WorldWideScience

Sample records for field penetration depth

  1. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor

    International Nuclear Information System (INIS)

    Kim, Chon-ung; Jong, Hakchol; Ro, Cholwu; Pak, Gilhung; Im, Songil; Li, Guofeng; Li, Jie; Song, Yunho

    2013-01-01

    Interdigital (finger-like) electrodes are widely used for electrical impedance and capacitance tomography of composite dielectric materials and complex insulating structures. Because of their advantages, they are now effectively introduced as capacitance sensors into a variety of industrial branches, agriculture, medical science, biological engineering, military branches, etc. In order to effectively apply the so-called interdigital impedance sensors in practice, of great importance is to optimize the sensor design parameters such as the electric field penetration depth, signal strength and so on. The general design principles of the interdigital capacitance sensor have been discussed for a long time by many researchers. However, there is no consensus on the definition of the effective electric field penetration depth of interdigital electrode. This paper discusses how to determine the effective electric field penetration depth of interdigital sensor on the basis of the refractive principle of electric field intensity and the FEM analyses of electric field distribution and capacitance for the sensor model.

  2. Muon-Spin Rotation Measurements of the Magnetic Field Dependence of the Vortex-Core Radius and Magnetic Penetration Depth in NbSe2

    International Nuclear Information System (INIS)

    Sonier, J.E.; Kiefl, R.F.; Brewer, J.H.; Chakhalian, J.; Dunsiger, S.R.; MacFarlane, W.A.; Miller, R.I.; Wong, A.; Luke, G.M.; Brill, J.W.

    1997-01-01

    Muon-spin rotation spectroscopy (μSR) has been used to measure the internal magnetic field distribution in NbSe 2 for H c1 c2 . The deduced profiles of the supercurrent density J s indicate that the vortex-core radius ρ 0 in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which ρ 0 depends on the intervortex spacing is used to model this behavior. In addition, we find for the first time that the in-plane magnetic penetration depth λ ab increases linearly with H in the vortex state of a conventional superconductor. copyright 1997 The American Physical Society

  3. The first critical field, Hc1perpendicularto, and the penetration depth in dirty superconducting S/N multilayers

    International Nuclear Information System (INIS)

    Golubov, A.A.; Krasnov, V.M.

    1992-01-01

    The proximity effect in dirty S/N multilayers is studied theoretically. The structure of the Abrikosov vortex and the first critical field, H c1 perpendicular to , in a perpendicular magnetic field is investigated. Our approach is based on solving Ginzburg-Landau and Usadel equations with boundary conditions applicable to real structures. It was shown that for highly conducting N-layers there exists a positive curvature on H c1 (T) dependences. (orig.)

  4. Campbell penetration depth in Fe-based superconductors

    International Nuclear Information System (INIS)

    Prommapan, Plegchart

    2011-01-01

    A 'true' critical current density, j c , as opposite to commonly measured relaxed persistent (Bean) current, j B , was extracted from the Campbell penetration depth, λ c (T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954 Ni 0.046 ) 2 As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2 As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c (2K) ≅ 3.3 x 10 6 A/cm 2 . The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53 Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6 K 0.4 Fe 2 As 2 (BaK122) and isovalent doped BaFe 2 (As 0

  5. The penetrating depth analysis of Lunar Penetrating Radar onboard Chang’e-3 rover

    Science.gov (United States)

    Xing, Shu-Guo; Su, Yan; Feng, Jian-Qing; Dai, Shun; Xiao, Yuan; Ding, Chun-Yu; Li, Chun-Lai

    2017-04-01

    Lunar Penetrating Radar (LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise. First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method (CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m ({\\varepsilon }r=6.6) and from 13.0 m to 17.5 m ({\\varepsilon }r=2.3), respectively.

  6. Mathematical Based Calculation of Drug Penetration Depth in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2016-01-01

    Full Text Available Cancer is a class of diseases characterized by out-of-control cells’ growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.

  7. Determination of the magnetic penetration depth in a superconducting Pb film

    International Nuclear Information System (INIS)

    Brisbois, J.; Silhanek, A. V.; Raes, B.; Van de Vondel, J.; Moshchalkov, V. V.

    2014-01-01

    By means of scanning Hall probe microscopy technique, we accurately map the magnetic field pattern produced by Meissner screening currents in a thin superconducting Pb stripe. The obtained field profile allows us to quantitatively estimate the Pearl length Λ without the need of pre-calibrating the Hall sensor. This fact contrasts with the information acquired through the spatial field dependence of an individual flux quantum where the scanning height and the magnetic penetration depth combine in a single inseparable parameter. The derived London penetration depth λ L coincides with the values previously reported for bulk Pb once the kinetic suppression of the order parameter is properly taken into account

  8. Study of the disorder by means of the superconducting penetration depth

    International Nuclear Information System (INIS)

    Arce, R.D.

    1982-11-01

    Measurements of the weak magnetic field penetration depth in the amorphous superconducting systems Lasub(1-x) Msub(x), being M = Cu, Al, Ga and Au, and in the Zr 70 Cu 30 system are presented. Measurements of the sample geometrical factors and the flux expulsion between the lowest temperature reached and the critical temperature, allows the determination of zero temperature penetration depth. The measurement of the flux expulsion as a function of temperature is used to determine the temperature dependence of penetration depth, used to evaluate the temperature dependence superconducting gap. The magnetization measurements have been made using an rf-SQUID. The evolution of the penetration depth with annealing is studied in the La 70 Cu 30 and Zr 70 Cu 30 systems. Measurements of the electrical resistivity and the critical temperature are used to verify the Gorkov equations in these materials. The variation of the penetration depth with annealing suggests that a metallurgical phase separation occurs within the submicrometer range. Penetration depth measurement is a tool to detect this type of phase separation in high kappa materials. (M.E.L.) [es

  9. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  10. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors

    Science.gov (United States)

    Gunadi, Sonny; Leung, Terence S.; Elwell, Clare E.; Tachtsidis, Ilias

    2014-01-01

    The spatial sensitivities of NIRO-100, ISS Oximeter and TRS-20 cerebral oxygenation monitors are mapped using the local perturbation method to inform on their penetration depths and susceptibilities to superficial contaminations. The results show that TRS-20 has the deepest mean penetration depth and is less sensitive than the other monitors to a localized absorption change in the superficial layer. However, an integration time of more than five seconds is required by the TRS-20 to achieve an acceptable level of signal-to-noise ratio, which is the poorest amongst the monitors. With the exception of NIRO-100 continuous wave method, the monitors are not significantly responsive to layer-wide absorption change that occurs in the superficial layer. PMID:25401006

  11. Temperature dependence of the experimental penetration depth of superconducting thin films

    International Nuclear Information System (INIS)

    Fink, H.J.; Gruenfeld, V.; Pastawski, H.

    1982-01-01

    Experimental magnetic field penetration depths delta(t,d,H) of the stable and superheated Meissner state were calculated as a function of temperature for various applied magnetic fields and various film thicknesses for two cases: (1) lambda(t)/d<< kappa→infinity and (2) kappa< or approx. =2lambda(t)/d (lambda is the Ginzburg-Landau penetration depth, d is the film thickness, kappa is the GL parameter). The results of the first case should be a useful tool for obtaining lambda(0) of amorphous superconducting thin films

  12. Magnetic penetration depth δ o and critical current density in Y-BA-Cu-O crystals

    International Nuclear Information System (INIS)

    Zavaritsky, N.V.; Zavaritsky, V.N.

    1989-01-01

    Magnetic penetration depthδ o ∼1.03 10 - 5 cm and critical current density (j c = 0.5 divided-by 1 x 10 5 A/cm 2 at T/T ∼0.98) are determined from low-field do magnetization measurements on Y 1 Ba 2 Cu 3 O 7 - crystals

  13. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  14. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  15. Radio frequency absorption and penetration depth limits in whole body MR imaging

    International Nuclear Information System (INIS)

    Roschmann, P.

    1986-01-01

    There is a continual debate over the ultimate limits to MR imaging at higher field strengths owing to the problems of increasing radio frequency (RF) power deposition and decreasing depth of B/sub 1/ field penetration in the patient. The authors present experimental results of RF absorption and penetration studies in humans for frequencies (f) of 30 to 220 MHz. Results were mostly derived from RF measurements of the effects of loading different types of head, body, and surface coils during imaging of volunteers and metal phantoms. Imaging at 2 T (85 MHz) does not exhibit significant RF problems; the local SAR amounts to 0.06 W/kg for a π-pulse of 1 msec and a TR of 1 sec. RF measurements of coil loading yield SAR -- f/sup 2.2/. The derived effective penetration depth drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging appears possible up to 220 MHz (5 T). Body and surface coil imaging is subjected to increasing limitations in size or depth above 100 MHz

  16. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    Science.gov (United States)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  17. Microscopic measurement of penetration depth in YBa2Cu3O7-δ thin films by scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Oral, A.; Bending, S.J.; Humphreys, R.G.; Henini, M.

    1997-01-01

    We have used a low noise scanning Hall probe microscope to measure the penetration depth microscopically in a YBa 2 Cu 3 O 7-δ thin film as a function of temperature. The instrument has high magnetic field (approx. 2.9x10 -8 T Hz -1/2 at 77 K) and spatial resolution (approx. 0.85 μm). Magnetic field profiles of single vortices in the superconducting film have been successfully measured and the microscopic penetration depth of the superconductor has been extracted. We find surprisingly large variations in values of λ for different vortices within the scanning field. (author)

  18. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  19. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  20. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams

    International Nuclear Information System (INIS)

    Russell, K.R.; Saxner, M.; Ahnesjoe, A.; Montelius, A.; Grusell, E.; Dahlgren, C.V.

    2000-01-01

    The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three-dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi-Eyges formalism and Moliere multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media. (author)

  1. Influence of the impurities on the depth of penetration with carbon steel weldings

    Directory of Open Access Journals (Sweden)

    O. Savytsky

    2014-04-01

    Full Text Available In this paper the results of the research about the influence of the impurities on the depth of penetration with carbon steels weldings of different chemical composition are presented. These data suggest that presence of those impurities, such as sulphure and oxygen, in the steel, increases the depth of penetration to 1,3 - 1,5 times compared to welding refined steels. Applying activating fluxes for welding high tensile steels, provides an increase in the depth of penetration of 2 - 3 times.

  2. Unstability of the Fulde-Ferrell state in d-wave superconductors by calculating the magnetic penetration depth

    International Nuclear Information System (INIS)

    Rabani, H.; Shahzamanian, M.A.; Yavary, H.

    2007-01-01

    Full text: Fulde, Ferrell, Larkin and Ovchnnikov (FFLO), first proposed the possibility that a superconducting state with a periodic spatial variation of the gap parameter would become stable when a large Zeeman splinting is present [1,2]. The order parameter varies periodically in space when the Pauli paramagnetism or the Zeeman term dominates the orbital effect. The Zeeman splitting could be due to either a strong magnetic field or an internal exchange field. Under these fields there is a splitting of the Fermi surfaces of spin up and spin down electrons, and the condensed pair has a non-zero total momentum, 2q, which causes the phase of the superconducting order parameter to vary. This state is known as the FF state. We determine the penetration depth of the Fulde-Ferrell State (FF) for quasi-two dimensional (2D) d-wave superconductor by calculating the electromagnetic nonlocal kernel response function. The behavior of the penetration depth at low temperatures is an important probe to determine the stability of the FF state. We start from a mean field Hamiltonian for the FF state and we calculate the electromagnetic nonlocal response tensor relating the current density to an applied vector potential to determine the magnetic penetration depth. We show that a linear T dependence of the magnetic penetration depth in the FF state superconductor violates indeed the third law of thermodynamics and the FF state is unstable due to Nernst theorem. (authors)

  3. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Armale, R.

    1992-06-01

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ω p . In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  4. Experimental determination of the temperature-dependent penetration depth in V3Si

    International Nuclear Information System (INIS)

    Christen, D.K.; Kerchner, H.R.; Sekula, S.T.; Chang, Y.K.

    1984-03-01

    Small angle neutron diffraction from the flux-line lattice (FLL) in a high quality, single crystal of superconducting V 3 Si has been used to deduce the low-field penetration depth lambda (T). An absolute determination is possible because the FLL form factor F/sub hk/ is essentially single-valued in the scattering vector magnitude absolute value of K/sub hk/, as well as nearly London-like at low field. We obtain lambda (0) = 102 +- 1 nm, 20% to 30% larger than previous determinations of the London penetration depth lambda/sub L/ (0). The temperature dependence of lambda (T) is found to deviate from that of the BCS theory. An assessment of the data indicates the most prominent source of the discrepancy is due to strong electron-phonon coupling, and we find 2Δ(0)/k/sub B/T/sub c/ = 3.88 +- 0.07, in reasonable agreement with values found in the literature

  5. Visual Discomfort and Depth-of-Field

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  6. Multiscale analysis of depth-dependent soil penetration resistance in a tropical soil

    Science.gov (United States)

    Paiva De Lima, Renato; Santos, Djail; Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Paz González, Antonio

    2013-04-01

    Soil penetration resistance (PR) is widely used because it is linked to basic soil properties; it is correlated to root growth and plant production and is also used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent PR profiles and how this information can be used at the field scale. We analyzed multifractality of 50 PR vertical profiles, measured from 0 to 40 cm depth and randomly located on a 6.5 ha sugar cane field in north-eastern Brazil. According to the Soil Taxonomy, the studied soil was classified as an Orthic Podsol The scaling property of each profile was typified by singularity and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. Singularity and Rènyi spectra showed the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to one indicating strong persistence in PR variation with soil depth. Also Hurst exponent was negatively and significantly correlated to coefficient of variation (CV) and skewness of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean, maximum and minimum values of PR; these maps showed the multifractal approach also may complete information provided by descriptive statistics at the field scale.

  7. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Directory of Open Access Journals (Sweden)

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  8. Spherical and cylindrical cavity expansion models based prediction of penetration depths of concrete targets.

    Directory of Open Access Journals (Sweden)

    Xiaochao Jin

    Full Text Available The cavity expansion theory is most widely used to predict the depth of penetration of concrete targets. The main purpose of this work is to clarify the differences between the spherical and cylindrical cavity expansion models and their scope of application in predicting the penetration depths of concrete targets. The factors that influence the dynamic cavity expansion process of concrete materials were first examined. Based on numerical results, the relationship between expansion pressure and velocity was established. Then the parameters in the Forrestal's formula were fitted to have a convenient and effective prediction of the penetration depth. Results showed that both the spherical and cylindrical cavity expansion models can accurately predict the depth of penetration when the initial velocity is lower than 800 m/s. However, the prediction accuracy decreases with the increasing of the initial velocity and diameters of the projectiles. Based on our results, it can be concluded that when the initial velocity is higher than the critical velocity, the cylindrical cavity expansion model performs better than the spherical cavity expansion model in predicting the penetration depth, while when the initial velocity is lower than the critical velocity the conclusion is quite the contrary. This work provides a basic principle for selecting the spherical or cylindrical cavity expansion model to predict the penetration depth of concrete targets.

  9. Impact of different solar penetration depths on climate simulations

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2015-01-01

    Full Text Available Three different estimates of shortwave attenuation depth (SWAD of photosynthetically active radiation (PAR derived from remotely sensed ocean colour data have been tested in an ocean general circulation model (OGCM forced with interannual atmospheric forcings. Two estimates (referred to as [Kd(PAR]1-1 and [Kd(PAR]2-1 are calculated from different algorithms based on the diffusive attenuation coefficient at 490 nm and the third one ([Kd(AVE]1-1 is just an average of [Kd(PAR]1-1 and [Kd(PAR]2-1. [Kd(PAR]2-1 is larger than [Kd(PAR]1-1 almost everywhere in the tropical oceans. Our results show that the OGCM with [Kd(PAR]2-1 produces warmer sea surface temperature (SST in the eastern equatorial Pacific and Atlantic and leads to reduce a cold bias in the equatorial cold tongue regions. It has warmer subsurface temperatures in the low latitude, a slower meridional velocity and Pacific equatorial undercurrent (EUC than the model with [Kd(PAR]1-1. These results are similar to previous studies, although we use a different model and different methods. This study has further analysis and firstly reveals that slower EUC and meridional velocity in the model with [Kd(PAR]2-1 are mainly related to the changes of the acceleration due to zonal density gradient. This acceleration driving the EUC eastward in the subsurface becomes smaller in the subsurface along the equatorial Pacific. However, near the sea surface, the zonally averaged accelerations over the different ocean basins are larger in the model with [Kd(PAR]2-1 than that with [Kd(PAR]1-1, which pushes back the poleward meridional transport. The interannual variability in the model with [Kd(PAR]2-1 is generally weaker than that in the experiment with [Kd(PAR]1-1 due to a deeper mixed layer depth. The vertical temperature errors averaged horizontally within the domain of 30°S to 30°N in the experiment with [Kd(AVE]1-1 are almost in the middle of errors of the other two experiments. This indicates that

  10. Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy

    DEFF Research Database (Denmark)

    Loudon, J. C.; Yazdi, Sadegh; Kasama, Takeshi

    2015-01-01

    We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB2, where these quantities...... vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB2 single crystal cut in the ac plane by focused ion beam milling and tilted to 45 degrees. with respect to the electron beam about...... the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence...

