental investigation on the λ=555.6 nm 1 S 0 - 3 P 1 transition in atomic ytterbium vapor with the use of frequency-modulation spectroscopy. The experimental findings are in good quantitative agreement with theoretical predictions

  7. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  8. Early cessation of pressure garment therapy results in scar contraction and thickening.

    Directory of Open Access Journals (Sweden)

    Danielle M DeBruler

    Full Text Available Pressure garment therapy is often prescribed to improve scar properties following full-thickness burn injuries. Pressure garment therapy is generally recommended for long periods of time following injury (1-2 years, though it is plagued by extremely low patient compliance. The goal of this study was to examine the effects of early cessation of pressure garment therapy on scar properties. Full-thickness burn injuries were created along the dorsum of red Duroc pigs. The burn eschar was excised and wound sites autografted with split-thickness skin. Scars were treated with pressure garments within 1 week of injury and pressure was maintained for either 29 weeks (continuous pressure or for 17 weeks followed by cessation of pressure for an additional 12 weeks (pressure released; scars receiving no treatment served as controls. Scars that underwent pressure garment therapy were significantly smoother and less contracted with decreased scar height compared to control scars at 17 weeks. These benefits were maintained in the continuous pressure group until week 29. In the pressure released group, grafts significantly contracted and became more raised, harder and rougher after the therapy was discontinued. Pressure cessation also resulted in large changes in collagen fiber orientation and increases in collagen fiber thickness. The results suggest that pressure garment therapy effectively improves scar properties following severe burn injury; however, early cessation of the therapy results in substantial loss of these improvements.

  9. Early cessation of pressure garment therapy results in scar contraction and thickening.

    Science.gov (United States)

    DeBruler, Danielle M; Zbinden, Jacob C; Baumann, Molly E; Blackstone, Britani N; Malara, Megan M; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M

    2018-01-01

    Pressure garment therapy is often prescribed to improve scar properties following full-thickness burn injuries. Pressure garment therapy is generally recommended for long periods of time following injury (1-2 years), though it is plagued by extremely low patient compliance. The goal of this study was to examine the effects of early cessation of pressure garment therapy on scar properties. Full-thickness burn injuries were created along the dorsum of red Duroc pigs. The burn eschar was excised and wound sites autografted with split-thickness skin. Scars were treated with pressure garments within 1 week of injury and pressure was maintained for either 29 weeks (continuous pressure) or for 17 weeks followed by cessation of pressure for an additional 12 weeks (pressure released); scars receiving no treatment served as controls. Scars that underwent pressure garment therapy were significantly smoother and less contracted with decreased scar height compared to control scars at 17 weeks. These benefits were maintained in the continuous pressure group until week 29. In the pressure released group, grafts significantly contracted and became more raised, harder and rougher after the therapy was discontinued. Pressure cessation also resulted in large changes in collagen fiber orientation and increases in collagen fiber thickness. The results suggest that pressure garment therapy effectively improves scar properties following severe burn injury; however, early cessation of the therapy results in substantial loss of these improvements.

  10. Studies on unsteady pressure fields in the region of separating and reattaching flows

    Science.gov (United States)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  11. Effective stresses and shear failure pressure from in situ Biot's coefficient, Hejre Field, North Sea

    DEFF Research Database (Denmark)

    Regel, Jeppe Bendix; Orozova-Bekkevold, Ivanka; Andreassen, Katrine Alling

    2017-01-01

    , is significantly different from 1. The log-derived Biot's coefficient is above 0.8 in the Shetland Chalk Group and in the Tyne Group, and 0.6-0.8 in the Heno Sandstone Formation. We show that the effective vertical and horizontal stresses obtained using the log-derived Biot's coefficient result in a drilling......We propose a combination of Biot's equations for effective stress and the expression for shear failure in a rock to obtain an expression for minimum pore pressure in a stable vertical well bore. We show that a Biot's coefficient calculated from logging data in the Hejre Field, North Sea...

  12. Experimental determination of radiated internal wave power without pressure field data

    Science.gov (United States)

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-04-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux left and total radiated power P for two-dimensional internal gravity waves. Both left and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  13. Experimental determination of radiated internal wave power without pressure field data

    International Nuclear Information System (INIS)

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data

  14. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  15. Exciton states in GaAs δ-doped systems under magnetic fields and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)

    2013-04-15

    Excitons in GaAs n-type δ-doped quantum wells are studied taking into account the effects of externally applied magnetic fields as well as of hydrostatic pressure. The one-dimensional potential profile in both the conduction and valence bands is described including Hartree effects via a Thomas–Fermi-based local density approximation. The allowed uncorrelated energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions and a variational method is used to obtain the exciton states. The results are presented as functions of the two-dimensional doping concentration and the magnetic field strength for zero and finite values of the hydrostatic pressure. In general, it is found that the exciton binding energy is a decreasing function of the doping-density and an increasing function of the magnetic field intensity. A comparison with recent experiments on exciton-related photoluminescence in n-type δ-doped GaAs is made.

  16. Electric field determination in streamer discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Bonaventura, Z; Bourdon, A; Celestin, S; Pasko, V P

    2011-01-01

    The electric field in streamer discharges in air can be easily determined by the ratio of luminous intensities emitted by N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) if the steady-state assumption of the emitting states is fully justified. At ground pressure, the steady-state condition is not fulfilled and it is demonstrated that its direct use to determine the local and instantaneous peak electric field in the streamer head may overestimate this field by a factor of 2. However, when spatial and time-integrated optical emissions (OEs) are considered, the reported results show that it is possible to formulate a correction factor in the framework of the steady-state approximation and to accurately determine the peak electric field in an air discharge at atmospheric pressure. A correction factor is defined as Γ = E s /E e , where E e is the estimated electric field and E s is the true peak electric field in the streamer head. It is shown that this correction stems from (i) the shift between the location of the peak electric field and the maximum excitation rate for N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) as proposed by Naidis (2009 Phys. Rev. E 79 057401) and (ii) from the cylindrical geometry of the streamers as stated by Celestin and Pasko (2010 Geophys. Res. Lett. 37 L07804). For instantaneous OEs integrated over the whole radiating plasma volume, a correction factor of Γ ∼ 1.4 has to be used. For time-integrated OEs, the reported results show that the ratio of intensities can be used to derive the electric field in discharges if the time of integration is sufficiently long (i.e. at least longer than the longest characteristic lifetime of excited species) to have the time to collect all the light from the emitting zones of the streamer. For OEs recorded using slits (i.e. a window with a small width but a sufficiently large radial extension to contain the total radial extension of the discharge) the calculated correction factor is Γ ∼ 1.4. As for OEs observed

  17. Contradictory results on the effects of magnetic fields

    International Nuclear Information System (INIS)

    Jokela, K.

    1994-01-01

    Magnetic fields are becoming a new problem for the authorities, because some studies indicate that they increase the risk of cancer. On the other hand, experimental studies with animals and cell cultures have not proved that magnetic fields can definitively cause cancer. The results of studies may, in fact, be misleading. The cancer risk seems to increase randomly, because there are usually no more than twenty or thirty people with cancer among the study population. Often the types of cancer vary even though the exposure conditions have been similar. It is also possible that some unknown factor associated with power lines and equipment increases the cancer risk. People are usually exposed to magnetic fields induced by the electricity network and electrical appliances in buildings. Magnetic fields can be reduced during the design of electrical installations and appliances; this is much easier than the reduction of existing fields. It is also relatively easy to limit magnetic fields caused by VDU's and many electrical appliances during the design phase. (orig.)

  18. Universality in passively advected hydrodynamic fields : the case of a passive vector with pressure

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Toschi, F.

    2001-01-01

    Universality of statistical properties of passive quantities advected by turbulent velocity fields at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical properties of an hydrodynamic system with pressure. We present theoretical arguments and

  19. Electric Field Induced Strain in Electrostrictive Polymers Under High Hydrostatic Pressure - System Development and Material Characterization

    National Research Council Canada - National Science Library

    Zhang, Q

    2000-01-01

    ... of (i) developing a high performance piezo-bimorph based dilatometer which can be used to characterize the electric field induced strain response in polymer films under high hydrostatic pressure, (ii...

  20. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  1. Synthesis and atmospheric pressure field emission operation of W18O49 nanowires

    NARCIS (Netherlands)

    Agiral, A.; Gardeniers, Johannes G.E.

    2008-01-01

    Tungsten oxide W18O49 nanorods with diameters of 15−20 nm were grown on tungsten thin films exposed to ethene and nitrogen at 700 °C at atmospheric pressure. It was found that tungsten carbide formation enhances nucleation and growth of nanorods. Atmospheric pressure field emission measurements in

  2. Experimental vibroacoustic testing of plane panels using synthesized random pressure fields.

    Science.gov (United States)

    Robin, Olivier; Berry, Alain; Moreau, Stéphane

    2014-06-01

    The experimental reproduction of random pressure fields on a plane panel and corresponding induced vibrations is studied. An open-loop reproduction strategy is proposed that uses the synthetic array concept, for which a small array element is moved to create a large array by post-processing. Three possible approaches are suggested to define the complex amplitudes to be imposed to the reproduction sources distributed on a virtual plane facing the panel to be tested. Using a single acoustic monopole, a scanning laser vibrometer and a baffled simply supported aluminum panel, experimental vibroacoustic indicators such as the Transmission Loss for Diffuse Acoustic Field, high-speed subsonic and supersonic Turbulent Boundary Layer excitations are obtained. Comparisons with simulation results obtained using a commercial software show that the Transmission Loss estimation is possible under both excitations. Moreover and as a complement to frequency domain indicators, the vibroacoustic behavior of the panel can be studied in the wave number domain.

  3. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  4. Magnetic phase diagram of UNi2Si2 under magnetic field and high-pressure

    International Nuclear Information System (INIS)

    Honda, F.; Oomi, G.; Svoboda, P.; Syshchenko, A.; Sechovsky, V.; Khmelevski, S.; Divis, M.; Andreev, A.V.; Takeshita, N.; Mori, N.; Menovsky, A.A.

    2001-01-01

    Measurements of electrical resistance under high pressure and neutron diffraction in high-magnetic field of single crystalline UNi 2 Si 2 have been performed. We have found the analogy between the p-T and B-T magnetic phase diagrams. It is also found that the propagation vector q Z of incommensurate antiferromagnetic phase decreases with increasing magnetic field. A new pronounced pressure-induced incommensurate-commensurate magnetic phase transition has been detected

  5. Missouri Work Zone Capacity : Results of Field Data Analysis

    Science.gov (United States)

    2011-06-01

    This report presents the results of work zone field data analyzed on interstate highways in Missouri to determine : the mean breakdown and queue-discharge flow rates as measures of capacity. Several days of traffic data : collected at a work zone nea...

  6. Translating laboratory compaction test results to field scale

    NARCIS (Netherlands)

    Roholl, J.A.; Thienen-Visser, K. van; Breunese, J.N.

    2016-01-01

    In recent studies on the surface subsidence caused by hydrocarbon recovery of the Groningen gas field, the predicted subsidence is overestimated if results of compaction experiments are not corrected by an empirical `upscaling factor'. In order to find an explanation for this `upscaling factor', an

  7. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure)

    International Nuclear Information System (INIS)

    Hernandez, O.

    1997-01-01

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict

  8. Shallow donor impurities in different shaped double quantum wells under the hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Sokmen, I.

    2005-01-01

    The combined electric field and hydrostatic pressure effects on the binding energy of the donor impurity in double triangle quantum well (DTQW), double graded (DGQW) and double square (DSQW) GaAs-(Ga,Al)As quantum wells are calculated by using a variational technique within the effective-mass approximation. The results have been obtained in the presence of an electric field applied along the growth direction as a function of hydrostatic pressure, the impurity position, barrier width and the geometric shape of the double quantum wells

  9. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    Science.gov (United States)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  10. Transversity results and computations in symplectic field theory

    International Nuclear Information System (INIS)

    Fabert, Oliver

    2008-01-01

    Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M φ of symplectic manifolds (M,ω M ) with symplectomorphisms φ. While the cylindrical contact homology of M φ is given by the Floer homologies of powers of φ, the other algebraic invariants of symplectic field theory for M φ provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian φ we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M φ ≅ S 1 x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic field theory are established, our result implies that the

  11. Transversity results and computations in symplectic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fabert, Oliver

    2008-02-21

    Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M{sub {phi}} of symplectic manifolds (M,{omega}{sub M}) with symplectomorphisms {phi}. While the cylindrical contact homology of M{sub {phi}} is given by the Floer homologies of powers of {phi}, the other algebraic invariants of symplectic field theory for M{sub {phi}} provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian {phi} we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M{sub {phi}} {approx_equal} S{sup 1} x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic

  12. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  13. The Frontier Fields: Survey Design and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, J. M.; Koekemoer, A.; Grogin, N.; Mack, J.; Anderson, J.; Avila, R.; Barker, E. A.; Borncamp, D.; Durbin, M.; Gunning, H.; Hilbert, B.; Jenkner, H.; Khandrika, H.; Levay, Z.; Lucas, R. A.; MacKenty, J.; Ogaz, S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Coe, D.; Capak, P.; Brammer, G., E-mail: lotz@stsci.edu [European Space Agency/Space Telescope Science Institute, 3700 Sam Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-03-01

    What are the faintest distant galaxies we can see with the Hubble Space Telescope ( HST ) now, before the launch of the James Webb Space Telescope ? This is the challenge taken up by the Frontier Fields, a Director’s discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5 σ point-source depths of ∼29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10–100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ∼30–33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director’s discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μ m bands to 5 σ point-source depths of ∼26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.

  14. The German remote monitoring field test -- First results

    International Nuclear Information System (INIS)

    Richter, B.; Neumann, G.; Rudolf, K.; Schink, F.J.; Johnson, C.S.; Martinez, R.L.

    1996-01-01

    The International Atomic Energy Agency strives to increase the efficiency of its safeguards by reducing the inspection effort without losing safeguards effectiveness. Remote data transmission may have a potential to automate routine safeguards. The German government sponsors a field trial to study technical and non-technical issues related to the remote transmission of safeguards and status data as well as mailing-in of data carriers. Major technical issues of the field trial are the authenticity and confidentiality of the remotely received data as well as the reliability of the transmission techniques and data storage on removable data carriers. Non-technical issues are related to the release of data including the timing of data transmissions. The field trial takes place in the commercial Ahaus Dry Storage Facility for Spent Nuclear Fuel with participation of Sandia National Laboratories. The paper describes the first results

  15. Flow field design for high-pressure PEM electrolysis cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    -water distributes. Water not only serves a reactant, it also aids in cooling due to its high specific heat capacity. The movement of liquid water at the anode is difficult to model, since it is highly coupled to the formation of gas bubbles. To capture the complex two-phase flow behaviour that takes place within...... micro-channels and porous media, our research group has developed an Euler-Euler model in the computational fluid dynamics modelling framework of ANSYS CFX. In addition to two-phase flow, the model accounts for turbulence, species transport in the gas phase, heat transport in all three phases (i.......e. solid, gas and liquid), as well as charge transport of electrons and ions. Our recent improvements have focused on the models ability to account for phase change and electrochemistry as well as the modelling of two-phase flow regimes. For comparison, an interdigitated and parallel channel flow field...

  16. Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2013-01-01

    We report on experimentally obtained values of the electric field magnitude on a dielectric surface induced by an impinging atmospheric pressure plasma jet. The plasma plume was striking the dielectric surface at an angle of 45¿, at 5mm from the surface measured at the axis of the jet. The results

  17. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  18. Field assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses

    International Nuclear Information System (INIS)

    Forster, C.B.; Gale, J.E.

    1981-06-01

    A field experiment to evaluate the transient pressure pulse technique as a method of determining the in-situ hydraulic conductivity of low permeability fractured rock was made. The experiment attempted to define: the radius of influence of a pressure pulse-test in fractured rock and the correlation between pressure-pulse tests and steady-state flow tests performed in five boreholes drilled in fractured granite. Twenty-five test intervals, 2 to 3 m in length, were isolated in the boreholes, using air-inflated packers. During pressure pulse and steady-state tests, pressures were monitored in both the test and observation cavities. Rock-mass conductivities were calculated from steady-state test results and were found to range from less than 10 - 11 to 10 - 7 cm/sec. However, there was no consistent correlation between the steady-state conductivity and the pressure pulse decay characteristics of individual intervals. These conflicting test results can be attributed to the following factors: differences in volumes of rock affected by the test techniques; effects of equipment configuration and compliance; and complexity of the fracture network. Although the steady-state flow tests indicate that hydraulic connections exist between most of the test cavities, no pressure responses were noted in the observation cavities (located at least 0.3 m from the test cavities) during the pulse tests. This does not mean, however, that the pressure-pulse radius of influence is <0.3 m, because the observation cavities were too large (about 7 liters). The lack of correlation between steady-state conductivities and the corresponding pressure pulse decay times does not permit use of existing single-fracture type curves to analyze pulse tests performed in multiple-fracture intervals. Subsequent work should focus on the detailed interpretation of field results with particular reference to the effects of the fracture system at the test site

  19. Pressure-Water Content Relations for a Sandy, Granitic Soil Under Field and Laboratory Conditions

    Science.gov (United States)

    Chandler, D. G.; McNamara, J. M.; Gribb, M. M.

    2001-12-01

    A new sensor was developed to measure soil water potential in order to determine the predominant mechanisms of snowmelt delivery to streamflow. The sensors were calibrated for +50 to -300 cm for application on steep granitic slopes and deployed at three depths and 2 locations on a slope in a headwater catchment of the Idaho Batholith throughout the 2001 snowmelt season. Soil moisture was measured simultaneously with Water Content Reflectometers (Cambell Scientific, Logan, UT), that were calibrated in situ with Time Domain Reflectometry measurements. Sensor performance was evaluated in a laboratory soil column via side-by-side monitoring during injection of water with a cone permeameter. Soil characteristic curves were also determined for the field site by multi-step outflow tests. Comparison of the results from the field study to those from the laboratory experiment and to the characteristic curves demonstrate the utility of the new sensor for recording dynamic changes in soil water status. During snowmelt, the sensor responded to both matric potential and bypass-flow pore potential. Large shifts in the pressure record that correspond to changes in the infiltration flux indicate initiation and cessation of macropore flow. The pore pressure records may be used to document the frequency, timing and duration of bypass flow that are not apparent from the soil moisture records.

  20. Results of the non-nulling calibration of five-hole pressure probe

    Science.gov (United States)

    Bereznai, J.; Mlynár, P.; Masaryk, M.

    2017-09-01

    In the laboratory of the Institute of Energy Machinery, Faculty of Mechanical Engineering in Bratislava were produced amount of pressure probes of different designs. Special position among themselves are five-hole pressure probe with tip of sphere or wedge used to determine the velocity vector in a unknown flow fields. Such probes have to be calibrated during blowing an air stream of known velocity magnitude and components of the velocity vector at different angles of attack, when the characteristic information about pressures on a sensitive part of the measuring probe is obtained.

  1. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  2. Analysis of the pressure fields in a swirling annular jet flow

    NARCIS (Netherlands)

    Perçin, M.; Vanierschot, M.; van Oudheusden, B.W.

    2017-01-01

    In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional

  3. Exciton states in zinc-blende GaN/AlGaN quantum dot: Effects of electric field and hydrostatic pressure

    International Nuclear Information System (INIS)

    Xia Congxin; Zeng Zaiping; Liu, Z.S.; Wei, S.Y.

    2010-01-01

    Based on the effective-mass approximation, the effects of the electric field and hydrostatic pressure on exciton states in a cylindrical zinc-blende (ZB) GaN/AlGaN quantum dot (QD) are investigated variationally. Numerical results show that the electric field leads to a remarkable reduction of the ground-state exciton binding energy and interband transition energy in the case of any hydrostatic pressures. However, the hydrostatic pressure increases the exciton binding energy and interband transition energy in the case of any electric fields. In particular, the electric field has a remarkable influence on the exciton binding energy in the QD with large dot size and small hydrostatic pressure; moreover, the hydrostatic pressure obviously affects the exciton binding energy in the QD with small dot size and weak electric field.

  4. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  5. Measurement of pressure distributions and velocity fields of water jet intake flow

    International Nuclear Information System (INIS)

    Jeong, Eun Ho; Yoon, Sang Youl; Kwon, Seong Hoon; Chun, Ho Hwan; Kim, Mun Chan; Kim, Kyung Chun

    2002-01-01

    Waterjet propulsion system can avoid cavitation problem which is being arised conventional propeller propulsion system. The main issue of designing waterjet system is the boundary layer separation at ramp and lib of water inlet. The flow characteristics are highly depended on Jet to Velocity Ratio(JVR) as well as the intake geometry. The present study is conducted in a wind tunnel to provide accurate pressure destribution at the inlet wall and velocity field of the inlet and exit planes. Particle image velocimetry technique is used to obtain detail velocity fields. Pressure distributions and velocity field are discussed with accelerating and deaccelerating flow zones and the effect of JVR

  6. Efficiency of Magnetic Field Treatment on Pressure Sores in Bedridden Patients

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2011-09-01

    Full Text Available Objective: Pressure sores are an important source of complications in patients who are immobilized and bedridden. We aimed to investigate the efficiency of magnetic field treatment in pressure sores. Material and Methods: This was a randomized, double blind controlled design study. 20 patients in the study group received magneto-therapy, once a day for 30 minutes and with 150G, keeping to the BTL09 magnetotherapy device’s program. In the control group, 20 patients received the dressing only once a day. The surface areas of the pressure sores were evaluated at the onset of the treatment (1st day, and on the 7th and 15th days.Results: When within group comparisons were conducted, a significant difference was observed between the 1st and 7th day, 7th and 15th day, and 1st and 15th day measures in both the groups in terms of the scar area. The average healing time for the treatment group was 10.80±4.06 (6-20 days, and the average healing time for the control group was 18.85±9.75 (5-32 days. There was a statistically significant difference between the two groups (z=-2.114, p=0.034. Also, there was a significant difference in the scar area between the two groups in the 15th day measure (z=-3.818, p=0.000.Conclusion: The healing process of the tissue can be accelerated.with the use of magnetotherapy in the treatment of pressure sores of stage II and III,

  7. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  8. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  9. A unified definition of a vortex derived from vortical flow and the resulting pressure minimum

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470–0392 (Japan); Sugiyama, K; Takagi, S, E-mail: nakayama@aitech.ac.jp, E-mail: kazuyasu.sugiyama@riken.jp, E-mail: takagi@mech.t.u-tokyo.ac.jp [Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Hongo, Tokyo 113–8656 (Japan)

    2014-10-01

    This paper presents a novel definition of a vortex that integrates the concepts of the invariant swirling motion, the pressure minimum characteristics induced by the swirling motion and the positive Laplacian of the pressure. The current definition specifies a vortex that has a swirling motion and resulting pressure minimum feature in the swirl plane, which is simply represented by the eigenvalues and eigenvectors of the velocity gradient tensor. (paper)

  10. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    Science.gov (United States)

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  11. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  12. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  13. The Auroral Field-aligned Acceleration - Cluster Results

    Science.gov (United States)

    Vaivads, A.; Cluster Auroral Team

    The four Cluster satellites cross the auroral field lines at altitudes well above most of acceleration region. Thus, the orbit is appropriate for studies of the generator side of this region. We consider the energy transport towards the acceleration region and different mechanisms for generating the potential drop. Using data from Cluster we can also for the first time study the dynamics of the generator on a minute scale. We present data from a few auroral field crossings where Cluster are in conjunction with DMSP satellites. We use electric and magnetic field data to estimate electrostatic po- tential along the satellite orbit, Poynting flux as well as the presence of plasma waves. These we can compare with data from particle and wave instruments on Cluster and on low latitude satellites to try to make a consistent picture of the acceleration region formation in these cases. Preliminary results show close agreement both between in- tegrated potential values at Cluster and electron peak energies at DMSP as well as close agreement between the integrated Poynting flux values at Cluster and the elec- tron energy flux at DMSP. At the end we draw a parallels between auroral electron acceleration and electron acceleration at the magnetopause.

  14. A prototype tap test imaging system: Initial field test results

    Science.gov (United States)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  15. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  16. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  17. Design and field results of a walk-through EDS

    Science.gov (United States)

    Wendel, Gregory J.; Bromberg, Edward E.; Durfee, Memorie K.; Curby, William A.

    1997-01-01

    A walk-through portal sampling module which incorporates active sampling has been developed. The module uses opposing wands which actively brush the subjects exterior clothing to disturb explosive traces. These traces are entrained in an air stream and transported to a High Speed GC- chemiluminescence explosives detection system. This combination provides automatic screening of passengers at rates of 10 per minute. The system exhibits sensitivity and selectivity which equals or betters that available from commercially available manual equipment. The systems has been developed for deployment at border crossings, airports and other security screening points. Detailed results of laboratory tests and airport field trials are reviewed.

  18. Results of the ITER toroidal field model coil project

    International Nuclear Information System (INIS)

    Salpietro, E.; Maix, R.

    2001-01-01

    In the scope of the ITER EDA one of the seven largest projects was devoted to the development, manufacture and testing of a Toroidal Field Model Coil (TFMC). The industry consortium AGAN manufactured the TFMC based on on a conceptual design developed by the ITER EDA EU Home Team. The TFMC was completed and assembled in the test facility TOSKA of the Forschungszentrum Karlsruhe in the first half of 2001. The first testing phase started in June 2001 and lasted till October 2001. The first results have shown that the main goals of the project have been achieved

  19. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2011-01-01

    Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.

  20. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    Science.gov (United States)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  1. Magnetic phase diagram of Ce2Fe17 under high pressures in high magnetic fields

    International Nuclear Information System (INIS)

    Ishikawa, Fumihiro; Goto, Tsuneaki; Fujii, Hironobu

    2003-01-01

    The magnetization of Ce 2 Fe 17 was precisely measured under high pressures up to 1.2 GPa in magnetic fields up to 18 T. The magnetic phase diagram in the B-T plane is determined at 0, 0.3, 0.4, 0.6, 0.9 and 1.2 GPa. At 0 GPa, five magnetic phases exist and the application of high pressure produces two additional magnetic phases. The shape of the phase diagram changes drastically with increasing pressure

  2. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Baumjohann, W.; Nagai, T.

    1993-01-01

    The authors report on an analysis of pressure and magnetic configuration within the plasma sheet following the initiation of substorm events. They have constructed this time dependent picture by using an epoch analysis of data from the AMPTE/IRM spacecraft. This analysis procedure can be used to construct a unified picture of events, provided they are reproducible, from a statistical analysis of a series of point measurements. The authors first determine the time dependent pressure changes in the plasma sheet. With some simplifying assumptions they then determine the z dependence of the pressure profiles, and from this distribution determine how field lines in the plasma sheet map to the neutral sheet

  3. Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure

    International Nuclear Information System (INIS)

    Abd Elmeguid, M.

    1979-01-01

    The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de

  4. Overview of results from the MST reversed field pinch experiment

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Anderson, J.K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B.E.; Den Hartog, D.J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C.B.; Goetz, J.A.; Holly, D.J.; Kim, J.-H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J.D.

    2013-01-01

    An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and ‘snake’ formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio. (paper)

  5. Results from Field Testing the RIMFAX GPR on Svalbard.

    Science.gov (United States)

    Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.

    2017-12-01

    The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.

  6. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  7. Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2010-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.

  8. Results of field testing of radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr.; Rogers, R.D.; Jastrow, J.D.; Wickliff, D.S.

    1992-01-01

    The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed

  9. Computations for the 1:5 model of the THTR pressure vessel compared with experimental results

    International Nuclear Information System (INIS)

    Stangenberg, F.

    1972-01-01

    In this report experimental results measured at the 1:5-model of the prestressed concrete pressure vessel of the THTR-nuclear power station Schmehausen in 1971, are compared with the results of axis-symmetrical computations. Linear-elastic computations were performed as well as approximate computations for overload pressures taking into consideration the influences of the load history (prestressing, temperature, creep) and the effects of the steel components. (orig.) [de

  10. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  11. Sequential least-square reconstruction of instantaneous pressure field around a body from TR-PIV

    Science.gov (United States)

    Jeon, Young Jin; Gomit, G.; Earl, T.; Chatellier, L.; David, L.

    2018-02-01

    A procedure is introduced to obtain an instantaneous pressure field around a wing from time-resolved particle image velocimetry (TR-PIV) and particle image accelerometry (PIA). The instantaneous fields of velocity and material acceleration are provided by the recently introduced multi-frame PIV method, fluid trajectory evaluation based on ensemble-averaged cross-correlation (FTEE). The integration domain is divided into several subdomains in accordance with the local reliability. The near-edge and near-body regions are determined based on the recorded image of the wing. The instantaneous wake region is assigned by a combination of a self-defined criterion and binary morphological processes. The pressure is reconstructed from a minimization process of the difference between measured and reconstructed pressure gradients in a least-square sense. This is solved sequentially according to a decreasing order of reliability of each subdomain to prevent a propagation of error from the less reliable near-body region to the free-stream. The present procedure is numerically assessed by synthetically generated 2D particle images based on a numerical simulation. Volumetric pressure fields are then evaluated from tomographic TR-PIV of a flow around a 30-degree-inclined NACA0015 airfoil. A possibility of using a different scheme to evaluate material acceleration for a specific subdomain is presented. Moreover, this 3D application allows the investigation of the effect of the third component of the pressure gradient by which the wake region seems to be affected.

  12. Teleradiology (TELEACE) system: results of a field trial

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Gi Bum; Seong, Yeung Soon; Suh, Kyung Jin; Kang, Duk Sik

    1993-01-01

    We report the results of field operation of TELEACE system between Kyung-Pook National University Hospital and Ul-Jin Goon Health Care Medical Center from December, 1990 to September, 1991, which had been operated as a kind of Integrated Services Digital Network projects by KOREA TELECOMMUNICATION Inc. Ul-Jin Goon Health Care Medical Center transmitted 414 plain radiographs to our hospital in speed of 9600BPS. Each image was composed of 1024X1024 pixelsX8 bits/pixel. In our hospital, the image flies were displayed on high resolution monitor (1280X1024 pixels). Text files of image interpretations were transmitted to the health care medical center. The two radiologists who had interpreted the transmitted images, went to the health care medical center and read radiographic films with blind test method. We obtained the following results: false negative rate of 6.3%, false positive rate of 2.4%, mean sensitivity of 81.4%, mean specificity of 96.3%, and mean accuracy of 91.3%. In predictive value of 0.05, there was no significant difference between results of these two types of radiographs. In conclusion, TELEACE system was valuable to the clinicians isolated from services of radiologists

  13. Radiation breeding researches in gamma field. Results of researches

    International Nuclear Information System (INIS)

    Morishita, Toshikazu

    2006-01-01

    Abstract of radiation breeding researches and outline of gamma field in IRB (Institute of Radiation Breeding) are described. The gamma field is a circular field of 100 m radius with 88.8TBqCo-60 source at the center. The field is surrounded by a shielding dike of 8 m in height. The effects of gamma irradiation on the growing plants, mutant by gamma radiation and plant molecular biological researches using mutant varieties obtained by the gamma field are explained. For examples, Japanese pear, chrysanthemum, Cytisus, Eustoma grandiflorum, Manila grass, tea and rose are reported. The mutant varieties in the gamma field, nine mutant varieties of flower colors in chrysanthemum, evergreen mutant lines in Manila grass, selection of self-compatible mutants in tea plant, and the plants of the gamma field recently are shown. (S.Y.)

  14. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    International Nuclear Information System (INIS)

    Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

    2014-01-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

  15. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  16. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2017-01-01

    Full Text Available Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject’s left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05. The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05. When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3. Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase.

  17. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  18. A Direct inverse model to determine permeability fields from pressure and flow rate measurements

    NARCIS (Netherlands)

    Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.

    2008-01-01

    The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard

  19. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  20. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  1. An initial study on atmospheric pressure ion transport by laser ionization and electrostatic fields.

    OpenAIRE

    Peralta Conde, Álvaro; Romero, Carolina; Boyero, Juan; Apiñaniz Aginako, Jon Imanol; Raposo Funcia, Cesar; Roso Franco, Luis; Padilla Moreno, Carlos Manuel

    2014-01-01

    Laser ionization of mixtures of gases at atmospheric pressure and the subsequent transport through electrostatic field is studied. A prototype is designed to perform the transport and detection of the ions. Relevance of the composition of the mixture of gases and ionization parameters is shown

  2. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  3. 3 telsa MRI: successful results with higher field strengths

    International Nuclear Information System (INIS)

    Schmitt, F.; Grosu, D.; Purdy, D.; Salem, K.; Scott, K.T.; Stoeckel, B.; Mohr, C.

    2004-01-01

    The recent development of 3Telsa MRI (3T MRI) has been fueled by the promise of increased signal-to-noise ratio (SNR). Many are excited about the opportunity to no only use the increased SNR for clearer images, but also the change to exchange it for better resolution or faster scans. These possibilities have caused a rapid increase in the market for 3T MRI, where the faster scanning tips an already advantageous economic outlook in favor of the user. As a result, the global market for 3T has grown from a research only market just a few years ago to an ever-increasing clinically oriented customer base. There are, however, significant obstacles to 3T MRI presented by the physics at higher field strength. For example the T1 relaxation times are prolongued with increasing magnet field strength. Further, the increased RF-energy deposition (ASR), the larger chemical shift and the stronger susceptibility effect have to be considered as challenges. It is critical that one looks at both the advantages and disadvantages of using 3T. While there are many issues to address and a number of different methods for doing so, to properly tackle each of these concerns will take time and effort on the part of researchers and clinicians. The optimization of 3T MRI scanning will have to be combined effort, though much work has already been done. The most active area of work to date has been in neuroimaging. Multiple applications have been explored in addition to clinical anatomical imaging, where resolutions is improved showing structure in the brain never before seen in human MRI

  4. Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations

    Science.gov (United States)

    Stefanski, Philip L.

    2014-01-01

    A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.

  5. Skeletal muscle oxygen pressure fields in artificially ventilated, critically ill patients

    International Nuclear Information System (INIS)

    Lund, N.; Jorfeldt, L.; Lewis, D.H.; Oedman, S.

    1980-01-01

    The MDO (Mehrdraht Dostmund Oberflaeche) oxygen electrode was used in a study of skeletal muscle oxygen pressure fields, presented as histograms, in critically ill patients artificially ventilated with gas mixtures of different oxygen concentrations. The histograms were compared with forearm blood flow measurements performed with strain gauge plethysmography. Local blood flow and permeability-surface area product (PS) were also studied by the simultaneous clearances of 133 xenon and 51 Cr-EDTA. The histogram distribution type was normal, i.e. approximately Gaussian, at arterial oxygen pressure levels between 10 and 18 kPa. At arterial oxygen pressures outside this range the histogram distribution types were abnormal, i.e. they showed a non-symmetrical distribution of oxygen pressure values, but their mean was approximately the same as in the normal histogram. However, there were significantly higher tissue oxygen pressure mean values in the patients (3.43 kPa) than in a group of healthy human volunteers (2.25 kPa). Mean forearm blood flow and the clearances of 133 xenon and 51 Cr-EDTA showed marked variations during the measurements both intraindividually and interindividually. Mean forearm blood flow and mean clearances of 133 xenon showed opposite trends compared with arterial oxygen pressures. Mean clearances of 51 Cr-EDTA and mean PS showed minor variations at the different arterial oxygen pressure levels. (author)

  6. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  7. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    International Nuclear Information System (INIS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.

    2017-01-01

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  8. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  9. A field-based approach for examining bicycle seat design effects on seat pressure and perceived stability.

    Science.gov (United States)

    Bressel, Eadric; Bliss, Shantelle; Cronin, John

    2009-05-01

    The purpose of this study was to investigate the effect of various bicycle seat designs on seat pressure and perceived stability in male and female cyclists using a unique field-based methodology. Thirty participants, comprising male and female cyclists, pedaled a bicycle at 118W over a 350m flat course under three different seat conditions: standard seat, a seat with a partial anterior cutout, and a seat with a complete anterior cutout. The pressure between the bicycle seat and perineum of the cyclist was collected with a remote pressure-sensing mat, and perceived stability was assessed using a continuous visual analogue scale. Anterior seat pressure and stability values for the complete cutout seat were significantly lower (p<0.05; 62-101%) than values for the standard and partial cutout designs. These findings were consistent between males and females. Our results would support the contention that the choice of saddle design should not be dictated by interface pressure alone since optimal anterior seat pressure and perceived seat stability appear to be inversely related.

  10. Electric field measurements in near-atmospheric pressure nitrogen and air based on a four-wave mixing scheme

    International Nuclear Information System (INIS)

    Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe; Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi

    2010-01-01

    Electric fields are measured for the first time in molecular nitrogen at atmospheric pressures. Measurements are performed in either pure nitrogen or air. The laser spectroscopic technique applied here is based on a CARS-like four-wave mixing scheme originally developed for measurements in molecular hydrogen by Ochkin and Tskhai in 1995. The technique is ideal for investigation of microdischarges at atmospheric pressures. The frequencies of two focussed laser beams in the visible are tuned to match the energy difference between the two lowest vibrational levels in nitrogen. The presence of a static electric field then leads to the emission of coherent IR radiation at this difference frequency. The signal intensity scales with the square of the static electric field strength. Parallel to this process also anti-Stokes radiation by the standard CARS process is generated. Normalization of the IR signal by the CARS signal provides a population independent measurement quantity. Experimental results at various pressures and electric field strengths are presented.

  11. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  12. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

    International Nuclear Information System (INIS)

    Stefan, D; Rudolf, P

    2015-01-01

    The simulations of high head Francis turbine model (Tokke) are performed for three operating conditions - Part Load, Best Efficiency Point (BEP) and Full Load using software Ansys Fluent R15 and alternatively OpenFOAM 2.2.2. For both solvers the simulations employ Realizable k-e turbulence model. The unsteady pressure pulsations of pressure signal from two monitoring points situated in the draft tube cone and one behind the guide vanes are evaluated for all three operating conditions in order to compare frequencies and amplitudes with the experimental results. The computed velocity fields are compared with the experimental ones using LDA measurements in two locations situated in the draft tube cone. The proper orthogonal decomposition (POD) is applied on a longitudinal slice through the draft tube cone. The unsteady static pressure fields are decomposed and a spatio-temporal behavior of modes is correlated with amplitude-frequency results obtained from the pressure signal in monitoring points. The main application of POD is to describe which modes are related to an interaction between rotor (turbine runner) and stator (spiral casing and guide vanes) and cause dynamic flow behavior in the draft tube. The numerically computed efficiency is correlated with the experimental one in order to verify the simulation accuracy

  13. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2009-12-15

    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  14. Photoluminescence energy transitions in GaAs-Ga1-xAlxAs double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Mora-Ramos, M.E.; Duque, C.A.

    2009-01-01

    The photoluminescence energy transitions in GaAs-Ga 1-x Al x As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  15. Hyperfine magnetic fields at 57Fe and 119Sn nuclei in the Fe48Rh52 alloy under pressure

    International Nuclear Information System (INIS)

    Nikolaev, I.N.; Potapov, V.N.; Bezotosnyj, I.Yu.; Mar'in, V.P.

    1978-01-01

    The pressure dependences of the hyperfine magnetic fields, H, and isomer shifts epsilon at the 57 Fe and 119 Sn nuclei in the Fe 48 Rh 52 alloy with an admixture of approximately 1 at. % Sn are measured by the Moessbauer effect technique. Under pressure epsilon decreases this signifying an increase (for 57 Fe) or decrease (for 119 Sn) of the s-electron density at the nuclei. In the ferromagnetic (FM) state at 398 K, ΔH/HΔp=(-2.8+-0.2)x10 -3 kbar -1 for 57 Fe and ΔH/HΔp=(-4.8+-0.8)x10 -3 kbar -1 for 119 Sn. In the antiferromagnetic (AFM) state at 78 K, ΔH/HΔp approximately 0 for 57 Fe and ΔH/HΔp=(-6.2+-1.0)x10 -3 kbar -1 for 119 Sn. The results for 57 Fe in the FM state can be ascribed to the strong dependence of the alloy matrix magnetization on the pressure and in the AFM state to the absence of local polarization of s-similar collectivized electrons and to the independence of the magnetic moments of the Fe ions of pressure. The causes of the different effect of pressure on the magnetic moments of Fe ions in the FM and AFM states are discussed. The results for 119 Sn in the FM and AFM states of the alloy are in agreement with the model of hyperfine fields at impurity Sn atoms in the magnetic matrices proposed earlier. The radial dependence of the hyperfine field at the 119 Sn nuclei in the AFM state is estimated and it is found that H(r) is stronger than r -9

  16. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  17. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    Science.gov (United States)

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  18. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  19. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  20. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    Science.gov (United States)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  1. The ties that bind? Galactic magnetic fields and ram pressure stripping

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu [Department of Astrophysics, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-11-10

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  2. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    Science.gov (United States)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  3. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  4. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  5. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  6. Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn-Ni-Ge system

    Science.gov (United States)

    Taubel, Andreas; Gottschall, Tino; Fries, Maximilian; Faske, Tom; Skokov, Konstantin P.; Gutfleisch, Oliver

    2017-11-01

    The magnetic, structural and thermomagnetic properties of the MM’X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition. We obtained very large isothermal entropy changes Δ S_iso of up to -37.8 J kg-1 K-1 based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K GPa-1 ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

  7. Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan

    Science.gov (United States)

    Baba, T.; Hirata, K.; Kaneda, Y.

    2003-12-01

    \\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is

  8. Comparison of leach results from field and laboratory prepared samples

    International Nuclear Information System (INIS)

    Oblath, S.B.; Langton, C.A.

    1985-01-01

    The leach behavior of saltstone prepared in the laboratory agrees well with that from samples mixed in the field using the Littleford mixer. Leach rates of nitrates and cesium from the current reference formulation saltstone were compared. The laboratory samples were prepared using simulated salt solution; those in the field used Tank 50 decontaminated supernate. For both nitrate and cesium, the field and laboratory samples showed nearly identical leach rates for the first 30 to 50 days. For the remaining period of the test, the field samples showed higher leach rates with the maximum difference being less than a factor of three. Ruthenium and antimony were present in the Tank 50 supernate in known amounts. Antimony-125 was observed in the leachate and a fractional leach rate was calculated to be at least a factor of ten less than that of 137 Cs. No 106 Ru was observed in the leachate, and the release rate was not calculated. However, based on the detection limits for the analysis, the ruthenium leach rate must also be at least a factor of ten less than cesium. These data are the first measurements of the leach rates of Ru and Sb from saltstone. The nitrate leach rates for these samples were 5 x 10 -5 grams of nitrate per square cm per day after 100 days for the laboratory samples and after 200 days for the field samples. These values are consistent with the previously measured leach rates for reference formulation saltstone. The relative standard deviation in the leach rate is about 15% for the field samples, which all were produced from one batch of saltstone, and about 35% for the laboratory samples, which came from different batches. These are the first recorded estimates of the error in leach rates for saltstone

  9. New results in topological field theory and Abelian gauge theory

    International Nuclear Information System (INIS)

    Thompson, G.

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs

  10. New results in topological field theory and Abelian gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs.

  11. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  12. Results of ITER toroidal field coil cover plate welding test

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Matsui, Kunihiro; Shimizu, Tatsuya; Nakajima, Hideo; Iijima, Ami; Makino, Yoshinobu

    2012-01-01

    In ITER Toroidal Field (TF) coils, cover plates (CP) are welded to the teeth of the radial plate (RP) to fix conductors in the grooves of the RP. Though the total length of the welds is approximately 1.5 km and the height and width of the RP are 14 and 9 m, respectively, welding deformation of smaller than 1 mm for local out-of-plane distortion and smaller than several millimeters for in-plane deformation is required. Therefore, laser welding is used for CP welding to reduce welding deformation as much as possible. However, the gap in welding joints is expected to be a maximum of 0.5 mm. Thus, a laser welding technique to enable welding of joints with a gap of 0.5 mm in width has been developed. Applying this technology, a CP welding trial using an RP mock-up was successfully performed. The achieved local flatness, that is, the flatness of the cross-section of the RP mock-up, is 0.6 mm. The analysis using inherent strains, which are derived from the welding test using flat plates, also indicates that better local flatness can be achieved if the initial distortion is zero. In addition, the welding deformation of a full-scale RP is evaluated via analysis using the inherent strain. The analytical results show that in-plane deformation is approximately 5 mm and large out-of-plane deformation, consisting of approximately 5 mm-long wave distortion and a twist of approximately 1.5 mm in the RP cross-section, is generated. It is expected that the required profile can be achieved by determining the original geometry of an RP by simulating deformation during welding. It is also expected that the required local flatness of a DP can be achieved, since out-of-plane deformation can be reduced by increasing the number of RPs turned over during CP welding. A more detailed study is required. (author)

  13. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  14. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  15. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2012-03-01

    Full Text Available High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. However, a large number of scientific researches have been dedicated to investigation of impact of these methods on changes in constituents like milk fat, milk proteins and lactose as well as changes in mechanisms like renneting properties and coagulation of milk. The aim of this research was to give an overview of changes in milk constituents induced by high hydrostatic pressure, ultrasonification and pulsed electric field treatments as well as to suggest how these changes could improve conventional processes in the dairy industry.

  16. Moessbauer high pressure and magnetic field studies of the superconductor FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Wortmann, Gerhard [Department of Physics, University of Paderborn, Paderborn (Germany); Trojan, Ivan; Palasyuk, Taras; Medvedev, Sergey; Eremets, Michail [Max-Planck-Institute for Chemistry, Mainz (Germany); McQueen, Tyrel M.; Cava, Richard J. [Department of Chemistry, Princeton University, Princeton (United States)

    2010-07-01

    Superconducting FeSe has been investigated by Moessbauer spectroscopy applying high pressure and strong external magnetic fields. It was found that pressure-induced structural phase transition between tetragonal and hexagonal modifications is accompanied by increased distortion of local surrounding of Fe atoms. Appearance of the hexagonal phase above 7.2 GPa is accompanied by degradation of superconducting properties of FeSe. Low-temperature measurements demonstrated that the ground states in both orthorhombic and hexagonal phases of FeSe are nonmagnetic. Moessbauer measurements in the external magnetic field below transition to the superconducting state revealed zero electron spin density on Fe atoms. Interpretation of Moessbauer spectra of FeSe in the Shubnikov phase is discussed.

  17. Experiment and modeling of an atmospheric pressure arc in an applied oscillating magnetic field

    International Nuclear Information System (INIS)

    Karasik, Max; Roquemore, A. L.; Zweben, S. J.

    2000-01-01

    A set of experiments are carried out to measure and understand the response of a free-burning atmospheric pressure carbon arc to applied transverse dc and ac magnetic fields. The arc is found to deflect parabolically for the dc field and assumes a growing sinusoidal structure for the ac field. A simple analytic two-parameter fluid model of the arc dynamics is derived, in which the arc response is governed by the arc jet originating at the cathode, with the applied JxB force balanced by inertia. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed [H. Maecker, Z. Phys. 141, 198 (1955)]. An example industrial application of the model is considered. (c) 2000 American Institute of Physics

  18. Planck intermediate results XLII. Large-scale Galactic magnetic fields

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.

    2016-01-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured ...

  19. Coppicing potential of Eucalyptus nitens : results from a field survey ...

    African Journals Online (AJOL)

    In order to determine factors which could have a positive influence on the coppicing potential of Eucalyptus nitens , a field survey was carried out at Draycott, near Estcourt in the KwaZulu-Natal Midlands. Five measures of the ability to coppice (stump survival, height of coppice, number of dominant shoots, coppicing ...

  20. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs

  1. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    OpenAIRE

    Irena Jeličić; Katarina Lisak; Rajka Božanić

    2012-01-01

    High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF) belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. ...

  2. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2011-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.

  3. Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma.

    Science.gov (United States)

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (Pfield defect progression than in eyes without (Pfield defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.

  4. Negative-pressure and low-pressure hydrocephalus: the role of cerebrospinal fluid leaks resulting from surgical approaches to the cranial base.

    Science.gov (United States)

    Filippidis, Aristotelis S; Kalani, M Yashar S; Nakaji, Peter; Rekate, Harold L

    2011-11-01

    Negative-pressure and low-pressure hydrocephalus are rare clinical entities that are frequently misdiagnosed. They are characterized by recurrent episodes of shunt failure because the intracranial pressure is lower than the opening pressure of the valve. In this report the authors discuss iatrogenic CSF leaks as a cause of low- or negative-pressure hydrocephalus after approaches to the cranial base. The authors retrospectively reviewed cases of low-pressure or negative-pressure hydrocephalus presenting after cranial approaches complicated with a CSF leak at their institution. Three patients were identified. Symptoms of high intracranial pressure and ventriculomegaly were present, although the measured pressures were low or negative. A blocked communication between the ventricles and the subarachnoid space was documented in 2 of the cases and presumed in the third. Shunt revisions failed repeatedly. In all cases, temporary clinical and radiographic improvement resulted from external ventricular drainage at subatmospheric pressures. The CSF leaks were sealed and CSF communication was reestablished operatively. In 1 case, neck wrapping was used with temporary success. Negative-pressure or low-pressure hydrocephalus associated with CSF leaks, especially after cranial base approaches, is difficult to treat. The solution often requires the utilization of subatmospheric external ventricular drains to establish a lower ventricular drainage pressure than the drainage pressure created in the subarachnoid space, where the pressure is artificially lowered by the CSF leak. Treatment involves correction of the CSF leak, neck wrapping to increase brain turgor and allow the pressure in the ventricles to rise to the level of the opening pressure of the valve, and reestablishing the CSF route.

  5. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    Science.gov (United States)

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  6. Magnetic field and pressure dependant resistivity behaviour of MnAs

    Science.gov (United States)

    Satya, A. T.; Amaladass, E. P.; Mani, Awadhesh

    2018-04-01

    The studies on the effect of magnetic field and external pressure on temperature dependant electrical resistivity behaviour of polycrystalline MnAs have been reported. At ambient pressure, ρ(T) shows a first order magnetic transition associated with change in sign of the temperature coefficient of resistivity from positive in the ferromagnetic (FM) phase to negative in the paramagnetic (PM) phase. The magneto resistance is negative and shows a peak at the FM transition temperature (T C ). The first order hysteresis width decreases with increase in magnetic field and the intersection of extrapolated linear variations of T C with field for the cooling and warming cycles enabled determination of the tricritical point. At high pressures, ρ(T) displays non monotonic variation exhibiting a low temperature minimum ({T}\\min L) and a high temperature maximum ({T}\\max H) accompanying broad thermal hysteresis above {T}\\min L. It is surmised that spin disorder scattering is responsible for the resistivity behaviour above {T}\\min L and the essential features of ρ(T) are qualitatively explained using Kasuya theoretical model. Below the {T}\\min L, ρ(T) follows linear logarithmic temperature dependence similar to the effect occurring due to Kondo type of scattering of conduction electrons with localised moments.

  7. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Directory of Open Access Journals (Sweden)

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  8. Analysis of the temperature and pore water pressure field in the TED heating experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Vaunat, J.; Gens, A.; Conil, N.; Armand, G

    2012-01-01

    Document available in extended abstract form only. The TED experiment is a heating experiment in Callovo-Oxfordian Clay performed in the Meuse Haute Marne underground research laboratory. It was set up by Andra to confirm the results obtained in a previous thermal experiment (TER). The main objectives are: characterisation of the thermal properties of intact argillite, identification of the Thermo-Hydro-Mechanical (THM) coupling parameters, improvement of the understanding of THM behaviour and comparison of parameters measured in-situ and in the laboratory. The three heaters in the TED experiment were installed parallel at a distance of about 2.7 m to reproduce as closely as possible the real storage case (HA cells). This arrangement should allow the verification of: i) the superposition of several temperature fields generated by the three heaters and ii) the overpressure generated in the symmetry planes between the three heaters. Three heaters 4 m long and 0.143 m diameter have been installed in parallel boreholes drilled form GED gallery. To limit the influence of the conditions prevailing in the gallery, a distance of 12 m have been left between the GED wall and the closest extremity of the heaters. Rock has been intensively instrumented within a zone of 15 m around the heaters. There are 108 thermal sensors, 10 pore pressure sensors, 2 extensometers/inclinometers, placed in 13 different small diameter boreholes (56 mm). 11 boreholes were filled with bentonite (those containing thermal and pore pressure sensors) and 2 of them left open (those equipped with extensometer/inclinometers). First heating started on 22 January 2010 at the central heater and consists of three steps: 120 days at 180 W, 150 days at 300 W and one last period at 600 W. The two lateral heaters have been switched on after 14 months following the same heating sequence. The concept and the results of the TED experiment are fully described in a companion paper. Concerning heat transport

  9. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NARCIS (Netherlands)

    Sretenović, G.B.; Guaitella, O.; Sobota, A.; Krstić, I.B.; Kovačević, V.V.; Obradović, B.M.; Kuraica, M.M.

    2017-01-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave

  10. Binge drinking and blood pressure: cross-sectional results of the HAPIEE study.

    Directory of Open Access Journals (Sweden)

    Andrzej Pajak

    Full Text Available To investigate whether binge drinking pattern influences blood pressure independently from drinking volume or whether it modifies the effect of volume of drinking.We used cross-sectional data from population samples of 7559 men and 7471 women aged 45-69 years in 2002-05, not on antihypertensive medication, from Russia, Poland and Czech Republic. Annual alcohol intake, drinking frequency and binge drinking (≥ 100 g in men and ≥ 60 g in women in one session at least once a month were estimated from graduated frequency questionnaire. Blood pressure was analysed as continuous variables (systolic and diastolic pressure and a binary outcome (≥ 140/90 mm Hg.In men, annual alcohol intake and drinking frequency were strongly associated with blood pressure. The odds ratio of high blood pressure for binge drinking in men was 1.62 (95% CI 1.45-1.82 after controlling for age, country, body mass index, education and smoking; additional adjustment for annual alcohol intake reduced it to 1.20 (1.03-1.39. In women, the fully adjusted odds ratio of high blood pressure for binge drinking was 1.31 (1.05-1.63. Binge drinking did not modify the effect of annual alcohol intake. Consuming alcohol as wine, beer or spirits had similar effects.The results suggest that the independent long-term effect of binge drinking was modest, that binge drinking did not modify the effect of alcohol intake, and that different alcoholic beverages had similar effects on blood pressure.

  11. OVERCONFIDENCE, OMENS AND EMOTIONS: RESULTS FROM A FIELD EXPERIMENT

    OpenAIRE

    Maria De Paola; Francesca Gioia; Vincenzo Scoppa

    2013-01-01

    We analyze how overconfidence is affected by superstitious beliefs and emotions induced by positive and negative stimuli in a field experiment involving about 700 Italian students who were randomly assigned to numbered seats in their written examination sessions. According to widespread superstitions, some numbers are considered lucky, while others are considered unlucky. At the end of the examination, we asked students the grade they expected to get. We find that students tend to be systemat...

  12. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2010-2012

    Energy Technology Data Exchange (ETDEWEB)

    Pentti, E.; Penttinen, T.; Vaittinen, T. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2010-2012. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses, head drawdown at the end of 2012 is estimated as well as reasons for changes in it during 2010-2012. The temporary drawdowns during the studied period were mainly related to leaks from pregrouting holes in the vertical shafts that penetrate the hydrogeological system HZ20. Drawdowns that have so far remained resulted from the raise boring of the exhaust air shaft through the HZ20 system and from connections of low-transmissivity structures to leaks in the ONKALO at repository depth. According to present understanding, the

  13. New results on RF and DC field emission

    International Nuclear Information System (INIS)

    Padamsee, H.; Kirchgessner, J.; Moffat, D.; Noer, R.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper reviews progress in RF and DC field emission since the last workshop held two years ago at Argonne National Laboratory. Through better characterization, progress has been made towards improved understanding of FE in cavities. Through development of new cures, gains have made towards higher fields. Through better rinsing procedures low-frequency (500 and 350 MHz) cavities regularly reach surface electric fields of 20 MV/m. Processing times are substantially reduced. Through heat treatment at 1350degC high frequency (1500 MHz) cavities have reached 53 MV/m, and 3000 MHz cavities have reached 70 MV/m. The state of the art in Epk is described first. Then, benefits of high temperature treatment are discussed, focusing on highest temperature (1300-1350degC) treatment, intermediate heat treatments, and heat treatment without final methanol rinsing. He processing, heat treatment of 3-GHz cavitie, general inferences concerning emitter properties, influence of condensed gases, and sources of emitters are also addressed. Finally, lessons to be learned from copper cavities and high power processing is pointed out and discussed. (N.K.)

  14. Planck 2015 results. XIX. Constraints on primordial magnetic fields

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1\\,\\mathrm{Mpc}}< 4.4$ nG (where $B_{1\\,\\mathrm{Mpc}}$ is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity, and $B_{1\\,\\mathrm{Mpc}}< 5.6$ nG when we consider a maximally helical field. For nearly scale-invariant PMFs we obtain $B_{1\\,\\mathrm{Mpc}}<2.1$ nG and $B_{1\\,\\mathrm{Mpc}}<0.7$ nG if the impact of PMFs on the ionization history of the Universe is included in the analysis...

  15. Towards 4-loop NSPT result for a 3-dimensional condensate-contribution to hot QCD pressure

    CERN Document Server

    Torrero, C.; Schroder, Y.; Di Renzo, F.; Miccio, V.

    2007-01-01

    Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.

  16. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  17. Inverse association between gastroesophageal reflux and blood pressure: Results of a large community based study

    Directory of Open Access Journals (Sweden)

    Lane Athene J

    2008-04-01

    Full Text Available Abstract Background In a cross-sectional community based study, as part of a randomised controlled trial of eradication of Helicobacter pylori infection, the association between blood pressure and symptoms of gastro-oesophageal reflux was examined. Methods Linear regression was used to examine the association between systolic and diastolic blood pressure and the frequency of heartburn and acid regurgitation in 4,902 of 10,537 participants aged 20–59 years. Results In multivariable analyses, adjusted mean systolic blood pressure was 4.2 (95% confidence interval 1.5 to 7.0 mm Hg lower in participants with daily acid regurgitation compared to those with less frequent symptoms. Similarly, for diastolic blood pressure, a reduction of 2.1 (0.0 to 4.3 mm Hg wasobserved. Conclusion People who experience daily symptoms of gastro-oesophageal reflux have lower blood pressure than people with less frequent or no symptoms. It is possible that factors influencing nitric oxide concentrations both at the lower oesophageal sphincter and within the vasculature may be involved. This hypothesis requires confirmation. Trials registration number ISRCTN44816925

  18. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    Science.gov (United States)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  19. Pressure transients resulting from sodium-water reaction following a large leak in LMFBR steam generator

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1984-01-01

    The study of sodium water reaction, following a large leak, concerns primarily with the estimation of pressure/flow transients that are developed in the steam generator and the associated secondary circuit. This paper describes the mathematical formulations used in SWRT (Sodium Water Reaction Transients) code developed to estimate such pressure transients for FBTR plant. The results, obtained using SWRT have been presented for a leak in economiser (20m from bottom water header) and for a leak in super heater portions. A time lag of 50 m sec was considered for rupture disc takes to burst once the pressure experienced by it exceeds the set value. Also described in annexure to this paper is the mathematical formulation for two phase transient flow for the better estimation of leak rate from the ruptured end of the damaged heat transfer tube. This leak model considers slip but assumes thermal equilibrium between the liquid and vapour phases

  20. Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels

    Science.gov (United States)

    Hamstad, M. A.

    1983-01-01

    Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.

  1. Effects of magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-25.0Ni-4.0Cr alloy

    International Nuclear Information System (INIS)

    Kakeshita, T.; Saburi, T.; Shimizu, K.