  11. Convenient measurement of the residual stress using X-ray penetration depth

    International Nuclear Information System (INIS)

    Ukai, Takayoshi; Shibano, Junichi

    1994-01-01

    The residual stress measured with a characteristic X-ray is usually evaluated as a surface stress. However, it is a weighted mean value over all penetration depth of X-ray. Thus, the classical sin 2 Ψ method with the characteristic X-ray is difficult to use for measuring the steep gradient of residual stress that occurs along the depth direction in a subsurface layer of the material after cold rolling and grinding. This paper presents a convenient method of the residual stress measurement along the depth direction in a subsurface layer using the penetration depth depending on a characteristic X-ray. The residual stress distribution of JIS SKS51 steel plate was measured as an example of applying this method. As a result, it could be confirmed that a residual stress distribution along the depth direction in a subsurface layer could be evaluated nondestructively by this convenient method. (author)

  12. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  13. Penetration of a magnetic field into superconducting lead and lead-indium alloys

    International Nuclear Information System (INIS)

    Egloff, C.; Raychaudhuri, A.K.; Rinderer, L.

    1983-01-01

    The temperature dependence of the magnetic field penetration depth of superconducting lead and lead-indium alloys has been studied over the temperature range between about 2 K and T/sub c/. Data are analyzed in terms of the microscopic theory. The difficulties of a unique analysis of the penetration data are pointed out and a strategy for the analysis is discussed. The penetration depth at T = 0K for pure lead is determined as 522 A. This value, though higher than the previously accepted value for lead, is nevertheless consistent with the strong coupling character of lead

  14. Temperature dependence of the optical conductivity and penetration depth in superconductor MgB2 film

    International Nuclear Information System (INIS)

    Moarrefi, M.; Yavari, H.; Elahi, M.

    2010-01-01

    By using Green's function method the temperature dependence of the optical conductivity and penetration depth of high-quality MgB 2 film are calculated in the framework of the two-band model. We compare our results with experimental data and we argue that the single gap model is insufficient to describe the optical and penetration depth behavior, but the two-band model with different symmetries describes the data rather well. In the two gap model we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.

  15. Evaluation of the penetration depth of the shell welds by electrical methods

    International Nuclear Information System (INIS)

    Laille, Alain.

    1979-07-01

    The aim of the present work is the development of two electrical non-destructive methods (eddy currents and potentiometry) to estimate the penetration depth of electron bombardment welds. To illustrate the study and show its potential applications these methods are used on various materials (1 to 3 mm thick) and the results compared with the real welded depth evaluated after sectioning. Finally the potentiometric set-up is coupled to a data acquisition and processing system [fr

  16. Wavelength-dependent penetration depth of near infrared radiation into cartilage.

    Science.gov (United States)

    Padalkar, M V; Pleshko, N

    2015-04-07

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).

  17. There’s plenty of light at the bottom: statistics of photon penetration depth in random media

    Science.gov (United States)

    Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro

    2016-01-01

    We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988

  18. Magnetic field penetration into superconductors with sharp edges

    International Nuclear Information System (INIS)

    Zhilichev, Yuriy N.

    2003-01-01

    The magnetic field and surface currents induced within a superconductor are calculated assuming the field penetrates in it near sharp corners. Rounding the corners is used to keep the field less than a critical value. Analytical formulas for a corner radius are given for a wire of the rectangular cross-section and a cylinder in the external magnetic field. A boundary integral method is used to calculate the boundary of the Meissner domain when the external field penetrates deep into the superconductor. The effect of degree of penetration on the magnetic moment of superconducting cylinders and wires is discussed

  19. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-09-01

    Full Text Available Light has been clinically utilized as a stimulation in medical treatment, such as Low-level laser therapy and photodynamic therapy, which has been more and more widely accepted in public. The penetration depth of the treatment light is important for precision treatment and safety control. The issue of light penetration has been highlighted in biomedical optics field for decades. However, quantitative research is sparse and even there are conflicts of view on the capability of near-infrared light penetration into brain tissue. This study attempts to quantitatively revisit this issue by innovative high-realistic 3D Monte Carlo modeling of stimulated light penetration within high-precision Visible Chinese human head. The properties of light, such as its wavelength, illumination profile and size are concern in this study. We made straightforward and quantitative comparisons among the effects by the light properties (i.e., wavelengths: 660, 810 and 980nm; beam types: Gaussian and flat beam; beam diameters: 0, 2, 4 and 6cm which are in the range of light treatment. The findings include about 3% of light dosage within brain tissue; the combination of Gaussian beam and 810nm light make the maximum light penetration (>5cm, which allows light to cross through gray matter into white mater. This study offered us, the first time as we know, quantitative guide for light stimulation parameter optimization in medical treatment.

  20. The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-01-01

    Full Text Available Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls.

  1. Anisotropy of the penetration depth in La2-xSrxCuO4 in underdoped and overdoped regions

    Science.gov (United States)

    Zaleski, A. J.; Klamut, J.

    1999-12-01

    We present the results of measurements of the penetration depth anisotropy in pulverized, ceramic La2-xSrxCuO4. The measurements were carried out for x = 0.08, 0.1, 0.125, 0.15 and 0.2. The powdered samples, immersed in wax, were magnetically oriented in a static magnetic field of 10 T. The penetration depth in the a-b plane, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab, and perpendicular to it, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>, were derived from alternating-current susceptibility measurements. For underdoped samples they both vary linearly with temperature (for the low-temperature region), while for the samples from the overdoped region the measured points can be fitted by an exponential function. These results support Uemura's picture (Uemura Y J 1997 Physica C 282-287 194) of crossover from Bose-Einstein condensation to a Bardeen-Cooper-Schrieffer mechanism of superconductivity. The penetration depth values extrapolated to T = 0 may be described by a quadratic function of the strontium concentration (for both icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab and icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>). The anisotropy of the penetration depth as a function of the substitution shows a similar dependence to the critical temperature Tc(x).

  2. Multiaxial stress analysis taking account of penetration depth of x-rays, 3

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.

    1985-01-01

    In the past X-ray stress analysis in which the effect of stress gradients was taken into account within the penetration depth of X-rays, three assumptions have been made; 1) the stress gradient is linear in respect to the depth from the specimen surface, 2) the penetration depth of X-ray is a function of Sin 2 PSI and 3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. A problem, however, still remains on the assumption of the X-ray penetration depth. We sometimes observed noticiable errors in the stage of the numerical simulation and these errors depend on the combination of stress components in a stress tensor. In the present paper, we proposed a new X-ray multiaxial stress analysis without using the assumption of the X-ray penetration depth. This analysis is also applicable to both the iso-inclination method ( OHM -goniometer) and the side inclination method (PSI-goniometer). The weighted average strain by X-rays, 1 >(phi), is expressed as a 4th degree function of cosPSI for iso-inclination method and 3rd degree for side inclination method. By rearranging this function as a sum of average strain, ( 1 >(0 0 )+ 1 >(90 0 )), and difference of average strain, ( 1 >(0 0 )- 1 >(90 0 )), we can solve the stress components with sufficient accuracy by a least squares method. The validity of this method was proved through numerical simulations and experiments. (author)

  3. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    International Nuclear Information System (INIS)

    Khasanov, R; Shengelaya, A; Morenzoni, E; Conder, K; Savic, I M; Keller, H

    2004-01-01

    Muon spin rotation (μSR) studies of the oxygen isotope ( 16 O/ 18 O) effect (OIE) on the in-plane magnetic field penetration depth λ ab in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T c in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T c . Then, bulk μSR, low-energy μSR, and magnetization studies of the total and site-selective OIE on λ ab are described in some detail. A substantial OIE on λ ab was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T c and λ ab arise from the oxygen sites within the superconducting CuO 2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T c and λ ab exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity

  4. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Morenzoni, E [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Serbia and Montenegro); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2004-10-13

    Muon spin rotation ({mu}SR) studies of the oxygen isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane magnetic field penetration depth {lambda}{sub ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T{sub c} in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T{sub c}. Then, bulk {mu}SR, low-energy {mu}SR, and magnetization studies of the total and site-selective OIE on {lambda}{sub ab} are described in some detail. A substantial OIE on {lambda}{sub ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T{sub c} and {lambda}{sub ab} arise from the oxygen sites within the superconducting CuO{sub 2} planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T{sub c} and {lambda}{sub ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.

  5. Singularity of the London penetration depth at quantum critical points in superconductors.

    Science.gov (United States)

    Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir

    2013-10-11

    We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].

  6. Theory of the c-axis penetration depth in the cuprates

    International Nuclear Information System (INIS)

    Radtke, R.J.; Kostur, V.N.; Levin, K.

    1996-01-01

    Recent measurements of the London penetration-depth tensor in the cuprates find a weak temperature dependence along the c direction that is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO 2 layers. By relating the calculated temperature dependence of the penetration depth λ c (T) to the c-axis resistivity, we show how the measured ratio λ 2 c (0)/λ 2 c (T) can provide insight into the behavior of c-axis transport below T c and the related issue of open-quote open-quote confinement.close-quote close-quote copyright 1996 The American Physical Society

  7. Measurement setup for the magnetic penetration depth and superfluid stiffness in thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Lorenz; Brunner, Markus Christopher Paul; Schneider, Ina; Kronfeldner, Klaus; Strunk, Christoph [Institute for exp. and appl. Physics, University of Regensburg (Germany); Bousquet, Jessica; Bustarret, Etienne [Institut NEEL, Grenoble (France)

    2015-07-01

    A mutual inductance measurement setup has been established in order to determine the magnetic penetration depths of thin film superconductors. By measuring the variation of the mutual inductance M, the temperature dependent penetration depth can be evaluated. The setup has been characterized using thin aluminum and niobium films as a reference. Temperature dependence of λ of B-doped diamond films is determined down to 0.3 K and compared with theoretical expectations. The impact of the doping ratio B/C and film thickness on λ and T{sub c} is investigated. Correlation between the film impedance σ = σ{sub 1} - i σ{sub 2} and λ is examined.

  8. Geometry of X-ray based measurement of residual strain at desired penetration depth

    Energy Technology Data Exchange (ETDEWEB)

    Morawiec, A. [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Krakow (Poland)

    2017-10-15

    X-ray based measurement of residual lattice strains at chosen penetration depth is one of the methods for investigating strain inhomogeneities in near-surface layers of polycrystalline materials. The measurement relies on determining shifts of Bragg peaks for various directions of the scattering vector with respect to the specimen. At each of these directions, to reach a given the penetration depth, a proper specimen orientation is required. The task of determining such orientations, albeit elementary, is quite intricate. The existing literature describes only partial solutions with unspecified domains of application, which fail if applied to beyond the domains. Therefore, geometric aspects of the measurement are analyzed in details. Explicit bounds on measurement parameters are given. The equation fundamental for the procedure is solved with respect to specimen orientations. For a given direction of the scattering vector, there are generally four different specimen orientations leading to the same penetration depth. This simple fact (overlooked in previous analyses) can be used for improving reliability of measurement results. Analytical formulas for goniometer angles representing these orientations are provided. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Penetration of magnetic field in ferromagnetic transformer sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, R; Ziolkowski, M

    1981-01-12

    The paper deals with the penetration of magnetic field in a ferromagnetic transformer sheet. The flux-density distribution is computed using Galerkin's procedure. The different boundary conditions and the nonlinear B/H characteristic is taken into account.

  10. Penetration of magnetic fields into plasmas

    International Nuclear Information System (INIS)

    Bengtson, R.D.

    1976-01-01

    A pulsed plasma experiment was constructed to study the penetration of a fast-rising magnetic pulse into an initially unmagnetized, weakly ionized plasma of density 10 11 to 10 13 cm -3 . Magnetic probe data was analyzed using a magnetohydrodynamic approach to obtain detailed information about the dynamics of the penetration mechanism. In particular it is possible to obtain the local resistivity and thus the collision frequency from this data. These collision frequencies compare favorably with theoretical estimates of turbulent collision frequencies. The data indicates that sufficient energy is absorbed to heat the bulk of the plasma to temeratures in excess of 1 keV. A differential rotation of a collisionless theta-pinch column during implosion has been observed and explained by a model in which the driving mechanism is the off-diagonal element p/sub r theta/ of the pressure tensor. Rotational motion was detected by directional probes and spectroscopic techniques. Experimental data were modeled by a one-dimensional hybrid code which included ionization and charge exchange of protons with neutral H atoms

  11. Deuterium depth profiles in metals using imaging field desorption

    International Nuclear Information System (INIS)

    Panitz, J.A.

    1976-01-01

    Depth profiles of 80 eV deuterium ions implanted in-situ into (110) tungsten have been measured by Imaging, Field-Desorption Mass Spectrometry. The relative abundance of deuterium was measured from the surface to a depth of 300A with less than 3A depth resolution by controlled field-evaporation of the specimen, and time-of-flight mass spectroscopy. The position of the depth distribution maximum (57 +- 3A from the surface) is shown to be in close agreement with that predicted theoretically for low energy deuterium implants using an amorphous-solid model. Structure in the distribution is attributed to surface morphology and channeling phenomena in the near surface region. Implanted impurity species from the ion source and tungsten surface have also been observed. For C + , C 2+ and 0 + , penetration is limited to less than 30A, with abundance decreasing exponentially from the surface. These results are interpreted in the context of the CTR first-wall impurity problem, and are used to suggest a novel method for in-situ characterization of low energy plasma species in operating CTR devices

  12. Extreme depth-of-field intraocular lenses

    Science.gov (United States)

    Baker, Kenneth M.

    1996-05-01

    A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.

  13. Fast penetration of megagauss fields into metallic conductors

    International Nuclear Information System (INIS)

    Schnitzer, Ory

    2014-01-01

    Megagauss magnetic-field penetration into a conducting material is studied via a simplified but representative model, wherein the magnetic-diffusion equation is coupled with a thermal-energy balance. The specific scenario considered is that of a prescribed magnetic field rising (in proportion to an arbitrary power r of time) at the surface of a conducting half-space whose electric conductivity is assumed proportional to an arbitrary inverse power γ of temperature. We employ a systematic asymptotic scheme in which the case of a strong surface field corresponds to a singular asymptotic limit. In this limit, the highly magnetized and hot “skin” terminates at a distinct propagating wave-front. Employing the method of matched asymptotic expansions, we find self-similar solutions of the magnetized region which match a narrow boundary-layer region about the advancing wave front. The rapidly decaying magnetic-field profile in the latter region is also self similar; when scaled by the instantaneous propagation speed, its shape is time-invariant, depending only on the parameter γ. The analysis furnishes a simple asymptotic formula for the skin-depth (i.e., the wave-front position), which substantially generalizes existing approximations. It scales with the power γr + 1∕2 of time and the power γ of field strength, and is much larger than the field-independent skin depth predicted by an athermal model. The formula further involves a dimensionless O(1) pre-factor which depends on r and γ. It is determined by solving a nonlinear eigenvalue problem governing the magnetized region. Another main result of the analysis, apparently unprecedented, is an asymptotic formula for the magnitude of the current-density peak characterizing the wave-front region. Complementary to these systematic results, we provide a closed-form but ad hoc generalization of the theory approximately applicable to arbitrary monotonically rising surface fields. Our results are in excellent agreement

  14. Multiaxial stress analysis taking account of the penetration depth of x-rays, (1)

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Yoshioka, Yasuo; Kuramoto, Makoto.