    1995-01-01

    Effects of magnetic fields and hydrostatic pressures on the isothermal martensitic transformation, whose nose temperature is about 140K, in an Fe-25.0Ni-4.0Cr alloy (mass%) has been examined by applying magnetic fields up to 30MA/m and hydrostatic pressures up to 1.5GPa. The obtained results are the following: The martensitic transformation is induced instantaneously (less than 20μsec.) under pulsed magnetic fields higher than a critical field over a wide temperature range between 4.2 and 200K. The critical magnetic field increases with increasing temperature, and the relation between critical magnetic field and temperature is in good agreement with the one calculated by the equation previously derived by the authors. The T T T diagram under static magnetic field shows a lower nose temperature and a shorter incubation time than that under no external magnetic field, while the T T T diagram under hydrostatic pressure shows a higher nose temperature and a longer incubation time than that under no external hydrostatic pressure. These results are well explained by the new phenomenological theory, which gives a unified explanation on the isothermal and athermal kinetics of martensitic transformations previously constructed by the authors. (orig.)

  2. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements

    Directory of Open Access Journals (Sweden)

    Eric Van den Bulck

    2008-11-01

    Full Text Available In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  3. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements.

    Science.gov (United States)

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-11-28

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  4. Unsteady wall pressure field of a model A-pillar conical vortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoarau, C. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France); Boree, J. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)], E-mail: jacques.boree@lea.ensma.fr; Laumonier, J.; Gervais, Y. [Laboratoire d' Etudes Aerodynamiques, LEA UMR CNRS/Universite de Poitiers/ENSMA 6609, Teleport 2, 1 Av. Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2008-06-15

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct.

  5. Unsteady wall pressure field of a model A-pillar conical vortex

    International Nuclear Information System (INIS)

    Hoarau, C.; Boree, J.; Laumonier, J.; Gervais, Y.

    2008-01-01

    The spatio-temporal properties of the unsteady wall pressure field of a model A-pillar conical vortex are studied in this paper by combining 2 component LDV measurements and multi-point pressure measurements using off-set microphones. The model body has sharp edges. Detailed LDV measurements are presented and discussed in the vortex region. The fluctuating velocities are the signature of both an unsteady behaviour of the organised vortical structure interacting with the wall and of finer scale turbulence carried by the unsteady flow. A spectral analysis of the fluctuating pressure under the vortex core is used to analyse the link between the temporal and spatial scales of the unsteady aerodynamics and the wall pressure field. We show that the conical vortex is a guide for the velocity perturbations and that their hydrodynamic pressure footprint is transported at the measured mean axial velocity in a local reference frame aligned with the vortex core. Two distinct peaks of coherence can then be associated with perturbations having (i) a length scale of the order of the full length of the conical structure; (ii) a length scale of the order of the width of the structure. These perturbations may correspond to a global meandering of the structure (low frequency contribution) and to large scale perturbations generated during the rolling-up of the unsteady vortex sheet. Notably, the energy containing higher frequency parts of the PSD are only weakly correlated when distant sensors are considered. The three distinct contributions extracted here have a significant impact as far as Cp' is concerned and should be transmitted in very different ways by the car structure because the frequency and length scale range is very distinct

  6. Experimental and numerical studies of pressure drop in PbLi flows in a circular duct under non-uniform transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.-C., E-mail: lifch@hit.edu.cn; Sutevski, D.; Smolentsev, S.; Abdou, M.

    2013-11-15

    Highlights: • An indirect DP measurement approach for high-temperature LM MHD flow is developed. • Experiments and numerical simulations of PbLi MHD flow are performed. • Characteristics of DP in LM MHD flow under fringing magnetic field are studied. • Pressure distributions in LM MHD flow at entry and exit of magnet are different. -- Abstract: Experiments and three-dimensional (3D) numerical simulations are performed to investigate the magnetohydrodynamic (MHD) characteristics of liquid metal (LM) flows of molten lead-lithium (PbLi) eutectic alloy in an electrically conducting circular duct subjected to a transverse non-uniform (fringing) magnetic field. An indirect measurement approach for differential pressure in high temperature LM PbLi is first developed, and then detailed data on pressure drop in this PbLi MHD flow are measured. The obtained experimental results for the pressure distribution are in good agreement with numerical simulations. Using the numerical simulation results, the 3D effects caused by fringing magnetic field on the LM flow are illustrated via distributions for the axial pressure gradients and transverse pressure differences. It has been verified that a simple approach for estimation of pressure drop in LM MHD flow in a fringing magnetic field proposed by Miyazaki et al. [22] i.e., a simple integral of pressure gradient along the fringing field zone using a quasi-fully-developed flow assumption, is also applicable to the conditions of the present experiment providing the magnetic interaction parameter is large enough. Furthermore, for two different sections of the LM flow at the entry to and at the exit from the magnet, it is found that the pressure distributions in the duct cross sections in these two regions are different.

  7. Planck 2015 results: XIX. Constraints on primordial magnetic fields

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc ... to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc Mpc 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc

  8. Results of field testing of waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs

  9. Quantized normal matrices: some exact results and collective field formulation

    International Nuclear Information System (INIS)

    Feinberg, Joshua

    2005-01-01

    We formulate and study a class of U(N)-invariant quantum mechanical models of large normal matrices with arbitrary rotation-invariant matrix potentials. We concentrate on the U(N) singlet sector of these models. In the particular case of quadratic matrix potential, the singlet sector can be mapped by a similarity transformation onto the two-dimensional Calogero-Marchioro-Sutherland model at specific couplings. For this quadratic case we were able to solve the N-body Schrodinger equation and obtain infinite sets of singlet eigenstates of the matrix model with given total angular momentum. Our main object in this paper is to study the singlet sector in the collective field formalism, in the large-N limit. We obtain in this framework the ground state eigenvalue distribution and ground state energy for an arbitrary potential, and outline briefly the way to compute bona-fide quantum phase transitions in this class of models. As explicit examples, we analyze the models with quadratic and quartic potentials. In the quartic case, we also touch upon the disk-annulus quantum phase transition. In order to make our presentation self-contained, we also discuss, in a manner which is somewhat complementary to standard expositions, the theory of point canonical transformations in quantum mechanics for systems whose configuration space is endowed with non-Euclidean metric, which is the basis for constructing the collective field theory

  10. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Pentti, E. [Poeyry Finland Oy, Vantaa (Finland)

    2013-11-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  11. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  12. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    Science.gov (United States)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  13. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  14. Pressure and Compressibility of Conformal Field Theories from the AdS/CFT Correspondence

    Directory of Open Access Journals (Sweden)

    Brian P. Dolan

    2016-05-01

    Full Text Available The equation of state associated with N = 4 supersymmetric Yang–Mills in four dimensions, for S U ( N in the large N limit, is investigated using the AdS/CFT correspondence. An asymptotically AdS black-hole on the gravity side provides a thermal background for the Yang–Mills theory on the boundary in which the cosmological constant is equivalent to a volume. The thermodynamic variable conjugate to the cosmological constant is a pressure, and the P - V diagram of the quark-gluon plasma is studied. It is known that there is a critical point where the heat capacity diverges, and this is reflected in the isothermal compressibility. Critical exponents are derived and found to be mean field in the large N limit. The same analysis applied to three- and six-dimensional conformal field theories again yields mean field exponents associated with the compressibility at the critical point.

  15. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  16. Effects of hydrostatic pressure on the electron g|| factor and g-factor anisotropy in GaAs-(Ga, Al)As quantum wells under magnetic fields

    International Nuclear Information System (INIS)

    Porras-Montenegro, N; Duque, C A; Oliveira, L E; Reyes-Gomez, E

    2008-01-01

    The hydrostatic-pressure effects on the electron-effective Lande g || factor and g-factor anisotropy in semiconductor GaAs-Ga 1-x Al x As quantum wells under magnetic fields are studied. The g || factor is computed by considering the non-parabolicity and anisotropy of the conduction band through the Ogg-McCombe effective Hamiltonian, and numerical results are displayed as functions of the applied hydrostatic pressure, magnetic fields, and quantum-well widths. Good agreement between theoretical results and experimental measurements in GaAs-(Ga, Al)As quantum wells for the electron g factor and g-factor anisotropy at low values of the applied magnetic field and in the absence of hydrostatic pressure is obtained. Present results open up new possibilities for manipulating the electron-effective g factor in semiconductor heterostructures.

  17. U.S. Army RDECOM-ARDEC's results of the TG-53 experiment and field test

    Science.gov (United States)

    Desai, Sachi V.; Morcos, Amir

    2009-05-01

    shrapnel effects, while launch events are similar to explosions, designed to expel and propel an artillery round from a gun. The ensuing signatures are readily characterized by variations in the corresponding peak pressure and rise time of the waveform, differences in the ratio of positive pressure amplitude to the negative amplitude, variations in the prominent frequencies associated with the blast events and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive/concussive properties associated with the events. The event allows the examination of particular extreme battlefield acoustic challenges not normally documented or readily studied. The final portion will focus on the unique acoustic signatures data collected and how it allowed very relevant situations to be tested in a variety of scenarios.

  18. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  19. Calibration of the pressure sensitivity of microphones by a free-field method at frequencies up to 80 khz.

    Science.gov (United States)

    Zuckerwar, Allan J; Herring, G C; Elbing, Brian R

    2006-01-01

    A free-field (FF) substitution method for calibrating the pressure sensitivity of microphones at frequencies up to 80 kHz is demonstrated with both grazing and normal-incidence geometries. The substitution-based method, as opposed to a simultaneous method, avoids problems associated with the nonuniformity of the sound field and, as applied here, uses a 1/4-in. air-condenser pressure microphone as a known reference. Best results were obtained with a centrifugal fan, which is used as a random, broadband sound source. A broadband source minimizes reflection-related interferences that can plague FF measurements. Calibrations were performed on 1/4-in. FF air-condenser, electret, and microelectromechanical systems (MEMS) microphones in an anechoic chamber. The uncertainty of this FF method is estimated by comparing the pressure sensitivity of an air-condenser FF microphone, as derived from the FF measurement, with that of an electrostatic actuator calibration. The root-mean-square difference is found to be +/- 0.3 dB over the range 1-80 kHz, and the combined standard uncertainty of the FF method, including other significant contributions, is +/- 0.41 dB.

  20. Results from TRX-2 slow field-reversed-theta-pinch

    International Nuclear Information System (INIS)

    Slough, J.T.; Harding, D.; Hoffman, A.L.

    1984-01-01

    FRCs have been successfully generated in the TRX-2 slow risetime theta pinch. Initial studies indicate that the flux trapping through field reversal is about as good (''50%) as on TRX-1, although the quarter cycle time of the main coil was increased from 3 to 10 μsec. Formation studies have been started using the programmed formation techniques developed on TRX-1. The plasma dynamics are very similar to those exhibited in the faster rise TRX-1 experiments. The formation phase shows the same high degree of symmetry and reproducibility that was observed in TRX-1. Equilibrium behaviour of the FRCs formed is very similar to that observed on TRX-1, as long as impurity content is kept low. T/sub e/ + T/sub i/ temperatures of 400 to 500 eV are obtained and confirmed by impurity line broadening and decay rates. Flux and particle lifetimes ≅ 100 μsec have been observed and show the same strong scaling with x/sub s/ that was observed on TRX-1

  1. Escompte Field Experiment : Some Preliminary Results About The Iop 2

    Science.gov (United States)

    Cros, B.; Durand, P.; Ancellet, G.; Calpini, B.; Frejafon, E.; Jambert, C.; Serça, D.; Sol, B.; Wortham, H.; Zephoris, M.

    One of the main goals of the ESCOMPTE programme is to create an appropriate -3D data base including emissions, transport and air composition measurements during urban pollution episodes. ESCOMPTE will as well as provide a highly documented framework for dynamical and chemical studies. For this purpose a field campaign was carried out in Marseille -Berre area in the south-eastern of France from June 4 to July 13, 2001. Five pollution events (IOP) were documented. The second one called IOP2 is particularly interesting in term of photochemical pollution. The chemical evolution of the urban and industrial plumes and the orographic influence are analysed from surface, remote sensing and airborne measurements. This IOP 2 of six days duration ( June 21 to June 26) will be presented . It began with a moderate S/SW wind (an end of Mistral situation) , clear skies and hot temperature (>30rC). Marseille and Berre plumes extended towards the East and over the sea. The highest surface ozone concentration were found around Toulon area. This first period (23-26/06) so called IOP 2a was followed by IOP 2b, three days of very hot temperature (>34rC) and high surface concentration in ozone - 100 ppbv over the whole domain , 125 ppbv all around Aix on the 24 up to 150 ppbv in the durance valley on the 25.

  2. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  3. A new paradigm for macromolecular crystallography beamlines derived from high-pressure methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Fourme, Roger, E-mail: roger.fourme@synchrotron-soleil.fr [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Girard, Eric [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France); Dhaussy, Anne-Claire [CRISMAT, ENSICAEN, 6 Boulevard du Maréchal Juin, 14000 Caen (France); Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint Aubin, 91192 Gif-sur-Yvette (France); Prangé, Thierry [LCRB (UMR 8015 CNRS), Université Paris Descartes, Faculté de Pharmacie, 4 avenue de l’Observatoire, 75270 Paris (France); Ascone, Isabella [ENSCP (UMR CNRS 7223), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mezouar, Mohamed [ESRF, BP 220, 38043 Grenoble (France); Kahn, Richard [IBS (UMR 5075 CEA-CNRS-UJF-PSB), 41 rue Jules Horowitz, 38027 Grenoble Cedex (France)

    2011-01-01

    Macromolecular crystallography at high pressure (HPMX) is a mature technique. Shorter X-ray wavelengths increase data collection efficiency on cryocooled crystals. Extending applications and exploiting spin-off of HPMX will require dedicated synchrotron radiation beamlines based on a new paradigm. Biological structures can now be investigated at high resolution by high-pressure X-ray macromolecular crystallography (HPMX). The number of HPMX studies is growing, with applications to polynucleotides, monomeric and multimeric proteins, complex assemblies and even a virus capsid. Investigations of the effects of pressure perturbation have encompassed elastic compression of the native state, study of proteins from extremophiles and trapping of higher-energy conformers that are often of biological interest; measurements of the compressibility of crystals and macromolecules were also performed. HPMX results were an incentive to investigate short and ultra-short wavelengths for standard biocrystallography. On cryocooled lysozyme crystals it was found that the data collection efficiency using 33 keV photons is increased with respect to 18 keV photons. This conclusion was extended from 33 keV down to 6.5 keV by exploiting previously published data. To be fully exploited, the potential of higher-energy photons requires detectors with a good efficiency. Accordingly, a new paradigm for MX beamlines was suggested, using conventional short and ultra-short wavelengths, aiming at the collection of very high accuracy data on crystals under standard conditions or under high pressure. The main elements of such beamlines are outlined.

  4. NMR investigation of the effect of hydrostate pressure on the local magnetic fields in Y6Fe23

    International Nuclear Information System (INIS)

    Vasil'kovskij, V.A.; Bartashevich, M.I.; Gorlenko, A.A.; Kovtun, N.M.; Kupriyanov, A.K.

    1990-01-01

    The local magnetic fields at the Y 89 and Fe 57 nuclei in the intermetallic compound Y 6 Fe 23 and their shift induced by pressure are investigated by the NMR technique. The results are discussed on the basis of a model in which the atomic magnetic moment for iron includes the moment of polarized collectivized electrons responsible for the chemical bond between yttrium and iron. It is shown that with decreasing concentration of yttrium in the Y x Fe y compounds delocalization of the iron magnetic electrons occurs

  5. The nature of transport critical current hysteresis in HTSC: magnetic fields and high pressures. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Svistunov, V M; Yachenko, A.I. d' ; Tarenkov, V Yu [Donetsk Physico-Technical Inst., Ukrainian SSR (USSR)

    1991-12-01

    It was found that pressure has a strong influence on the critical current hysteresis loop of ceramics at H {proportional to} 10 kOe. The phenomenon is attributed to the critical current hysteresis of separate Josephson contacts and is due to the Abrikosov vortex density gradient within granules. The gradient defines both the sign and the value of the pinning current, whereas the sign of Meissner reversible surfaces current component is determined by the external field H direction. As a result the critical current of Josephson contacts defined by the total surface value depends on the magnetic prehistory of a sample. (orig.).

  6. Status report on geochemical field results from Atlantic study sites

    International Nuclear Information System (INIS)

    Wilson, T.R.S.; Thomson, J.; Hydes, D.J.; Colley, S.

    1983-01-01

    This report summarises the results of preliminary geochemical investigations at three North Atlantic study areas. The two eastern sites, on the Cape Verde abyssal plain (CV2) and east of Great Meteor Seamount (GME) were visited during 1982. The results presented are preliminary. Studies in the western Atlantic, close to the Nares Abyssal Plain study site are more detailed and are presented in a separate paper. The report shows for the first time the relative redox status of the three sites. The differences are unexpectedly large, the most reduced cores being recovered at GME and the most oxidised at CV2. The sporadic nature of Recent sediment accumulation at these sites is also emphasised. In order to place these preliminary results in context their relevance to the production of mathematical system models is discussed in a closing section. The necessity for such models to rest on sound foundations of geochemical understanding is noted. Suggestions on future research priorities are offered for discussion. (author)

  7. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  8. Improved PFB operations - 400-hour turbine test results. [Pressurized Fluidized Bed

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    The paper deals with a 400-hr small turbine test in the effluent of a pressurized fluidized bed (PFB) at an average temperature of 770 C, an average relative gas velocity of 300 m/sec, and average solid loadings of 200 ppm. Consideration is given to combustion parameters and operating procedure as well as to the turbine system and turbine test operating procedures. Emphasis is placed on erosion/corrosion results.

  9. The Mistra experiment for field containment code validation first results

    International Nuclear Information System (INIS)

    Caron-Charles, M.; Blumenfeld, L.

    2001-01-01

    The MISTRA facility is a large scale experiment, designed for the purpose of thermal-hydraulics multi-D codes validation. A short description of the facility, the set up of the instrumentation and the test program are presented. Then, the first experimental results, studying helium injection in the containment and their calculations are detailed. (author)

  10. Results of ambulatory arterial blood pressure monitoring in children with obesity

    Directory of Open Access Journals (Sweden)

    Faruk Öktem

    2010-12-01

    Full Text Available Objectives: The relationship between obesity and essential hypertension is well known. In this study, we aimed to evaluate ambulatory arterial blood pressure monitoring of obese and non-obese children who had similar demographic characteristics.Materials and methods: Seventy one children and adolescents (n=39 obesity, n=32 controls were studied. Blood pressure of the children were measured by 24 hour ambulatory blood pressure monitoring device.Results: Obese children had significantly higher mean blood pressure values (systolic 121.9±11.7 mmHg, diastolic 70.2±5.3 mmHg than control subjects (systolic 109.3±6.7 mmHg, diastolic 65.1±4.6 mmHg, p0.05. Blood pressure load was found to be increased in obese children compared to the controls (%13.6±12.9 and %2.6±3.4, respectively; p<0.05. Serum total cholesterol and LDL-cholesterol levels of obese children (181.1±33.4 and 131.1±23.1mg/dl were significantly higher than those of the controls (134.3±11.1 and 103.3±14.2 mg/dl, p<0.05.Conclusions: Obesity in children and adolescents should not be regarded as variations of normality, but as abnormality with an extremely high risk for the development of hypertension and hyperlipidemia in adulthood.

  11. Two-fluid and nonlinear effects of tearing and pressure-driven resistive modes in reversed field pinches

    International Nuclear Information System (INIS)

    Mirnov, V.V.

    2002-01-01

    Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)

  12. Integrity assessment of TAPS reactor pressure vessel at extended EOL using surveillance test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Shah, Priti Kotak

    2008-05-01

    Integrity assessment of pressure vessels of nuclear reactors (RPV) primarily concentrates on the prevention of brittle failure and conditions are defined under which brittle failure can be excluded. Accordingly, two approaches based on Transition Temperature Concept and Fracture Mechanics Concept were adopted using the impact test results of three credible surveillance data sets obtained from the surveillance specimens of Tarapur Atomic Power Station. RT NDT data towards end of life (EOL) were estimated from the impact test results in accordance with the procedures of USNRC Regulatory Guide 1.99, Rev. 2 and were used as primary input for assessment of the vessel integrity. SA302B (nickel modified) steel cladded with stainless steel is used as the pressure vessel material for the two 210 MWe boiling water reactors of the Tarapur Atomic Power Station (TAPS). The reactors were commissioned during the year 1969. The chemical compositions of SA302B (modified) steel used in fabricating the vessel and the specified tensile property and the Charpy impact property requirements of the steel broadly meet ASME specified requirements. Therefore, the pressure temperature limit curves prescribed by General Electric (G.E.) were compared with those as obtained using procedures of ASME Section XII, Appendix G. The tensile and the Charpy impact properties at 60 EFPY of vessel operation as derived from the surveillance specimens even fulfilled the specified requirements for the virgin material of ASME. Integrity assessment carried out using the two approaches indicated the safety of the vessel for continued operation up to 60 EFPY. (author)

  13. Low-pressure injection molding of alumina ceramics using a carnauba wax binder: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo Nogueira, R.E.F.; Bezerra, A.C.; Santos, F.C. dos [Dept. de Engenharia Mecanica, Centro de Tecnologia-UFC, Fortaleza, CE (Brazil); Sousa, M.R. de; Acchar, W. [Dept. de Engenharia Mecanica, Univ. Federal do Rio Grande do Norte, UFRN-Campus Univ., Natal, RN (Brazil)

    2001-07-01

    Carnauba wax, a natural product from Northeastern Brazil, has found application in the processing of ceramics. However, the use of pure carnauba wax is not recommended due to its narrow melting range and poor mechanical properties. In the present work carnauba wax based organic vehicles with the addition of low-density polyethylene and stearic acid were developed for use in the low-pressure injection molding of alumina ceramics. Viscosimetric testing was employed for the determination of optimal composition of the organic vehicle. The optimal content of ceramic powder in the mixture was also determined. All the materials used are easily available in the Brazilian market. A simple ceramic part was injected at low pressures (0.6 MPa) using a semi-automatic injection molding machine. For this purpose a double cavity mold was designed and built. Preliminary results demonstrate the technical viability of the process using the organic vehicle developed. (orig.)

  14. Statistical analysis of the hydrodynamic pressure in the near field of compressible jets

    International Nuclear Information System (INIS)

    Camussi, R.; Di Marco, A.; Castelain, T.

    2017-01-01

    Highlights: • Statistical properties of pressure fluctuations retrieved through wavelet analysis • Time delay PDFs approximated by a log-normal distribution • Amplitude PDFs approximated by a Gamma distribution • Random variable PDFs weakly dependent upon position and Mach number. • A general stochastic model achieved for the distance dependency - Abstract: This paper is devoted to the statistical characterization of the pressure fluctuations measured in the near field of a compressible jet at two subsonic Mach numbers, 0.6 and 0.9. The analysis is focused on the hydrodynamic pressure measured at different distances from the jet exit and analyzed at the typical frequency associated to the Kelvin–Helmholtz instability. Statistical properties are retrieved by the application of the wavelet transform to the experimental data and the computation of the wavelet scalogram around that frequency. This procedure highlights traces of events that appear intermittently in time and have variable strength. A wavelet-based event tracking procedure has been applied providing a statistical characterization of the time delay between successive events and of their energy level. On this basis, two stochastic models are proposed and validated against the experimental data in the different flow conditions

  15. Pressure dependence of crystal field splitting in Pr pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.; Ginley, D.S.

    1978-01-01

    We have measured the pressure dependence of the Pr nuclear magnetic resonance shift in PrN, PrP, PrSb, PrAs, PrS and PrSe. The shifts in all the pnictides increase while in the chalcogenides the shifts decrease with pressure. The rare earth frequency shift is inversely proportional to the crystal field splitting in the context of the point charge model (PCM) so a decrease would be expected for all of these materials at a rate of 5/3 the volume compressibility. Our values for the pnictides tend to be considerably larger than the PCM value as well as the wrong sign. The chalcogenide values are much nearer in magnitude and are of the right sign for the PCM. Contrary to the report of Guertin et al. we see no anomaly in the pressure dependence of the susceptibility of PrS. The fact that PrN which is reported to be non-metallic also shows the wrong sign for the PCM presents difficulties for various conduction electron explanations for this unexpected behavior of the pnictides

  16. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  17. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. CERN: Superhigh electromagnetic fields; First results from new ISOLDE

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last year, CERN's ISOLDE on-line isotope separator, with a quarter of a century of history behind it, began a new lease of life in its new home at the Proton Synchrotron Booster (July 1992, page 5). Initial physics results are already emerging. The first new ISOLDE Booster study, on nuclear beta decay, was extremely compact for a beamline experiment, occupying altogether less than one cubic metre! In the beta decay of marginally bound excited nucleons, the large spatial extent of their orbits should affect the decay rates. At ISOLDE, the beta decay of neon- 17 (10 protons) into the first excited state of fluorine-17 (9 protons) was compared to the well known mirror decay of nitrogen-17 (10 neutrons) into the same state of oxygen-17 (9 neutrons). In one of the largest beta decay asymmetries ever seen, neon was found to decay about twice as fast as nitrogen. This suggests that the produced fluorine-17 is an oxygen- 16 core with a remote 'halo' proton, and demonstrates the usefulness of beta decay for probing outlying nuclear structure. A somewhat larger installation taking data last year was a laser spectroscopy experiment to investigate a wide range of properties, from charge radius to magnetic dipole moments, of very unstable isotopes. Hyperfine structure information comes from the resonances in atomic transitions induced by a tuned laser beam collinear with the ISOLDE beam. First results covered the isotopes argon-32 to 35 and argon-45. These delicate beams required a new sensitive detection technique, based on selective ionization followed by radioactivity measurement. Users are increasingly using the almost unlimited choice of ISOLDE beams to investigate very low concentrations of impurities in materials. Due to its considerable technological and economic importance, the major topic is impurity implantation in semiconductors, where the localized impurities essential for electronic functioning can also be responsible for semiconductor deterioration

  19. Field Lysimeter Test Facility: Second year (FY 1989) test results

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.; Kanyid, M.J.; Rockhold, M.L.

    1990-04-01

    The Record of Decision associated with the Hanford Defense Waste Environmental Impact Statement (53 FR 12449-53) commits to an evaluation of the use of protective barriers placed over near-surface wastes. The barrier must protect against wind and water erosion and limit plant and animal intrusion and infiltration of water. Successful conclusion of this program will yield the necessary protective barrier design for near-surface waste isolation. This report presents results from the second year of tests at the FLTF. The primary objective of testing protective barriers at the FLTF was to measure the water budgets within the various barriers and assess the effectiveness of their designs in limiting water intrusion into the zone beneath each barrier. Information obtained from these measurements is intended for use in refining barrier designs. Four elements of water budget were measured during the year: precipitation, evaporation, storage, and drainage. Run-off, which is a fifth element of a complete water budget, was made negligible by a lip on the lysimeters that protrudes 5 cm above the soil surface to prevent run-off. A secondary objective of testing protective barriers at the FLTF was to refine procedures and equipment to support data collection for verification of the computer model needed for long-term projections of barrier performance. 6 refs

  20. Formation of comets by radiation pressure in the outer protosun. III. Dependence on the anisotropy of the radiation field

    International Nuclear Information System (INIS)

    Hills, J.G.; Sandford, M.T. Jr.

    1983-01-01

    A two-dimensional, radiation-hydrodynamic code with dust was used to study the effect of an anisotropic radiation field on the formation of comets in the outer protosun by the radiation pressure from the Sun and surrounding protostars. If the radiation field is isotropic, the results are very similar to those found earlier by analytic models. When the dust cloud is flanked on two sides by luminous walls of equal strength but with no radiation entering the cloud from the azimuthal direction (a radiation vise), most of the dust eventually squeezes out the sides of the vise. The sides are open to outward streaming radiation which carries the dust with it. However, the entrance of even a small amount of radiation from the sides causes the dust to drift inward to form the comet. The work given in this paper indicates that a highly anisotropic radiation field is not likely to prevent the formation of a comet. It distorts the shape of the inward drifting dust cloud. Initially, faster inward drift occurs along radii having the strongest inward radiation flux. This in turn causes the optical depth to increase faster along the perpendicular radii where the radiation field is the weakest. The increase in the optical depth eventually compensates for the low radiation flux, so as the cloud shrinks the radiation pressure increases faster at the surface of the cloud along those radius vectors where the radiation flux has a minimum. Although the dust cloud in the anisotropic radiation field attains a very irregular shape, eventually all parts of the cloud contract in unison and arrive at the center of the cloud at about the same time

  1. Acoustic emission results obtained from testing the ZB-1 intermediate scale pressure vessel

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.; Dawson, J.F.; Dake, L.S.; Skorpik, J.R.

    1985-09-01

    Acoustic emission (AE) monitoring of flaw growth in an intermediate scale vessel during cyclic loading at 65 0 C and 288 0 C is described in this report. The report deals with background, methodology, and results. The work discussed is of major significance in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. Several areas of technical concern are addressed. Results support the feasibility of effective continuous monitoring

  2. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    International Nuclear Information System (INIS)

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  3. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  4. Analysis of quench-vent pressures for present design of ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coils

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three-dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 3 figs., 1 tab

  5. Mean Blood Pressure Assessment during Post-Exercise: Result from Two Different Methods of Calculation

    Directory of Open Access Journals (Sweden)

    Gianmarco Sainas, Raffaele Milia, Girolamo Palazzolo, Gianfranco Ibba, Elisabetta Marongiu, Silvana Roberto, Virginia Pinna, Giovanna Ghiani, Filippo Tocco, Antonio Crisafulli

    2016-09-01

    Full Text Available At rest the proportion between systolic and diastolic periods of the cardiac cycle is about 1/3 and 2/3 respectively. Therefore, mean blood pressure (MBP is usually calculated with a standard formula (SF as follows: MBP = diastolic blood pressure (DBP + 1/3 [systolic blood pressure (SBP – DBP]. However, during exercise this proportion is lost because of tachycardia, which shortens diastole more than systole. We analysed the difference in MBP calculation between the SF and a corrected formula (CF which takes into account changes in the diastolic and systolic periods caused by exercise-induced tachycardia. Our hypothesis was that the SF potentially induce a systematic error in MBP assessment during recovery after exercise. Ten healthy males underwent two exercise-recovery tests on a cycle-ergometer at mild-moderate and moderate-heavy workloads. Hemodynamics and MBP were monitored for 30 minutes after exercise bouts. The main result was that the SF on average underestimated MBP by –4.1 mmHg with respect to the CF. Moreover, in the period immediately after exercise, when sustained tachycardia occurred, the difference between SF and CF was large (in the order of -20-30 mmHg. Likewise, a systematic error in systemic vascular resistance assessment was present. It was concluded that the SF introduces a substantial error in MBP estimation in the period immediately following effort. This equation should not be used in this situation.