    1983-01-01

    The new theory of X-ray multiaxial stress measurement is proposed. This method takes accounts of the influence concerning to the stress gradient and to the dependence of the penetration depth of X-rays upon the incidence angle. As a basic assumption, it's assumed that (1) stress gradient is linear in respect to the depth from the specimen surface, (2) the penetration depth of X-rays shows linear dependence upon sin 2 PSI, and (3) the lattice strain determined by X-rays corresponds to the weighted averaging strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near to the surface is expressed by making use of three surface stresses and six stress gradients in this theory. It was proved that these nine stress elements were able to be solved through X-ray method by applying ''the integral method'' proposed by Lode and Peiter in 1976. The verification of the validity on this method was carried out through the numerical simulation and residual stress measurement of a ground S55C. As a result, it was found that this method could get a satisfactory accuracy. This method can estimate the multiaxial stress distribution within the surface layer nondestructively. (author)

  15. The penetration depth and lateral distribution of pigment related to the pigment grain size and the calendering of paper

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Schueler, B.; Tullander, E.; Oestling, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2002-01-01

    The interaction of ink and newspaper has been investigated and the specific question of penetration of ink into the paper has been addressed with a nuclear microprobe using particle induced X-ray emission. The penetration depth of the newsprint is a critical factor in terms of increasing the quality of newsprint and minimising the amount of ink used. The objective of the experiment was to relate the penetration depth of pigment with the calendering of the paper. The dependence of the penetration depth on the pigment grain size was also studied. To study the penetration depth of pigment in paper, cyan ink with Cu as a tracer of the coloured pigment was used. For the study of the penetration depth dependence of pigment size, specially grounded Japanese ink with well-defined pigment grain size was used. This was compared to Swedish ink with pigment grains with normal size-distribution. The results show that the calendering of the paper considerably affects the penetration depth of ink

  16. Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires

    Directory of Open Access Journals (Sweden)

    A. Zhukov

    2016-11-01

    Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of GMI ratio on magnetic field and different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency

  17. An EPR methodology for measuring the London penetration depth for the ceramic superconductors

    Science.gov (United States)

    Rakvin, B.; Mahl, T. A.; Dalal, N. S.

    1990-01-01

    The use is discussed of electron paramagnetic resonance (EPR) as a quick and easily accessible method for measuring the London penetration depth, lambda for the high T(sub c) superconductors. The method utilizes the broadening of the EPR signal, due to the emergence of the magnetic flux lattice, of a free radical adsorbed on the surface of the sample. The second moment, of the EPR signal below T(sub c) is fitted to the Brandt equation for a simple triangular lattice. The precision of this method compares quite favorably with those of the more standard methods such as micro sup(+)SR, Neutron scattering, and magnetic susceptibility.

  18. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  19. Study of temperature increase and optic depth penetration in photo irradiated human tissues

    International Nuclear Information System (INIS)

    Stolik, Suren; Delgado, Jose A.; Perez, Arllene M.; Anasagasti, Lorenzo

    2009-01-01

    Optical radiation is widely applied in the treatment and diagnosis of different pathologies. If the power density of the incident light is sufficiently high to induce a significant temperature rise in the irradiated tissue, then it is also needed the knowledge of the thermal properties of the tissue for a complete understanding of the therapeutic effects. The thermal penetration depth of several human tissues has been measured applying the diffusion approximation of the radiative transfer equation for the distribution of optical radiation. The method, the experimental setup and the results are presented and discussed. (Author)

  20. Measurement of the magnetic penetration depth in p-doped superconducting diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Lorenz; Brunner, Markus C.P.; Schneider, Ina; Kronfeldner, Klaus [University of Regensburg (Germany); Bousquet, Jessica; Bustarret, Etienne; Strunk, Christoph [Institut Neel, Grenoble (France)

    2016-07-01

    Boron-doped diamond becomes superconducting once a critical doping concentration of 4.5 x 10{sup 20} cm{sup -3} is reached. Mutual inductance measurements with a two-coil setup have been performed to determine the magnetic penetration depth λ(T), which is a measure for the superfluid stiffnes θ ∝ 1/λ{sup 2}(T). Two superconducting p-doped diamond films with thicknesses of 145 nm and 345 nm were investigated. At low temperatures these values agree reasonably with the values expected within BCS-theory using T{sub c}, carrier density and mean free path determined from electric transport measurements. Magnetic penetration depths of 3.7 μm for the thinner and 2.6 μm for the thicker film have been found. λ decreases and accordingly θ increases with increasing film thickness. On the other hand, the superfluid stiffness drops by a factor of 2 or even more at T{sub c}/2, i.e., much faster than expected from BCS-theory, but remains finite between T{sub c}/2 < T < T{sub c}. At present it is unclear, whether this behavior results from the proliferation of phase fluctuations already far below T{sub c} or from a spatial inhomogeneity of the films.

  1. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  2. Instability in the magnetic field penetration in type II superconductors

    International Nuclear Information System (INIS)

    Oliveira, Isaías G. de

    2015-01-01

    Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of the magnetic field in the type II superconductors. We show that the single vortices, situated along the borderline, between the normal region channel and the superconducting region, can escape to regions still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex interaction, in addition to the non-homogeneous distribution of the vortices along the normal region channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along this borderline. - Highlights: • TDGL is used to study the magnetic field penetration in type II superconductors. • Instability process is found during the magnetic field penetration. • Vortices along the front of the normal region escape to superconducting region. • We explain the extra-gain of kinetic energy by vortices along the borderline

  3. London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Talantsev, E.F.; Crump, W.P. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Storey, J.G.; Tallon, J.L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2017-03-15

    Recently, compressed H{sub 2}S has been shown to become superconducting at 203 K under a pressure of 155 GPa. One might expect fluctuations to dominate at such temperatures. Using the magnetisation critical current, we determine the ground-state London penetration depth, λ{sub 0} = 189 nm, and the superconducting energy gap, Δ{sub 0} = 27.8 meV, and find these parameters are similar to those of cuprate superconductors. We also determine the fluctuation temperature scale, T{sub fluc} = 1470 K, which shows that, unlike the cuprates, T{sub c} of the hydride is not limited by fluctuations. This is due to its three dimensionality and suggests the search for better superconductors should refocus on three-dimensional systems where the inevitable thermal fluctuations are less likely to reduce the observed T{sub c}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Considerations on Dop (Depth Of Penetration) Test for Evaluation of Ceramics Materials Used in Ballistic Protection

    Science.gov (United States)

    Popa, Ioan-Dan; Dobriţa, Florin

    2017-12-01

    Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.

  5. In-plane magnetic penetration depth of superconducting CaKFe4As4

    Science.gov (United States)

    Khasanov, Rustem; Meier, William R.; Wu, Yun; Mou, Daixiang; Bud'ko, Sergey L.; Eremin, Ilya; Luetkens, Hubertus; Kaminski, Adam; Canfield, Paul C.; Amato, Alex

    2018-04-01

    The temperature dependence of the in-plane magnetic penetration depth (λa b) in an extensively characterized sample of superconducting CaKFe4As4(Tc≃35 K ) was investigated using muon-spin rotation (μ SR ). A comparison of λab -2(T ) measured by μ SR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μ SR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ0=2.4 (2 ) meV . Our data suggest that in CaKFe4As4 the s± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.

  6. Penetration Depth and Defect Image Contrast Formation in Grazing-Incidence X-ray Topography of 4H-SiC Wafers

    Science.gov (United States)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian

    2018-02-01

    Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.

  7. Penetration-depth calculations in the ab and c directions in a layered S/N superconductor

    International Nuclear Information System (INIS)

    Atkinson, W.A.; Carbotte, J.P.

    1995-01-01

    We present the results of calculations of the penetration depths λ ab and λ c (the subscripts refer to the direction of the screening currents). Our model is a layered superconducting/normal metal (S/N) model, in which the two types of layers are stacked in alternating fashion. The S and N layers are coupled in a coherent fashion and the N layer is driven superconducting by a proximity effect. We calculate the penetration depths for both d-wave and s-wave order parameters for a range of interlayer coupling strengths, and we discuss the effect that the interlayer coupling has on the temperature dependence of the penetration depths. We finish by comparing our results with experimental observations of YBa 2 Cu 3 O 7

  8. Effect of impurity scattering on the low temperature magnetic penetration depth of a nonlocal and nonlinear d-wave superconductor

    International Nuclear Information System (INIS)

    Yavary, H.

    2006-01-01

    The magnetic penetration depth of a quasi-two dimensional d-wave superconductor in the presence of nonlineary, nonlocality, and impurity effects is investigated by using Green's function method. It is shown that a d-wave superconductor would inevitably avoid the violation of the Nernst theorem by creating a T 2 term in its penetration depth through a competition of nonlinear, nonlocal, and impurity effects and this system may be stable at low temperatures. I also show that in the impure sample at low temperatures, T < T * ∝ γ the impurity effect determines the temperature dependence of the penetration depth, i.e., nonlocal and nonlinear effects are completely masked by impurities

  9. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2005-01-01

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma

  10. A theoretical basis of the approach for the magnetic field penetration measurement

    International Nuclear Information System (INIS)

    Bezotosnyi, P I; Gavrilkin, S Yu; Ivanenko, O M; Mitsen, K V; Tsvetkov, A Yu

    2016-01-01

    An approach for the assessment of London penetration depth of superconducting films is proposed. This approach is based on the analysis of linear response of the sample to a local low-frequency alternating magnetic field generated by the measuring coil disposed near the film surface. A visual “electrical engineering” model of induced currents distribution in the superconductor taking into account the kinetic inductance was developed for a description of this response. The possibility of determining of the penetration depth from changing the inductance of the system “coil-sample” is shown in the framework of this model. The sensitivity of the proposed method for the films with different thicknesses is considered. (paper)

  11. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-01-01

    Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. To quantify the electric field focality and depth of penetration of various TMS coils. The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2). The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils. For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Visual discomfort and depth-of-field

    NARCIS (Netherlands)

    O'Hare, L.; Zhang, T.; Nefs, H.T.; Hibbard, P.B.

    2013-01-01

    Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth.

  13. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    International Nuclear Information System (INIS)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C.X.; Qiu, Y.

    2008-01-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick

  14. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsoo [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  15. Improved depth estimation with the light field camera

    Science.gov (United States)

    Wang, Huachun; Sang, Xinzhu; Chen, Duo; Guo, Nan; Wang, Peng; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-10-01

    Light-field cameras are used in consumer and industrial applications. An array of micro-lenses captures enough information that one can refocus images after acquisition, as well as shift one's viewpoint within the sub-apertures of the main lens, effectively obtaining multiple views. Thus, depth estimation from both defocus and correspondence are now available in a single capture. And Lytro.Inc also provides a depth estimation from a single-shot capture with light field camera, like Lytro Illum. This Lytro depth estimation containing many correct depth information can be used for higher quality estimation. In this paper, we present a novel simple and principled algorithm that computes dense depth estimation by combining defocus, correspondence and Lytro depth estimations. We analyze 2D epipolar image (EPI) to get defocus and correspondence depth maps. Defocus depth is obtained by computing the spatial gradient after angular integration and correspondence depth by computing the angular variance from EPIs. Lytro depth can be extracted from Lyrto Illum with software. We then show how to combine the three cues into a high quality depth map. Our method for depth estimation is suitable for computer vision applications such as matting, full control of depth-of-field, and surface reconstruction, as well as light filed display

  16. Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments

    Science.gov (United States)

    Sobek, Sebastian; Gudasz, Cristian; Koehler, Birgit; Tranvik, Lars J.; Bastviken, David; Morales-Pineda, María.

    2017-11-01

    Lake sediments constitute an important compartment in the carbon cycle of lakes, by burying carbon over geological timescales and by production and emission of greenhouse gases. The degradation of organic carbon (OC) in lake sediments is linked to both temperature and oxygen (O2), but the interactive nature of this regulation has not been studied in lake sediments in a quantitative way. We present the first systematic investigation of the effects of temperature on the apparent respiratory quotient (RQ, i.e., the molar ratio between carbon dioxide (CO2) production and O2 consumption) in two contrasting lake sediments. Laboratory incubations of sediment cores of a humic lake and an eutrophic lake across a 1-21°C temperature gradient over 157 days revealed that both CO2 production and O2 consumption were positively, exponentially, and similarly dependent on temperature. The apparent RQ differed significantly between the lake sediments (0.63 ± 0.26 and 0.99 ± 0.28 in the humic and the eutrophic lake, respectively; mean ± SD) and was significantly and positively related to temperature. The O2 penetration depth into the sediment varied by a factor of 2 over the 1-21°C temperature range and was significantly, negatively, and similarly related to temperature in both lake sediments. Accordingly, increasing temperature may influence the overall extent of OC degradation in lake sediments by limiting O2 supply to aerobic microbial respiration to the topmost sediment layer, resulting in a concomitant shift to less effective anaerobic degradation pathways. This suggests that temperature may represent a key controlling factor of the OC burial efficiency in lake sediments.

  17. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  18. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  19. The aesthetic appeal of depth of field in photographs

    NARCIS (Netherlands)

    Zhang, T.; Nefs, H.T.; Redi, J.; Heynderickx, I.E.J.

    2014-01-01

    We report here how depth of field (DOF) affects the aesthetic appeal of photographs for different content categories. 339 photographs spanning eight categories were selected from Flickr, Google+, and personal collections. First, we classified the 339 photographs into three levels of depth of field:

  20. External Mask Based Depth and Light Field Camera

    Science.gov (United States)

    2013-12-08

    External mask based depth and light field camera Dikpal Reddy NVIDIA Research Santa Clara, CA dikpalr@nvidia.com Jiamin Bai University of California...passive depth acquisition technology is illustrated by the emergence of light field camera companies like Lytro [1], Raytrix [2] and Pelican Imaging

  1. Magnetic penetration depth and flux dynamics in single-crystal Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Harshman, D.R.; Kleiman, R.N.; Inui, M.; Espinosa, G.P.; Mitzi, D.B.; Kapitulnik, A.; Pfiz, T.; Williams, D.L.

    1991-01-01

    The muon-spin-relaxation technique has been used to study vortex dynamics in single-phase superconducting single crystals of Bi 2 Sr 2 CaCu 2 O 8+δ (T c ∼90 K). The data indicate motional narrowing of the internal field distribution due to vortex motion (on a time scale comparable to the muon lifetime). A field-dependent lattice transition is also observed at T x ∼30 K, as evidenced by the onset of an asymmetric line shape below T x . Narrowing arising from disordering of the vortices along [001] is also discussed with reference to its effect on the measured penetration depth

  2. Field Test Evaluation of Effect on Cone Resistance Caused by Change in Penetration Rate

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2012-01-01

    in the laboratory. A change in the measured cone resistance occurs by lowering the penetration rate. This is caused by the changes in drainage conditions. Compared to the normal penetration rate of 20 mm/s, this paper illustrates that lowering the penetration rate leads to an increase in the cone resistance from 1......This paper presents how a change in cone penetration rate affects the measured cone resistance during cone penetration testing in silty soils. Regardless of soil, type the standard rate of penetration is 20 mm/s and it is generally accepted that undrained penetration occurs in clay while drained...... penetration occurs in sand. In intermediate soils such as silty soils, the standard cone penetration rate may result in drainage conditions varying from undrained to partially or fully drained conditions. Field cone penetrations tests have been conducted with different penetration rates on a test site...

  3. Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools

    Directory of Open Access Journals (Sweden)

    Namık KılıÇ

    2015-06-01

    Full Text Available Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods (FEM in this research field. The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort, therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time. This study aims to apply a hybrid method using FEM simulation and artificial neural network (ANN analysis to approximate ballistic limit thickness for armor steels. To achieve this objective, a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. In this methodology, the FEM simulations are used to create training cases for Multilayer Perceptron (MLP three layer networks. In order to validate FE simulation methodology, ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569. Afterwards, the successfully trained ANN(s is used to predict the ballistic limit thickness of 500 HB high hardness steel armor. Results show that even with limited number of data, FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.

  4. Crystal growth vs. conventional acid etching: A comparative evaluation of etch patterns, penetration depths, and bond strengths

    Directory of Open Access Journals (Sweden)

    Devanna Raghu

    2008-01-01

    Full Text Available The present study was undertaken to investigate the effect on enamel surface, penetration depth, and bond strength produced by 37% phosphoric acid and 20% sulfated polyacrylic acid as etching agents for direct bonding. Eighty teeth were used to study the efficacy of the etching agents on the enamel surface, penetration depth, and tensile bond strength. It was determined from the present study that a 30 sec application of 20% sulfated polyacrylic acid produced comparable etching topography with that of 37% phosphoric acid applied for 30 sec. The 37% phosphoric acid dissolves enamel to a greater extent than does the 20% sulfated polyacrylic acid. Instron Universal testing machine was used to evaluate the bond strengths of the two etching agents. Twenty percent sulfated polyacrylic acid provided adequate tensile bond strength. It was ascertained that crystal growth can be an alternative to conventional phosphoric acid etching as it dissolves lesser enamel and provides adequate tensile bond strength.

  5. Effective depth-of-penetration range due to hardness variation for different lots of nominally identical target material

    Directory of Open Access Journals (Sweden)

    Patrick Frueh

    2016-04-01

    A linear regression analysis of penetration vs. hardness shows that a target hardness increase within the given range of 280–330 BHN may result in a reduction of penetration depth of about 5.8 mm at constant velocity. This is equal to a change of −12% at an impact velocity of 1250 m/s. A multiple linear regression analysis included also the influence of yaw angle and impact velocity. It shows that small yaw angles and slight variations of impact velocities provide a smaller variation of the semi-infinite penetration depths than a variation of target hardness within a typical specification span of 50 BHN. For such a span a change in penetration of approximately −4.8 mm due to hardness variation is found, whereas 1° of yaw angle or −10 m/s of velocity variation gives a change of about −1.0 mm respectively −0.9 mm. For the given example, the overwhelming part of the variation is to be attributed to hardness effects – 4.8 mm out of 5.8 mm (83%. For nominally identical target material the target hardness thus influences the ballistic test results more severely than the typical scatter in impact conditions.

  6. Sub?40?fs, 1060?nm Yb?fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    OpenAIRE

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-01-01

    © 2015 The Authors. Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a > 100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key perform...

  7. Measurement of residual stress in a sphere by x-ray under the consideration of its penetration depth

    International Nuclear Information System (INIS)

    Doi, Osamu; Ukai, Takayoshi

    1981-01-01

    It was pointed out in the case of a plate that when stress gradient is large, the use of the X-ray with large penetration depth caused large measurement error. In this paper, the theoretical equations for measuring the residual stress in a sphere with X-ray, taking penetration depth into account, are proposed, and the example of application is shown. As the method of measuring the residual stress in a hollow sphere with X-ray, only the method of combining external surface removal and external surface irradiation is practically in use. It was assumed that a sphere is isotropic, and that the residual stress is a function of the radius only. First, the theory of measuring the residual stress in a sphere with X-ray taking penetration depth into account is explained, and the equations for calculating the residual stresses in tangential and radial directions are derived. As the example of applying this theory, the distribution of the residual stress in a steel ball for a ball bearing was measured with Cr characteristic X-ray. The ball of 30 mm diameter was made of high-carbon chromium bearing steel, grade 2, (JIS SUJ2) and quenched and tempered. The removal of the thin layer was made by chemical etching and electrolysis. The measured values and the calculated values are shown. (Kako, I.)

  8. The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2017-12-01

    Full Text Available This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.

  9. Muon-spin-rotation measurements of the London penetration depths in YBa2Cu3O6.97

    International Nuclear Information System (INIS)

    Puempin, B.; Keller, H.; Kuendig, W.; Odermatt, W.; Savic, I.M.; Schneider, J.W.; Simmler, H.; Zimmermann, P.; Kaldis, E.; Rusiecki, S.; Maeno, Y.; Rossel, C.

    1990-01-01

    Muon-spin-rotation (μSR) experiments on a high-quality sintered YBa 2 Cu 3 O x sample [x=6.970(1)] were performed, in order to obtain an accurate knowledge of the magnitude and the temperature dependence of the magnetic penetration depth in this copper oxide superconductor. Special attention was given to the data analysis. In particular, the systematic errors introduced by different types of analyses were estimated. Our results show that the temperature dependence of the effective penetration depth λ eff into the sintered sample is well described by the two-fluid model, with λ eff (0)=155(10) nm. This behavior of λ eff (T) is consistent with conventional s-wave pairing. With the anisotropy ratio γ=λ c /λ ab =5(1) measured in a previous μSR experiment, the penetration depths λ ab (0)=130(10) nm and λ c (0)=500--800 nm (parallel and perpendicular to the CuO 2 planes, respectively) were extracted. Our results are compared with those obtained by other experimental techniques and theoretical predictions

  10. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.

    Science.gov (United States)

    Seok, Joon; Oh, Chang Taek; Kwon, Hyun Jung; Kwon, Tae Rin; Choi, Eun Ja; Choi, Sun Young; Mun, Seog Kyun; Han, Seung-Ho; Kim, Beom Joon; Kim, Myeung Nam

    2016-08-01

    The effectiveness of needle-free injection devices in neocollagenesis for treating extended skin planes is an area of active research. It is anticipated that needle-free injection systems will not only be used to inject vaccines or insulin, but will also greatly aid skin rejuvenation when used to inject aesthetic materials such as hyaluronic acid, botulinum toxin, and placental extracts. There has not been any specific research to date examining how materials penetrate the skin when a needle-free injection device is used. In this study, we investigated how material infiltrates the skin when it is injected into a cadaver using a needle-free device. Using a needle-free injector (INNOJECTOR™; Amore Pacific, Seoul, Korea), 0.2 ml of 5% methylene blue (MB) or latex was injected into cheeks of human cadavers. The device has a nozzle diameter of 100 µm and produces a jet with velocity of 180 m/s. This jet penetrates the skin and delivers medicine intradermally via liquid propelled by compressed gasses. Materials were injected at pressures of 6 or 8.5 bars, and the injection areas were excised after the procedure. The excised areas were observed visually and with a phototrichogram to investigate the size, infiltration depth, and shape of the hole created on the skin. A small part of the area that was excised was magnified and stained with H&E (×40) for histological examination. We characterized the shape, size, and depth of skin infiltration following injection of 5% MB or latex into cadaver cheeks using a needle-free injection device at various pressure settings. Under visual inspection, the injection at 6 bars created semi-circle-shaped hole that penetrated half the depth of the excised tissue, while injection at 8.5 bars created a cylinder-shaped hole that spanned the entire depth of the excised tissue. More specific measurements were collected using phototrichogram imaging. The shape of the injection entry point was consistently spherical regardless of the

  11. Storm time electric field penetration observed at mid-latitude

    International Nuclear Information System (INIS)

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  12. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  13. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  14. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  15. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  16. Evidence of weak pair coupling in the penetration depth of bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Yang Ren; Ossandon, J.G.; Christen, D.K.; Chakoumakos, B.C.; Sales, B.C.; Kerchner, H.R.; Sonder, E.

    1990-01-01

    The magnetic penetration depth λ(T) has been investigated in Bi(Pb)SrCaCuO high-T c compounds having 2- and 3-layers of copper-oxygen per unit cell. Studies of the magnetization in the vortex state were employed and the results were compared with weak and strong coupling calculations. The temperature dependence of λ is described well by BCS theory in the clean limit, giving evidence for weak pair coupling in this family of materials. For the short component of the λ tensor, we obtain values of 292 and 220 nm (T = 0) for Bi-2212 and (BiPb)-2223, respectively

  17. Extended depth of field imaging through multicore optical fibers.

    Science.gov (United States)

    Orth, Antony; Ploschner, Martin; Maksymov, Ivan S; Gibson, Brant C

    2018-03-05

    Compact microendoscopes use multicore optical fibers (MOFs) to visualize hard-to-reach regions of the body. These devices typically have a large numerical aperture (NA) and are fixed-focus, leading to blurry images from a shallow depth of field with little focus control. In this work, we demonstrate a method to digitally adjust the collection aperture and therefore extend the depth of field of lensless MOF imaging probes. We show that the depth of field can be more than doubled for certain spatial frequencies, and observe a resolution enhancement of up to 78% at a distance of 50μm from the MOF facet. Our technique enables imaging of complex 3D objects at a comparable working distance to lensed MOFs, but without the requirement of lenses, scan units or transmission matrix calibration. Our approach is implemented in post processing and may be used to improve contrast in any microendoscopic probe utilizing a MOF and incoherent light.

  18. Effects of inserted depth of wall penetration on basal stability of foundation pits

    Science.gov (United States)

    Zhou, Aizhao; Shen, Hao; Sun, Jinguo

    2017-05-01

    Evaluation of basal heave stability is one of important design checks for excavations in soft clays. The commonly used classical calculation method based on limit equilibrium theory and the safety coefficient formula recommended by the current code, do not consider the influence of supporting structure of foundation pit depth heave stability, which results in conservative. Considering the wall stiffness and strength, the effective stress changes in different depth of soil, the frictional resistance between the retaining wall and the passive zone, the vertical shear resistance of the soil behind the wall and other factors. The modified safety factor calculation formula of foundation pit stability is presented, comparison analysis of calculation method combined with examples. The calculation results show that the safety factor of foundation pit stability is improved considering the influence of supporting structure depth, the calculation results are more reasonable.

  19. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias; Pascal Grosset, A.V.; Martin, Tobias; Pegoraro, Vincent; Smith, Sean T.; Hansen, Charles D.

    2011-01-01

    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  20. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias

    2011-06-01

    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  1. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays

    Directory of Open Access Journals (Sweden)

    Xile Wei

    2017-11-01

    Full Text Available Multi-coil arrays applied in transcranial magnetic stimulation (TMS are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF. Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest

  2. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.

    Science.gov (United States)

    Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng

    2017-11-14

    Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a

  3. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  4. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    Science.gov (United States)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  5. An investigation into the depth of penetration of low level laser therapy through the equine tendon in vivo

    Directory of Open Access Journals (Sweden)

    Ryan Teresa

    2007-05-01

    Full Text Available Abstract Low level laser therapy (LLLT is frequently used in the treatment of wounds, soft tissue injury and in pain management. The exact penetration depth of LLLT in human tissue remains unspecified. Similar uncertainty regarding penetration depth arises in treating animals. This study was designed to test the hypothesis that transmission of LLLT in horses is increased by clipping the hair and/or by cleaning the area to be treated with alcohol, but is unaffected by coat colour. A LLLT probe (810 nm, 500 mW was applied to the medial aspect of the superficial flexor tendon of seventeen equine forelimbs in vivo. A light sensor was applied to the lateral aspect, directly opposite the laser probe to measure the amount of light transmitted. Light transmission was not affected by individual horse, coat colour or leg. However, it was associated with leg condition (F = 4.42, p = 0.0032. Tendons clipped dry and clipped and cleaned with alcohol, were both associated with greater transmission of light than the unprepared state. Use of alcohol without clipping was not associated with an increase in light transmission. These results suggest that, when applying laser to a subcutaneous structure in the horse, the area should be clipped and cleaned beforehand.

  6. The predicting ultimate of joint withdrawal resistance constructed of plywood with regression models application according to diameter and penetrating depth

    Directory of Open Access Journals (Sweden)

    Sadegh Maleki

    2013-11-01

    Full Text Available The goal of this study was to present regression models for predicting resistance of joints made with screw and plywood members. Joint members were out of hardwood plywood that were 19 mm in thickness. Two types of screws including coarse and fine thread drywall screw with 3.5, 4 and 5mm in diameter and sheet metal screw with 4 and 5mm were used. Results have shown that withdrawal resistance of screw was increased by increasing of screws, diameter and penetrating depth. Joints fabricated with coarse thread drywall screws were higher than those of fine thread drywall screws. Finally, average joint withdrawal resistance of screwed could be predicted by means of the expressions Wc=2.127×D1.072×P0.520 for coarse thread drywall screws and Wf=1.377×D1.156×P0.581 for fine thread drywall screws by taking account the diameter and penetrating depth. The difference of the observed and predicted data showed that developed models have a good correlation with actual experimental measurements.

  7. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.

    Science.gov (United States)

    Cole, A J; Hegna, C C; Callen, J D

    2007-08-10

    A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.

  8. Survey to identify depth of penetration of critical incident reporting systems in Austrian healthcare facilities.

    Science.gov (United States)

    Sendlhofer, Gerald; Eder, Harald; Leitgeb, Karina; Gorges, Roland; Jakse, Heidelinde; Raiger, Marianne; Türk, Silvia; Petschnig, Walter; Pregartner, Gudrun; Kamolz, Lars-Peter; Brunner, Gernot

    2018-01-01

    Incident reporting systems or so-called critical incident reporting systems (CIRS) were first recommended for use in health care more than 15 years ago. The uses of these CIRS are highly variable among countries, ranging from being used to report critical incidents, falls, or sentinel events resulting in death. In Austria, CIRS have only been introduced to the health care sector relatively recently. The goal of this work, therefore, was to determine whether and specifically how CIRS are used in Austria. A working group from the Austrian Society for Quality and Safety in Healthcare (ASQS) developed a survey on the topic of CIRS to collect information on penetration of CIRS in general and on how CIRS reports are used to increase patient safety. Three hundred seventy-one health care professionals from 274 health care facilities were contacted via e-mail. Seventy-eight respondents (21.0%) completed the online survey, thereof 66 from hospitals and 12 from other facilities (outpatient clinics, nursing homes). In all, 64.1% of the respondents indicated that CIRS were used in the entire health care facility; 20.6% had not yet introduced CIRS and 15.4% used CIRS only in particular areas. Most often, critical incidents without any harm to patients were reported (76.9%); however, some health care facilities also use their CIRS to report patient falls (16.7%), needle stick injuries (17.9%), technical problems (51.3%), or critical incidents involving health care professionals. CIRS are not yet extensively or homogeneously used in Austria. Inconsistencies exist with respect to which events are reported as well as how they are followed up and reported to health care professionals. Further recommendations for general use are needed to support the dissemination in Austrian health care environments.

  9. The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth to increasing black carbon

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2014-09-01

    Full Text Available The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth (e-folding depth to increasing mass ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e-folding depth of three different types of snow (cold polar snow, wind-packed snow and melting snow and three sea ice (multi-year ice, first-year ice and melting sea ice to increasing mass ratio of black carbon is calculated using a coupled atmosphere–snow/sea ice radiative-transfer model (TUV-snow, over the optical wavelengths of 300–800 nm. The snow and sea ice types are effectively defined by a scattering cross-section, density and asymmetry parameter. The relative change in albedo and e-folding depth of each of the three snow and three sea ice types with increasing mass ratio of black carbon is considered relative to a base case of 1 ng g−1 of black carbon. The relative response of each snow and sea ice type is intercompared to examine how different types of snow and sea ice respond relative to each other. The relative change in albedo of a melting snowpack is a factor of four more responsive to additions of black carbon compared to cold polar snow over a black carbon increase from 1 to 50 ng g−1, while the relative change in albedo of a melting sea ice is a factor of two more responsive to additions of black carbon compared to multi-year ice for the same increase in mass ratio of black carbon. The response of e-folding depth is effectively not dependent on snow/sea ice type. The albedo of sea ice is more responsive to increasing mass ratios of black carbon than snow.

  10. Magnetic-field enhancement beyond the skin-depth limit

    Science.gov (United States)

    Shin, Jonghwa; Park, Namkyoo; Fan, Shanhui; Lee, Yong-Hee

    2010-02-01

    Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a PEC model, the principle's predictions fails to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.

  11. Penetration depth λ(T) of YBa2Cu3O7-δ films determined from the kinetic inductance

    International Nuclear Information System (INIS)

    Lee, J.; Lemberger, T.R.

    1993-01-01

    We examine the temperature dependence of the magnetic penetration depth λ(T) of YBa 2 Cu 3 O 7-δ , determined from the kinetic inductance of a film patterned into a long meander line. This technique has sufficient sensitivity to study λ(T) to lower temperatures than have been examined previously. A numerical model which includes both the magnetic and kinetic inductances of the samples extracts λ(T) from the measured voltage. In reasonable agreement with other measurements, λ(0)∼2100 A is deduced from fitting λ(0) 2 /λ(T) 2 to the function 1-(T/T c ) 2 for T/T c ≥0.4. We find λ(T)/λ(0)-1 is proportional to (T/T c ) 2 for 0.06 ≤T/T c ≤0.4

  12. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics

    DEFF Research Database (Denmark)

    Manohara, S. R.; Hanagodimath, S. M.; Gerward, Leif

    2011-01-01

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary......, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor...... of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Zeff. These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues...

  13. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    Science.gov (United States)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  14. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    International Nuclear Information System (INIS)

    Singh, Parjit S.; Singh, Tejbir; Kaur, Paramjeet

    2008-01-01

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C 4 H 3 N), butanol (C 4 H 9 OH), chlorobenzene (C 6 H 5 Cl), diethyl ether (C 4 H 10 O), ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH) and water (H 2 O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor

  15. Incoherently combining logarithmic aspheric lenses for extended depth of field.

    Science.gov (United States)

    Chu, Kaiqin; George, Nicholas; Chi, Wanli

    2009-10-01

    We describe a method for combining concentric logarithmic aspheric lenses in order to obtain an extended depth of field. Substantial improvement in extending the depth of field is obtained by carefully controlling the optical path difference among the concentric lenses so that their outputs combine incoherently. The system is analyzed through diffraction theory and the point spread function is shown to be highly invariant over a long range of object distances. After testing the image performance on a three-dimensional scene, we found that the incoherently combined logarithmic aspheres can provide a high-quality image over an axial distance corresponding to a defocus of +/- 14(lambda/4). Studies of the images of two-point objects are presented to illustrate the resolution of these lenses.

  16. Penetration depth of YBa2Cu3O7 measured by polarised neutron reflectometry

    International Nuclear Information System (INIS)

    Reynolds, J.M.; Nunez, V.; Boothroyd, A.T.; Bucknall, D.G.; Penfold, J.