  6. [Determination of arm circumference for correct measurement of blood pressure. Results of an intervention study].

    Science.gov (United States)

    Oliveras Puig, A; Dalfó-Pibernat, A; Jdid Rosàs, N; Mayor Isaac, E; Pérez-Romero, L; Gibert Llorach, E; Dalfó-Baqué, A

    2015-01-01

    To assess the effectiveness of an intervention to promote standardized arm circumference measurement as way to choose appropriate cuff size to measure blood pressure. A before-after intervention study was performed in a basic health care area in Barcelona. Doctors, nurses and pharmacy staff participated by filling out an anonymous self-administered questionnaire pre- and post-intervention (3m). Variables included: demographics, type of professional, years since they finished their studies, availability of different cuff sizes, if arm circumference measurement were obtained or not, knowledge about the cutoff values for each cuff size and type of blood pressure monitor. The written results were given to the participants and presented in sessions. Pre- and post-intervention: 74.3 and 67.3% answered the questionnaires (P=ns), respectively. Determination of arm circumference varied from 1.3 to 19.1% (P=.009). A total of 37.3% and 44.1% declared that they had 2 or more available cuff sizes (P=ns). Knowledge about the correct measurement of the cuffs was 2.7 to 33.8% regarding the standard cuff size (P=.0198) and 0 to 23.5% for obese subjects (P<.05). When more than one cuff was available, reasons for the choice went from: «making a rough guess» or «when velcro stops sticking» before and after the intervention. All blood pressure devices in our primary health care center were electronic and automatic as were those of the 9 pharmacies. The intervention increased the determination of arm circumference prior to the reading of the blood pressure and the knowledge about the cutoff interval for standard and obese cuff size after intervention. There was greater availability of different sized cuffs. Despite this, the choice of the appropriate cuff size was not made based on arm circumference. Copyright © 2014 SEHLELHA. Published by Elsevier Espana. All rights reserved.

  7. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Katahara, K.W.; Manghnani, M.H.; Ming, L.C.; Fisher, E.S.

    1976-01-01

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  8. Field test results for steam oxidation of TP347H FG - growth of inner oxide

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jianmin, Jia; Larsen, OH

    2005-01-01

    A series of field tests have been conducted with TP347H FG in test superheater loops in coal-fired and biomass fired boilers of steam pressure 256 and 91 bar respectively. The exposure times are from 3,500 to 30,000 hours and the temperature range is from 450-630¢XC. The morphology, composition...

  9. The trend of pressure ulcer prevalence rates in German hospitals: results of seven cross-sectional studies.

    Science.gov (United States)

    Kottner, Jan; Wilborn, Doris; Dassen, Theo; Lahmann, Nils

    2009-05-01

    Pressure ulcer prevalence rates provide useful information about the magnitude of this health problem. Only limited information on pressure ulcers in Germany was available before 2001. The purpose of this study was to compare results of seven pressure ulcer prevalence surveys which were conducted annually between 2001 and 2007 and to explore whether pressure ulcer prevalence rates decreased. The second aim was to evaluate if the measured prevalence rates of our sample could be generalised for all German hospitals. Results of seven point pressure ulcer prevalence studies conducted in 225 German hospitals were analysed. Chi-square tests, chi-square trend tests and one-way ANOVA to assess differences and trends across the years were applied. The sample was stratified according to pressure ulcer risk and speciality. Finally, study samples were compared with the potential population. In total data of 40,247 hospital patients were analysed. The overall pressure ulcer prevalence rate in German hospitals was 10.2%. Patient samples of each year were comparable regarding gender, age and pressure ulcer risk. Pressure ulcer prevalence rates decreased from 13.9% (year 2001) to 7.3% (year 2007) (pcare units remained stable. With some limitations our study results are representative for all hospitals within Germany. It is highly probable that the decrease of prevalence rates was due to an increased awareness of the pressure ulcer problem in Germany and subsequent efforts to improve pressure ulcer prevention and treatment. The quality of clinical practice regarding pressure ulcer prevention and treatment has improved. However, pressure ulcers are still relevant and require attention. In 2007, one out of 10 hospital patients who were at pressure ulcer risk had at least one pressure related skin damage.

  10. Light yield as a function of gas pressure and electric field in gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Favata, F.; Smith, A.; Bavdaz, M.; Kowalski, T.Z.

    1990-01-01

    We have investigated the dependence of the scintillation light output for Xe on gas pressure in the range 0.14-1.4 bar, using a gas scintillation proportional counter, in different experimental configurations. We have compared our work with that of previous workers, and have shown that both our results and the results of previous authors are compatible with the intrinsic light output being independent of gas pressure, with any observed dependence being a pure experimental effect due to the spectral response of the various UV detectors used. We also use our experimental data for determining the ratio between the cross section of the Xe 2 ** +Xe→Xe 2 * +Xe reaction and the rate of the Xe 2 ** →2Xe+γ UV reaction. (orig.)

  11. Permeability of shale at elevated temperature and pressure: Test methodology and preliminary results

    International Nuclear Information System (INIS)

    Myer, L.R.; Christian, T.L.

    1987-05-01

    A method of measuring the hydraulic conductivity of low permeability shale as a function of pressure and temperature has been developed and successfully demonstrated. Measurements have been performed on samples of Green River Formation up to a temperature of 140 0 C. For flow parallel to bedding hydraulic conductivities increased nonlinearly from 1.75 x 10 -16 m/s (1.6 x 10 -23 m 2 ) at 25 0 C, to 5.6 x 10 -15 m/s (1.4 x 10 -22 m 2 ) at 140 0 C. This increase in permeability with temperature may reflect an increase in microcrack porosity resulting from the heating

  12. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  13. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  14. Cerebrospinal fluid pressures resulting from experimental traumatic spinal cord injuries in a pig model.

    Science.gov (United States)

    Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A

    2013-10-01

    Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its

  15. A perspective on thermal annealing of reactor pressure vessel materials from the viewpoint of experimental results

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1996-01-01

    It is believed that in the next decade or so, several nuclear reactor pressure vessels (RPVs) may exceed the reference temperature limits set by the pressurized thermal shock screening criteria. One of the options to mitigate the effects of irradiation on RPVs is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory to study the annealing response, or ''recovery'' of several irradiated RPV steels. The fracture toughness is one of the important properties used in the evaluation of the integrity of RPVs. Optimally, the fracture toughness is measured directly by fracture toughness specimens, such as compact tension or precracked Charpy specimens, but is often inferred from the results of Charpy V-notch impact specimens. The experimental results are compared to the predictions of models for embrittlement recovery which have been developed by Eason et al. Some of the issues in annealing that still need to be resolved are discussed

  16. Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure.

    Science.gov (United States)

    Rodríguez-Calleja, J M; Cebrián, G; Condón, S; Mañas, P

    2006-05-01

    To study and compare the resistance of 15 Staphylococcus aureus isolates to heat, pulsed electric field (PEF) and ultrasound (UW) under pressure (manosonication, MS). Survival curves to heat (58 degrees C), to PEF (22 kV cm(-1), 2 micros square wave pulses) and to UW under pressure (117 microm, 20 kHz, 200 kPa) were obtained and inactivation parameters (decimal reduction times for heat and UW under pressure, and b-values for PEF) were calculated. A wide resistance variation to heat treatment, but not to PEF and MS, was observed amongst the 15 strains. There was no relationship between the resistances to the three physical agents studied. Staphylococcus aureus was relatively resistant to MS but sensitive to PEF. Heat resistance varied with strain and was positively correlated to carotenoid pigment content. Results would help in defining safe food preservation processes. Care should be taken to choose the most adequate strain of S. aureus to model food preservation processing.

  17. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    Science.gov (United States)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  18. A resonant magnetic field microsensor with high quality factor at atmospheric pressure

    International Nuclear Information System (INIS)

    Herrera-May, A L; García-Ramírez, P J; Martínez-Castillo, J; Sauceda-Carvajal, A; García-González, L; Aguilera-Cortés, L A; Figueras-Costa, E

    2009-01-01

    A resonant magnetic field microsensor with a high quality factor at atmospheric pressure has been designed, fabricated and tested. This microsensor does not require vacuum packaging to operate efficiently and presents a compact and simple geometrical configuration of silicon. This geometry permits us to decrease the size of the structure and facilities its fabrication and operation. It is constructed of a seesaw plate (400 × 150 × 15 µm 3 ), two torsional beams (60 × 40 × 15 µm 3 ), four flexural beams (130 × 12 × 15 µm 3 ) and a Wheatstone bridge with four p-type piezoresistors. The resonant device exploits the Lorentz force principle and operates at its first resonant frequency (136.52 kHz). A sinusoidal excitation current of 22.0 mA with a frequency of 136.52 kHz and magnetic fields from 1 to 400 G are considered. The mechanical response of the microsensor is modeled with the finite element method (FEM). The structure of the microsensor registered a maximum von Mises stress of 53.8 MPa between the flexural and the torsional beams. Additionally, a maximum deflection (372.5 nm) is obtained at the extreme end of the plate. The proposed microsensor has the maximum magnetic sensitivity of 40.3 µV G −1 (magnetic fields −1/2 , theoretical resolution of 1.43 mG Hz −1/2 and power consumption less than 10.0 mW

  19. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  20. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    International Nuclear Information System (INIS)

    Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej

    2010-01-01

    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm 2 , duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the

  1. A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    YongSheng Wang

    2017-09-01

    Full Text Available Atmospheric pressure glow discharge (APGD has been widely used in the industrial field. The industrial applications are based on achieving stable and diffusive APGD in a relatively large space. The existing sources only achieved stable and diffusive APGD between a short inter-electrode distance within 5 millimeters. In this paper, the effect of a transverse stationary magnetic field on the diffusion of filamentary APGD was studied in a pin-to-ring coaxial gap. The APGD was driven by a high-voltage resonant power supply, and the stationary magnetic field was supplied by a permanent magnet. The stable and diffusive APGD was achieved in the circular area, which diameter was 20 millimeters. The experimental results revealed that more collision ionization occurred and the plasma was distributed diffusively in the discharge gap by applying the external transverse magnetic field. Besides, it is likely to obtain more stable and diffusive APGD in the coaxial pin-to-ring discharge gap when adjusting the input voltage, transverse magnetic flux density and resonant frequency of the power supply.

  2. Cold leg injection reflood test results in the SCTF Core-I under constant system pressure

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Iwamura, Takamichi; Sobajima, Makoto; Osakabe, Masahiro; Ohnuki, Akira; Abe, Yutaka; Murao, Yoshio.

    1990-08-01

    The Slab Core Test Facility (SCTF) was constructed to investigate two-dimensional thermal-hydrodynamics in the core and the interaction in fluid behavior between the core and the upper plenum during the last part of blowdown, refill and reflood phases of a postulated loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). The present report describes the analytical results on the system behavior observed in the SCTF Core-I cold leg injection tests, S1-14 (Run 520), S1-15 (521), S1-16 (522), S1-17 (523), S1-20 (530), S1-21 (531), S1-23 (536) and S1-24 (537), performed under constant system pressure condition during transient. Major discussion items are: (1) steam binding, (2) U-tube oscillations, (3) bypass of ECC water (4) core cooling behavior, (5) effect of vent valve and (6) other parameter effects. These results give us very useful information and suggestion on reflood behavior. (author)

  3. High-pressure low-field 1H NMR relaxometry in nanoporous materials.

    Science.gov (United States)

    Horch, Carsten; Schlayer, Stefan; Stallmach, Frank

    2014-03-01

    A low-field NMR sensor with NdFeB permanent magnets (B0=118 mT) and a pressure cell made of PEEK (4 cm outer diameter) were designed for (1)H relaxation time studies of adsorbed molecules at pressures of up to 300 bar. The system was used to investigate methane uptake of microporous metal-organic frameworks and nanoporous activated carbon. T2 relaxation time distribution of pure methane and of methane under co-adsorption of carbon dioxide show that the host-guest interaction lead to a relaxation time contrasts, which may be used to distinguish between the gas phase and the different adsorbed phases of methane. Adsorption isotherms, exchange of methane between adsorbent particles and the surrounding gas phase, successive displacement of methane from adsorption sites by co-adsorption of carbon dioxide and CO2/CH4 adsorption separation factors were determined from the observed NMR relaxation time distributions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss

    Science.gov (United States)

    Koval, L. R.

    1976-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. Flow is shown to provide a modest increase in TL that is uniform with frequency up to the critical frequency. The increase is about 2 dB at Mach number M = 0.5, and about 3.5 dB at M = 1. Above the critical frequency where TL is damping controlled, the increase can be slightly larger at certain frequencies. Curvature is found to stiffen the panel, thereby increasing the TL at low frequencies, but also to introduce a dip at the 'ring frequency' of a full cylinder having the same radius as the panel. Pressurization appears to produce a slight decrease in TL throughout the frequency range, and also slightly shifts the dips at the critical frequency and at the ring frequency.

  5. Costs and benefits of cold acclimation in field released Drosophila – Associating laboratory and field results.

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; A. Hoffmann, Ary

    2008-01-01

    Physiological and evolutionary responses to thermal variation are often investigated under controlled laboratory conditions. However, this approach may fail to account for the complexity of natural environments. Here we investigated the costs and benefits of developmental or adult cold acclimation...... temperatures where cold acclimated flies were up to 36 times less likely to find a resource under warm conditions. These costs were not detected in standard laboratory tests but indicate that physiological acclimation may improve fitness only over a narrow set of thermal conditions while it may have...... using the ability of field released Drosophila melanogaster to find a resource as a proxy of fitness. Measurements were carried out on two continents across a range of temperatures. Cold acclimation improved the flies' ability to find resources at low temperatures. However, this came at a cost at higher...

  6. Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension

    Science.gov (United States)

    Richter, Manuel; Tello, Khodr; Sommer, Natascha; Gall, Henning; Ghofrani, Hossein Ardeschir

    2017-01-01

    With rising altitude the partial pressure of oxygen falls. This phenomenon leads to hypobaric hypoxia at high altitude. Since more than 140 million people permanently live at heights above 2500 m and more than 35 million travel to these heights each year, understanding the mechanisms resulting in acute or chronic maladaptation of the human body to these circumstances is crucial. This review summarizes current knowledge of the body's acute response to these circumstances, possible complications and their treatment, and health care issues resulting from long-term exposure to high altitude. It furthermore describes the characteristic mechanisms of adaptation to life in hypobaric hypoxia expressed by the three major ethnic groups permanently dwelling at high altitude. We additionally summarize current knowledge regarding possible treatment options for hypoxia-induced pulmonary hypertension by reviewing in vitro, rodent, and human studies in this area of research. PMID:28522921

  7. Plasma discharge in N2 + CH4 at low pressures - Experimental results and applications to Titan

    Science.gov (United States)

    Thompson, W. Reid; Henry, Todd J.; Schwartz, Joel M.; Khare, B. N.; Sagan, Carl

    1991-01-01

    Results are reported from laboratory continuous-flow plasma-discharge experiments designed to simulate the formation of hydrocarbons and nitriles from N2 and CH4 in the atmosphere of Titan. Gas-chromatography and mass-spectrometry data were obtained in experiments lasting up to 100 h at temperature 295 K and pressure 17 or 0.24 mbar, modeling (1) cosmic-ray-induced processes in the Titan troposphere and (2) processes related to stratospheric aurorae excited by energetic electrons and ions from the Saturn magnetosphere, respectively. The results are presented in extensive tables and graphs, and the 0.24-mbar yields are incorporated into an eddy-mixing model to give stratospheric column abundances and mole fractions in good agreement with Voyager IRIS observations.

  8. Pressurized thermal shocks: the JRC Ispra experimental test rig and analytical results

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The paper tackles some issues of particular interest for the remanent (remaining) life prediction for the pressurized components exposed to pressurized thermal shock (PTS) loads, that have been tackled in analytical work performed in the framework of the MPA - JRC collaboration for the PTS experimental research at the JRC Ispra. These issues regard in general application of damage mechanics, fracture mechanics and artificial intelligence (including the treatment of uncertainties in the PTS analysis and experiments). The considered issues are essential for further understanding and modelling of the crack behaviour and of the component response in PTS conditions. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been explained more in detail. FRAP is used as a frontend, for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack growth analysis performed by the COVASTOL code. (author)

  9. Preliminary results from a high-pressure imaging spectroscopic proportional counter

    International Nuclear Information System (INIS)

    Hall, C.J.; Bazzano, A.; Lewis, R.A.; Parker, B.; Ubertini, P.; Worgan, J.S.

    1992-01-01

    A new type of high-pressure proportional counter, with both spatial resolution and spectroscopic capabilities is being jointly developed by the Istituto di Astrofisica Spaziale (CNR), Frascati, Italy and the SERC Daresbury Laboratory, Warrington, UK. The characteristics of the detector can be optimized for the particular requirement of the experiment, either for x-ray astronomy observations from space, or for the high count rate applications associated with a synchrotron light source. In its baseline configuration, the detector is filled to 5 bar with a xenon/quench gas mixture and will be sensitive over the energy range 5 keV to 150 keV (2.5 to 0.08 A). The positional resolution will range from 500 μm at the lower energies to around 1 mm at the higher end of the energy range. The current prototype has a sensitive area of 200x200 mm. The final version is hoped to have an area closer to 425x425 mm. The very small photon absorption length in the higher pressure gas allows the parallax effect, a feature of 1 atmosphere detectors, to be greatly reduced. The timing resolution (150 ns) of the detector enables both a high-rate capability and the possibility of the escape gate technique to achieve higher spectral resolution at energies > the Xe K edge. Preliminary results are presented showing the spectral and positional resolution for the prototype detector

  10. Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well

    International Nuclear Information System (INIS)

    Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2011-01-01

    We have calculated the intersubband transitions and the ground-state binding energies of a hydrogenic donor impurity in a quantum well in the presence of a high-frequency laser field and hydrostatic pressure. The calculations are performed within the effective mass approximation, using a variational method. We conclude that the laser field amplitude and the hydrostatic pressure provide an important effect on the electronic and optical properties of the quantum wells. According to the results obtained from the present work, it is deduced that (i) the binding energies of donor impurity decrease as the laser field increase, (ii) the binding energies of donor impurity increase as the hydrostatic pressure increase, (iii) the intersubband absorption coefficients shift toward lower energies as the hydrostatic pressure increases, (iv) the magnitude of absorption coefficients decrease and also shift toward higher energies as the laser field increase. It is hopeful that the obtained results will provide important improvements in device applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Measurement of electric field distribution along the plasma column in Microwave jet discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Razzak, M. Abdur; Takamura, Shuichi; Tsujikawa, Takayuki; Shibata, Hideto; Hatakeyama, Yuto

    2009-01-01

    A new technique for the direct measurement of electric field distribution along the plasma column in microwave jet discharges is developed and employed. The technique is based on a servomotor-controlled reciprocating antenna moving along the nozzle axis and plasma column. The measurement technique is applied to a rectangular waveguide-based 2.45 GHz argon and helium plasma jets generated by using the modified TIAGO nozzle at atmospheric pressure with a microwave power of less than 500 W. The measurement has been done with and without igniting the plasma jet in order to investigate the standing wave propagation along the nozzle axis and plasma column. It is observed that the electric field decay occurs slowly in space with plasma ignition than that of without plasma, which indicates the surface electromagnetic wave propagation along the plasma column in order to sustain the plasma jet. This study enables one to design, determine and optimize the size and structure of launcher nozzle, which plays an important role for the stable and efficient microwave plasma generators. (author)

  12. Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Teisseyre, Henryk, E-mail: teiss@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of High Pressure, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); Kaminska, Agata; Suchocki, Andrzej; Kozanecki, Adrian [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Birner, Stefan [nextnano GmbH, Südmährenstr. 21, 85586 Poing (Germany); Young, Toby D. [Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego, 5b, 02-106 Warsaw (Poland)

    2016-06-07

    We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gap pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.

  13. Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis

    Science.gov (United States)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhalev, Yuri A.; Khakhaleva, Larisa V.; Chukalin, Andrei V.

    2017-07-01

    The numerical investigation of the turbulent flow with the impacts, based on a modified Prandtl mixing-length model with using of the analysis of pulsations of pressure, calculation of structure and a friction factor of a turbulent flow is made. These results under the study allowed us to propose a new design of a cooled turbine blade and gas turbine mobile. The turbine blade comprises a combined cooling and cylindrical cavity on the blade surface, and on the inner surfaces of the cooling channels too damping cavity located on the guide vanes of the compressor of a gas turbine engine, increase the supply of gas-dynamic stability of the compressor of a gas turbine engine, reduce the resistance of the guide blades, and increase the efficiency of the turbine engine.

  14. Early results from Magsat. [studies of near-earth magnetic fields

    Science.gov (United States)

    Langel, R. A.; Estes, R. H.; Mayhew, M. A.

    1981-01-01

    Papers presented at the May 27, 1981 meeting of the American Geophysical Union concerning early results from the Magsat satellite program, which was designed to study the near-earth magnetic fields originating in the core and lithosphere, are discussed. The satellite was launched on October 30, 1979 into a sun-synchronous (twilight) orbit, and re-entered the atmosphere on June 11, 1980. Instruments carried included a cesium vapor magnetometer to measure field magnitudes, a fluxgate magnetometer to measure field components and an optical system to measure fluxgate magnetometer orientation. Early results concerned spherical harmonic models, fields due to ionospheric and magnetospheric currents, the identification and interpretation of fields from lithospheric sources. The preliminary results confirm the possibility of separating the measured field into core, crustal and external components, and represent significant developments in analytical techniques in main-field modelling and the physics of the field sources.

  15. Transferability of results of PTS experiments to the integrity assessment of reactor pressure vessels

    International Nuclear Information System (INIS)

    Roos, E.; Eisele, U.; Stumpfrock, L.

    1997-01-01

    The integrity assessment of the reactor pressure vessel (RPV) is based on the fracture mechanics concept as provided in the code. However this concept covers only the linear-elastic fracture mechanics regime on the basis of the reference temperature RT NDT as derived from charpy impact and drop-weight test. The conservatism of this concept was demonstrated for a variety of different materials covering optimized and lower bound material states with regard to unirradiated and irradiated conditions. For the elastic-plastic regime, methodologies have been developed to describe ductile crack initiation and stable crack growth. The transferability of both, the linear-elastic and elastic-plastic fracture mechanics concept was investigated with the help of large scale specimens focusing on complex loading situations as they result from postulated thermal shock events for the RPV. A series of pressurized thermal shock (PTS) experiments were performed in which the applicability of the fracture mechanics parameters derived from small scale specimen testing could be demonstrated. This includes brittle (static and dynamic) crack initiation and crack arrest in the low charpy energy regime as well as stable crack initiation, stable crack growth and crack arrest in the upper shelf toughness regime. The paper provides the basic material data, the load paths, representative for large complex components as well as experimental and theoretical results of PTS experiments. From these data it can be concluded that the available fracture mechanics concepts can be used to describe the component behavior under transient loading conditions. (author). 26 refs, 12 figs, 1 tab

  16. Transferability of results of PTS experiments to the integrity assessment of reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Eisele, U; Stumpfrock, L [MPA Stuttgart (Germany)

    1997-09-01

    The integrity assessment of the reactor pressure vessel (RPV) is based on the fracture mechanics concept as provided in the code. However this concept covers only the linear-elastic fracture mechanics regime on the basis of the reference temperature RT{sub NDT} as derived from charpy impact and drop-weight test. The conservatism of this concept was demonstrated for a variety of different materials covering optimized and lower bound material states with regard to unirradiated and irradiated conditions. For the elastic-plastic regime, methodologies have been developed to describe ductile crack initiation and stable crack growth. The transferability of both, the linear-elastic and elastic-plastic fracture mechanics concept was investigated with the help of large scale specimens focusing on complex loading situations as they result from postulated thermal shock events for the RPV. A series of pressurized thermal shock (PTS) experiments were performed in which the applicability of the fracture mechanics parameters derived from small scale specimen testing could be demonstrated. This includes brittle (static and dynamic) crack initiation and crack arrest in the low charpy energy regime as well as stable crack initiation, stable crack growth and crack arrest in the upper shelf toughness regime. The paper provides the basic material data, the load paths, representative for large complex components as well as experimental and theoretical results of PTS experiments. From these data it can be concluded that the available fracture mechanics concepts can be used to describe the component behavior under transient loading conditions. (author). 26 refs, 12 figs, 1 tab.

  17. Pressure-reducing interventions among persons with pressure ulcers: results from the first three national pressure ulcer prevalence surveys in Sweden.

    Science.gov (United States)

    Bååth, Carina; Idvall, Ewa; Gunningberg, Lena; Hommel, Ami

    2014-02-01

    The overall aim of this study was to describe preventive interventions among persons with pressure ulcer (PU) in three nationwide PU prevalence surveys in Sweden. A cross-sectional research design was used; more than 70 000 persons from different hospitals and nursing homes participated in the three prevalence surveys conducted in March 2011, October 2011 and March 2012. The methodology used was that recommended by the European Pressure Ulcers Advisory Panel. The overall prevalence of PU categories I-IV in hospitals was 16.6%, 14.4% and 16.1%, respectively. Corresponding figures for nursing homes were 14.5%, 14.2% and 11.8%, respectively. Heel protection/floating heels and sliding sheets were more frequently planned for persons with PU category I. Despite the three prevalence studies that have showed high prevalence of PU the use of preventing interventions is still not on an acceptable level. Heel protection/floating heels and sliding sheets were more frequently planned for persons with PUs, and individual-planned repositioning also increased. However, when persons already have a PU they should all have pressure-reducing preventive interventions to prevent the development of more PUs. Preventing PUs presents a challenge even when facilities have prevention programmes. A PU prevention programme requires an enthusiastic leader who will maintain the team's focus and direction for all staff involved in patient care. © 2013 John Wiley & Sons, Ltd.

  18. Investigation of high-current low pressure quasistationary volume discharge in cross-field ExH

    International Nuclear Information System (INIS)

    Bashutin, O.A.; Vovchenko, E.D.; Kirnev, G.S.

    1995-01-01

    Different types of high current discharge permitted to create large volume of high density homogeneous plasma are widely used in modern technique. Such discharges are applied as plasma emitters of charged particles and also in various technologies for sputtering, implantation and etching of materials. The results of a plasma electron density dynamics investigation of low pressure quasistationary volume discharge in cross-field E x H is described in this paper. The discharge was created in a quadrupole magnetic system with special form electrodes and has following characteristics current up to 1,8 kA, voltage on the interval 80-120 V, existence time up to 1,5 ms. The discharge conserves diffusive character of plasma and cathode layer on all current range. On a first research stage plasma parameters of discharge were determined by means of Langmuir probe, that could been used in central discharge region only, where magnetic field was equal to zero. An obtained plasma density was reached 1,5*10 15 cm -3 with electron temperature T e =10 eV. The research of discharge plasma in regions with magnetic field had required to use interferometric measurement technique

  19. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    Science.gov (United States)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  20. Reflection and transmission characteristics of a layer obeying the two-pressure field poroelastic phenomenological model of Berryman and Wang.

    Science.gov (United States)

    Kachkouch, F; Franklin, H; Tinel, A

    2018-07-01

    The characteristics of the reflection and transmission by a fluid-loaded double porosity layer are studied. The medium obeys the two-pressure field poroelastic phenomenological model of Berryman and Wang. The open pore hydraulic conditions applied at the interfaces yield factorized expressions for the coefficients exhibiting on the one hand a separation allowing to distinguish between symmetrical and antisymmetrical motions and on the other hand the way each of the three dilatational waves associate with the shear wave. The numerical study done for a layer of Berea sandstone saturated by water shows clearly the role of each of the dilatational waves. There are peculiarities such as the absence of the fundamental antisymmetrical mode (zero order) and a singular behaviour of the symmetrical fundamental mode. The low frequency approximation for this latter is derived from the proposed formulas and compared with the numerical results. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of geometry, material and pressure variability on strain and stress fields in dented pipelines under static and cyclic pressure loading using probability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muslim, Husain Mohammed; Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2010-07-01

    Mechanical damage in transportation pipelines is an issue of extreme importance to pipeline operators and many others. Appropriate procedures for severity assessment are necessary. This paper mainly studies the effect of geometry, material and pressure variability on strain and stress fields in dented pipelines subjected to static and cyclic pressure. Finite element analysis (FEA) has often been used to overcome the limitations of a full-scale test, but it is still impossible to run FEA for all possible combinations of parameters. Probabilistic analysis offers an excellent alternative method to determine the sensitivity of the strain and stress fields to each of those input parameters. A hundred cases were randomly generated with Monte Carlo simulations and analyzed, a general formula was proposed to relate the output variables in terms of practically measured variables, and regression analysis was performed to confirm the appropriateness of the general formula.

  2. Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure

    Science.gov (United States)

    Aouami, A. El; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. A.