    1998-01-01

    We have applied the technique of polarised neutron reflectometry (PNR) to investigate the magnetic field profile near the surface of YBa 2 Cu 3 O 7 films at 4.3 K. The samples comprised 700-1400 nm of c-axis oriented, single crystal YBa 2 Cu 3 O 7 deposited by laser ablation on SrTiO 3 substrates. The measurements were carried out on the CRISP reflectometer at the ISIS facility. The PNR technique measures the magnetic induction profile perpendicular to the surface, and so in our case the decay of flux in the c-direction was measured with a field applied parallel to the ab plane. We present preliminary data for the polarised and unpolarised reflectivity (orig.)

  17. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  18. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  19. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field.

    Science.gov (United States)

    Carnegie, Kieran; Rhee, Taehyun

    2015-01-01

    Although head-mounted displays (HMDs) are ideal devices for personal viewing of immersive stereoscopic content, exposure to VR applications on them results in significant discomfort for the majority of people, with symptoms including eye fatigue, headaches, nausea, and sweating. A conflict between accommodation and vergence depth cues on stereoscopic displays is a significant cause of visual discomfort. This article describes the results of an evaluation used to judge the effectiveness of dynamic depth-of-field (DoF) blur in an effort to reduce discomfort caused by exposure to stereoscopic content on HMDs. Using a commercial game engine implementation, study participants report a reduction of visual discomfort on a simulator sickness questionnaire when DoF blurring is enabled. The study participants reported a decrease in symptom severity caused by HMD exposure, indicating that dynamic DoF can effectively reduce visual discomfort.

  20. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  1. Determination of Penetration Depth of 800 keV Electron Beam into Coal Fired Power Plant Flue Gas at in a Electron Beam Machine Flue Gas Treatment System

    International Nuclear Information System (INIS)

    Rany Saptaaji

    2008-01-01

    Penetration depth calculation of 800 keV electron beam into flue gas from coal fired power plan is presented in this paper. Electron Beam for Flue Gas Treatment (EB-FGT) is a dry treatment process using electron beam to simultaneously reduce SO 2 and NO x . Flue gas irradiation produces active radicals and then reaction with SO 2 and NO x produces nitrate acid and sulphate acid. Process vessel is needed in this process as reaction container of flue gas with electron beam. The calculation of electron beam penetration depth into flue gas is used to determine the process vessel dimension. The result of calculation of optimum penetration depth of 800 keV electron beam into flue gas is 188.67 cm. (author)

  2. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim [Department of Electro-Optical Engineering and TheIlse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602 (Singapore)

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  3. Depth estimation of complex geometry scenes from light fields

    Science.gov (United States)

    Si, Lipeng; Wang, Qing

    2018-01-01

    The surface camera (SCam) of light fields gathers angular sample rays passing through a 3D point. The consistency of SCams is evaluated to estimate the depth map of scene. But the consistency is affected by several limitations such as occlusions or non-Lambertian surfaces. To solve those limitations, the SCam is partitioned into two segments that one of them could satisfy the consistency constraint. The segmentation pattern of SCam is highly related to the texture of spatial patch, so we enforce a mask matching to describe the shape correlation between segments of SCam and spatial patch. To further address the ambiguity in textureless region, a global method with pixel-wise plane label is presented. Plane label inference at each pixel can recover not only depth value but also local geometry structure, that is suitable for light fields with sub-pixel disparities and continuous view variation. Our method is evaluated on public light field datasets and outperforms the state-of-the-art.

  4. Estimation of the frequency and magnetic field dependence of the skin depth in Co-rich magnetic microwires from GMI experiments

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2016-09-01

    Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of the GMI ratio on magnetic field at different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency.

  5. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    Science.gov (United States)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  6. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com; Singh, Tejbir [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Kaur, Paramjeet [IAS and Allied Services Training Centre, Punjabi University, Patiala 147 002 (India)

    2008-06-15

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C{sub 4}H{sub 3}N), butanol (C{sub 4}H{sub 9}OH), chlorobenzene (C{sub 6}H{sub 5}Cl), diethyl ether (C{sub 4}H{sub 10}O), ethanol (C{sub 2}H{sub 5}OH), methanol (CH{sub 3}OH), propanol (C{sub 3}H{sub 7}OH) and water (H{sub 2}O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor.

  7. Muon-spin rotation (. mu. SR) study of the temperature dependence of the London penetration depth in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.; Kuendig, W.; Savic, I.M.; Simmler, H.; Staeuble-Puempin, B.; Warden, M.; Zech, D.; Zimmermann, P. (Physik-Inst., Univ. Zurich (Germany)); Kaldis, E.; Karpinski, J.; Rusiecki, S. (Lab. fuer Festkoerperphysik, ETH Zurich (Switzerland)); Brewer, J.H.; Riseman, T.M.; Schneider, J.W. (TRIUMF and Dept. of Physics, Univ. of British Columbia, Vancouver (Canada)); Maeno, Y.; Rossel, C. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland))

    1991-12-01

    A {mu}SR study of the temperature dependence of the London penetration depth {lambda} in sintered samples of YBa{sub 2}Cu{sub 3}O{sub x} (with various oxygen contents x), YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is presented. It is found that the temperature behavior of {lambda} of all these cuprate superconductors is consistent with conventional s-wave pairing. However, there are significant differences concerning the exact temperature dependence of {lambda} in these materials. In YBa{sub 2}Cu{sub 3}O{sub x} with high x, the behavior of {lambda}(T) is well described by the two-fluid model (strong coupling), whereas {lambda}(T) in YBa{sub 2}Cu{sub 3}O{sub x} with low x, YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is in better agreement with weak-coupling BCS theory. Possible reasons for the different temperature behavior of {lambda} in these materials are discussed. (orig.).

  8. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R

    2012-01-01

    A theory is developed to predict the error-field penetration threshold in low density, ohmically heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in the vicinity of the resonant surface to the applied error-field is calculated from nonlinear drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory. Error-field penetration, and subsequent locked mode formation, is triggered once the destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect of the ion polarization current (caused by the propagation of the error-field-induced island chain in the local ion fluid frame). The predicted scaling of the error-field penetration threshold with engineering parameters is (b r /B T ) crit ∼n e B T -1.8 R 0 -0.25 , where b r is the resonant harmonic of the vacuum radial error-field at the resonant surface, B T the toroidal magnetic field-strength, n e the electron number density at the resonant surface and R 0 the major radius of the plasma. This scaling—in particular, the linear dependence of the threshold with density—is consistent with experimental observations. When the scaling is used to extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is (b r /B T ) crit ∼ 5 × 10 −5 , which just lies within the expected capabilities of the ITER error-field correction system. (paper)

  9. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    Science.gov (United States)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  10. Field Tests to Investigate the Penetration Rate of Piles Driven by Vibratory Installation

    Directory of Open Access Journals (Sweden)

    Zhaohui Qin

    2017-01-01

    Full Text Available Factors directly affecting the penetration rate of piles installed by vibratory driving technique are summarized and classified into seven aspects which are driving force, resistance, vibratory amplitude, energy consumption, speeding up at the beginning, pile plumbness keeping, and slowing down at the end, from the mechanism and engineering practice of the vibratory pile driving. In order to find out how these factors affect the penetration rate of the pile in three major actors of vibratory pile driving: (i the pile to be driven, (ii the selected driving system, and (iii the imposed soil conditions, field tests on steel sheet piles driven by vibratory driving technique in different soil conditions are conducted. The penetration rates of three different sheet pile types having up to four different lengths installed using two different vibratory driving systems are documented. Piles with different lengths and types driven with or without clutch have different penetration rates. The working parameters of vibratory hammer, such as driving force and vibratory amplitude, have great influences on the penetration rate of the pile, especially at the later stages of the sinking process. Penetration rate of piles driven in different soil conditions is uniform because of the different penetration resistance including shaft friction and toe resistance.

  11. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    Science.gov (United States)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  12. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    Science.gov (United States)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  13. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    International Nuclear Information System (INIS)

    Kimlin, M.G.; Parisi, A.V.

    1999-01-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car. (author)

  14. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  15. Transverse magnetic field penetration through the JET toroidal coil and support structure

    International Nuclear Information System (INIS)

    Core, W.G.F.; Noll, P.

    1988-01-01

    This report contains the results of a study of transverse magnetic field penetration through the JET magnetic field coil systems and supporting structures. The studies were carried out during the initial JET design phase (1973-78) and were part of a major radius compression plasma heating feasibility study. In view of the interest in this problem the authors have decided to re-issue the original work as a JET report. The material basically remains unchanged although better estimates of the penetration times have been obtained and typographical errors which occurred in the original have been corrected. (author)

  16. Evidence of prompt penetration electric fields during HILDCAA events

    Science.gov (United States)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  17. Evidence of prompt penetration electric fields during HILDCAA events

    Directory of Open Access Journals (Sweden)

    R. P. Silva

    2017-10-01

    Full Text Available High-intensity, long-duration continuous auroral electrojet (AE activity (HILDCAA events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23 using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S. Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  18. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai; Ren, YuHu; Xu, Shichao; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xianning-xilu 28, Xi' an 710049 (China); Tong, Junyi [Departments of Applied Physics, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  19. Measurement of the London penetration depths in YBa2Cu3Ox by means of muon spin rotation (μ SR) experiments

    International Nuclear Information System (INIS)

    Pumpin, B.; Keller, H.; Kundig, W.; Odermatt, W.; Savic, I.M.; Schneider, J.W.; Simmler, H.; Zimmermann, P.

    1989-01-01

    The authors report on experiments conducted to get accurate values of the London penetration depths in YBa 2 Cu 3 O x , μSR measurements were performed on a high quality, sintered sample and a c-axis-oriented polycrystal. For the sintered sample the temperature dependence of the effective penetration depthλ eff is well described by the two-fluid model, withλ eff (0) = 155(10) nm. This behavior ofλ eff (T) is consistent with conventional s-wave pairing. The anisotropy ratioλ c /λ ab ≅5(1) was determined from measurements on the polycrystal. These results were used to calculateλ ab (0) = 130(10) nm andλ c (0)≅ 500-800 nm

  20. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    Science.gov (United States)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  1. Measurements of the London penetration depths in YBa sub 2 Cu sub 3 O sub x by means of muon spin rotation (. mu. SR) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Puempin, B.; Keller, H.; Kuendig, W.; Odermatt, W.; Savic, I.M.; Schneider, J.W.; Simmler, H.; Zimmermann, P. (Physik-Inst., Univ. Zuerich (Switzerland)); Bednorz, J.G.; Maeno, Y.; Mueller, K.A.; Rossel, C. (IBM Research Div., Zuerich Research Lab., Rueschlikon (Switzerland)); Kaldis, E.; Rusiecki, S. (Lab. fuer Festkoerperphysik, ETH Zuerich (Switzerland)); Assmus, W.; Kowalewski, J. (Physikalisches Inst., Univ. Frankfurt (Germany, F.R.))

    1989-12-01

    To get accurate values of the London penetration depths in YBa{sub 2}Cu{sub 3}O{sub x}, {mu}SR measurements were performed on a high quality, sintered sample and a c-axis-oriented polycrystal. For the sintered sample the temperature dependence of the effective penetration depth {lambda}{sub eff} is well described by the two-fluid model, with {lambda}{sub eff}(0) = 155(10) nm. This behavior of {lambda}{sub eff}(T) is consistent with conventional s-wave pairing. The anisotropy ratio {lambda}{sub c}/{lambda}{sub ab} {approx equal} 5(1) was determined from measurements on the polycrystal. These results were used to calculate {lambda}{sub ab}(0) = 130(10) nm and {lambda}{sub c}(0) {approx equal} 500-800 nm. (orig.).

  2. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  3. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Science.gov (United States)

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  4. Hybrid Imaging for Extended Depth of Field Microscopy

    Science.gov (United States)

    Zahreddine, Ramzi Nicholas

    An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.

  5. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  6. Measurement and modeling of the low-temperature penetration-depth anomaly in high-quality MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agassi, Y.D. [Naval Surface Warfare Center, Carderock Division, Bethesda, MD 20817 (United States); Oates, D.E., E-mail: OATES@LL.MIT.EDU [MIT-Lincoln Laboratory, Lexington, MA 02420 (United States); Moeckly, B.H. [STI, Inc. Santa Barbara, CA 93111 (United States)

    2012-10-15

    Based on our measurements of intermodulation distortion in MgB{sub 2}, we have previously proposed that the {pi} energy-gap in MgB{sub 2} entails six nodal lines [Y.D. Agassi, D.E. Oates, and B.H. Moeckly, Phys. Rev. B 80 (2009) 174522]. Here we report high-precision measurements in MgB{sub 2} stripline resonators that show an increase of the penetration depth as the temperature is decreased below 5 K. This increase is consistent with the Script-Small-L = 6 symmetry of the {pi} energy gap that we have proposed. We interpret the increase as a manifestation of Andreev surface-attached states that are associated with the nodal lines of the {pi} energy gap. Penetration-depth calculations are in good agreement with our data. To reconcile the present interpretation with existing literature, we review other penetration-depth data, magnetic-impurity and tunneling experiments, and data on the paramagnetic Meissner effect. We conclude that these data do not rule out the interpretation of our experimental data based on a nodal {pi} energy gap.

  7. Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays

    International Nuclear Information System (INIS)

    U, Hong; Ryu, M. S. Samuel; Park, In Kyu

    1989-01-01

    Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less that 1% from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter. The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than 3.26% between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in 6cm x 6cm field. For larger (10cm x 10cm) field size, however, the deviation of percent depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were 3.56% at depth 7cm and nearly 5.30% at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor

  8. Topical administration of Tetrasodium-Mesotetraphenyl-Porphinesulfonate (TPPS): correlations between drug penetration and depth of necrosis in skin of nude mice following red light irradiation

    International Nuclear Information System (INIS)

    Marchesini, R.; Melloni, E.; Fava, G.

    1987-01-01

    The main side effect in photodynamic therapy is photosensitization of the patient's skin following systemic administration of the photosensitizing agent. In the case of superficial lesions, this problem can be avoided by topically applying the drug: in this way a local treatment can be performed. The photosensitizing properties of a 2% solution of TPPS (Tetrasodium-Tetraphenylpophinesulfonate) in a vehicle containing a penetration enhancer, Azone, on skin of nude mice has been tested. An aliquot of 0.1 ml/cm 2 of the solution was painted on the skin overlying an s.c. implanted NMU-1 tumor. Subsequently, animals were sacrificed at different times after applications. Fluorescence microscopy revealed that TPPS penetration depth was related to time elapsed after application and to painting modalities. Solution penetration was enhanced by wiping with ether immediately before painting. Irradiation at 80 mW/cm 2 for 20 min with a dye laser emitting at 640 nm, 4 h after TPPS applications, produced necrosis of the upper skin layers, up to 0.2 mm in depth. These findings suggest that topical TPPS administration, followed by laser irradiation, may be a suitable treatment modality for skin lesions involving epithelial layers, even though several aspects of this methodology need further investigation

  9. Ideal metastability fields and field penetration in type-I and type-II superconducting InBi single spheres

    International Nuclear Information System (INIS)

    Pettersen, G.; Parr, H.

    1979-01-01

    In a continuation of earlier work on the InBi alloys system, we have studied the superconducting properties of small, single spheres of InBi 0.80, 1.24, 1.70, 2.15, and 2.65 at.% Bi. The transition temperatures are 3.538, 3.659, 3.796, 3.908, and 4.044 +- 0.008 K. Assuming the penetration depth lambda to be proportional to y = 1(1-t 4 )/sup 1/2/, we determine lambda/sub o/ = dlambda/dy to be 810, 950, 1065, undetermined, and 1720 A +- 3%, respectively. The field dependence of lambda was studied up to the ideal superheating field H/sub sh/. We find lambda (H/sub sh/)/lambda (H = 0) = 1.53, 1.52, 1.42, undetermined, and 1.41 +- 0.05, respectively. Thus the relative increase in lambda close to H/sub sh/ is roughly independent of composition. These are the first measurements of lambda (H) in ''strong'' fields for type-II superconductors. The Ginzburg-Landau parameter kappa was determined from H/sub c/3. We find kappa/sub c/3(t = ) = 0.454, 0.636, 0.835, 0.984, and 1.22. The knowledge of H/sub c/ limits the accuracy to 2--5%. Ideal superheating was observed both in the type-I and type-II region. At t = 1, we find H/sub sh//H/sub c/ = 1.80, 1.48, 1.28, 1.17, and 1.13 +- 3--8%. This roughly agrees with numerical calculations of H/sub sh/(kappa). Thus, ideal superheating of the Meissner state to well above H/sub c/ is firmly established even for type-II superconductors. The results for H/sub sh/ are in good agreement with numerical calculations from Ginzburg-Landau theory. Assuming these theoretical results to hold, kappa (t = 1) can be calculated self-consistently from H/sub c/3 and H/sub sh/ for all metals investigated by the single-sphere method, giving values considered to be more accurate than any other available. Finally, we have obtained qualitative and quantitative results on the intermediate and mixed states in our spheres

  10. Focusing and depth of field in photography: application in dermatology practice.

    Science.gov (United States)

    Taheri, Arash; Yentzer, Brad A; Feldman, Steven R

    2013-11-01

    Conventional photography obtains a sharp image of objects within a given 'depth of field'; objects not within the depth of field are out of focus. In recent years, digital photography revolutionized the way pictures are taken, edited, and stored. However, digital photography does not result in a deeper depth of field or better focusing. In this article, we briefly review the concept of depth of field and focus in photography as well as new technologies in this area. A deep depth of field is used to have more objects in focus; a shallow depth of field can emphasize a subject by blurring the foreground and background objects. The depth of field can be manipulated by adjusting the aperture size of the camera, with smaller apertures increasing the depth of field at the cost of lower levels of light capture. Light-field cameras are a new generation of digital cameras that offer several new features, including the ability to change the focus on any object in the image after taking the photograph. Understanding depth of field and camera technology helps dermatologists to capture their subjects in focus more efficiently. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site

    Directory of Open Access Journals (Sweden)

    U. Wollschläger

    2010-08-01

    Full Text Available Multi-channel ground-penetrating radar (GPR was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85 × 60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, sparsely vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. Multi-channel GPR is an operational technology to efficiently study such a system at scales varying from a few meters to a few kilometers.