    2018-06-01

    In this study, we have investigated the simultaneous influence of magnetic field combined to the hydrostatic pressure and the geometrical confinement on the behavior of a single dopant confined in GaN/InGaN core/shell quantum dots. Within the scheme of the effective-mass approximation, the eigenvalues equation has solved by using the variational method with one-parameter trial wavefunctions. Variation of the ground state binding energy of the single dopant is determined according to the magnetic field and hydrostatic pressure for several dimensions of the heterostructure. The results show that the binding energy is strongly dependent on the core/shell sizes, the magnetic field, and the hydrostatic pressure. The analysis of the photoionization cross section, corresponding to optical transitions associated to the first donor energy level and the conduction band, shows clearly that the reduction of the dot dimensions and/or the simultaneous influences of applied magnetic field, combined to the hydrostatic pressure strength, cause a shift in resonance peaks towards the higher energies with important variations in the magnitude of the resonant peaks.

  3. Preliminary results of scoop samples analysis from reactor pressure vessels of Bohunice V-1 NPP

    International Nuclear Information System (INIS)

    Kupca, L.

    1997-01-01

    In the paper are presented the main goals and results from the scoop specimen analysis performed on the both RPVs WWER-440/230 in Jaslovske Bohunice V-1 NPPs. Main tasks of this complex activity were: model experiments for analysis procedures optimisation; chemical analysis; hardness measurements on the RPV and bulk samples; microstructure analysis; scanning electron microscope and microprobe analysis; gamma spectrometry; brittle fracture temperature evaluation; trends of brittle fracture temperature growth after annealing procedure. In conclusions and recommendations are discussed the planned activities in the field of both RPVs integrity evaluation for the future operation of the NPP Jaslovske Bohunice V-1. (author)

  4. Variables predicting elevated portal pressure in alcoholic liver disease. Results of a multivariate analysis

    DEFF Research Database (Denmark)

    Krogsgaard, K; Christensen, E; Gluud, C

    1987-01-01

    In 46 alcoholic patients the association of wedged-to-free hepatic-vein pressure with other variables (clinical, histologic, hemodynamic, and liver function data) was studied by means of multiple regression analysis, taking the wedged-to-free hepatic-vein pressure as the dependent variable. Four ...

  5. Implementation of a new policy results in a decrease of pressure ulcer frequency.

    NARCIS (Netherlands)

    Laat, E.H. de; Schoonhoven, L.; Pickkers, P.; Verbeek, A.L.M.; Achterberg, T. van

    2006-01-01

    OBJECTIVE: To determine the effects of a new policy on the efficiency of pressure ulcer care. DESIGN: Series of 1-day pressure ulcer surveys before and after the implementation. SETTING: A 900-bed University Medical Centre in The Netherlands. PARTICIPANTS: On the days of the surveys, 657 patients

  6. Vulnerability of sandy coasts to climate change and anthropic pressures: methodology and preliminary results

    Science.gov (United States)

    Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.

    2009-04-01

    medium-term (decades), whereas the space scales range from several tens of meters to several tens of kilometers. The project is based on the study of representative coastal units: 4 sites characterised by low-lying linear sandy beaches but different, representative, hydrodynamic and socio-economic environments. These sites are located in: Mediterranean Sea (Lido of Sète), Atlantic coast (Truc Vert beach and Noirmoutier island) and English channel coast (Est of Dunkerque). Each of these sites is studied following the same methodology, on both the physical and socio-economic dimensions, the aim being to identify vulnerability indicators regarding climate change and anthropic pressure. 2 - METHODOLOGY The work is based on the following methodology, for every site: 1) The compartments of the unit are defined: shoreface, coastline, backshore, hinterland, from a physical and socio-economical point of view. 2) The available data are analysed in order to provide some information on the present trend of the coastal unit, regarding climate change and anthropic pressure, but also to support the model validation. 3) The vulnerability is studied. On one hand, the socio-economic dimension is assessed and, in a risk governance perspective, stake holders are identified and involved. This part of the project combines the study of social perceptions of dangers along with a deliberative workshop. On the other hand, numerical models of the physical behaviour of shoreface and coastline are applied. The selected models cover a time scale from short-term (storm time scale) to long-term (decades). Then, vulnerability can be studied: the vulnerability of coast/beach is defined and studied based on in-situ observations and model results. Most of these models needs some forcing conditions (waves at the boundary of the computational domains for instance). The present day conditions can be potentially modified by climate change. However, the model and literature review on climate change show that

  7. Transient dynamics study on casing deformation resulted from lost circulation in low-pressure formation in the Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Chen Shen

    2015-10-01

    Full Text Available In the course of completion of an ultra-deep well newly drilled in the Yuanba Gasfield, Sichuan Basin, long-section and large-scale deformation occurred in the heavy casing section and nickel base alloy casing section of the sealing Triassic limestone interval, so a new hole had to be sidetracked, which impels us to rediscover the applicability of conventional drilling and completion technology in ultra-deep wells. In this paper, based on the borehole condition and field operation data of this well, the borehole pressure field variation initiated by lost circulation in the low-pressure formation was analyzed from the perspective of dynamics, then, the variation pattern of differential pressure inside and outside the well bore at different time intervals was depicted, and the primary cause of such complication was theoretically revealed, i.e., the pressure wave generated by instant lost circulation in low-pressure formation would result in redistribution of pressure inside the downhole confined space, and then the crush of casing in the vicinity of local low-pressure areas. Pertinent proposals for avoiding these kinds of engineering complexities were put forward: ① when downhole sealing casing operation is conducted in open hole completion, liner completion or perforated hole, the potential damage of lost circulation to casing should be considered; ② the downhole sealing point and sealing mode should be selected cautiously: the sealing point had better be selected in the section with good cementing quality or as close to the casing shoe as possible, and the sealing mode can be either cement plug or mechanical bridge plug. This paper finally points out that good cementing quality plays an important role in preventing this type of casing deformation.

  8. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire

    International Nuclear Information System (INIS)

    Rezaei, G.; Mousavi, S.; Sadeghi, E.

    2012-01-01

    Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.

  9. Full scale test results for ship ice impact forces and pressures

    International Nuclear Information System (INIS)

    Ghoneim, G.A.

    1993-01-01

    A set of full scale impact tests were carried out for the icebreakers Canmar Kigoriak and Robert LeMeur in first and multi-year ice conditions in the southern Beaufort Sea. Preliminary results of the testing program were published in Ghoneim et al. (1984). This paper presents some salient results of further analysis of the data. This includes a description of the different types of ice ramming mechanisms and the corresponding ice force time histories and ship response. A comparison between the bow force peak values for the kigoriak and the Robert LeMeur is made and the reasons for the difference are evaluated. The question of dynamic magnification of the response is investigated. The relationship between the peak impact force and the ramming velocity is evaluated for both ships and compared with theoretical and empirical formulations. Other parametric relationships are presented, including such parameters as force duration and relative magnitude of the impact and beaching bow forces. The added mass is evaluated from measured accelerations and calculated bow forces and are shown to be time dependent. The relationship between ice pressure and corresponding contact area is discussed. Finally, conclusions and recommendations are presented

  10. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    Science.gov (United States)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  11. Status of researches in the field of safety of pressurized water reactors

    International Nuclear Information System (INIS)

    Couturier, Jean; Schwarz, Michel

    2017-01-01

    This collective publication proposes a synthesis of the status of researches performed in the field of safety of pressurized water reactors. They may discuss past, current and projected research works, involved actors, or lessons learned from these works. The authors propose a presentation of some research tools privileged by the IRSN for these researches: the CABRI and PHEBUS reactors, the GALAXIE experimental platform, and some other installations. Then they address researches related to loss-of-coolant accidents (two-phase thermohydraulics, fuel rod behaviour), to reactivity accidents, to accidents related to dewatering of irradiated fuel storage pools, to fires, to extreme aggressions of natural origin (earthquake, extreme flooding), to core fusion accidents (core heating and fusion within the vessel, vessel failure and apron erosion by corium, containment enclosure dynamic loading, release of radioactive products), to the behaviour of nuclear plant important metallic or civil works components and notably to their ageing, to organisational and human factors or more generally to social and human sciences (design of control rooms, safety organisation and management in EDF nuclear plants), and to other issues and research perspectives

  12. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.

    Science.gov (United States)

    Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M

    2018-03-01

    Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    International Nuclear Information System (INIS)

    Ware, A.G.; Hsu, C.; Atwood, C.L.; Sattison, M.B.; Hartley, R.S.; Shah, V.N.

    1999-01-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs

  14. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    International Nuclear Information System (INIS)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-01-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs

  15. Experimental determination of radiated internal wave power without pressure field data

    OpenAIRE

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method...

  16. Consumption of alcohol and blood pressure: Results of the ELSA-Brasil study.

    Science.gov (United States)

    Santana, Nathália Miguel Teixeira; Mill, José Geraldo; Velasquez-Melendez, Gustavo; Moreira, Alexandra Dias; Barreto, Sandhi Maria; Viana, Maria Carmen; Molina, Maria Del Carmen Bisi

    2018-01-01

    Prevention and reduction of excessive use of alcohol represents damages to society in general. In turn, arterial hypertension is the main attributable risk factor premature life lost years and disability. To investigate the relationship between alcohol consumption and high blood pressure in participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). A baseline data of total of 7,655 participants volunteers between 35 and 74 years of age, of both genders, in six educational and research institutions of three different regions of the country were interviewed between 2008-2010. Socioeconomic, haemodynamic, anthropometric and health data were collected in the research centers of ELSA-Brasil. The presence of high blood pressure was identified when the systolic blood pressure was ≥140 mm Hg and/or the diastolic was ≥90 mm Hg. Alcohol consumption was estimated and categorized regarding consumption and pattern of ingestion. The Student's t-test, chi-squared and logistic regression tests were used for analysis, including potential co-variables of the model, and a 5% significance level was adopted. A dose-response relation was observed for the consumption of alcohol (g/week) in systolic blood pressure and diastolic blood pressure. Alcohol consumption was associated with high blood pressure in men who reported moderate (OR = 1.69; 95%CI 1.35-2.11) and excessive (OR = 2.70; 95%CI 2.04-3.59) consumption. Women have nearly three times more chance of presenting elevated blood pressure when presenting excessive consumption (OR = 2.86, 95%CI 1.77-4.63), and binge drinkers who drink more than 2 to 3 times a month have approximately 70% more chance of presenting with elevated blood pressure, after adjusting for consumption of drinks with meals. The consumption of alcohol beverages increases the odds of elevated blood pressure, especially among excessive drinkers. Therefore alcohol consumption needs a more robust regulation in view of its impact on population

  17. Results of the study of a new Groznensky Field with fissured reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lebedinets, N P; Merkulov, A V; Pristanskii, G T; Postash, M F

    1970-06-01

    Geological information on the Eldarovsky field, situated in the central part of Tersky anticlinal zone and discovered in 1964, is given. Commercial quantities of oil were discovered in the foraminifera (thickness 40 to 70 m) and Upper Cretaceous (305 to 330 m thickness) deposits, consisting of fissured limestones and marls. Both the foraminifera and Upper Cretaceous deposits are divided into various zones which are hydrodynamically connected with each other and constitute a single pool. No hydrodynamical connection was observed between the Eldarovsky pools and surrounding oil fields. The secondary porosity of the Upper Cretaceous and forammifera deposits is 0.49% and 0.2%, respectively, and is responsible for most of the oil reserves. The analysis of the pressure buildup curves shows that the field has an elastic water drive.

  18. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  19. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities

  20. High pressure treatment under subfreezing temperature results in drastic inactivation of enveloped and non-enveloped viruses.

    Science.gov (United States)

    Kishida, T; Cui, F-D; Ohgitani, E; Gao, F; Hayakawa, K; Mazda, O

    2013-08-01

    Some viruses are sensitive to high pressure. The freeze-pressure generation method (FPGM) applies pressure as high as 250 MPa on a substance, simply by freezing a pressure-resistant reservoir in which the substance is immersed in water. Here we examined whether the FPGM successfully inactivates herpes simplex virus type 1 (HSV-1), an enveloped DNA virus belonging to the human Herpesviridae, and encephalomyocarditis virus (EMCV), an envelope-free RNA virus belonging to the Picornaviridae. After the treatment, HSV-1 drastically reduced the ability to form plaque in Vero cells in vitro as well as to kill mice in vivo. EMCV that had been pressurized failed to proliferate in HeLa cells and induce interferon response. The results suggest that the FPGM provides a feasible procedure to inactivate a broad spectrum of viruses.

  1. First results on nitriding aluminium alloys in a low-pressure RF plasma

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: Aluminium alloys are now well established as materials of choice for many commercial applications, especially where strength-to-weight ratio is a critical parameter. However, their more widespread use is inhibited by their low surface hardness. For steels, similar problems can be overcome by nitriding. The nitrogen-rich surface layer has high hardness and load-bearing capacity, and is very well bonded to the substrate. The development of a similar surface-treatment process for aluminium alloys is clearly a desirable goal. It is therefore not surprising that many research groups worldwide have attempted to nitride aluminium. Much of this work studied pure aluminium, a material of no interest for structural applications. Previous investigations into nitriding aluminium alloys' had indifferent results. However, they have served to identify the key issues, which are the importance of a pre-cleaning steps to remove the surface oxide, of impurity control during the nitriding and the desirability of using as low a process temperature as possible. In all of these areas, our process using a low-pressure RF plasma is likely to be competitive. In view of this, we have undertaken a comparative study of a range of commercially available aluminium alloys. All treatments were carried out in the hot-wall nitriding reactor at ANSTO. The samples consist of disks 25mm in diameter and ∼3mm thick which were polished and ultrasonically cleaned in alcohol prior to treatment. The samples were stored in air at all times except when in the nitriding reactor. In a series of treatments, the treatment time was varied in the range 1-16 h and the temperature in the range 350-500 deg C. All treatments were preceeded by a plasma cleaning step in a H 2 /50%Ar mixture for a duration of 1.5-2.0 h while the reactor reached processing temperature. The treatments all used pure N 2 at a pressure of 0.4Pa and a nitrogen flow rate of 12μmol s -1 , with 245W of rf power at 13.56MHz applied to

  2. Atmospheric Pressure and Abdominal Aortic Aneurysm Rupture: Results From a Time Series Analysis and Case-Crossover Study.

    Science.gov (United States)

    Penning de Vries, Bas B L; Kolkert, Joé L P; Meerwaldt, Robbert; Groenwold, Rolf H H

    2017-10-01

    Associations between atmospheric pressure and abdominal aortic aneurysm (AAA) rupture risk have been reported, but empirical evidence is inconclusive and largely derived from studies that did not account for possible nonlinearity, seasonality, and confounding by temperature. Associations between atmospheric pressure and AAA rupture risk were investigated using local meteorological data and a case series of 358 patients admitted to hospital for ruptured AAA during the study period, January 2002 to December 2012. Two analyses were performed-a time series analysis and a case-crossover study. Results from the 2 analyses were similar; neither the time series analysis nor the case-crossover study showed a significant association between atmospheric pressure ( P = .627 and P = .625, respectively, for mean daily atmospheric pressure) or atmospheric pressure variation ( P = .464 and P = .816, respectively, for 24-hour change in mean daily atmospheric pressure) and AAA rupture risk. This study failed to support claims that atmospheric pressure causally affects AAA rupture risk. In interpreting our results, one should be aware that the range of atmospheric pressure observed in this study is not representative of the atmospheric pressure to which patients with AAA may be exposed, for example, during air travel or travel to high altitudes in the mountains. Making firm claims regarding these conditions in relation to AAA rupture risk is difficult at best. Furthermore, despite the fact that we used one of the largest case series to date to investigate the effect of atmospheric pressure on AAA rupture risk, it is possible that this study is simply too small to demonstrate a causal link.

  3. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  4. Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); University Mouloud Mammeri, Tizi Ouzou (Algeria); Merah, A. [University M' hammed Bougara, Boumerdes (Algeria); Zizi, M. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P B.P 17 Bordj El Bahri, Algiers (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France); Bouabdallah, A.

    2010-06-15

    The effects of several growth parameters in cylindrical and spherical Czochralski crystal process are studied numerically and particularly, we focus on the influence of the pressure field. We present a set of three-dimensional computational simulations using the finite volume package Fluent in two different geometries, a new geometry as cylindro-spherical and the traditional configuration as cylindro-cylindrical. We found that the evolution of pressure which is has not been studied before; this important function is strongly related to the vorticity in the bulk flow, the free surface and the growth interface. It seems that the pressure is more sensitive to the breaking of symmetry than the other properties that characterize the crystal growth as temperature or velocity fields. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production

    DEFF Research Database (Denmark)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G.

    2009-01-01

    on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline...

  6. Integrated vehicle-based safety systems light-vehicle field operational test, methodology and results report.

    Science.gov (United States)

    2010-12-01

    "This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...

  7. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  8. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    Science.gov (United States)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  9. An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields

    Science.gov (United States)

    Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.

    2018-03-01

    We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.

  10. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    Science.gov (United States)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  11. Matching the results of a theoretical model with failure rates obtained from a population of non-nuclear pressure vessels

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1982-02-01

    Failure rates for non-nuclear pressure vessel populations are often regarded as showing a decrease with time. Empirical evidence can be cited which supports this view. On the other hand theoretical predictions of PWR type reactor pressure vessel failure rates have shown an increasing failure rate with time. It is shown that these two situations are not necessarily incompatible. If adjustments are made to the input data of the theoretical model to treat a non-nuclear pressure vessel population, the model can produce a failure rate which decreases with time. These adjustments are explained and the results obtained are shown. (author)

  12. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  13. Comparison of field-enhanced and pressure-assisted field-enhanced sample injection techniques for the analysis of water-soluble vitamins using CZE.

    Science.gov (United States)

    Liu, Qingqing; Liu, Yaling; Guan, Yu; Jia, Li

    2009-04-01

    A new online concentration method, namely pressure-assisted field-enhanced sample injection (PA-FESI), was developed and compared with FESI for the analysis of water-soluble vitamins by CZE with UV detection. In PA-FESI, negative voltage and positive pressure were simultaneously applied to initialize PA-FESI. PA-FESI uses the hydrodynamic flow generated by the positive pressure to counterbalance the reverse EOF in the capillary column during electrokinetic sample injection, which allowed a longer injection time than usual FESI mode without compromising the separation efficiency. Using the PA-FESI method, the LODs of the vitamins were at ng/mL level based on the S/N of 3 and the RSDs of migration time and peak area for each vitamin (1 microg/mL) were less than 5.1%. The developed method was applied to the analysis of water-soluble vitamins in corns.

  14. Comparison of Iterative Methods for Computing the Pressure Field in a Dynamic Network Model

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan; Banerjee, Srilekha

    1999-01-01

    In dynamic network models, the pressure map (the pressure in the pores) must be evaluated at each time step. This calculation involves the solution of a large number of nonlinear algebraic systems of equations and accounts for more than 80 of the total CPU-time. Each nonlinear system requires...

  15. Zinc injection on the EDF pressurized light water reactors. Current results and operating experience feedback

    International Nuclear Information System (INIS)

    Piana, Olivier; Duval, Arnaud; Moleiro, Edgar; Benfarah, Moez; Bretelle, Jean-Luc; Chaigne, Guy

    2014-01-01

    Nowadays, zinc injection, as well as pH management and hydrogen control, is increasingly considered as an essential element of PWR Primary Water Chemistry worldwide. After a first implementation of zinc injection at Bugey 2 since 2004 and Bugey 4 since 2006, EDF decided to extend this practice, which constitutes a modification of primary circuit chemical conditioning, to other units of its fleet. Currently, 15 among the 58 reactors of the French fleet are injecting depleted zinc acetate into the primary coolant water. Three main goals were identified at the beginning of this program. Indeed, the expected benefits of zinc injection were: Reduction of the rate of generalized corrosion and mitigation of stress corrosion cracking initiation on nickel based alloys (Material goal). Curative or preventive reduction of radiation sources to which workers are exposed (Radiation fields' goal). Mitigation of the AOA or CIPS risks by reduction of corrosion products releases and mitigation of crud deposition (Fuel protection goal). To monitor the zinc addition, EDF has defined a complete survey program concerning: chemistry and radiochemistry responses (primary coolant monitoring of corrosion and fission products and calculation of zinc injected, zinc removed and zinc incorporated in RCS surfaces) ; radiation fields (dose rates and deposited activities measurements) ; materials (statistical analysis of SG tube cracks) ; fuel (oxide thickness measurements and visual exams) ; effluents (corrosion products releases and isotopic distribution follow up) ; wastes (radiochemical characterization of filters). This paper will detail the present results of this monitoring program. It appears that the expected benefits of zinc injection have yet to be fully realized; further operating experience will be required in order to fully evaluate its impact. (author)

  16. Quasistationary states in single and double GaAs–(Ga,Al)As quantum wells: Applied electric field and hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Schönhöbel, A.M.; Girón-Sedas, J.A.; Porras-Montenegro, N.

    2014-01-01

    We have calculated exactly the energy of electron quasistationary states in GaAs–(Ga,Al)As single and double quantum wells under the action of applied electric field and hydrostatic pressure by using Enderlein's method to solve the Schrödinger equation. Numerical results were obtained by means of the density of states as a function of the applied electric field, hydrostatic pressure, Al concentration and the structure geometry as well. We found two regions very well differentiated in energy; for lower values there are quasistationary states and for higher, fast oscillations. The quasistationary ground and excited energy states diminish with the well width and the applied electric field, and increase with the confinement potential and the width of the central barrier in the double quantum well. In the latter structure we observed the anti-crossing between the first and second quasistationary energy levels, phenomena which certainly depend on the central barrier width. Otherwise, in the region of fast oscillations, the period of Franz–Keldysh oscillation type in single quantum well and double quantum well increases with the applied electric field and the number of nodes augments with the well width. Also, we found that the increase of the central barrier height in the double quantum well diminishes the number of nodes, while the applied hydrostatic pressure changes the length of pulsations in both structures.

  17. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  18. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    Science.gov (United States)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  19. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  20. Variations of Blood Pressure in Stroke Unit Patients May Result from Alternating Body Positions

    NARCIS (Netherlands)

    Aries, M.J.H.; Elting, Jan Willem; Stewart, Roy E.; de Keyser, Jacques; Thien, Theo; Kremer, Berry P.; Vroomen, Patrick C. A. J.

    Background: Blood pressure (BP) is one of the major vital parameters monitored in the stroke unit. The accuracy of indirect BP measurement is strongly influenced by the position of both patient and arm during the measurement. Acute stroke patients are often nursed in lateral decubitus positions. The

  1. Effect of Preferential Solvation of Polymer Chains on Vapor-Pressure Osmometry Results. Computer Simulation Study.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Lísal, Martin; Limpouchová, Z.; Procházka, Karel

    2018-01-01

    Roč. 23, č. 3 (2018), s. 244-251 ISSN 1023-666X R&D Projects: GA ČR GA15-19542S Institutional support: RVO:67985858 Keywords : vapor-pressure osmometry * simulation * solvatation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  2. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also

  3. Observations of Fabric Development in Polycrystalline Ice at Basal Pressures: Methods and Initial Results

    Science.gov (United States)

    Breton, D. J.; Baker, I.; Cole, D. M.

    2012-12-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.

  4. Controlling the development of coherent structures in high speed jets and the resultant near field

    Science.gov (United States)

    Speth, Rachelle

    and an increase on the non-flapping plane. Therefore, these thicker layers and higher Reynolds number jets may require actuators with a higher energy input (i.e. higher duty cycle, higher actuator temperature, more actuators) to ensure the excitation of the flow instability. The final parameter studied is the effect of Mach number on the development and decay of large scale structures for no-control and control cases for Mach 0.9 and Mach 1.3 jets. For this exercise, the axisymmetric mode (m=0) was considered at excitation frequencies of St=0.05, 0.15, and 0.25, with emphasis on the evolution of coherent structures and their effects on the resultant near field pressure map. Without control, the two jets have similar shear layer growth until the end of the potential core length of the subsonic case, at which point the subsonic jet spreads at a higher rate. For the controlled cases, relatively larger streamwise hairpin vortices have been noted for the subsonic cases than the supersonic cases resulting in stronger entrainment of the ambient fluid. This increased entrainment in the subsonic cases causes a reduction in the normalized convective velocity resulting in similar normalized values to that of the supersonic cases. As the excitation frequency is increased, more hairpin vortices are present and the normalized convective velocity is reduced for both subsonic and supersonic cases. (Abstract shortened by ProQuest.).

  5. Cervical spine disease may result in a negative lumbar spinal drainage trial in normal pressure hydrocephalus: case report.

    Science.gov (United States)

    Komotar, Ricardo J; Zacharia, Brad E; Mocco, J; Kaiser, Michael G; Frucht, Stephen J; McKhann, Guy M

    2008-10-01

    In this case report, we present a patient with normal pressure hydrocephalus in whom a lumbar drainage trial yielded a false-negative result secondary to cervical spondylosis. An 80-year-old woman presented with classic symptoms of normal pressure hydrocephalus as well as evidence of cervical myelopathy. Magnetic resonance imaging of the brain and spine showed enlarged ventricles and single-level cervical canal narrowing. An initial lumbar drainage trial was performed, which revealed negative results. The patient then underwent cervical decompression and fusion. Despite this procedure, the patient's symptoms continued to worsen. A repeat lumbar drainage trial was performed with positive results. Subsequently, a ventriculoperitoneal shunt was placed, resulting in significant improvement of her symptoms. This case report illustrates how altered cerebrospinal fluid flow dynamics may impact the accuracy of the lumbar spinal drainage trial in patients with normal pressure hydrocephalus.

  6. New analytical results in the electromagnetic response of composite superconducting wire in parallel fields

    NARCIS (Netherlands)

    Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.

    1993-01-01

    Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation

  7. Association between vitamin D and pressure ulcers in older ambulatory adults: results of a matched case–control study

    Directory of Open Access Journals (Sweden)

    Kalava UR

    2011-08-01

    Full Text Available Usha R Kalava1, Stephen S Cha2, Paul Y Takahashi1,31Department of Internal Medicine, Division of Primary Care Internal Medicine, 2Department of Biostatistics, 3Kogod Center of Aging, Mayo Clinic, Rochester, MN, USABackground: Pressure ulcers are common among older adults, but knowledge about nutritional risk factors is still developing. Vitamin D deficiency is common in the elderly population and is required for normal skin proliferation. The role of vitamin D in pressure ulceration and wound healing is not known. The purpose of this case–control study was to determine the association between vitamin D levels and pressure ulceration in an older community-dwelling cohort.Methods: All cases and controls were community-dwelling elderly older than 60 years in a primary care panel in Olmsted County, MN. Pressure ulcer cases were defined clinically. The controls were age-matched and gender-matched to controls without pressure ulceration. The main exposure variable was 25-hydroxyvitamin D levels in both groups. The other exposure variable was the Charlson Comorbidity Index used to measure medical comorbidity. The analysis included univariate and conditional logistic regression for 25-hydroxyvitamin D levels.Results: The average (standard deviation age of the study participants with a pressure ulcer was 80.46 years (±8.67, and the average vitamin D level was 30.92 ng/mL (±12.46. In univariate analysis, Vitamin D deficiency (levels < 25 ng/mL was associated with pressure ulcers (odds ratio: 1.871, P = 0.0154. Comorbidities of the subjects calculated using the Charlson Comorbidity Index were also associated with pressure ulcers (odds ratio: 1.136, P < 0.001. In the final conditional logistical regression model, the association of Vitamin D and pressure ulcers became nonsignificant after adjustment for comorbid illness.Conclusion: Medical comorbidities increased the risk of pressure ulceration. Vitamin D deficiency was not an independent risk factor

  8. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production.

    Science.gov (United States)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G; Banati, Diana; Pollák-Tóth, Annamária; Lakner, Zoltán; Olsen, Nina Veflen; Zontar, Tanja Pajk; Peterman, Marjana

    2009-02-01

    The success of new food processing technologies is highly dependent on consumers' acceptance. The purpose of this paper is to study consumers' perceptions of two new processing technologies and food products produced by means of these novel technologies. To accomplish this, a qualitative study on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline. Participants were introduced to the HPP and PEF technologies and then to the effect of the two new technologies on two specific product categories: juice and baby food. The transcribed data was content analysed and the coded data was transformed into diagrams using UCINET 5 and NETDRAW. The results show that consumers perceived the main advantages of HPP and PEF products to be the products' naturalness, improved taste and their high nutritional value, whereas the main disadvantage was the lack of information about the PEF and HPP products. The results of the participants' evaluation of the PEF and HPP processes showed that environmental friendliness and the more natural products were seen as the main advantages, while they were concerned about body and health, the higher price of the products, the lack of information about the technologies and a general scepticism. The study also shows that North European participants were a bit more sceptical towards PEF and HPP products than the East European participants.

  9. Long Term Results of Visual Field Progression Analysis in Open Angle Glaucoma Patients Under Treatment.

    Science.gov (United States)

    Kocatürk, Tolga; Bekmez, Sinan; Katrancı, Merve; Çakmak, Harun; Dayanır, Volkan

    2015-01-01

    To evaluate visual field progression with trend and event analysis in open angle glaucoma patients under treatment. Fifteen year follow-up results of 408 eyes of 217 glaucoma patients who were followed at Adnan Menderes University, Department of Ophthalmology between 1998 and 2013 were analyzed retrospectively. Visual field data were collected for Mean Deviation (MD), Visual Field Index (VFI), and event occurrence. There were 146 primary open-angle glaucoma (POAG), 123 pseudoexfoliative glaucoma (XFG) and 139 normal tension glaucoma (NTG) eyes. MD showed significant change in all diagnostic groups (pfield indices. We herein report our fifteen year follow-up results in open angle glaucoma.

  10. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    Science.gov (United States)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  11. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  12. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    Science.gov (United States)

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  13. INVESTIGATION RESULTS PERTAINING TO DETERMINATION OF REVERSE FLOW PRESSURE ON TREATED FLAT SURFACE

    Directory of Open Access Journals (Sweden)

    A. N. Zhuk

    2018-01-01

    Full Text Available The executed investigations have shown that it is possible to prepare sheet-like material for laser cutting economically viable and with small amount of power expenditure while using reverse jet cleaning for surface treatment. As compared to conventional jet cleaning technologies efficiency of the reverse jet cleaning is attributed to significant pressure increase (by 25–50 % when the jet is interacting with the treated surface. The paper proposes a mathematical model on the basis of approximate energy method (upper-bound method and the model is used for calculation of fracture pressure due to action of the reverse jet on the treated surface which consists of a corrosion deposit layer. A variational problem was solved within a framework of the developed model and the problem solution has made it possible to obtain a theoretical dependence for calculation of minimum fracture pressure value pmin in the point reverse jet impact with a barrier oretical dependence and it has taken into account yielding point of the deformed material ss, density of fractured material med material r, jet velocity uстр and parameter of reverse flowing – jet reduction ratio l. Comparison theoretical data and experimental ones (experimental data have been obtained while using a differential pressure transducer ЭДП-30 and a spring dynamometer with measuring limits 25 and 80 MPa, respectively has shown difference by 4–15 %. Determined insignificant difference between a theory and an experiment demonstrates that the obtained theoretical dependence is considered as a quite correct one and it can be used in engineering practice for prediction of power and kinematics parameters which are necessary for selection of the required pump equipment designed for realization of reverse-jet cleaning process.

  14. Experimental Results For Hydrocarbon Refrigerant Vaporization In Brazed Plate Heat Exchangers at High Pressure

    OpenAIRE

    Desideri, Adriano; Schmidt Ommen, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In this contribution, the experimental heat transfer coefficient  and the pressure drop measured during HFC refrigerants vaporization inside small brazed plate heat exchanger (PHE) at typical evaporation temperature for organic Rankine cycle systems for low thermal energy quality applications are presented. Scientific work focusing on the heat transfer in PHEs has been carried out since the late 19th century. More recent publications have been focusing on vaporization and condensation of ref...

  15. Interlaboratory comparison of measuring results of magnetic field near 400 kV overhead power line

    Directory of Open Access Journals (Sweden)

    Grbić Maja

    2012-01-01

    Full Text Available The paper presents a comparison of measured results of magnetic field near 400 kV overhead power lines obtained by three laboratories. This interlaboratory comparison was performed to ensure confidence in the quality of the test results. The measured results were analyzed with standard methods, using En number, based on which the evaluation of the laboratories was performed.

  16. Effect of Spinal Manipulation of Upper Cervical Vertebrae on Blood Pressure: Results of a Pilot Sham-Controlled Trial.

    Science.gov (United States)

    Goertz, Christine M; Salsbury, Stacie A; Vining, Robert D; Long, Cynthia R; Pohlman, Katherine A; Weeks, William B; Lamas, Gervasio A

    2016-06-01

    The purpose of this pilot sham-controlled clinical trial was to estimate the treatment effect and safety of toggle recoil spinal manipulation for blood pressure management. Fifty-one participants with prehypertension or stage 1 hypertension (systolic blood pressure ranging from 135 to 159 mm Hg or diastolic blood pressure ranging from 85 to 99 mm Hg) were allocated by an adaptive design to 2 treatments: toggle recoil spinal manipulation or a sham procedure. Participants were seen by a doctor of chiropractic twice weekly for 6 weeks and remained on their antihypertensive medications, as prescribed, throughout the trial. Blood pressure was assessed at baseline and after study visits 1, 6 (week 3), and 12 (week 6), with the primary end point at week 6. Analysis of covariance was used to compare mean blood pressure changes from baseline between groups at each end point, controlling for sex, age, body mass index, and baseline blood pressure. Adjusted mean change from baseline to week 6 was greater in the sham group (systolic, -4.2 mm Hg; diastolic, -1.6 mm Hg) than in the spinal manipulation group (systolic, 0.6 mm Hg; diastolic, 0.7 mm Hg), but the difference was not statistically significant. No serious and few adverse events were noted. Six weeks of toggle recoil spinal manipulation did not lower systolic or diastolic blood pressure when compared with a sham procedure. No serious adverse events from either treatment were reported. Our results do not support a larger clinical trial. Further research to understand the potential mechanisms of action involving upper cervical manipulation on blood pressure is warranted before additional clinical investigations are conducted. Copyright © 2016. Published by Elsevier Inc.

  17. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Science.gov (United States)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  18. The European pressurized water reactor. Result of the French-German cooperation of experienced NPP suppliers and operators

    International Nuclear Information System (INIS)

    Fischer, U.

    1999-01-01

    In 1989 Framatome and Siemens, the two most experienced European nuclear power plant suppliers, decided to join the efforts for the development of a new reactor type for the next generation in their equally owned subsidiary nuclear power international (NPI). In 1992 Electricite de France and the major German utilities operating nuclear power plants merged their own development programs with that of nuclear power international and initiated the European pressurized water reactor (EPR) project. In order to reach the two major targets of the project, the licensability in both countries, France and Germany, and the competitiveness of nuclear energy with other alternative energy sources, the design basis which had differently developed in the two countries needed to be harmonized. In parallel, the licensing authorities of both countries extended their existing cooperation in the field of a safety survey of existing nuclear power plants to the definition of safety criteria for the next generation of nuclear power plants. Through this cooperation the licensability of EPR in France and Germany will be assured. Continuously performed cost analysis show in addition that also the second target of the project, the competitiveness with alternative primary energy sources, can be achieved. Thanks to the fruitful cooperation between all parties involved, satisfactory results have been achieved not by a simple superposition of existing design features but through a careful evaluation and combination of the best available alternatives. At the end of 1997 the basic design results were compiled in a final report. Subsequently an optimization phase was launched that further improves the competitiveness of the power generation costs. (orig.)

  19. Results on the gravity of quantum Fermi pressure of localized matter: A new test of general relativity

    International Nuclear Information System (INIS)

    Unnikrishnan, C.S.; Gillies, G.T.

    2006-01-01

    Recently Ehlers, Ozsvath, and Schucking discussed whether pressure contributes to active gravitational mass as required by general relativity. They pointed out that there is no experimental information on this available, though precision measurement of the gravitational constant should provide a test of this foundational aspect of gravity. We had used a similar argument earlier to test the contribution of leptons to the active gravitational mass. In this paper we use the result from the Zuerich gravitational constant experiment to provide the first adequate experimental input regarding the active gravitational mass of Fermi pressure. Apart from confirming the equality of the passive and active gravitational roles of the pressure term in general relativity within an accuracy of 5%, our results are consistent with the theoretical expectation of the cancellation of the gravity of pressure by the gravity of the surface tension of confined matter. This result on the active gravitational mass of the quantum zero-point Fermi pressure in the atomic nucleus is also interesting from the point of view of studying the interplay between quantum physics and classical gravity

  20. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  1. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    Science.gov (United States)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  2. Pressure Ulcers in the United States' Inpatient Population From 2008 to 2012: Results of a Retrospective Nationwide Study.

    Science.gov (United States)

    Bauer, Karen; Rock, Kathryn; Nazzal, Munier; Jones, Olivia; Qu, Weikai

    2016-11-01

    median LOS (7 days [mean 11.1 ± 15] compared to 3 days [mean 4.6 ± 6.8]) and median TC ($36 500 [mean $72 000 ± $122 900] compared to $17 200 [mean $32 200 ± $57 500]). The mortality rate in patients with a pressure ulcer was significantly higher than in patients without a pressure ulcer (9.1% versus 1.8%, OR = 5.08, CI: 5.03-5.1, P Pressure ulcers were significantly more common in patients who were older or had malnutrition. The results of this study confirm the importance of prevention initiatives to help reduce the negative impact of pressure ulcers on patient outcomes and costs of care.

  3. Weak-field asymptotic theory of tunneling ionization: benchmark analytical results for two-electron atoms

    International Nuclear Information System (INIS)

    Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I

    2015-01-01

    The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)

  4. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  5. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    Science.gov (United States)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  6. ALOAD - a code to determine the concentrated forces equivalent with a distributed pressure field for a FEM analysis

    Directory of Open Access Journals (Sweden)

    Nicolae APOSTOLESCU

    2010-12-01

    Full Text Available The main objective of this paper is to describe a code for calculating an equivalent systemof concentrate loads for a FEM analysis. The tables from the Aerodynamic Department containpressure field for a whole bearing surface, and integrated quantities both for the whole surface andfor fixed and mobile part. Usually in a FEM analysis the external loads as concentrated loadsequivalent to the distributed pressure field are introduced. These concentrated forces can also be usedin static tests. Commercial codes provide solutions for this problem, but what we intend to develop isa code adapted to the user’s specific needs.

  7. On the Pressure of a Neutron Gas Interacting with the Non-Uniform Magnetic Field of a Neutron Star

    Science.gov (United States)

    Skobelev, V. V.

    2018-04-01

    On the basis of simple arguments, practically not going beyond the scope of an undergraduate course in general physics, we estimate the additional pressure (at zero temperature) of degenerate neutron matter due to its interaction with the non-uniform magnetic field of a neutron star. This work has methodological and possibly scientific value as an intuitive application of the content of such a course to a solution of topical problems of astrophysics.

  8. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  9. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  10. Statistically optimized near field acoustic holography using an array of pressure-velocity probes

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Jaud, Virginie

    2007-01-01

    of a measurement aperture that extends well beyond the source can be relaxed. Both NAH and SONAH are based on the assumption that all sources are on one side of the measurement plane whereas the other side is source free. An extension of the SONAH procedure based on measurement with a double layer array...... of pressure microphones has been suggested. The double layer technique makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise coming from the “wrong” side. It has also recently been demonstrated that there are significant advantages...... in NAH based on an array of acoustic particle velocity transducers (in a single layer) compared with NAH based on an array of pressure microphones. This investigation combines the two ideas and examines SONAH based on an array of pressure-velocity intensity probes through computer simulations as well...

  11. Reconstruction of scalar field theories realizing inflation consistent with the Planck and BICEP2 results

    Directory of Open Access Journals (Sweden)

    Kazuharu Bamba

    2014-10-01

    Full Text Available We reconstruct scalar field theories to realize inflation compatible with the BICEP2 result as well as the Planck. In particular, we examine the chaotic inflation model, natural (or axion inflation model, and an inflationary model with a hyperbolic inflaton potential. We perform an explicit approach to find out a scalar field model of inflation in which any observations can be explained in principle.

  12. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    Science.gov (United States)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degusing custom-developed analysis tools appropriate for Galactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  13. Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Castex, G.

    2013-01-01

    that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 × R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole......Taking advantage of the all-sky coverage and broadfrequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates...... flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0,c500,γ, α,β] = [6.41,1.81,0.31,1.33,4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts...

  14. Pressurized-thermal-shock experiments: PTSE-1 results and PTSE-2 plans

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Wanner, R.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1985-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) was performed with a vessel with a 1-m-long flaw in a plug of specially tempered steel having the composition of SA-508 forging steel. The second experiment (PTSE-2) will have a similar arrangement, but the material in which the flaw will be implanted is being prepared to have low tearing resistance. Special tempering of a 2 1/4 Cr - 1 Mo steel plate has been shown to induce a low Charpy impact energy in the upper-shelf temperature range. The purpose of PTSE-2 is to investigate the fracture behavior of low-upper-shelf material in a vessel under the combined loading of concurrent pressure and thermal shock. The primary objective of the experimental plan is to induce a rapidly propagating cleavage fracture under conditions that are likely to induce a ductile tearing instability at the time of arrest of the cleavage fracture. The secondary objective of the test is to extend the range of the investigation of warm prestressing. 11 figs

  15. Impact of droplet evaporation rate on resulting in vitro performance parameters of pressurized metered dose inhalers.

    Science.gov (United States)

    Sheth, Poonam; Grimes, Matthew R; Stein, Stephen W; Myrdal, Paul B

    2017-08-07

    Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of pulmonary diseases. The overall efficiency of pMDI drug delivery may be defined by in vitro parameters such as the amount of drug that deposits on the model throat and the proportion of the emitted dose that has particles that are sufficiently small to deposit in the lung (i.e., fine particle fraction, FPF). The study presented examines product performance of ten solution pMDI formulations containing a variety of cosolvents with diverse chemical characteristics by cascade impaction with three inlets (USP induction port, Alberta Idealized Throat, and a large volume chamber). Through the data generated in support of this study, it was demonstrated that throat deposition, cascade impactor deposition, FPF, and mass median aerodynamic diameter of solution pMDIs depend on the concentration and vapor pressure of the cosolvent, and the selection of model throat. Theoretical droplet lifetimes were calculated for each formulation using a discrete two-stage evaporation process model and it was determined that the droplet lifetime is highly correlated to throat deposition and FPF indicating that evaporation kinetics significantly influences pMDI drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Theoretical and experimental results of a mesoscale electric power generation system from pressurized gas flow

    International Nuclear Information System (INIS)

    Krähenbühl, D; Kolar, J W; Zwyssig, C; Weser, H

    2009-01-01

    In many process applications where throttling is used to reduce pressure, the potential to obtain net work output is sacrificed to the throttling process. Examples are throttling valves of gas pipelines and conventional throttles in automotive applications or turbo expanders as used in cryogenic plants. With a new pressure reduction system that produces electricity while expanding the gas, the lost potential to obtain work output can be recovered. To achieve a high power density, this energy generation system requires an increased operating speed of the electrical machine and the turbomachinery. This paper presents a miniature compressed-air-to-electric-power system, based on a radial turbine with a rated rotational speed of 490 000 rpm and a rated electric power output of 150 W. A comprehensive description including turbine, diffuser and permanent magnet (PM) generator is given. Finally, measurements of the compressed-air-to-electric-power system with a maximum rotational speed of over 600 000 rpm, a maximum electric output power of 170 W, a maximum torque of 5.2 mN m and a turbine efficiency of 52% are presented

  17. Armature reaction effects on a high temperature superconducting field winding of an synchronous machine: experimental results

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2014-01-01

    This paper presents experimental results from the Superwind laboratory setup. Particular focus in the paper has been placed on describing and quantifying the influence of armature reaction on performance of the HTS filed winding. Presented experimental results have confirmed the HTS field winding...

  18. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force

    International Nuclear Information System (INIS)

    Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

    2012-01-01

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635–40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier–Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier–Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced

  19. Ultrasonic test results for the reactor pressure vessel of the HTTR. Longitudinal welding line of bottom dome

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Ohwada, Hiroyuki; Kato, Yasushi

    2008-06-01

    This paper describes the inspection method, the measured area, etc. of the ultrasonic test of the in-service inspection (ISI) for welding lines of the reactor pressure vessel of the HTTR and the inspection results of the longitudinal welding line of the bottom dome. The pre-service inspection (PSI) results for estimation of occurrence and progression of defects to compare the ISI results is described also. (author)

  20. Sensorimotor Results from the Joint NASA and Russian Pilot Field Test

    Science.gov (United States)

    Reschke, Millard; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Lee, S. M. C.; Laurie, S. S.; Rukavishnikov, I. V.; hide

    2016-01-01

    Testing of crew responses following long-duration flights has not previously been possible until a minimum of 24 hours after landing. As a result, it has not been possible to estimate the nonlinear trend of the early (testing at the Soyuz landing site. This research effort has been identified as the Field Test (FT). For operational reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The PFT has now been completed with the landing of the crew of International Space Station Increment 42/43 (Soyuz expedition 41S). RESEARCH: The primary goal of this research was to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (testing in the field and was comprised of a jointly agreed upon subset of tests drawn from the full FT and relied heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Department for content and implementation. Data from the PFT was collected following several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall stand test where the crewmember begins in the prone position on the ground and then stands for 3.5 minutes while cardiovascular performance and postural ataxia data are acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from body-worn inertial sensors, and severity of postflight motion sickness were collected during each test session. In addition our Russian investigators have made measurements associated with: (a) obstacle avoidance, (b) muscle compliance, (c) postural adjustments to perturbations (pushes) applied to the subject's chest area and (d) center of mass measurements made across most test objectives with insoles inserted into the subjects' shoes. Data from 18

  1. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  2. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  3. Compressed-air work is entering the field of high pressures.

    Science.gov (United States)

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.

  4. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  5. Influence of pressure gradients and fracturing in oil field rocks on ...

    African Journals Online (AJOL)

    Formation of normal faults is common in deltaic over-pressured environments such as the Gulf Coast of Mexico and the Niger Delta. This has led to the formation of associated geological structures such as growth faults, roll-over anticilines and sealing faults (with shale smears), which are traps for hydrocarbon accumulation.

  6. Experience with the WWER-440 MW reactor pressure vessel in-service inspections and evaluation of their results

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kralovec, J.; Prepechal, J.; Sulc, J.

    1989-01-01

    The Power Machinery Plant of Skoda Works in Plzen carries out in-service inspections of WWER-440 MW reactor pressure vessels by means of remote controlled inspection equipment - the TRC reactor test system, and some other inspections devices. The results of the in-service inspections were evaluated by methods based on the fracture mechanics approach, the knowledge of stress and strain distribution, and the operating history of the pressure vessels. Examples of types of defects found and their analysis are shown. (author). 1 tab

  7. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3.

    Science.gov (United States)

    Bakris, George L; Townsend, Raymond R; Liu, Minglei; Cohen, Sidney A; D'Agostino, Ralph; Flack, John M; Kandzari, David E; Katzen, Barry T; Leon, Martin B; Mauri, Laura; Negoita, Manuela; O'Neill, William W; Oparil, Suzanne; Rocha-Singh, Krishna; Bhatt, Deepak L

    2014-09-16

    Prior studies of catheter-based renal artery denervation have not systematically performed ambulatory blood pressure monitoring (ABPM) to assess the efficacy of the procedure. SYMPLICITY HTN-3 (Renal Denervation in Patients With Uncontrolled Hypertension) was a prospective, blinded, randomized, sham-controlled trial. The current analysis details the effect of renal denervation or a sham procedure on ABPM measurements 6 months post-randomization. Patients with resistant hypertension were randomized 2:1 to renal denervation or sham control. Patients were on a stable antihypertensive regimen including maximally tolerated doses of at least 3 drugs including a diuretic before randomization. The powered secondary efficacy endpoint was a change in mean 24-h ambulatory systolic blood pressure (SBP). Nondipper to dipper (nighttime blood pressure [BP] 10% to 20% lower than daytime BP) conversion was calculated at 6 months. The 24-h ambulatory SBP changed -6.8 ± 15.1 mm Hg in the denervation group and -4.8 ± 17.3 mm Hg in the sham group: difference of -2.0 mm Hg (95% confidence interval [CI]: -5.0 to 1.1; p = 0.98 with a 2 mm Hg superiority margin). The daytime ambulatory SBP change difference between groups was -1.1 (95% CI: -4.3 to 2.2; p = 0.52). The nocturnal ambulatory SBP change difference between groups was -3.3 (95 CI: -6.7 to 0.1; p = 0.06). The percent of nondippers converted to dippers was 21.2% in the denervation group and 15.0% in the sham group (95% CI: -3.8% to 16.2%; p = 0.30). Change in 24-h heart rate was -1.4 ± 7.4 in the denervation group and -1.3 ± 7.3 in the sham group; (95% CI: -1.5 to 1.4; p = 0.94). This trial did not demonstrate a benefit of renal artery denervation on reduction in ambulatory BP in either the 24-h or day and night periods compared with sham (Renal Denervation in Patients With Uncontrolled Hypertension [SYMPLICITY HTN-3]; NCT01418261). Copyright © 2014 American College of Cardiology Foundation. Published by

  8. A new predictive indicator for development of pressure ulcers in bedridden patients based on common laboratory tests results.

    Science.gov (United States)

    Hatanaka, N; Yamamoto, Y; Ichihara, K; Mastuo, S; Nakamura, Y; Watanabe, M; Iwatani, Y

    2008-04-01

    Various scales have been devised to predict development of pressure ulcers on the basis of clinical and laboratory data, such as the Braden Scale (Braden score), which is used to monitor activity and skin conditions of bedridden patients. However, none of these scales facilitates clinically reliable prediction. To develop a clinical laboratory data-based predictive equation for the development of pressure ulcers. Subjects were 149 hospitalised patients with respiratory disorders who were monitored for the development of pressure ulcers over a 3-month period. The proportional hazards model (Cox regression) was used to analyse the results of 12 basic laboratory tests on the day of hospitalisation in comparison with Braden score. Pressure ulcers developed in 38 patients within the study period. A Cox regression model consisting solely of Braden scale items showed that none of these items contributed to significantly predicting pressure ulcers. Rather, a combination of haemoglobin (Hb), C-reactive protein (CRP), albumin (Alb), age, and gender produced the best model for prediction. Using the set of explanatory variables, we created a new indicator based on a multiple logistic regression equation. The new indicator showed high sensitivity (0.73) and specificity (0.70), and its diagnostic power was higher than that of Alb, Hb, CRP, or the Braden score alone. The new indicator may become a more useful clinical tool for predicting presser ulcers than Braden score. The new indicator warrants verification studies to facilitate its clinical implementation in the future.

  9. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy

    International Nuclear Information System (INIS)

    Wijns, W.; Serruys, P.W.; Reiber, J.H.; van den Brand, M.; Simoons, M.L.; Kooijman, C.J.; Balakumaran, K.; Hugenholtz, P.G.

    1985-01-01

    To evaluate, during cardiac catheterization, what constitutes a physiologically significant obstruction to blood flow in the human coronary system, computer-based quantitative analysis of coronary angiograms was performed on the angiograms of 31 patients with isolated disease of the proximal left anterior descending coronary artery. The angiographic severity of stenosis was compared with the transstenotic pressure gradient measured with the dilation catheter during angioplasty and with the results of exercise thallium scintigraphy. A curvilinear relationship was found between the pressure gradient across the stenosis (normalized for the mean aortic pressure) and the residual minimal area of obstruction (after subtracting the area of the angioplasty catheter). This relationship was best fitted by the equation: normalized mean pressure gradient . a + b . log [obstruction area], r . .74. The measurements of the percent area of stenosis (cutoff 80%) and of the transstenotic pressure gradient (cutoff 0.30) obtained at rest correctly predicted the occurrence of thallium perfusion defects induced by exercise in 83% of the patients

  10. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  11. [Bio-electrochemical effect on hydrogenotrophic sulfate reduction stimulated by electrical field in the presence of H2 under atmospheric pressure].

    Science.gov (United States)

    Xu, Hui-Wei; Zhang, Xu; Yang, Shan-Shan; Li, Guang-He

    2009-07-15

    Microbial sulfate reduction rate is limited with H2 as electron donor. In order to improve hydrogenotrophic sulfate reduction under normal atmospheric H2 pressure, a bio-electrochemical system with direct current was designed and performed in this study. Results indicates that sulfate reduction rate (SRR) increases with the augment of current intensity under lower current intensity (I electric or magnetic field stimulates the proliferation of sulfate-reducing bacteria (SRB) and the activity of the enzymes. When I is higher than 1.50 mA, the activity of SRB is inhibited, resulting in lower reduction rate compared with that at lower current. If controlling the cathode potential lower than -0.69 V and H2 partial pressure 1.01 x 10(5) Pa, electro-catalytic sulfate reduction process takes place with H2 as reductant in this bio-electrochemical system. However, the overall reduction rate is still lower than that when I = 1.50 mA is applied, and additionally the energy consumption is much higher. Therefore, electric field of low intensity can enhance hydrogenotrophic sulfate reduction in the presence of H2 under atmospheric pressure.

  12. Retrieval of temperature and pressure using broadband solar occultation: SOFIE approach and results

    Directory of Open Access Journals (Sweden)

    B. T. Marshall

    2011-05-01

    Full Text Available Measurement of atmospheric temperature as a function of pressure, T(P, is key to understanding many atmospheric processes and a prerequisite for retrieving gas mixing ratios and other parameters from solar occultation measurements. This paper gives a brief overview of the solar occultation measurement technique followed by a detailed discussion of the mechanisms that make the measurement sensitive to temperature. Methods for retrieving T(P using both broadband transmittance and refraction are discussed. Investigations using measurements of broadband transmittance in two CO2 absorption bands (the 4.3 and 2.7 μm bands and refractive bending are then presented. These investigations include sensitivity studies, simulated retrieval studies, and examples from SOFIE.

  13. Electric field in a plasma channel in a high-pressure nanosecond discharge in hydrogen: a coherent anti-stokes Raman scattering study.

    Science.gov (United States)

    Yatom, S; Tskhai, S; Krasik, Ya E

    2013-12-20

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×10(5)  Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ∼100  kV and a duration of ∼5  ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30  kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  14. Successful application of MPD (managed pressure drilling) for prevention, control, and detection of borehole ballooning in tight gas reservoir in Cuervito Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, A.; Acevedo, O.; Nieto, L. [Petrobras (United States); Lambarria, J.E. [PEMEX Exploration and Production (Mexico); Perez, H. [Weatherford (United States)

    2011-07-01

    The Cuervito field is an oil play located in the Burgos Basin in northeastern Mexico. In order to reach the highest yielding sands, wells in the Cuervito field are usually set up with 3 casings. However, the ballooning effect, an elastoplastic behavior of a well's walls, occurs during drilling operations, leading to loss of circulation. Two methods, based on geological and geopressure data, were found to minimize this effect: either putting in an extra casing, or using an unconventional drilling technique. As the managed pressure drilling (MPD) technique is less complex and more elegant, a pilot project was implemented using this method on a well. Results showed that MPD minimized lost time and enhanced drilling efficiency. This paper demonstrated that the use of MPD in the Cuervito field is a good solution for identifying and controlling the ballooning effect and this technique was successfully applied to the next 3 wells drilled subsequently.

  15. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  16. Seawater-sediment interaction at elevated temperatures and pressures: implications for the near field chemical environment

    International Nuclear Information System (INIS)

    Seyfried, W.E. Jr.; Thornton, E.C.; Janecky, D.R.

    1981-01-01

    Results of four experiments are reported which document chemical exchange and mineralogic modification during seawater-sediment interaction at 200 0 to 300 0 C, 500 bars. Sediments used for this study are from MPG-1 (central North Pacific). Experimental conditions (T, P, W/R) were chosen to be reasonably analogous to conditions which will characterize the near field environment; that is a zone within approximately 1 m of the buried waste canister. In general, the major element chemistry of seawater was similarly modified in all experiments. The aqueous concentrations of Ca, Mg, Sr, and SO 4 decreased and SiO 2 /sub (aq)/, Na, K, and ΣCO 2 increased relative to values in seawater prior to reaction with sediments. pH decreased and remained distinctly acid. Con comitantly significant concentrations of heavy metals entered seawater from the sediments during reaction. Dissolution of Mn-rich phases profoundly affected alteration processes. For example, reaction of MnO 2 components of the smectite-rich sediment (Pacific smectite) with seawater created an unusually oxidizing milieu (fO 2 = 10 -7 74 ), and resulted in dissolution of significant quantities of Au from the reaction cell. Although illite-quartz-Fe-chlorite (sediment B)-seawater interaction also created a relatively oxidizing environment, this environment was not capable of oxidizing Au. Thus, in this regard (oxidation potential) sediment mineralogy exerts a strong influence. Mineralogic modification of sediment B at 200 0 and 300 0 C was minor and characterized by partial dissolution of illite and exchange of Fe for Mg in chlorite. In contrast the smectite-rich sediment, which, prior to reaction with seawater contained a poorly crystalline smectite phase, clinoptilolite, and amorphous material, recrystallized totally to a well defined smectite mineral. Anhydrite was abundantly present amongst the alteration products of all experiments

  17. Best Practices for Mudweight Window Generation and Accuracy Assessment between Seismic Based Pore Pressure Prediction Methodologies for a Near-Salt Field in Mississippi Canyon, Gulf of Mexico

    Science.gov (United States)

    Mannon, Timothy Patrick, Jr.

    Improving well design has and always will be the primary goal in drilling operations in the oil and gas industry. Oil and gas plays are continuing to move into increasingly hostile drilling environments, including near and/or sub-salt proximities. The ability to reduce the risk and uncertainly involved in drilling operations in unconventional geologic settings starts with improving the techniques for mudweight window modeling. To address this issue, an analysis of wellbore stability and well design improvement has been conducted. This study will show a systematic approach to well design by focusing on best practices for mudweight window projection for a field in Mississippi Canyon, Gulf of Mexico. The field includes depleted reservoirs and is in close proximity of salt intrusions. Analysis of offset wells has been conducted in the interest of developing an accurate picture of the subsurface environment by making connections between depth, non-productive time (NPT) events, and mudweights used. Commonly practiced petrophysical methods of pore pressure, fracture pressure, and shear failure gradient prediction have been applied to key offset wells in order to enhance the well design for two proposed wells. For the first time in the literature, the accuracy of the commonly accepted, seismic interval velocity based and the relatively new, seismic frequency based methodologies for pore pressure prediction are qualitatively and quantitatively compared for accuracy. Accuracy standards will be based on the agreement of the seismic outputs to pressure data obtained while drilling and petrophysically based pore pressure outputs for each well. The results will show significantly higher accuracy for the seismic frequency based approach in wells that were in near/sub-salt environments and higher overall accuracy for all of the wells in the study as a whole.

  18. Preliminary results on soil-emitted gamma radiation and its relation with the local atmospheric electric field at Amieira (Portugal)

    International Nuclear Information System (INIS)

    Lopes, F; Barbosa, S M; Silva, H G; Bárias, S

    2015-01-01

    The atmospheric electric field near the Earth's surface is dominated by atmospheric pollutants and natural radioactivity, with the latter directly linked to radon ( 222 Rn) gas. For a better comprehension on the temporal variability of both the atmospheric electric field and the radon concentration and its relation with local atmospheric variables, simultaneous measurements of soil-emitted gamma radiation and potential gradient (defined from the vertical component of the atmospheric electric field) were taken every minute, along with local meteorological parameters (e.g., temperature, atmospheric pressure, relative humidity and daily solar radiation). The study region is Amieira, part of the Alqueva lake in Alentejo Portugal, where an interdisciplinary meteorological campaign, ALEX2014, took place from June to August 2014. Soil gamma radiation is more sensitive to small concentrations of radon as compared with alpha particles measurements, for that reason it is more suited for sites with low radon levels, as expected in this case. Preliminary results are presented here: statistical and spectral analysis show that i) the potential gradient has a stronger daily cycle as compared with the gamma radiation, ii) most of the energy of the gamma signal is concentrated in the low frequencies (close to 0), contrary to the potential gradient that has most of the energy in frequency 1 (daily cycle) and iii) a short-term relation between gamma radiation and the potential gradient has not been found. Future work and plans are also discussed. (paper)

  19. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  20. Pressure-dependence of the zero-field splittings for the Fe8 single-molecule magnet

    Science.gov (United States)

    Takahashi, S.; Thompson, E.; Hill, S.; Tozer, S. W.; Harter, A. G.; Dalal, N. S.