  12. Microwave study of magnetic field penetration parallel to thin niobium films

    International Nuclear Information System (INIS)

    Grbic, M.S.; Janjusevic, D.; Pozek, M.; Dulcic, A.; Wagner, T.

    2007-01-01

    Complex conductivity of high quality niobium thin films has been investigated by microwave technique in parallel static magnetic field. For the 40 nm thick film no vortices can be formed and the microwave penetration is defined by the strength of the superconducting order parameter which varies with the applied magnetic field. 160 nm thick measured film allows formation of two rows of vortices. Microwave dissipiation is dominated by dynamics of vortices which is strongly affected by size effects. Results have been compared with the generalised models of complex conductivity for low-dimensional superconductor in mixed state following earlier considerations by other authors

  13. Characterization of compact-toroid injection during formation, translation, and field penetration

    Science.gov (United States)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  14. Characterization of compact-toroid injection during formation, translation, and field penetration

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  15. Regularities of magnetic field penetration into half-space in type-II superconductors

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Krasnyuk, I.B.

    2003-01-01

    The equations, modeling the distributions of the magnetic field induction and current density in the half-space with an account of the exponential volt-ampere characteristics, are obtained. The velocity of the magnetization front propagation by the assigned average rate of the change by the time of the external magnetic field at the sample boundary is determined. The integral condition for the electric resistance, nonlinearly dependent on the magnetic field, by accomplishing whereof the magnetic flux penetrates into the sample with the finite velocity is indicated. The analytical representation of the equation with the exponential boundary mode, which models the change in the magnetic field at the area boundary, is pointed out [ru

  16. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  17. Two simple methods for calculating the penetration time of a longitudinal magnetic field through the wall of a metallic tube

    International Nuclear Information System (INIS)

    Jimenez D, H.; Colunga S, S.; Lopez C, R.; Melendez L, L.; Ramos S, J.; Cabral P, A.; Gonzalez T, L.; Chavez A, E.; Valencia A, R.

    1991-06-01

    Two simple and fast methods to calculate the penetration time of a longitudinal magnetic field through the wall of a long metallic tube of circular cross section are presented. The first method is based upon the proposition of an 'effective penetration thickness' given by the polar angle average of all possible straight-line transverse penetration paths of field lines through the tube wall. This method provides a quick calculation that yields a remarkably good approximation to experimental and reported values of the penetration time. In the second method the tube is considered as a RL circuit. Thus the penetration time is given by the ratio L T /R T where L T is the inductance of the tube considered as a one turn coil, and R T is the tube resistance. This method is faster to apply than the previous one but the values obtained provide only a rough approximation to the penetration time. Applications of the two methods are given for the tokamak chambers of the Japanese 'HYBTOK', the Brazilian 'TBR' and the Mexican 'Novillo'. The resulting values of the penetration time approximate very well to the reported ones in the first two cases and to the experimental one in the last. The methods are also applied to calculate the penetration time in two long tubes, one of aluminum and other of copper. Calculated values approximate very well to measured values. (Author)

  18. Extending the depth of field in a fixed focus lens using axial colour

    Science.gov (United States)

    Fitzgerald, Niamh; Dainty, Christopher; Goncharov, Alexander V.

    2017-11-01

    We propose a method of extending the depth of field (EDOF) of conventional lenses for a low cost iris recognition front-facing smartphone camera. Longitudinal chromatic aberration (LCA) can be induced in the lens by means of dual wavelength illumination. The EDOF region is then constructed from the sum of the adjacent depths of field from each wavelength illumination. The lens parameters can be found analytically with paraxial raytracing. The extended depth of field is dependant on the glass chosen and position of the near object point.

  19. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  20. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...

  1. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    Science.gov (United States)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  2. A Novel Method for Measurements of the Penetration Depth of MgB2 Superconductor Films by Using Sapphire Resonators with Short-Circuited Parallel Plates

    International Nuclear Information System (INIS)

    Jung, Ho Sang; Lee, J. H.; Cho, Y. H.; Lee, Sang Young; Seong, W. K.; Lee, N. H.; Kang, W. N.

    2009-01-01

    We introduce a measurement method that enables to measure the penetration depth(λ) of superconductor films by using a short-ended parallel plate sapphire resonator. Variations in the (λof MgB 2 films could be measured down to the lowest temperature using a sapphire resonator with a YBa 2 Cu 3 O 7-x film at the bottom. A model equation of λλ 0 [1-(T/T c ) τ ] -1/2 for MgB 2 films appeared to describe the observed variations of the resonant frequency of the sapphire resonator with temperature, with λ 0 , τ and T c used as the fitting parameters.

  3. Storm-time total electron content and its response to penetration electric fields over South America

    Directory of Open Access Journals (Sweden)

    P. M. de Siqueira

    2011-10-01

    Full Text Available In this work the response of the ionosphere due to the severe magnetic storm of 7–10 November 2004 is investigated by analyzing GPS Total Electron Content (TEC maps constructed for the South America sector. In order to verify the disturbed zonal electric fields in South America during the superstorm, ionospheric vertical drift data obtained from modeling results are used in the analysis. The vertical drifts were inferred from ΔH magnetometer data (Jicamarca-Piura following the methodology presented by Anderson et al. (2004. Also used were vertical drifts measured by the Jicamarca ISR. Data from a digisonde located at São Luís, Brazil (2.33° S, 44.2° W, dip latitude 0.25° are presented to complement the Jicamarca equatorial data. Penetration electric fields were observed by the comparison between the equatorial vertical drifts and the Interplanetary Electric Field (IEF. The TEC maps obtained from GPS data reflect the ionospheric response over the South America low-latitude and equatorial region. They reveal unexpected plasma distributions and TEC levels during the main phase of the superstorm on 7 November, which is coincident with the local post-sunset hours. At this time an increase in the pre-reversal enhancement was expected to develop the Equatorial Ionization Anomaly (EIA but we observed the absence of EIA. The results also reveal well known characteristics of the plasma distributions on 8, 9, and 10 November. The emphasized features are the expansion and intensification of EIA due to prompt penetration electric fields on 9 November and the inhibition of EIA during post-sunset hours on 7, 8, and 10 November. One important result is that the TEC maps provided a bi-dimensional view of the ionospheric changes offering a spatial description of the electrodynamics involved, which is an advantage over TEC measured by isolated GPS receivers.

  4. Can a nightside geomagnetic Delta H observed at the equator manifest a penetration electric field?

    Science.gov (United States)

    Wei, Y.; Fraenz, M.; Dubinin, E.; He, M.; Ren, Z.; Zhao, B.; Liu, J.; Wan, W.; Yumoto, K.; Watari, S.; Alex, S.

    2013-06-01

    A prompt penetration electric field (PPEF) usually manifests itself in the form of an equatorial ionospheric electric field being in correlation with a solar wind electric field. Due to the strong Cowling conductivity, a PPEF on the dayside can be inferred from Delta H (ΔH), which is the difference in the magnitudes of the horizontal (H) component between a magnetometer at the magnetic equator and one off the equator. This paper aims to investigate the performance of ΔH in response to a PPEF on the nightside, where the Cowling conductivity is not significant. We first examine the strongest geomagnetically active time during the 20 November 2003 superstorm when the Dst drops to -473 nT and show that the nightside ΔH can indeed manifest a PPEF but with local time dependence and longitude dependence. We then examine a moderately active time by taking advantage of the multiple-penetration event during 11-16 November 2003 when the Dst remains greater than -60 nT. During this event, a series of PPEF pulses recorded in Peru, Japan, and India form a database, allowing us to examine PPEF effects at different local times and longitudes. The results show that (1) the nightside ΔH was caused by attenuation of the effects of the polar electric field with decreasing latitude; (2) the nightside ΔH can manifest a PPEF at least in the midnight-dawn sector (0000-0500 LT), but not always; and (3) the magnitude of the nightside ΔH in the midnight-dawn sector in Peru is on average only 1/18 of that of the dayside ΔH in response to a given PPEF.

  5. Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa2Cu3Ox family and related compounds

    International Nuclear Information System (INIS)

    Zimmermann, P.; Keller, H.; Lee, S.L.; Savic, I.M.; Warden, M.; Zech, D.; Cubitt, R.; Forgan, E.M.; Kaldis, E.; Karpinski, J.; Krueger, C.

    1995-01-01

    A systematic muon-spin-rotation (μ + SR) study is presented of the temperature dependence of the London penetration depth in sintered powder samples of the YBa 2 Cu 3 O x system and related compounds. The in-plane penetration depth λ ab is estimated from the μ + SR depolarization rate of Bi 2 Sr 2 CaCu 2 O 8+δ , YBa 2 Cu 4 O 8 , and a series of samples of the YBa 2 Cu 3 O x family, respectively. It is found that not only the low-temperature value λ ab (0), but also the temperature behavior λ ab (T) is specific to each compound. The form of λ ab (T) can be well characterized by a simple power law. In particular, the YBa 2 Cu 3 O x family shows a systematic variation of the form of λ ab (T) with the oxygen content x which points to a varying coupling strength, whereas λ ab (0) as a function of x suggests a positive charge transfer into the CuO 2 planes with increasing oxygen doping. Furthermore, our data is consistent with an empirical ansatz which has been proposed in the framework of a Bose-gas picture of high-temperature superconductivity. As a consequence, the pressure and the isotope coefficients can be extracted from the μ + SR depolarization rate and compared to direct measurements of these quantities, showing good agreement. Moreover, in the Bose-gas picture the variation of λ ab (T) in the YBa 2 Cu 3 O x family may be interpreted as a crossover from a dense (high-T c ) to a dilute (low-T c ) system of weakly interacting local pairs

  6. Shaded-Mask Filtering for Extended Depth-of-Field Microscopy

    OpenAIRE

    Escobar García, Isabel María; Saavedra Tortosa, Genaro; Martínez Corral, Manuel; Calatayud, Arnau; Doblas Expósito, Ana Isabel

    2013-01-01

    This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical archi...

  7. GOME-2A retrievals of tropospheric NO2 in different spectral ranges – influence of penetration depth

    Directory of Open Access Journals (Sweden)

    L. K. Behrens

    2018-05-01

    Full Text Available In this study, we present a novel nitrogen dioxide (NO2 differential optical absorption spectroscopy (DOAS retrieval in the ultraviolet (UV spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A satellite. We compare the results to those from an established NO2 retrieval in the visible (vis spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere.As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution.We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of  ∼  60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only  ∼  36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV.While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical

  8. Peculiarities of field penetration in the presence of cross-flux interaction

    Science.gov (United States)

    Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.

    1996-02-01

    The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.

  9. Determination of the maximum-depth to potential field sources by a maximum structural index method

    Science.gov (United States)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  10. A Computationally Efficient Tool for Assessing the Depth Resolution in Potential-Field Inversion

    DEFF Research Database (Denmark)

    Paoletti, V.; Hansen, Per Christian; Hansen, Mads Friis

    In potential-field inversion problems, it can be dicult to obtain reliable information about the source distribution with respect to depth. Moreover, spatial resolution of the reconstructions decreases with depth, and in fact the more ill-posed the problem - and the more noisy the data - the less...... reliable the depth information. Based on earlier work using the singular value decomposition, we introduce a tool ApproxDRP which uses approximations of the singular vectors obtained by the iterative Lanczos bidiagonalization algorithm, making it well suited for large-scale problems. This tool allows...... successfully show the limitations of depth resolution resulting from noise in the data. This allows a reliable analysis of the retrievable depth information and effectively guides the user in choosing the optimal number of iterations, for a given problem....

  11. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  12. The Effect of Focal Distance, Age, and Brightness on Near-Field Augmented Reality Depth Matching

    OpenAIRE

    Singh, Gujot; Ellis, Stephen R.; Swan II, J. Edward

    2017-01-01

    Many augmented reality (AR) applications operate within near-field reaching distances, and require matching the depth of a virtual object with a real object. The accuracy of this matching was measured in three experiments, which examined the effect of focal distance, age, and brightness, within distances of 33.3 to 50 cm, using a custom-built AR haploscope. Experiment I examined the effect of focal demand, at the levels of collimated (infinite focal distance), consistent with other depth cues...

  13. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones

    Directory of Open Access Journals (Sweden)

    Bong-Soo Sohn

    2017-03-01

    Full Text Available This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.

  14. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    Science.gov (United States)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  15. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    Science.gov (United States)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  16. Oblique penetration modeling and correlation with field tests into a soil target

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D.B. Jr. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-09-01

    An oblique penetration modeling procedure is evaluated by correlation with onboard acceleration data from a series of six penetration tests into Antelope Dry Lake soil at Tonopah Test Range, Nevada. The modeling represents both the loading which is coupled to the penetrator bending and the penetrator structure including connections between the major subsections. Model results show reasonable agreement with the data which validates the modeling procedure within a modest uncertainty related to accelerometer clipping and rattling of the telemetry package. The experimental and analytical results provide design guidance for the location and lateral restraint of components to reduce their shock environment.

  17. Analytical model of stress field in submerged arc welding butt joint with thorough penetration

    Directory of Open Access Journals (Sweden)

    Winczek Jerzy

    2018-01-01

    Full Text Available Analytical model of temporary and residual stresses for butt welding with thorough penetration was described assuming planar section hypothesis and using integral equations of stress equilibrium of the bar and simple Hooke’s law. In solution the effect of phase transformations (structure changes and structural strains has been taken into account. Phase transformations during heating are limited by temperature values at the beginning and at the end of austenitic transformation, depending on chemical composition of steel while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagram. Temperature values at the beginning and at the end of transformation are conditioned by the speed of heating. Kinetics of diffusional transformation is described basing on Johnson-Mehl-Avrami-Kolmogorov equation, while martensitic transformation, basing on Koistinen-Marburger equation. Stresses in elasto-plastic state are determined by iteration, using elastic solutions method with changeable longitudinal modulus of elasticity, conditioned by stress-strain curve. Computations of stress field have been conducted for one-side butt welded of two steel flats made from S235 steel. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by welding using Submerged Arc Welding (SAW method.

  18. Extending the depth of field with chromatic aberration for dual-wavelength iris imaging.

    Science.gov (United States)

    Fitzgerald, Niamh M; Dainty, Christopher; Goncharov, Alexander V

    2017-12-11

    We propose a method of extending the depth of field to twice that achievable by conventional lenses for the purpose of a low cost iris recognition front-facing camera in mobile phones. By introducing intrinsic primary chromatic aberration in the lens, the depth of field is doubled by means of dual wavelength illumination. The lens parameters (radius of curvature, optical power) can be found analytically by using paraxial raytracing. The effective range of distances covered increases with dispersion of the glass chosen and with larger distance for the near object point.

  19. Variations in depth-dose data between open and wedge fields for 4-MV x-rays

    International Nuclear Information System (INIS)

    Sewchand, W.; Khan, F.M.; Williamson, J.

    1978-01-01

    Central-axis depth-dose data for 4-MV x rays, including tissue-maximum ratios, were measured for wedge fields. Comparison with corresponding open-field data revealed differences in magnitude which increased with depth, field size, and wedge thickness. However, phantom scatter correction factors for the wedge fields differed less than 1% from corresponding open-field factors. The differences in central-axis percent depth doses between the two types of fields indicate beam hardening by the wedge filter. This study also implies that the derivation of tissue-maximum ratios from central-axis percent depth is as valid for wedge as for open fields

  20. Atomistic simulation of femtosecond laser pulse interactions with a copper film: Effect of dependency of penetration depth and reflectivity on electron temperature

    Science.gov (United States)

    Amouye Foumani, A.; Niknam, A. R.

    2018-01-01

    The response of copper films to irradiation with laser pulses of fluences in the range of 100-6000 J/m2 is simulated by using a modified combination of a two-temperature model (TTM) and molecular dynamics (MD). In this model, the dependency of the pulse penetration depth and the reflectivity of the target on electron temperature are taken into account. Also, the temperature-dependent electron-phonon coupling factor, electron thermal conductivity, and electron heat capacity are used in the simulations. Based on this model, the dependence of the integral reflectivity on pulse fluence, the changes in the film thickness, and the evolution of density and electron and lattice temperatures are obtained. Moreover, snapshots that show the melting and disintegration processes are presented. The disintegration starts at a fluence of 4200 J/m2, which corresponds with an absorbed fluence of 616 J/m2. The calculated values of integral reflectivity are in good agreement with the experimental data. The inclusion of such temperature-dependent absorption models in the TTM-MD method would facilitate the comparison of experimental data with simulation results.

  1. Influence of structural disorder on low-temperature behavior of penetration depth in electron-doped high-TC thin films

    International Nuclear Information System (INIS)

    Lanfredi, A.J.C.; Sergeenkov, S.; Araujo-Moreira, F.M.

    2006-01-01

    To probe the influence of structural disorder on low-temperature behavior of magnetic penetration depth, λ(T), in electron-doped high-T C superconductors, a comparative study of high-quality Pr 1.85 Ce 0.15 CuO 4 (PCCO) and Sm 1.85 Ce 0.15 CuO 4 (SCCO) thin films is presented. The λ(T) profiles are extracted from conductance-voltage data using a highly-sensitive home-made mutual-inductance technique. The obtained results confirm a d-wave pairing mechanism in both samples (with nodal gap parameter Δ 0 /k B T C =2.0 and 2.1 for PCCO and SCCO films, respectively), substantially modified by impurity scattering (which is more noticeable in less homogeneous SCCO films) at the lowest temperatures. More precisely, Δλ(T)=λ(T)-λ(0) is found to follow the Goldenfeld-Hirschfeld interpolation formulae Δλ(T)/λ(0)=AT 2 /(T+T 0 ) with T 0 =ln(2)k B Γ 1/2 Δ 0 1/2 being the crossover temperature which demarcates pure and impure scattering processes (T 0 /T C =0.13 and 0.26 for PCCO and SCCO films, respectively). The value of the extracted impurity scattering rate Γ correlates with the quality of our samples and is found to be much higher in less homogeneous films with lower T C

  2. The calculation of relative output factor and depth dose for irregular electron fields in water

    International Nuclear Information System (INIS)

    Dunscombe, Peter; McGhee, Peter; Chu, Terence

    1996-01-01

    Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm

  3. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    Science.gov (United States)

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  4. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2018-04-01

    Full Text Available This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN and a continuous pairwise Conditional Random Field (CRF model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  5. Adjacent field separations for homogenous dose distribution at particular depth and associated hot and cold spots

    International Nuclear Information System (INIS)

    Supe, S.S.; Deka, A.C.; Deka, B.C.; Sathiyanaranyanan, V.K.

    1991-01-01

    In radiotherapy treatment planning we come across many situations when treatment is given by using two adjacent fields, for e.g. for treatment of Hodgkin's disease. A pair of adjacent field have been used regularly for the treatment of ovarian tumours. A small separation is given at the skin level, otherwise hot spots are observed at the depth of interest. The separation depend upon tumour depths, and source to skin distance (SSD). Formulae have been derived for the separation as well as for hot and cold spots. The case of adjacent field becomes more complicated when anterior as well as posterior adjacent fields are used. It is not completely possible to avoid the hot and cold spots in such cases. This is partially avoided by shifting the gap on the skin surface during the course of treatment. (author). 2 refs., 2 tabs

  6. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    International Nuclear Information System (INIS)

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed

  7. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  8. Nightside Quiet-Time Mid-Latitude Ionospheric Convection and Its Connection to Penetration Electric Fields

    Science.gov (United States)

    Ruohoniemi, J. M.; Maimaiti, M.; Baker, J. B.; Ribeiro, A. J.

    2017-12-01

    Previous studies have shown that during quiet geomagnetic conditions F-region subauroral ionospheric plasma exhibits drifts of a few tens of m/s, predominantly in the westward direction. However, the exact driving mechanisms for this plasma motion are still not well understood. Recent expansion of SuperDARN radars into the mid-latitude region has provided new opportunities to study subauroral ionospheric convection over large areas and with greater spatial resolution and statistical significance than previously possible. Mid-latitude SuperDARN radars tend to observe subauroral ionospheric backscatter with low Doppler velocities on most geomagnetically quiet nights. In this study, we have used two years of data obtained from the six mid-latitude SuperDARN radars in the North American sector to derive a statistical model of quiet-time nightside mid-latitude plasma convection between 52°- 58° magnetic latitude. The model is organized in MLAT-MLT coordinates and has a spatial resolution of 1°x 7 min with each grid cell typically counting thousands of velocity measurements. Our results show that the flow is predominantly westward (20 - 60 m/s) and weakly northward (0 -20 m/s) near midnight but with a strong seasonal dependence such that the flows tend to be strongest and most spatially variable in winter. These statistical results are in good agreement with previously reported observations from ISR measurements but also show some interesting new features, one being a significant latitudinal variation of zonal flow velocity near midnight in winter. In this presentation, we describe the derivation of the nightside quite-time subauroral convection model, analyze its most prominent features, and discuss the results in terms of the Ionosphere-Thermosphere coupling and penetration electric fields.

  9. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    Science.gov (United States)

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  10. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    Science.gov (United States)

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  11. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    Science.gov (United States)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  12. Genre Differences on Visual Perception of Color Range and Depth of Field

    Directory of Open Access Journals (Sweden)

    Luisa Ballesteros

    2003-07-01

    Full Text Available Visual perception is the result of the integration of various related factors of the observed object and its environment. In this study we evaluated the impact of tridimensional form on color perception and the angle from the horizontal plane of a set of similar objets on the depth of field perception between young men and women. A panel half magenta and half white placed at the end of a black box, folded either concaved or convexed to alter the chromatic effect perceived were used to determine tridimensional form on color perception. Four sets of identical sticks where the angle from the horizontal plane varied for each, were used to determine the effect of spatial distribution of depth of field perception. The parameters taking into account were age, genre, associated visual defects for each individual evaluated. Our results show that the tridimensional form alters color perception but the range of color perceived was larger for women whereas depending on the angle from the horizontal plane we found genre differences on the depth of field perception.

  13. ANTHEM simulation of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1989-01-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs

  14. Fast processing of microscopic images using object-based extended depth of field.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This

  15. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise

    Science.gov (United States)

    King, Sharon V.; Yuan, Shuai; Preza, Chrysanthe

    2018-03-01

    Effectiveness of extended depth of field microscopy (EDFM) implementation with wavefront encoding methods is reduced by depth-induced spherical aberration (SA) due to reliance of this approach on a defined point spread function (PSF). Evaluation of the engineered PSF's robustness to SA, when a specific phase mask design is used, is presented in terms of the final restored image quality. Synthetic intermediate images were generated using selected generalized cubic and cubic phase mask designs. Experimental intermediate images were acquired using the same phase mask designs projected from a liquid crystal spatial light modulator. Intermediate images were restored using the penalized space-invariant expectation maximization and the regularized linear least squares algorithms. In the presence of depth-induced SA, systems characterized by radially symmetric PSFs, coupled with model-based computational methods, achieve microscope imaging performance with fewer deviations in structural fidelity (e.g., artifacts) in simulation and experiment and 50% more accurate positioning of 1-μm beads at 10-μm depth in simulation than those with radially asymmetric PSFs. Despite a drop in the signal-to-noise ratio after processing, EDFM is shown to achieve the conventional resolution limit when a model-based reconstruction algorithm with appropriate regularization is used. These trends are also found in images of fixed fluorescently labeled brine shrimp, not adjacent to the coverslip, and fluorescently labeled mitochondria in live cells.

  16. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy

    Directory of Open Access Journals (Sweden)

    Johannes Bauer-Marschallinger

    2017-03-01

    Full Text Available We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  17. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  18. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    Science.gov (United States)

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  19. Digital approximation to extended depth of field in no telecentric imaging systems

    International Nuclear Information System (INIS)

    Meneses, J E; Contreras, C R

    2011-01-01

    A method used to digitally extend the depth of field of an imaging system consists to move the object of study along the optical axis of the system and different images will contain different areas that are sharp; those images are stored and processed digitally to obtain a fused image, in that image will be sharp all regions of the object. The implementation of this method, although widely used, imposes certain experimental conditions that should be evaluated for to study the degree of validity of the image final obtained. An experimental condition is related with the conservation of the geometric magnification factor when there is a relative movement between the object and the observation system; this implies that the system must be telecentric, which leads to a reduction of the observation field and the use of expensive systems if the application includes microscopic observation. This paper presents a technique that makes possible to extend depth of filed of an imaging system non telecentric; this system is used to realize applications in Optical Metrology with systems that have great observation field.

  20. Modelling effective soil depth at field scale from soil sensors and geomorphometric indices

    Directory of Open Access Journals (Sweden)

    Mauricio Castro Franco

    2017-04-01

    Full Text Available The effective soil depth (ESD affects both dynamic of hydrology and plant growth. In the southeast of Buenos Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 0-30 (ECa_30 and 0-90 (ECa_90 and geomorphometric indices. To do this, a Random Forest (RF analysis was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short distances. RF parameters with lowest error (OOBerror were calibrated. RF model simplified which uses main predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF was an effective method and easy to work. However, further studies are needed which add other types of variables importance calculation, greater number of fields and test other predictors in order to improve these results.

  1. Encountering Otherness. Depth of Field: A collective approach to Africa / Conocer la alteridad. Depth of Field: una aproximación colectiva a África

    Directory of Open Access Journals (Sweden)

    Rosario Jiménez Morales

    2013-11-01

    Full Text Available The purpose of this article is to approach postcolonial African photography through the pictures of the Nigerian group DOF (Depth of Field, in terms of what has been called Trans-African Photography; a photography that brings down the borders of the African continent and denies the identitary aspects of “the African” as a Western construction. The pictures of this new generation keep no relation with such characteristics as the naïve, the primitive or the brute, all of them related to “the African” from the point of view of the West. On the contrary, they insert themselves into the global dialogue of the Postmodern Art. And by doing so, they break away from the omnipresent ethnocentrism in the arts. It is important to raise this topic in the academia in order to create legitimization for these artistic practices that question not only the art circle and its system but also the social construction of an imagery that is currently widespread in the Western Countries. The training of these photographers has taken place mostly in Europe. Therefore talking about the migratory flux of the art and its meanings becomes necessary as well. The pictures of DOF, rather than represent the Other, raise controversy about the pertinence of Africa being part of a globalised world distributes their artworks and, at the same time, relocates them away from their territory. This has caused a great split not only in the western imagery but also in more traditional-style African photographers such as J.D. ‘Okhai Ojeikere, Tam Fiofori, Jide Adeniyi-Jones y Sunmi Smart-Cole.El propósito de este artículo es realizar una aproximación a la fotografía postcolonial africana a través de la obra del grupo nigeriano DOF (Depth of Field. Se tratará en él lo que se denomina Fotografía Transafricana; una fotografía que rompe con los bordes del continente y que niega el carácter identitario que desde Occidente se ha utilizado para construir “lo africano

  2. Fast Extended Depth-of-Field Reconstruction for Complex Holograms Using Block Partitioned Entropy Minimization

    Directory of Open Access Journals (Sweden)

    Peter Wai Ming Tsang

    2018-05-01

    Full Text Available Optical scanning holography (OSH is a powerful and effective method for capturing the complex hologram of a three-dimensional (3-D scene. Such captured complex hologram is called optical scanned hologram. However, reconstructing a focused image from an optical scanned hologram is a difficult issue, as OSH technique can be applied to acquire holograms of wide-view and complicated object scenes. Solutions developed to date are mostly computationally intensive, and in so far only reconstruction of simple object scenes have been demonstrated. In this paper we report a low complexity method for reconstructing a focused image from an optical scanned hologram that is representing a 3-D object scene. Briefly, a complex hologram is back-propagated onto regular spaced images along the axial direction, and from which a crude, blocky depth map of the object scene is computed according to non-overlapping block partitioned entropy minimization. Subsequently, the depth map is low-pass filtered to decrease the blocky distribution, and employed to reconstruct a single focused image of the object scene for extended depth of field. The method proposed here can be applied to any complex holograms such as those obtained from standard phase-shifting holography.

  3. A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion

    DEFF Research Database (Denmark)

    Paoletti, Valeria; Hansen, Per Christian; Hansen, Mads Friis

    2014-01-01

    In potential-field inversion, careful management of singular value decomposition components is crucial for obtaining information about the source distribution with respect to depth. In principle, the depth-resolution plot provides a convenient visual tool for this analysis, but its computational...... on memory and computing time. We used the ApproxDRP to study retrievable depth resolution in inversion of the gravity field of the Neapolitan Volcanic Area. Our main contribution is the combined use of the Lanczos bidiagonalization algorithm, established in the scientific computing community, and the depth...

  4. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs

    NARCIS (Netherlands)

    Hilst, R.D. van der; Seno, Tetsuzo

    1993-01-01

    An increasing number of seismological studies indicate that slabs of subducted lithosphere penetrate the Earth's lower mantle below some island arcs but are deflected, or, rather, laid down, in the transition zone below others. Recent numerical simulations of mantle flow also advocate a hybrid form

  5. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  6. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    Science.gov (United States)

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  7. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan; Weihermü ller, Lutz; Scharnagl, Benedikt; Kowalsky, Michael B.; Bechtold, Michel; Hubbard, Susan S.; Vereecken, Harry; Lambot, Sé bastien

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model

  8. The stress field and transient stress generation at shallow depths in the Canadian shield

    International Nuclear Information System (INIS)

    Hasegawa, H.S.

    1984-01-01

    A prominent feature of the stress field in eastern Canada is the high horizontal stress at shallow depths. Possible causative factors to this shallow stress field are remanent stresses from a previous tectonic orogeny, plate tectonic stresses and glacial-related stresses (glacial drag and flexual stress). The inherent difficulty in differentiating residual from current stress is one of the reasons why the relative contributions to the stress field from the phenomena described above are not properly understood. Maximum stress-strain changes an underground vault is likely to encounter from natural phenomena should occur when the periphery of the advancing or retreating glacier is near the vault. Theoretical calculations indicate that lithospheric flexure, differential postglacial uplift and possibly glacial drag may be able to generate significant horizontal stresses around a vault. In order to calculate the earthquake potential of these induced stress changes, the ambient tectonic stress field should also be included and a suitable failure criterion (e.g. Coulomb-Mohr) used. For earthquakes to generate appreciable stress-strain concentrations near a vault; the seismic signal must contain appreciable energy at appropriate frequencies (wavelengths comparable to vault dimensions) and be of appreciable duration; the particle velocity must be high (> 10 cm/s), induced strain is a function of particle velocity; and, the hypocentre must be less than half a fault length from the vault for residual deformation (strain and tilt) to be significant. The most severe case is when the causative fault intersects the vault

  9. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  10. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...... that the opaque image blur can also be used to add motion blur effects to images in real time....

  11. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  12. Depth distribution of radiocesium in Fukushima paddy fields and implications for ongoing decontamination works

    Science.gov (United States)

    Lepage, H.; Evrard, O.; Onda, Y.; Lefèvre, I.; Laceby, J. P.; Ayrault, S.

    2014-09-01

    Large quantities of radiocesium were deposited across a 3000 km2 area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of radiocesium in soil in the months following the accident, the potential migration of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields or transfer of radioactive contaminants from soils to rice. Radionuclide activity concentrations and organic content were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of radiocesium with the majority concentrated in the uppermost layers of soils (accident, 81.5 to 99.7% of the total 137Cs inventories was still found within the works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Remediation efforts should be concentrated on soils characterised by radiocesium activities > 10 000 Bq kg-1 to prevent the contamination of rice. Further analysis is required to clarify the redistribution of radiocesium eroded on river channels.