    2006-03-01

    We present a study of the pressure-dependent electron paramagnetic resonance (EPR) spectrum for the Fe8 single-molecule magnet (SMM). The biaxial [Fe8O2(OH)12(tacn)6]Br8.9H2O (Fe8) SMM has recently been studied extensively because its low-temperature magnetization dynamics are dominated by quantum tunneling of its spin S = 10 magnetic moment through a sizeable anisotropy barrier. To date, chemical methods have usually been employed in order to control the magnetic quantum tunneling (MQT) behavior of a SMM, e.g. by varying the magnetic ions in the molecular core, or the ligand/solvent environment. The advantage of this approach is that many different SMMs can be realized in this way, with widely varying MQT behavior. However, controllable variation of MQT is difficult. As an alternative approach for manipulation of the MQT, we have recently studied the effect of physical pressure on the Fe8 SMM. In this presentation, we show the pressure dependence of the zero-field splittings of Fe8, as studied by an angle and pressure-dependent high-frequency EPR technique.

  1. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    International Nuclear Information System (INIS)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations

  2. [Transient elevation of intraocular pressure in primary open-angle glaucoma patients after automated visual field examination in the winter].

    Science.gov (United States)

    Nishino, Kazuaki; Yoshida, Fujiko; Nitta, Akari; Saito, Mieko; Saito, Kazuuchi

    2013-12-01

    To evaluate retrospectively seasonal fluctuations of transient intraocular pressure (IOP) elevation after automated visual field examination in patients with primary open-angle glaucoma (POAG). We reviewed 53 consecutive patients with POAG who visited Kaimeido Ophthalmic and Dental Clinic from January 2011 to March 2013, 21 men and 32 women aged 67.7 +/- 11.2 years. The patients were divided into 4 groups, spring, summer, autumn, and winter according to the month of automated visual field examination and both eyes of each patient were enrolled. IOP was measured immediately after automated visual field examination (vf IOP) and compared with the average IOP from the previous 3 months (pre IOP) and with the average IOP from the following 3 months (post IOP) in each season. IOP elevation rate was defined as (vf IOP- pre IOP)/pre IOP x 100% and calculated for each season (paired t test). Additionally, the correlation between mean deviation (MD) and IOP elevation rate was evaluated (single regression analysis). Exclusion criteria were patients who received cataract surgery during this study or had a history of any previous glaucoma surgery. The automated visual field test was performed with a Humphrey field analyzer and the Central 30-2 FASTPAC threshold program. The average vf IOP was 14.5 +/- 2.5 mmHg, higher than pre IOP 13.8 +/- 2.4 mmHg (p field examination, especially in the winter but not in the summer.

  3. Effects of neuroendocrine changes on results of ambulatory blood pressure monitoring (ABPM) in adolescent girls with anorexia nervosa.

    Science.gov (United States)

    Oświecimska, Joanna; Ziora, Katarzyna; Adamczyk, Piotr; Roczniak, Wojciech; Pikiewicz-Koch, Anna; Stojewska, Małgorzata; Dyduch, Antoni

    2007-08-01

    Anorexia nervosa (AN) is characterized by marked neuroendocrine and autonomic dysfunctions. In the recent studies using automatic blood pressure monitoring (ABPM), lower BP values and lack of circardian variation of BP in anorectic patients were demonstrated. Unfortunately effects of hormonal changes, that may explain BP abnormalities were not analysed together. The aim of our study was the assessment of ABPM and hormonal status in anorectic girls. The study was performed on hospitalized 25 female anorectic adolescents aged 12-18 years. Control group was 17 age and height matched girls with normal weight and negative history for hypertension. ABPM was performed between 5 and 7 day of hospitalization, every 30 minutes during active period and every 60 minutes during sleep. Hormones (FSH, LH, estradiol, cortisol and fT4) serum concentrations were also evaluated. Mean systolic BP values were significantly lower in patients with AN in comparison to controls. Maximal diastolic and mean arterial pressure values for the whole day and active period but not for sleep were lower in AN than in controls. Anorectic girls showed tendency to night-time bradycardia. Moreover, there were no physiological circadian variations of BP in AN. We conclude that hormonal regulation of blood pressure and heart rate in anorectic patients is at least partially preserved. Lower blood pressure values, bradycardia and lack of physiological night fall of BP in anorectic patients may result from altered autonomic system function resulting from hormonal disturbances and other centrally mediated mechanisms.

  4. TexiCare: an innovative embedded device for pressure ulcer prevention. Preliminary results with a paraplegic volunteer.

    Science.gov (United States)

    Chenu, Olivier; Vuillerme, Nicolas; Bucki, Marek; Diot, Bruno; Cannard, Francis; Payan, Yohan

    2013-08-01

    This paper introduces the recently developed TexiCare device that aims at preventing pressure ulcers for people with spinal cord injury. This embedded device is aimed to be mounted on the user wheelchair. Its sensor is 100% textile and allows the measurement of pressures at the interface between the cushion and the buttocks. It is comfortable, washable and low cost. It is connected to a cigarette-box sized unit that (i) measures the pressures in real time, (ii) estimates the risk for internal over-strains, and (iii) alerts the wheelchair user whenever necessary. The alert method has been defined as a result of a utility/usability/acceptability study conducted with representative end users. It is based on a tactile-visual feedback (via a watch or a smartphone for example): the tactile modality is used to discreetly alarm the person while the visual modality conveys an informative message. In order to evaluate the usability of the TexiCare device, a paraplegic volunteer equipped his wheelchair at home during a six months period. Interestingly, the first results revealed bad habits such as an inadequate posture when watching TV, rare relief maneuvers, and the occurrence of abnormal high pressures. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  5. Experimental results for the extraction of essential oil from Lippia sidoides cham. using pressurized carbon dioxide

    Directory of Open Access Journals (Sweden)

    Sousa EMBD.

    2002-01-01

    Full Text Available The odoriferous species Lippia sidoides Cham. is abundant in the Brazilian Northeast. Its essential oil possesses antiseptic activity due to the presence of thymol. In this work, thermodynamic and kinetic data were experimentally determined for the CO2 + L. sidoides system. Solubility was determined using the dynamic method at pressures of 66.7 and 78.5 bar and temperatures of 283.15, 288.15, 293.15, 295.15, and 298.15 K. SFE kinetic data were obtained at 288.15 K and 66.7 bar. The composition of the multicomponent solute mixture was determined by GC-MS and compared to the composition of both the volatile oil obtained by steam distillation and the oleoresin obtained using ethanol. The SFE process yield was higher than the yield of either the steam distillation or the ethanol extraction. The solubilities were correlated using the Peng-Robinson equation of state with one binary interaction parameter for the attractive term, considering the essential oil as a pseudo-component. Sovová?s model quantitatively described the overall extraction curve.

  6. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; hide

    2009-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning

  7. Hydrogenic impurity binding energy in vertically coupled Ga1-xAlxAs quantum-dots under hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.M.; Barseghyan, M.G.; Duque, C.A.

    2009-01-01

    This work deals with a theoretical study, using a variational method and the effective mass approximation, of the ground state binding energy of a hydrogenic donor impurity in a vertically coupled multiple quantum dot structure under the effects of hydrostatic pressure and in-growth direction applied electric field. The low dimensional structure consists of three cylindrical shaped GaAs quantum dots coupled by Ga 1-x Al x As barriers. For the hydrostatic pressure has been considered the Γ-X crossover in the Ga 1-x Al x As material. As a general, the results show that: (1) the binding energy as a function of the impurity position has a similar shape to that shown by the electron wave function without the Coulomb interaction, (2) the presence of the electric field changes dramatically the binding energy profile destroying (favoring) the symmetry in the structures, and (3) depending on the impurity position the binding energy can increase or decrease with the hydrostatic pressure mainly due to increases or decreases of the carrier-wave function symmetry by changing the height of the potential barrier.

  8. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  9. Economic Development Threatens Groundwater in Puerto Rico: Results of a Field Study.

    Science.gov (United States)

    Arbona, Sonia I.; Hunter, John M.

    1995-01-01

    Presents the results of a field study done on 7 wells providing 37% of the total aquifer production for 4 municipalities in Puerto Rico. Each sampled well showed signs of contamination by heavy metals, nitrate, and semivolatile organic compounds. Although found in low concentrations, current development threatens groundwater quality. (MJP)

  10. Results after ten years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Larsen, I.L.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl esterstyrene. These waste forms are being tested to: (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radionuclide releases from waste forms in field lysimeters. The purpose of this paper is to present the experimental results of two lysimeter arrays over 10 years of operation, and to compare those results to bench test results and to DUST code predicted releases. Further analysis of soil cores taken to define the observed upward migration of radionuclides in one lysimeter is also presented

  11. Cognitive Learning Strategy as a Partial Effect on Major Field Test in Business Results

    Science.gov (United States)

    Strang, Kenneth David

    2014-01-01

    An experiment was developed to determine if cognitive learning strategies improved standardized university business exam results. Previous studies revealed that factors such as prior ability, age, gender, and culture predicted a student's Major Field Test in Business (MFTB) score better than course content. The experiment control consisted of…

  12. Novel Field test design and initial result for AC and DC characterization for PV-panels

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Riedel, Nicholas; Santamaria Lancia, Adrian Alejo

    This work describes the design and initial test results of a field test for PV modules, where the PV modules the majority of the time operates to produce power at their maximum power point. Sequentially the individual modules are switched into a measurement circuitry for IV curves and impedance s...

  13. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  14. Field-emitting Townsend regime of surface dielectric barrier discharges emerging at high pressure up to supercritical conditions

    International Nuclear Information System (INIS)

    Pai, David Z; Stauss, Sven; Terashima, Kazuo

    2015-01-01

    Surface dielectric barrier discharges (DBDs) in CO 2 from atmospheric pressure up to supercritical conditions generated using 10 kHz ac excitation are investigated experimentally. Using current–voltage and charge–voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy, we identify and characterize a field-emitting Townsend discharge regime that emerges above 0.7 MPa. An electrical model enables the calculation of the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The space-averaged Laplacian field is accounted for in the circuit model by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are demonstrated to fit the description of atmospheric-pressure Townsend DBDs (Naudé et al 2005 J. Phys. D: Appl. Phys. 38 530–8), i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron–neutral bremsstrahlung corresponding to an average electron temperature of 2600 K. Raman spectra of CO 2 near the critical point demonstrate that the average gas temperature increases by less than 1 K. (paper)

  15. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  17. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  18. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-01-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of 3 He gas, can function simultaneously as efficient thermal neutron detectors

  19. Consumer acceptance of high-pressure processing and pulsed-electric-field

    DEFF Research Database (Denmark)

    Olsen, Nina Veflen; Grunert, Klaus G.; Sonne, Anne-Mette

    2010-01-01

    New products and new processing techniques are continuously developed in the food industry. While food scientists may focus on the technical novelty and applaud the progress of science, consumers are often conservative and sceptical towards changes. The advantages that a new processing technology...... has to offer, do not necessarily guarantee the success of a product in the market place. Consumer acceptance depends on whether consumers perceive that there are specific benefits associated with the product. This review focuses specifically on how high-pressure processing (HPP) and pulsed...

  20. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska

    2015-01-01

    Full Text Available Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV and penetrating keratoplasty (PKP using a wide-field Landers intraoperative temporary keratoprosthesis (TKP in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure were assessed during the follow-up (mean 16 months. Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor.

  1. Successful continuous injection of coal into gasification and PFBC system operating pressures exceeding 500 psi - DOE funded program results

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, T.; Aldred, D.; Rutkowski, M. [Stamet Inc., North Holywood, CA (United States)

    2006-07-01

    The current US energy program is focussed towards commercialisation of coal-based power and IGCC technologies that offer significant improvements in efficiency and reductions in emissions. For gasification and pressurised fluidized bed combustors to be widely accepted, certain operational components need to be significantly improved. One of the most pressing is provision of reliable, controlled and cost-effective solid fuel feeding into the pressure environment. The US Department of Energy has funded research to develop the unique Stamet 'Posimetric{reg_sign} Solids Pump' to be capable of feeding coal into current gasification and PFBC operating pressures. The research objective is a mechanical rotary device able to continuously feed and meter coal into pressured environments of at least 34 bar (500 psi). The research program comprised an initial design and testing phase to feed coal into 20 bar (300 psi) and a second phase for feeding into 34 bar (500 psi). The first phase target was achieved in December 2003. Following modification and optimization, in January 2005, the Stamet Pump achieved a world-record pressure level for continuous injection of coal of 38 bar (560 psi). Research is now targeting 69 bar (1000 psi). The paper reviews the successful pump design, optimisations and results of the testing. 16 figs., 2 tabs.

  2. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  3. The magnetic field investigation on the ARASE (ERG) mission: Data characteristics and initial scientific results

    Science.gov (United States)

    Matsuoka, A.; Teramoto, M.; Nomura, R.; Nose, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Nagatsuma, T.; Shiokawa, K.; Obana, Y.; Miyoshi, Y.; Takashima, T.; Shinohara, I.

    2017-12-01

    The ARASE (ERG) satellite was successfully launched on December 20 2016. A fluxgate magnetometer (MGF) was built for the ARASE satellite to measure DC and low-frequency magnetic field. The requirements to the magnetic field measurements by ARASE was defined as (1) accuracy of the absolute field intensity is within 5 nT (2) angular accuracy of the field direction is within 1 degree (3) measurement frequency range is from DC to 60Hz or wider. MGF measures the vector magnetic field with the original sampling frequency of 256 Hz. The dynamic range is switched between +/-8000nT and +/- 60000nT according to the background field intensity. The MGF initial checkout was carried on January 10th 2017, when the MGF normal performance and downlinked data were confirmed. The 5-m length MAST for the sensor was deployed on 17th January. The nominal operation of MGF started in March 2017. The MGF data are calibrated based on the results from the ground experiments and in-orbit data analysis. The MGF CDF files are distributed by the ARASE Science Center and available by Space Physics Environment Data Analysis Software (SPEDAS). The acceleration process of the charged particles in the inner magnetosphere is considered to be closely related to the deformation and perturbation of the magnetic field. Accurate measurement of the magnetic field is required to understand the acceleration mechanism of the charged particles, which is one of the major scientific objectives of the ARASE mission. We designed a fluxgate magnetometer which is optimized to investigate following topics; (1) accurate measurement of the background magnetic field - the deformation of the magnetic field and its relationship with the particle acceleration. (2) MHD waves - measurement of the ULF electromagnetic waves of frequencies about 1mHz (Pc4-5), and investigation of the radiation-belt electrons radially diffused by the resonance with the ULF waves. (3) EMIC waves - measurement of the electromagnetic ion

  4. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Levko, Dmitry; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  5. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    Energy Technology Data Exchange (ETDEWEB)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); Dong, B.; Zhang, K. [Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool NSW 2170 (Australia); and others

    2016-09-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical

  6. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  7. Abstract of results of safety study. Nuclear fuel cycle field in fiscal 2003

    International Nuclear Information System (INIS)

    2004-11-01

    This report descried the results of studies of nuclear fuel cycle field (nuclear fuel facilities, seismic design, all subjects of environmental radiation and waste disposal, and subjects on nuclear fuel cycle in probabilistic safety assessment) in fiscal 2003 on the basis of the principle project of safety study (from fiscal 2001 to 2005). It consists of four chapters; the first chapter is outline of the principle of project, the second is objects and subjects of safety study in the nuclear fuel cycle field, the third list of questionnaire of results of safety study and the forth investigation of results of safety study in fiscal 2003. There are 49 lists, which include 22 reports on the nuclear fuel facility, one on the seismic design, 4 on the probabilistic safety assessment, 7 on the environmental radiation and 15 on the waste disposal. (S.Y.)

  8. Pressure suppression system (PSS) for nuclear ships. Experimental results obtained at the GKSS PSS-test-facillity

    International Nuclear Information System (INIS)

    Aust, E.; Niemann, H.R.; Schwan, H.; Vollbrandt, J.

    1978-01-01

    The PSS-test facility is shortly presented which was designed to show experimentally the operation of the pressure suppression containment for the NCS 80 concept. The results of the experimental LOCA-simulation tests in the PSS-test facility are illustrated by diagrams. The observed phenomena as chugging and pessure oscillations immediately after vent clearing are reported as well as the thermohydraulic loadings of the total system. Finally a short view is given on the future test program

  9. Numerical results from a study of LiH: the proposed standard material for the high pressure shock experiment

    International Nuclear Information System (INIS)

    Rogers, F.J.

    1975-01-01

    It is proposed to send a high pressure shock wave through a layer of LiH and then into a sample of high Z-material, resulting in a reflected shock wave back into the LiH. If the Hugoniot and some reflected Hugoniots for LiH are known the EOS of the sample can be obtained from the ''impedance matching method.'' The theory and its range of validity are described

  10. Electron cyclotron instabilities of finite pressure inhomogeneous plasma in crossed fields

    International Nuclear Information System (INIS)

    Kirochkin, Yu.A.; Pokroev, A.G.; Stepanov, K.N.

    1979-01-01

    The stability of inhomogeneous plasma sheet with β<=1 in crossed electric and magnetic fields is investigated. The differential equation describing potential oscillations is obtained. Using the local approximation the sheet is shown to be unstable against the excitation of short wavelength electron cyclotron oscillations. The validity criterion of this method for a given type of waves is derived

  11. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav

    2012-01-01

    Roč. 18, č. 44 (2012), s. 14047-14054 ISSN 0947-6539 Institutional support: RVO:61388980 Keywords : cavitation field * graphene * nanostructures * ultrasound * X-ray diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 5.831, year: 2012

  12. Recent Research Results in the Field of Electric Drives and Mechatronics

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2003-01-01

    Full Text Available The paper presents an overview of research results achieved in the field of Electrical Drives and Mechatronics for the period of three years. The achieved outputs are formed into three individual parts. In the field of Electric Drives the most significant outputs have been achieved in the development of a new control algorithms for a.c. drives under general name 'Forced Dynamics Control' , in improvement of shaft sensorless control methods and in implementation of developed algorithms via digital signal processors. In the field of Electric Traction the most important results have been gained in optimization of power of traction vehicles andat development of diagnostic systems for evaluation of technical conditions of traction devices. In the field of Electric Machines the most important outputs have been achieved in the research of modern electronically commutated electrical machines, their performances in steady and transient states, new design method for their configuration and new methods for automatic parameters identification. In the end the list of the most important publications for all three parts is enclosed.

  13. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  14. Field Observation of Soil Displacements Resulting Due Unsupported Excavation and Its Effects on Proposed Adjacent Piles

    Directory of Open Access Journals (Sweden)

    Ala Nasir Al-Jorany

    2016-06-01

    Full Text Available Soil movement resulting due unsupported excavation nearby axially loaded piles imposes significant structural troubles on geotechnical engineers especially for piles that are not designed to account for loss of lateral confinement. In this study the field excavation works of 7.0 m deep open tunnel was continuously followed up by the authors. The work is related to the project of developing the Army canal in the east of Baghdad city in Iraq. A number of selected points around the field excavation are installed on the ground surface at different horizontal distance. The elevation and coordinates of points are recorded during 23 days with excavation progress period. The field excavation process was numerically simulated by using the finite element package PLAXIS 3D foundation. The obtained analysis results regarding the displacements of the selected points are compared with the field observation for verification purpose. Moreover, finite element analysis of axially loaded piles that are presumed to be existed at the locations of the observation points is carried out to study the effect of excavation on full scale piles behaviors. The field observation monitored an upward movement and positive lateral ground movement for shallow excavation depth. Later on and as the excavation process went deeper, a downward movement and negative lateral ground movement are noticed. The analyses results are in general well agreed with the monitored values of soil displacements at the selected points. It is found also that there are obvious effects of the nearby excavation on the presumed piles in terms of displacements and bending moments.

  15. Pilot test of pressure maintenance by water injection and gas injection in the M'Bega field

    Energy Technology Data Exchange (ETDEWEB)

    Hodee, B

    1965-02-01

    The M'Bega reservoir, Gabon, is one that is both fractured and fissured, and its reservoir rock, improperly referred to as silicified clay, is made up of opal-cement silt. At the time it began production, the major unknown factor in this field was the amount of oil it contained. The factor was finally determined after 18 mo. of production, once data was obtained concerning the advance of aquifiers. Up until that time, applied comparisons of successive data could not differentiate between the activity of aquifers and that of dissolved gas expansion with partial segregation. Consequently, a pilot test was made in which pressure was maintained by water injection. Then, with a double drainage phenomena (the tops by the gas, and the flanks by the aquifer water), production of the field consisted of bringing about a coincidence between the water and gas fronts at the level of the existing wells by means of gas injection.

  16. The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750

    Energy Technology Data Exchange (ETDEWEB)

    Kuettel, M.; Wanner, H. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), and Institute of Geography, Climatology and Meteorology, Bern (Switzerland); Xoplaki, E. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), and Institute of Geography, Climatology and Meteorology, Bern (Switzerland); EEWRC, The Cyprus Institute, Nicosia (Cyprus); Gallego, D. [Universidad Pablo de Olavide de Sevilla, Departamento de Sistemas Fisicos, Quimicos y Naturales, Sevilla (Spain); Luterbacher, J. [University of Bern, Oeschger Centre for Climate Change Research (OCCR), and Institute of Geography, Climatology and Meteorology, Bern (Switzerland); Justus-Liebig University of Giessen, Department of Geography, Climatology, Climate Dynamics and Climate Change, Giessen (Germany); Garcia-Herrera, R. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de CC Fisicas, Madrid (Spain); Allan, R. [Met Office Hadley Centre, Exeter (United Kingdom); Barriendos, M. [University of Barcelona, Department of Modern History, Barcelona (Spain); Jones, P.D. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Wheeler, D. [University of Sunderland, Faculty of Applied Sciences, Sunderland (United Kingdom)

    2010-06-15

    Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5 x 5 resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40 W-50 E; 20 N-70 N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750-1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies. (orig.)

  17. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress

    Directory of Open Access Journals (Sweden)

    Yongshui Kang

    2014-10-01

    Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.

  18. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  19. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial

  20. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  1. Overview of experimental results obtained under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Naus, D.J.

    1978-01-01

    Under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory, various aspects of Prestressed Concrete Pressure Vessels (PCPVs) are investigated and evaluated with respect to reliability, structural performance, constructability, and economy. Based upon identified needs, analytical and experimental investigations are conducted. Areas of interest include finite-element analysis development, materials and structural behavior tests, instrumentation evaluation and development, and structural model tests. Studies have been recently completed in the following areas: concrete embedment instrumentation systems for PCPVs, grouted-nongrouted prestressing systems, acoustic emission as a technique for structural integrity monitoring, and model tests of steam-generator cavity closure plugs for a Gas-Cooled Fast Reactor (GCFR). An overview of results is presented

  2. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  3. Acid mine drainage abatement resulting from pressure grouting of buried bituminous mine spoils

    International Nuclear Information System (INIS)

    Scheetz, B.; Silsbee, M.; Schueck, J.

    1998-01-01

    A 37 acre surface coal mine located in Clinton County, PA, USA, was mined and reclaimed between 1974 and 1977. Buried pyrite-rich pit floor cleanings and tipple refuse were found to be producing severe acid mine drainage. The pyritic material is located in discrete piles or pods in the backfill. The pods and the resulting contaminant plumes were initially defined using geophysical techniques and confirmed by drilling. The approach taken was to use a cementitious grout, composed of fluidized bed combustion ash and water, which would be placed in a manner which would prevent water and oxygen from contacting the pyritic materials. Statistically significant water quality improvements have been noted as a result of the grouting. After four years of post-grouting monitoring, reductions in concentrations of most of the mine drainage parameters range from 40 to 90%. 12 refs., 1 fig., 4 tabs

  4. Analyses and results from standard surveillance programmes of WWER 440/V-213C reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Falcnik, M; Brumovsky, M; Pav, T [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    In Czech and Slovak republics, six units of WWER 440/C type reactors are monitored by surveillance specimens programmes; the specimens are determined for static tensile testing, impact notch toughness testing and fracture toughness evaluation. Results of mechanical properties of these specimens after irradiation in intervals between 1 and 5 years of operation, are summarized and discussed with respect to the effect of individual heats and welded joints, radiation embrittlement, and annealing recovery. (authors). 3 refs., 11 figs., 2 tabs.

  5. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  6. Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field

    International Nuclear Information System (INIS)

    Londer, Ya. I.; Ul’yanov, K. N.

    2011-01-01

    The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.

  7. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and

  8. Maximally Rotating Supermassive Stars at the Onset of Collapse: The Perturbative Effects of Gas Pressure, Magnetic Fields, Dark Matter and Dark Energy

    Science.gov (United States)

    Butler, Satya P.; Lima, Alicia R.; Baumgarte, Thomas W.; Shapiro, Stuart L.

    2018-04-01

    The discovery of quasars at increasingly large cosmological redshifts may favor "direct collapse" as the most promising evolutionary route to the formation of supermassive black holes. In this scenario, supermassive black holes form when their progenitors - supermassive stars - become unstable to gravitational collapse. For uniformly rotating stars supported by pure radiation pressure and spinning at the mass-shedding limit, the critical configuration at the onset of collapse is characterized by universal values of the dimensionless spin and radius parameters J/M2 and R/M, independent of mass M. We consider perturbative effects of gas pressure, magnetic fields, dark matter and dark energy on these parameters, and thereby determine the domain of validity of this universality. We obtain leading-order corrections for the critical parameters and establish their scaling with the relevant physical parameters. We compare two different approaches to approximate the effects of gas pressure, which plays the most important role, find identical results for the above dimensionless parameters, and also find good agreement with recent numerical results.

  9. Monitoring electro-magnetic field in urban areas: new set-ups and results

    International Nuclear Information System (INIS)

    Lubritto, C.; Petraglia, A.; Paribello, G.; Formosi, R.; Rosa, M. de; Vetromile, C.; Palmieri, A.; D'Onofrio, A.; Di Bella, G.; Giannini, V.

    2006-01-01

    In this paper two different set-ups for continuous monitoring of electromagnetic levels are presented: the first one (Continuous Time E.M.F. Monitoring System) is based upon a network of fixed stations, allowing a detailed field monitoring as function of the time; the second one (Mobile Measurements Units) resorts to portable stations mounted on standard bicycles, allowing a positional screening in limited time intervals. For both set-ups a particular attention has been paid to the data management, by means of tools like web geographic information systems (Web-Gis). Moreover the V.I.C.R.E.M./E.L.F. software has been used for a predictive analysis of the electromagnetic field levels along with the geo referenced data coming from the field measurements. Starting from these results it has been realized that there is a need for an efficient and correct action of monitoring and information/formation in this domain, where dis-information or bad information is very often spread in the population, in particular in a field where the process of the appreciation and assessment of risk does not necessarily make use of a rationale, technically-informed procedure, but the judgement is rather based on a personal feeling, which may derive from a limited, unstructured set of information, using a set of qualitative attributes rather than a quantity. (N.C.)

  10. Monitoring electro-magnetic field in urban areas: new set-ups and results

    Energy Technology Data Exchange (ETDEWEB)

    Lubritto, C.; Petraglia, A.; Paribello, G.; Formosi, R.; Rosa, M. de; Vetromile, C.; Palmieri, A.; D' Onofrio, A. [Seconda Universita di Napoli, Dipt. di Scienze Ambientali, Caserta (Italy); Di Bella, G.; Giannini, V. [Vector Group, Roma (Italy)

    2006-07-01

    In this paper two different set-ups for continuous monitoring of electromagnetic levels are presented: the first one (Continuous Time E.M.F. Monitoring System) is based upon a network of fixed stations, allowing a detailed field monitoring as function of the time; the second one (Mobile Measurements Units) resorts to portable stations mounted on standard bicycles, allowing a positional screening in limited time intervals. For both set-ups a particular attention has been paid to the data management, by means of tools like web geographic information systems (Web-Gis). Moreover the V.I.C.R.E.M./E.L.F. software has been used for a predictive analysis of the electromagnetic field levels along with the geo referenced data coming from the field measurements. Starting from these results it has been realized that there is a need for an efficient and correct action of monitoring and information/formation in this domain, where dis-information or bad information is very often spread in the population, in particular in a field where the process of the appreciation and assessment of risk does not necessarily make use of a rationale, technically-informed procedure, but the judgement is rather based on a personal feeling, which may derive from a limited, unstructured set of information, using a set of qualitative attributes rather than a quantity. (N.C.)

  11. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-01-01

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  12. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  13. Experimental results for hydrocarbon refrigerant vaporization inside brazed plate heat exchangers at high pressure

    DEFF Research Database (Denmark)

    Desideri, Adriano; Ommen, Torben Schmidt; Wronski, Jorrit

    2016-01-01

    fluids at typical working conditions of ORC systems for low temperature waste heat recovery (WHR) applications. Based on these premises, a novel testrig has been recently designed and built at the Technical University of Denmark to simulate the evaporating condition occurring in a small capacity ORC...... power unit. In this contribution the preliminary experimental results obtained from the first experimental campaign carried out on the rig are reported. HFC-134a was selected as working fluid. The experiments were carried out at saturation temperature of 60, 70 and 80 °C and inlet and outlet qualities...

  14. Patient reported outcome measures (PROMs) following forward planned field-in field IMRT: Results from the Cambridge Breast IMRT trial

    International Nuclear Information System (INIS)

    Mukesh, Mukesh B.; Qian, Wendi; Wilkinson, Jennifer S.; Dorling, Leila; Barnett, Gillian C.; Moody, Anne M.; Wilson, Charles; Twyman, Nicola; Burnet, Neil G.; Wishart, Gordon C.; Coles, Charlotte E.

    2014-01-01

    Background: The use of intensity-modulated radiotherapy (IMRT) in breast cancer reduces clinician-assessed breast tissue toxicity including fibrosis, telangectasia and sub-optimal cosmesis. Patient reported outcome measures (PROMs) are also important as they provide the patient’s perspective. This longitudinal study reports on (a) the effect of forward planned field-in-field IMRT (∼simple IMRT) on PROMs compared to standard RT at 5 years after RT, (b) factors affecting PROMs at 5 years after RT and (c) the trend of PROMs over 5 years of follow up. Methods: PROMs were assessed at baseline (pre-RT), 6, 24 and 60 months after completion of RT using global health (EORTC QLQ C30) and 4 breast symptom questions (BR23). Also, 4 breast RT-specific questions were included at 6, 24 and 60 months: change in skin appearance, firmness to touch, reduction in breast size and overall change in breast appearance since RT. The benefits of simple IMRT over standard RT at 5 years after RT were assessed using standard t-test for global health and logistic regression analysis for breast symptom questions and breast RT-specific questions. Clinical factors affecting PROMs at 5 years were investigated using a multivariate analysis. A repeated mixed model was applied to explore the trend over time for each of PROMs. Results: (89%) 727/815, 84%, 81% and 61% patients completed questionnaires at baseline, 6, 24 and 60 months respectively. Patients reported worse toxicity for all four BR23 breast symptoms at 6 months, which then improved over time (p < 0.0001). They also reported improvement in skin appearance and breast hardness over time (p < 0.0001), with no significant change for breast shrinkage (p = 0.47) and overall breast appearance (p = 0.13). At 5 years, PROMs assessments did not demonstrate a benefit for simple IMRT over standard radiotherapy. Large breast volume, young age, baseline surgical cosmesis and post-operative infection were the most important variables to affect PROMs

  15. Direct numerical simulation of turbulent velocity-, pressure- and temperature-fields in channel flows

    International Nuclear Information System (INIS)

    Goetzbach, G.

    1977-10-01

    For the simulation of non stationary, three-dimensional, turbulent flow- and temperature-fields in channel flows with constant properties a method is presented which is based on a finite difference scheme of the complete conservation equations for mass, momentum and enthalpie. The fluxes of momentum and heat within the grid cells are described by sub-grid scale models. The sub-grid scale model for momentum introduced here is for the first time applicable to small Reynolds-numbers, rather coarse grids, and channels with space dependent roughness distributions. (orig.) [de

  16. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    Science.gov (United States)

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field

  17. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  18. Studies on MHD pressure drop and heat transfer of helium-lithium annular-mist flow in a transverse magnetic field

    International Nuclear Information System (INIS)

    Inoue, Akira; Aritomi, Masanori; Takahashi, Minoru; Matsuzaki, Mitsuo; Narita, Yoshihito; Yano, Toshikazu.

    1987-01-01

    Pressure drop and heat transfer coefficient of helium-lithium annular-mist flow in a rectangular duct were investigated experimentally under a transverse magnetic field at system pressure of 0.2 MPa. A ratio of MHD pressure drop to that of non-magnetic field increases with magnetic flux density and a mass flow rate ratio of lithium to helium in low helium velocity region. However, as increasing the helium velocity, the increment of MHD pressure drop with the magnetic flux density is much reduced and then becomes almost zero. At this condition, the MHD pressure drop of the annular-mist flow becomes much smaller than that of lithium single phase flow with the same lithium mass flow at the high magnetic flux density. Heat transfer coefficient ratio of the helium-lithium annular-mist flow to helium single phase in the non-magnetic field is well correlated by a ratio of the mass flow rate of lithium to helium. The heat transfer coefficient in the magnetic field increases with the magnetic flux density and then terminates at a certain value depending on the mass flow rate ratio and the helium velocity. These characteristics of the MHD pressure drop and the heat transfer in the magnetic field suggest that the helium-lithium annular-mist flow is effectively applicable to cooling of the high heat flux wall in a strong magnetic field like a first wall of a magnetic confinement fusion reactors. (author)

  19. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    Science.gov (United States)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  20. Assessment of the potential for high-pressure melt ejection resulting from a Surry station blackout transient

    International Nuclear Information System (INIS)

    Knudson, D.L.; Dobbe, C.A.

    1993-11-01

    Containment integrity could be challenged by direct heating associated with a high pressure melt ejection (HPME) of core materials following reactor vessel breach during certain severe accidents. Intentional reactor coolant system (RCS) depressurization, where operators latch pressurizer relief valves open, has been proposed as an accident management strategy to reduce risks by mitigating the severity of HPME. However, decay heat levels, valve capacities, and other plant-specific characteristics determine whether the required operator action will be effective. Without operator action, natural circulation flows could heat ex-vessel RCS pressure boundaries (surge line and hot leg piping, steam generator tubes, etc.) to the point of failure before vessel breach, providing an alternate mechanism for RCS depressurization and HPME mitigation. This report contains an assessment of the potential for HPME during a Surry station blackout transient without operator action and without recovery. The assessment included a detailed transient analysis using the SCDAP/RELAP5/MOD3 computer code to calculate the plant response with and without hot leg countercurrent natural circulation, with and without reactor coolant pump seal leakage, and with variations on selected core damage progression parameters. RCS depressurization-related probabilities were also evaluated, primarily based on the code results

  1. Radioactive waste storage in mined caverns in crystalline rock: results of field investigations at Stripa, Sweden

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1980-10-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by excavation and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements below the surface in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa, Sweden, at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of carrying out large-scale investigations in a field test facility

  2. Traumatic neuralgia from pressure-point strikes in the martial arts: results from a retrospective online survey.

    Science.gov (United States)

    Kelly, Michael D

    2008-06-01

    Many techniques in Asian martial arts hand-to-hand combat systems emphasize hitting or striking specific sites on the body that correlate with exposed portions of peripheral nerves. To evaluate the prevalence and clinical effects of this unique sports-related injury. An anonymous self-administered retrospective 20-question electronic survey was posted on a high-traffic martial arts Web site. Primary outcome measures were demographic and medical history data, including martial arts experience and neuropathic symptoms associated with injury from this form of combat. Risk of symptoms was calculated by dividing the number of individuals with symptoms in each pressure-point area by the number of individuals who were struck in these areas during martial arts training. Of the 651 survey responses received, 605 met inclusion criteria. Neuropathic symptoms were reported by 291 subjects. Most symptoms occurred in individuals aged between 20 and 30 years as well as in individuals with less than 1 year of martial arts training. The majority of respondents with neuropathic symptoms reported a symptom duration of less than 1 year (207 [71%]). Individuals with more than 5 years of combat training experience had a greater risk of chronic symptoms than individuals with less experience. Strikes to pressure points on the back had the greatest risk of inducing neuropathic symptoms. Symptoms of neurapraxia can occur in individuals as a result of practicing martial arts involving strikes on pressure points. Although the majority of symptoms resolve within 1 year, individuals with prolonged exposure to pressure-point strikes may be more likely to have chronic symptoms.

  3. Local field at an irradiated adatom on jellium: exact microscopic results

    International Nuclear Information System (INIS)

    Feibelman, P.J.

    1980-01-01

    The first microscopic correction to the image theory of the local field at an irradiated adatom has been calculated in the limit that the adatom is far from a jellium surface. The result of the calculation is the frequency-dependent position of the effective image plane in terms of the properties of semi-infinite jellium. The image plane position is found to be a complex number, reflecting the fact that the response of the surface electrons is lossy. Numerical calculations for r/sub s/=2 jellium suggest that the imaginary component of the image plane position is large enough to prevent large image enhancement of the local field at an adatom, casting doubt on the idea that such enhancement is responsible for the recently observed surface-enhanced Raman effect

  4. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    International Nuclear Information System (INIS)

    Horschel, D.S.

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission's program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix

  5. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    Energy Technology Data Exchange (ETDEWEB)

    Horschel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  6. The double probe electric field experiment on Freja: description and first results

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Lindqvist, A.A.; Faelthammar, C.G.; Haerendel, G.; Mozer, F.S.; Pedersen, A.; Tanskanen, P.

    1993-10-01

    A description is given of the Freja double-probe electric field instrument. Its capability to perform high-resolution measurements of the aurora and its fine-structure as well as collect information on sub-auroral and low-latitude phenomena is illustrated by selected results from the first six months of operation. The instrument is highly flexible and possible to operate in a number of different modes. It is also equipped with a 4-Megabyte burst memory for high data sampling rate and temporary storage of data. It has been fully operational since October 1992, and delivers data from ∼22 hours/day including about 5-6 auroral crossings/day of the northern and southern auroral ionosphere. New and important information in the auroral fine structure and electrodynamics is obtained by means of burst resolution data (6144 samples/s) and normal resolution data (768 sample/s). Common burst data collection triggered by the electric field event detector has turned out to be very useful for the selection of scientifically interesting events. This is illustrated by high-resolution data of a pair of extremely intense and narrow electric field structures (1 V/m) which are associated with a total absence of precipitating particles, depletions of the thermal plasma and with an intense wave activity. The low inclination of the Freja orbit provides a new perspective for studying large-scale phenomena associated with east-west gradients as is exemplified by electric field data from a satellite crossing over north-south oriented auroral structures presumably resulting from rotational distortions of east-west aligned auroral arcs. The different plasma regimes encountered by Freja are continuously monitored by means of current sweeps applied to the probes and by the satellite potential

  7. Genotoxic pressure of vineyard pesticides in fish: field and mesocosm surveys.

    Science.gov (United States)

    Bony, S; Gillet, C; Bouchez, A; Margoum, C; Devaux, A

    2008-09-17

    The present study deals with the genotoxicity assessment of vineyard pesticides in fish exposed in the field or in mesocosm conditions. Primary DNA damage was quantified as strand breaks using the single cell gel electrophoresis assay (Comet assay) applied to fish erythrocytes. In a first experiment, a significant genotoxic effect was observed following an upstream-downstream gradient in early life stages of brown trout (Salmo trutta fario) exposed in the Morcille River contaminated by a mixture of vineyard pesticides during three consecutive years. The pronounced response in terms of DNA damage reported in the present study could argue for a high sensitivity of fish early life stage and/or a high level of exposure to genotoxic compounds in the Morcille River. This stresses the interest in using trout larvae incubated in sediment bed to assess genotoxic compounds in the field. In a second experiment, adult European topminnow (Phoxinus phoxinus) were exposed in water running through artificial channels to a mixture of diuron and azoxystrobin, two of the main pesticides detected in the Morcille watershed. As compared with the unexposed channel, a 3-5-fold increase in the DNA damage was observed in fish exposed to chronic environmental pesticide concentrations (1-2 microg L(-1) for diuron and 0.5-1 microg L(-1) for axoxystrobin). A single 6h pulse of pesticide (14 microg L(-1) of diuron and 7 microg L(-1) of azoxystrobin) was applied to simulate transiently elevated chemical concentrations in the river following storm conditions. It did not increase genotoxicity. After a 1-month recovery period, DNA damage in exposed fish erythrocytes recovered to unexposed level, suggesting possible involvement of both repair mechanisms and cellular turnover in this transient response. This work highlights that vineyard treatment by pesticides and in particular diuron and azoxystrobin can represent a genotoxic threat to fish from contaminated watershed rivers.

  8. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  9. Aero thermal test results obtained on the n. C 5 EL 4 Cluster in the atmospheric pressure cell

    International Nuclear Information System (INIS)

    Gasc, B.

    1964-01-01

    In the framework of thermal studies on the EL-4 cluster, the full-scale tests at atmospheric pressure are designed to permit measurement of local values of the wall temperature, of the velocity and of the temperature in the fluid. The experimental results, obtained with the help of an original measuring apparatus, make it possible to follow the changes in these values along the cluster and to predict in much detail the in-pile thermal behaviour. In particular it is shown that changes in the wall temperature along the cluster are greatly influenced by disruption of the flow caused by grids and supports. (author) [fr

  10. Field reversal experiments: FRX-A and FRX-B results

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    The equilibrium, stability, and confinement properties of the Field Reversed Configuration (FRC) are being studied in two theta pinch facilities referred to as FRX-A, and FRX-B. The configuration is a toroidal plasma confined in a purely poloidal field configuration containing both closed and open field lines. The FRX system produces highly elongated tori with major radius R=3 to 5 cm, minor radius a approx. 2 cm, and a full length l approx. 35 to 50 cm. Plasma conditions have ranged from T/sub e/ approx. 150 eV, T/sub i/ approx. 800 eV, and n/sub max/ approx. 10 15 /cm 3 to T/sub e/ approx. 100 eV, T/sub i/ approx. 150 eV, and n/sub max/ approx. 4 x 10 15 /cm 3 . The plasma remains in a stable equilibrium for up to 50 μs followed by an n = 2 rotational instability which results in termination of the FRC. The plasma behavior with respect to equilibrium, stability, and rotation is consistent with recent theoretical work in these areas

  11. Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation

    Directory of Open Access Journals (Sweden)

    Milošević M.

    2016-01-01

    Full Text Available The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n, and tensor-scalar ratio (r for the given potentials. We pay special attention to the inverse power potential, first of all to V (x ~ x−4, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X0 to the string theory motivated sector of its values is briefly considered. [Projekat Ministarstva nauke Republike Srbije, br. 176021, br. 174020 i br. 43011

  12. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    Science.gov (United States)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  13. Effects of pressure and magnetic field on transport properties of Y1-xRxCo2 alloys (R=Gd, Tb, Dy, Ho and Er)

    International Nuclear Information System (INIS)

    Takaesu, Y; Nakama, T; Kinjyo, A; Yonamine, S; Hedo, M; Yagasaki, K; Uchima, K; Uwatoko, Y; Burkov, A T

    2010-01-01

    Electrical resistivity ρ and thermopower S of Y 1-x R x Co 2 (R=Gd, Tb, Dy, Ho and Er) Laves phase alloy systems were measured at temperatures from 1.5 K to 300 K in magnetic fields up to 15 T and under hydrostatic pressure up to 2 GPa. We show that there is a universal linear relation between the pressure and magnetic field derivatives of the resistivity, dρ/dP and dρ/dB, with gradient, determined by pressure derivative of the critical metamagnetic field of the cobalt 3d electron system. A similar scaling behavior was found for the thermopower dependencies on pressure and alloy composition.

  14. Development of an extraction type magnetometer under high pressure and high magnetic fields over 200 kOe in the hybrid magnet

    International Nuclear Information System (INIS)

    Koyama, K; Miura, S; Okada, H; Watanabe, K

    2006-01-01

    An extraction-type magnetometer has been developed, which is performed under pressures up to 12 kbar using a miniature high-pressure clamp-cell, in magnetic fields up to 270 kOe using our hybrid magnet and at the temperature range from 1.5 to 300 K. Magnetization curves can be measured for absolute value over 0.04 emu. We confirmed that resolution is about ±0.01 emu under high pressures and high magnetic fields if a sample has the magnetic moment of about 3 emu. For demonstrating the ability of the instrument, high field magnetization curves for SmMn 2 Ge 2 under high pressures are presented

  15. Robot-assisted biopsies in a high-field MRI system. First clinical results

    International Nuclear Information System (INIS)

    Schell, B.; Eichler, K.; Mack, M.G.; Mueller, C.; Kerl, J.M.; Beeres, M.; Thalhammer, A.; Vogl, T.J.; Zangos, S.; Czerny, C.

    2012-01-01

    Purpose: The purpose of this study was to examine the clinical use of MR-guided biopsies in patients with suspicious lesions using a new MR-compatible assistance system in a high-field MR system. Materials and Methods: Six patients with suspicious focal lesions in various anatomic regions underwent percutanous biopsy in a high-field MR system (1.5 T, Magnetom Espree, Siemens) using a new MR-compatible assistance system (Innomotion). The procedures were planned and guided using T1-weighted FLASH and TrueFISP sequences. A servopneumatic drive then moved the guiding arm automatically to the insertion point. An MRI compatible 15G biopsy system (Somatex) was introduced by a physician guided by the needle holder and multiple biopsies were performed using the coaxial technique. The feasibility, duration of the intervention and biopsy findings were analyzed. Results: The proposed new system allows accurate punctures in a high-field MR system. The assistance device did not interfere with the image quality, and guided the needle virtually exactly as planned. Histological examination could be conducted on every patient. The lesion was malignant in four cases, and an infectious etiology was diagnosed for the two remaining lesions. Regarding the differentiation of anatomical and pathological structures and position monitoring of the insertion needle, TrueFISP images are to be given preference. The average intervention time was 41 minutes. Lesions up to 15.4 cm beneath the skin surface were punctured. Conclusion: The proposed MR-guided assistance system can be successfully utilized in a high-field MR system for accurate punctures of even deep lesions in various anatomic regions. (orig.)

  16. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Science.gov (United States)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  17. Exact Results in Non-Supersymmetric Large N Orientifold Field Theories

    CERN Document Server

    Armoni, Adi; Veneziano, Gabriele

    2003-01-01

    We consider non-supersymmetric large N orientifold field theories. Specifically, we discuss a gauge theory with a Dirac fermion in the anti-symmetric tensor representation. We argue that, at large N and in a large part of its bosonic sector, this theory is non-perturbatively equivalent to N=1 SYM, so that exact results established in the latter (parent) theory also hold in the daughter orientifold theory. In particular, the non-supersymmetric theory has an exactly calculable bifermion condensate, exactly degenerate parity doublets, and a vanishing cosmological constant (all this to leading order in 1/N).

  18. Pressure-Fed LOX/LCH4 Reaction Control System for Spacecraft: Transient Modeling and Thermal Vacuum Hotfire Test Results

    Science.gov (United States)

    Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.

    2017-01-01

    An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines

  19. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    Science.gov (United States)

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  20. Low frequency geomagnetic field fluctuations at low latitude during the passage of a higher pressure solar wind region

    Directory of Open Access Journals (Sweden)

    U. Villante

    1997-06-01

    Full Text Available The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6 fluctuations in the frequency range (0.8–5.5 mHz for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.

  1. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    Science.gov (United States)

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  3. Final air test results for the 1/5-scale Mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    Collins, E.K.; Lai, W.

    1977-01-01

    A loss-of-coolant accident (LOCA) in a boiling-water reactor (BWR) power plant has never occurred. However, because this type of accident is particularly severe, it is used as a principal basis for design. During a hypothetical LOCA in a Mark I BWR, air followed by steam is injected from a drywell into a toroidal wetwell about half-filled with water. A series of consistent, versatile, and accurate air-water tests simulating LOCA conditions was completed in the Lawrence Livermore Laboratory 1/5-Scale Mark I BWR Pressure Suppression Experimental Facility. Results from this test series were used to quantify the vertical loading function and to study the associated fluid dynamic phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variations of hydrodynamic-generated vertical loads with changes in drywell pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1/5-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings which are invariant. These groupongs show that if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor; the time when these forces occur is reduced by the square root of the scale factor

  4. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  5. Blood pressure shifts resulting from a concealed arteriovenous fistula associated with an iliac aneurysm: a case report.

    Science.gov (United States)

    Doi, Shintaro; Motoyama, Yoshiaki; Ito, Hiromi

    2016-01-01

    A solitary iliac aneurysm (SIA) is more uncommon than an abdominal aortic aneurysm. The aneurysm is located in the deep pelvis and is diagnosed when it reaches a large size with symptoms of compression around adjacent structures and organs or when it ruptures. A definite diagnosis of an arteriovenous fistula (AVF) associated with a SIA is difficult preoperatively because there might not be enough symptoms and time for diagnosis. Here, we present a patient with asymptomatic rupture of SIA into the common iliac vein with characteristic blood pressure shifts. A 41-year-old man with a huge SIA underwent aortobifemoral graft replacement. Preoperatively, his blood pressure showed characteristic shifts for one or two heartbeats out of five beats, indicating that an AVF was present and that the shunt was about to having a high flow. During surgery, an AVF associated with the SIA was found to be concealed owing to compression from the huge iliac artery aneurysm, and the shunt showed a high flow, resulting in shock during the surgery. No complications were noted after aortobifemoral graft replacement. Postoperatively, we noted an enhanced paravertebral vein on computed tomography (CT), which indicated the presence of an AVF. Definite diagnosis of an AVF offers advantages in surgical and anesthetic management. We emphasize that a large SIA can push the iliac vein and occlude an AVF laceration, concealing the enhancement of the veins in the arterial phase on CT. Blood pressure shifts might predict the existence of a concealed AVF that has a large shunt. Even if the vena cava and the iliac veins are not enhanced on CT, anesthesiologists should carefully determine whether their distal branches are enhanced.

  6. Prevalence and control of high blood pressure in primary care: results from the German Metabolic and Cardiovascular Risk Study (GEMCAS).

    Science.gov (United States)

    Balijepalli, Chakrapani; Bramlage, Peter; Lösch, Christian; Zemmrich, Claudia; Humphries, Karin H; Moebus, Susanne

    2014-06-01

    Contemporary epidemiological data on blood pressure readings, hypertension prevalence and control in unselected patient populations covering a broad age range are scarce. The aim here is to report the prevalence of high blood pressure and to identify factors associated with blood pressure control in a large German primary care sample. We used data from the German Metabolic and Cardiovascular Risk Study including 35 869 patients aged 18-99 years. High blood pressure was defined as systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg or using antihypertensive therapy. Factors associated with blood pressure control among patients receiving antihypertensive therapy were examined using multiple logistic regressions to estimate odds ratios and 95% confidence intervals. The prevalence of high blood pressure, uncontrolled high blood pressure and untreated high blood pressure was 54.8%, 21.3% and 17.6%, respectively. Age >50 years (1.52; 1.40-1.65), male sex (1.30; 1.20-1.41), elevated waist circumference (1.55; 1.45-1.65), high cholesterol (1.24; 1.16-1.33), high triglycerides (1.11; 1.04-1.19) and concomitant diabetes (1.29; 1.20-1.40) were independently associated with uncontrolled high blood pressure. In a majority of patients we observed hypertension despite treatment for high blood pressures. Studies examining the reasons for treatment failure are highly warranted.

  7. DELIVERABLE 1.2.2 CAPILLARY PRESSURE/MERCURY INJECTION ANALYSIS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    International Nuclear Information System (INIS)

    Chidsey, Thomas C. Jr; Eby, David E.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  8. FY 1999 report on the results of the joint study - project on the industry use photovoltaic power generation field test. 2/3; 1999 nendo sangyonadoyo taiyoko hatsuden field test jigyo kyodo kenkyu seika hokokusho. 2/3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the field test, solar cell panels were installed on rooftop, and inverters were installed indoors. The electric power generated was connected at high pressure with electric installation of facilities and was also supplied to power equipment, lighting, air conditioning, etc. in facilities. The FY 1999 results were summarized. The installation of photovoltaic power generation facilities at 38 places and the results of the study were summarized in this report including a new public office building of Nio town, Kagawa prefecture, General Welfare Center of Matsumae town, Ehime prefecture, General Culture Center of Nakajima town, Ehime prefecture, Educational Foundation Sugao School, Training Center of Japan Railway Co., etc. (NEDO)

  9. FY 1999 report on the results of the joint study - project on the industry use photovoltaic power generation field test. 1/3; 1999 nendo sangyonadoyo taiyoko hatsuden field test jigyo kyodo kenkyu seika hokokusho. 1/3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the field test, solar cell panels were installed on rooftop, and inverters were installed indoors. The electric power generated was connected at high pressure with electric installation of facilities and was also supplied to power equipment, lighting, air conditioning, etc. in facilities. The FY 1999 results were summarized. The installation of photovoltaic power generation facilities at 88 places and the results of the study were summarized in this report including Social Welfare Corporation Seishoen, Maruto Co., Saga Sanyo Industries Co., Koyama Cranial Nerve Surgery/Internal Medicine Hospital, Tsuchiura Urban Development Co., Osaka Alloy Works, Suntory Limited, etc. (NEDO)

  10. FY 1999 report on the results of the joint study - project on the industry use photovoltaic power generation field test. 3/3; 1999 nendo sangyonadoyo taiyoko hatsuden field test jigyo kyodo kenkyu seika hokokusho. 3/3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the field test, solar cell panels were installed on rooftop, and inverters were installed indoors. The electric power generated was connected at high pressure with electric installation of facilities and was also supplied to power equipment, lighting, air conditioning, etc. in facilities. The FY 1999 results were summarized. The installation of photovoltaic power generation facilities at 39 places and the results of the study were summarized in this report including a community hall of Iwade town, Wakayama prefecture, Sugihara Industrial Co., a public library of Mabi town, Okayama prefecture, Social Welfare Corporation Shofukai Aiwaen, Japan Kodo Paper Industries Co., etc. (NEDO)

  11. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators.

    Science.gov (United States)

    2000-10-01

    To investigate the association between control of intraocular pressure after surgical intervention for glaucoma and visual field deterioration. In the Advanced Glaucoma Intervention Study, eyes were randomly assigned to one of two sequences of glaucoma surgery, one beginning with argon laser trabeculoplasty and the other trabeculectomy. In the present article we examine the relationship between intraocular pressure and progression of visual field damage over 6 or more years of follow-up. In the first analysis, designated Predictive Analysis, we categorize 738 eyes into three groups based on intraocular pressure determinations over the first three 6-month follow-up visits. In the second analysis, designated Associative Analysis, we categorize 586 eyes into four groups based on the percent of 6-month visits over the first 6 follow-up years in which eyes presented with intraocular pressure less than 18 mm Hg. The outcome measure in both analyses is change from baseline in follow-up visual field defect score (range, 0 to 20 units). In the Predictive Analysis, eyes with early average intraocular pressure greater than 17.5 mm Hg had an estimated worsening during subsequent follow-up that was 1 unit of visual field defect score greater than eyes with average intraocular pressure less than 14 mm Hg (P =.002). This amount of worsening was greater at 7 years (1.89 units; P <.001) than at 2 years (0.64 units; P =.071). In the Associative Analysis, eyes with 100% of visits with intraocular pressure less than 18 mm Hg over 6 years had mean changes from baseline in visual field defect score close to zero during follow-up, whereas eyes with less than 50% of visits with intraocular pressure less than 18 mm Hg had an estimated worsening over follow-up of 0.63 units of visual field defect score (P =.083). This amount of worsening was greater at 7 years (1.93 units; P <.001) than at 2 years (0.25 units; P =.572). In both analyses low intraocular pressure is associated with reduced

  12. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  13. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  14. Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2011-09-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28 a minimum appears and the time after about 3 hours and 30 minutes (15:28 a maximum appears. Also, a quiet interval start time (19:06 is near the sunset time, and a quiet interval end time (06:40 is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947, and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

  15. Pilot Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Field Test

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; hide

    2014-01-01

    The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data is being acquired twice more within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a initial evaluation of the feasibility of testing in the field, and is comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from bodyworn inertial sensors, and severity of postflight motion sickness were collected during each test session. Our Russian investigators have added measurements associated with: (a) obstacle avoidance, (b) muscle compliance and (c) postural adjustments to perturbations (push) applied to the subject's chest area. The level of functional deficit observed in the crew tested to date is typically beyond what was expected and is clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest

  16. A sound pressure field during the quenching of a steel specimen in different water solutions

    Directory of Open Access Journals (Sweden)

    J. Prezelj

    2011-01-01

    Full Text Available The purpose of controlling the quenching process of an orange-hot steel workpiece is to ensure its required surface hardness. A sound in a cooling liquid generated by the quenching process was experimentally analyzed. It contains sufficient information about the ongoing process for its quantification, and it can be used in real time. Traditionally, the quenching and the resultant hardening can be controlled by selecting different process parameters, like, for example the characteristics of the cooling liquid, the velocity of the cooling liquid flow, its temperature, the temperature of the work-piece, and many others. The possibility of controlling the quenching process by using acoustic cavitation is considered in this article.

  17. James Bay air quality study : report on the results of field monitoring in 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-08

    An air quality study in James Bay was conducted, in order to establish general levels of pollutants in outdoor air in the James Bay area of Victoria, British Columbia. The primary sources of air pollution in the area include light duty and heavy duty vehicle traffic, helicopters, floatplanes, and marine vessels such as cruise ships, passenger ferries, commercial fishing and whale watching boats, and recreation motorboats. Air quality monitoring represented the first phase of the project. The second phase involved a detailed pollutant dispersion model including all emission sources. This report described the use of sampling equipment and the measurement of nitric oxide, nitrogen dioxide, sulfur dioxide, fine particulate matter and contributing sources, and volatile organic compounds, specifically benzene, toluene, ethylbenzene/xylene and naphthalene. Supporting data, including traffic counts, wind speed and direction, precipitation, and cruise ship schedules were collected to assist in the interpretation of the field monitoring results. For each of these pollutants, the report provided responses to several questions, such as defining each pollutant; describing the sources of each pollutant in the James Bay neighbourhood; presenting the results of the field monitoring; discussing the limitations of the monitoring equipment and sampling design; interpreting the results; comparing monitored levels to those measured at other times or locations; and comparing monitored levels to air quality standards or guidelines. Conclusions about each pollutant were presented. It was concluded that phase 2 pollutant dispersion modelling should include estimates of 1-hour, 24-hour, and seasonal average pollutant levels at varying elevations above ground level, with a focus on residential apartment buildings in the study area. 5 tabs., 52 figs., 7 appendices.

  18. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru

    Directory of Open Access Journals (Sweden)

    Sihuincha Moisés

    2007-08-01

    Full Text Available Abstract Background The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD and lemongrass oil (LG. Methods To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. Results In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p 46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p Conclusion In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.

  19. Characterizing the variability in chemical composition of flowback and produced waters - results from lab and field studies

    Science.gov (United States)

    Vieth-