  13. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    International Nuclear Information System (INIS)

    Gravestijn, R M; Drake, J R; Hedqvist, A; Rachlew, E

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, τ s , has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of τ s , first (EXTRAP-T2) with tau s of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with τ s much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence

  14. London penetration depth measurements in Ba (Fe1-xTx)2As2(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Ryan T. [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The London penetration depth has been measured in various doping levels of single crystals of Ba(Fe1-xTx)2As2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a power law temperature dependence of the form Δλab(T) = CTn, indicating the existence of low-temperature, normal state quasiparticles all the way down to the lowest measured temperature, which was typically 500 mK. Several different doping concentrations from the Ba(Fe1-xTx)2As2 (T=Co,Ni) systems have been measured and the doping dependence of the power law exponent, n, is compared to results from measurements of thermal conductivity and specific heat. In addition, a novel method has been developed to allow for the measurement of the zero temperature value of the in-plane penetration depth, λab(0), by using TDR frequency shifts. By using this technique, the doping dependence of λab(0) has been measured in the Ba(Fe1-xCox)2As2 series, which has allowed also for the construction of the doping-dependent superfluid phase stiffness, ρs(T) = [λ(0)/λ(T)]2. By studying the effects of disorder on these superconductors using heavy ion irradiation, it has been determined that the observed power law temperature dependence likely arises from pair-breaking impurity scattering contributions, which is consistent with the proposed s±-wave symmetry of the superconducting gap in the dirty scattering limit. This hypothesis is supported by the measurement of an exponential temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative of a nodeless superconducting gap.

  15. Penetration of High Intensity Radiated Fields (HIRF) Into General Aviation Aircraft

    Science.gov (United States)

    Balanis, Constantine A.; Birtcher, Craig R.; Georgakopoulos, Stavros V.; Panaretos, Anastasios H.

    2004-01-01

    The ability to design and achieve electromagnetic compatibility is becoming more challenging with the rapid development of new electronic products and technologies. The importance of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues stems from the fact that the ambient electromagnetic environment has become very hostile; that is, it increases both in density and intensity, while the current trend in technology suggests the number of electronic devices increases in homes, businesses, factories, and transportation vehicles. Furthermore, the operating frequency of products coming into the market continuously increases. While cell phone technology has exceeded 1 GHz and Bluetooth operates at 2.4 GHz, products involving satellite communications operate near 10 GHz and automobile radar systems involve frequencies above 40 GHz. The concern about higher frequencies is that they correspond to smaller wavelengths, therefore electromagnetic waves are able to penetrate equipment enclosure through apertures or even small cracks more easily. In addition, electronic circuits have become small in size, and they are usually placed on motherboards or housed in boxes in very close proximity. Cosite interference and coupling in all electrical and electronic circuit assemblies are two essential issues that have to be examined in every design.

  16. Monitoring Induced Fractures with Electrical Measurements using Depth to Surface Resistivity: A Field Case Study

    Science.gov (United States)

    Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.

    2016-12-01

    Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the

  17. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    Science.gov (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  18. Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog

    Science.gov (United States)

    Russell, Patrick S.; Grant, John A.; Williams, Kevin K.; Carter, Lynn M.; Brent Garry, W.; Daubar, Ingrid J.

    2013-09-01

    penetrating radar (GPR) has been a useful geophysical tool in investigating a variety of shallow subsurface geological environments on Earth. Here we investigate the capabilities of GPR to provide useful geologic information in one of the most common geologic settings of planetary surfaces, impact crater ejecta. Three types of ejecta are surveyed with GPR at two wavelengths (400 MHz, 200 MHz) at Meteor Crater, Arizona, with the goal of capturing the GPR signature of the subsurface rock population. In order to "ground truth" the GPR characterization, subsurface rocks are visually counted and measured in preexisting subsurface exposures immediately adjacent to and below the GPR transect. The rock size-frequency distribution from 10 to 50 cm based on visual counts is well described by both power law and exponential functions, the former slightly better, reflecting the control of fragmentation processes during the impact-ejection event. GPR counts are found to overestimate the number of subsurface rocks in the upper meter (by a factor of 2-3x) and underestimate in the second meter of depth (0.6-1.0x), results attributable to the highly scattering nature of blocky ejecta. Overturned ejecta that is fractured yet in which fragments are minimally displaced from their complement fragments produces fewer GPR returns than well-mixed ejecta. The use of two wavelengths and division of results into multiple depth zones provides multiple aspects by which to characterize the ejecta block population. Remote GPR measurement of subsurface ejecta in future planetary situations with no subsurface exposure can be used to characterize those rock populations relative to that of Meteor Crater.

  19. Impact of the optical depth of field on cytogenetic image quality

    Science.gov (United States)

    Qiu, Yuchen; Chen, Xiaodong; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Wei R.; Liu, Hong

    2012-09-01

    In digital pathology, clinical specimen slides are converted into digital images by microscopic image scanners. Since random vibration and mechanical drifting are unavoidable on even high-precision moving stages, the optical depth of field (DOF) of microscopic systems may affect image quality, in particular when using an objective lens with high magnification power. The DOF of a microscopic system was theoretically analyzed and experimentally validated using standard resolution targets under 60× dry and 100× oil objective lenses, respectively. Then cytogenetic samples were imaged at in-focused and off-focused states to analyze the impact of DOF on the acquired image qualities. For the investigated system equipped with the 60× dry and 100× oil objective lenses, the theoretical estimation of the DOF are 0.855 μm and 0.703 μm, and the measured DOF are 3.0 μm and 1.8 μm, respectively. The observation reveals that the chromosomal bands of metaphase cells are distinguishable when images are acquired up to approximately 1.5 μm or 1 μm out of focus using the 60× dry and 100× oil objective lenses, respectively. The results of this investigation provide important designing trade-off parameters to optimize the digital microscopic image scanning systems in the future.

  20. A preliminary investigation: the impact of microscopic condenser on depth of field in cytogenetic imaging

    Science.gov (United States)

    Ren, Liqiang; Qiu, Yuchen; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Wei R.; Liu, Hong

    2013-02-01

    As one of the important components of optical microscopes, the condenser has a considerable impact on system performance, especially on the depth of field (DOF). DOF is a critical technical feature in cytogenetic imaging that may affect the efficiency and accuracy of clinical diagnosis. The purpose of this study is to investigate the influence of microscopic condenser on DOF using a prototype of transmitted optical microscope, based on objective and subjective evaluations. After the description of the relationship between condenser and objective lens and the theoretical analysis of the condenser impact on system numerical aperture and DOF, a standard resolution pattern and several cytogenetic samples are adopted to assess the condenser impact on DOF, respectively. The experimental results of these objective and subjective evaluations are in agreement with the theoretical analysis and show that, under the specific intermediate range of condenser numerical aperture ( NAcond ), the DOF value decreases with the increase of NAcond . Although the above qualitative results are obtained under the experimental conditions with a specific prototype system, the methods presented in this preliminary investigation could offer useful guidelines for optimizing operational parameters in cytogenetic imaging.

  1. The impact of the depth of field on cytogenetic image quality in scanning microscopy

    Science.gov (United States)

    Qiu, Yuchen; Chen, Xiaodong; Li, Yuhua; Zheng, Bin; Li, Shibo; Zhang, Roy R.; Chen, Wei R.; Liu, Hong

    2011-03-01

    The purpose of this study is to investigate the impact of the depth of field (DOF) of microscopic systems on cytogenetic image qualities. Due to the narrow DOF of high magnification, large numerical aperture (N.A.) objective lenses, random vibrations of even high precision scanning stages may result in large amount of off focused images. In this study, the DOF of microscopic systems with various objective magnifications/numerical apertures (N.A.) is first measured using standard resolution targets. The impact of DOF on cytogenetic image qualities is then subjectively evaluated with clinical samples, by comparing the band shape and sharpness of analyzable chromosomes. For a specific digital microscopic system with 100× objective lens (N.A. = 1.25), the results of observational studies revealed that chromosomal bands are still recognizable when the images are obtained approximately +/- 1 μm from the focusing plane. The chromosomal bands become fuzzy and unrecognizable when the system is 1.5 μm away from the focusing position. The results of this preliminary experimental study may provide useful design trade-off parameters for developing optimal scanning microscopic systems for cytogenetic applications.

  2. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  3. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    Science.gov (United States)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  4. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  5. Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime

    Science.gov (United States)

    Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo

    2009-12-01

    We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

  6. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    Science.gov (United States)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  7. Pedestal bifurcation and resonant field penetration at the threshold of edge-localized mode suppression in the DIII-D Tokamak.

    Science.gov (United States)

    Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R

    2015-03-13

    Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.

  8. The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field.

    Science.gov (United States)

    Jaskulski, Mateusz; Marín-Franch, Iván; Bernal-Molina, Paula; López-Gil, Norberto

    2016-11-01

    Longitudinal chromatic aberration is present in all states of accommodation and may play a role in the accommodation response and the emmetropisation process. We study the change of the depth of field (DOFi) with the state of accommodation, taking into account the longitudinal chromatic aberration. Subjective DOFi was defined as the range of defocus beyond which the blur of the target (one line of optotypes of 0.1 logMAR shown on a black-and-white microdisplay, seen through different colour filters) was perceived as objectionable. The subject's eye was paralysed and different, previously-measured accommodative states (corresponding to the accommodative demands of 0D, 2D and 4D) were simulated with a deformable mirror. Different colour conditions (monochromatic red, green and blue and polychromatic (white) were tested. The DOFi was measured subjectively, using a motorised Badal system. Taking as reference the average accommodative response for the white stimulus, the blue response exhibits on average a lead of 0.45 ± 0.09D, the green a negligible lead of 0.07 ± 0.02D and red a lag of 0.49 ± 0.10D. The monochromatic DOFi, calculated by averaging DOFi over the red, green and blue colour conditions for each accommodative demand was 1.10 ± 0.10D for 0D, 1.20 ± 0.08D for 2D, and 1.26 ± 0.40D for 4D. The polychromatic white DOFi were greater than the average monochromatic DOFi by 19%, 9% and 14% for 0D, 2D, and 4D of accommodative demand, respectively. The longitudinal chromatic aberration causes a dioptric shift of the monochromatic accommodation response. The study did not reveal this shift to depend on the accommodative demand or to have an effect on the DOFi. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  9. Scheimpflug with computational imaging to extend the depth of field of iris recognition systems

    Science.gov (United States)

    Sinharoy, Indranil

    Despite the enormous success of iris recognition in close-range and well-regulated spaces for biometric authentication, it has hitherto failed to gain wide-scale adoption in less controlled, public environments. The problem arises from a limitation in imaging called the depth of field (DOF): the limited range of distances beyond which subjects appear blurry in the image. The loss of spatial details in the iris image outside the small DOF limits the iris image capture to a small volume-the capture volume. Existing techniques to extend the capture volume are usually expensive, computationally intensive, or afflicted by noise. Is there a way to combine the classical Scheimpflug principle with the modern computational imaging techniques to extend the capture volume? The solution we found is, surprisingly, simple; yet, it provides several key advantages over existing approaches. Our method, called Angular Focus Stacking (AFS), consists of capturing a set of images while rotating the lens, followed by registration, and blending of the in-focus regions from the images in the stack. The theoretical underpinnings of AFS arose from a pair of new and general imaging models we developed for Scheimpflug imaging that directly incorporates the pupil parameters. The model revealed that we could register the images in the stack analytically if we pivot the lens at the center of its entrance pupil, rendering the registration process exact. Additionally, we found that a specific lens design further reduces the complexity of image registration making AFS suitable for real-time performance. We have demonstrated up to an order of magnitude improvement in the axial capture volume over conventional image capture without sacrificing optical resolution and signal-to-noise ratio. The total time required for capturing the set of images for AFS is less than the time needed for a single-exposure, conventional image for the same DOF and brightness level. The net reduction in capture time can

  10. Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared

    Science.gov (United States)

    Schuster, Norbert

    2016-05-01

    More and more modern thermal imaging systems use uncooled detectors. High volume applications work with detectors that have a reduced pixel count (typically between 200x150 and 640x480). This reduces the usefulness of modern image treatment procedures such as wave front coding. On the other hand, uncooled detectors demand lenses with fast fnumbers, near f/1.0, which reduces the expected Depth of Field (DoF). What are the limits on resolution if the target changes distance to the camera system? The desire to implement lens arrangements without a focusing mechanism demands a deeper quantification of the DoF problem. A new approach avoids the classic "accepted image blur circle" and quantifies the expected DoF by the Through Focus MTF of the lens. This function is defined for a certain spatial frequency that provides a straightforward relation to the pixel pitch of imaging device. A certain minimum MTF-level is necessary so that the complete thermal imaging system can realize its basic functions, such as recognition or detection of specified targets. Very often, this technical tradeoff is approved with a certain lens. But what is the impact of changing the lens for one with a different focal length? Narrow field lenses, which give more details of targets in longer distances, tighten the DoF problem. A first orientation is given by the hyperfocal distance. It depends in a square relation on the focal length and in a linear relation on the through focus MTF of the lens. The analysis of these relations shows the contradicting requirements between higher thermal and spatial resolution, faster f-number and desired DoF. Furthermore, the hyperfocal distance defines the DoF-borders. Their relation between is such as the first order imaging formulas. A calculation methodology will be presented to transfer DoF-results from an approved combination lens and camera to another lens in combination with the initial camera. Necessary input for this prediction is the accepted DoF of

  11. An alternative approach to depth of field which avoids the blur circle and uses the pixel pitch

    Science.gov (United States)

    Schuster, Norbert

    2015-09-01

    Modern thermal imaging systems apply more and more uncooled detectors. High volume applications work with detectors which have a reduced pixel count (typical between 200x150 and 640x480). This shrinks the application of modern image treatment procedures like wave front coding. On the other hand side, uncooled detectors demand lenses with fast F-numbers near 1.0. Which are the limits on resolution if the target to analyze changes its distance to the camera system? The aim to implement lens arrangements without any focusing mechanism demands a deeper quantification of the Depth of Field problem. The proposed Depth of Field approach avoids the classic "accepted image blur circle". It bases on a camera specific depth of focus which is transformed in the object space by paraxial relations. The traditional RAYLEIGH's -criterion bases on the unaberrated Point Spread Function and delivers a first order relation for the depth of focus. Hence, neither the actual lens resolution neither the detector impact is considered. The camera specific depth of focus respects a lot of camera properties: Lens aberrations at actual F-number, detector size and pixel pitch. The through focus MTF is the base of the camera specific depth of focus. It has a nearly symmetric course around the maximum of sharp imaging. The through focus MTF is considered at detector's Nyquist frequency. The camera specific depth of focus is this the axial distance in front and behind of sharp image plane where the through focus MTF is pitch (detector). The DLTF- discussion provides physical limits and technical requirements. The detector development with pixel pitches smaller than captured wavelength in the LWIR-region generates a special challenge for optical design.

  12. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  13. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  14. Weakly supervised training of deep convolutional neural networks for overhead pedestrian localization in depth fields

    NARCIS (Netherlands)

    Corbetta, A.; Menkovski, V.; Toschi, F.

    Overhead depth map measurements capture sufficient amount of information to enable human experts to track pedestrians accurately. However, fully automating this process using image analysis algorithms can be challenging. Even though hand-crafted image analysis algorithms are successful in many

  15. Deformation of digital holograms for full control of focus and for extending the depth of field

    Energy Technology Data Exchange (ETDEWEB)

    Paturzo, M; Memmolo, P; Finizio, A; Ferraro, P, E-mail: pietro.ferraro@inoa.i [CNR-Istituto Nazionale di Ottica Applicata and Istituto di Cibernetica, via Campi Flegrei 34, 80078 Pozzuoli (Italy)

    2010-02-01

    We present a new method to manage the depth of focus in holograms numerical reconstructions through an adaptive deformation of the digital holograms. We demonstrate that this technique can be applied both to Fourier and Fresnel holograms. The experimental results, in agreement with the theoretical model, are shown and commented for both these configurations.

  16. Competition between Plant-Populations with Different Rooting Depths. 3. Field Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1982-01-01

    The model proposed in the first paper in this series predicts that in mixtures of plant species with different rooting depths there will be an inverse correlation between the relative crowding coefficient of the deep rooting species with respect to the shallow rooting one and the frequency of the

  17. Role of initial depth at basin margins in sequence architecture: field examples and computer models

    Czech Academy of Sciences Publication Activity Database

    Uličný, David; Nichols, G.; Waltham, D.

    2002-01-01

    Roč. 14, č. 3 (2002), s. 347-360 ISSN 0950-091X R&D Projects: GA ČR GA205/01/0629 Institutional research plan: CEZ:AV0Z3012916 Keywords : basin margin * initial depth * sedimentation * depositional sequences Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.022, year: 2002

  18. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  19. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  20. Depth measurements of drilled holes in bone by laser triangulation for the field of oral implantology

    Science.gov (United States)

    Quest, D.; Gayer, C.; Hering, P.

    2012-01-01

    Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.

  1. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  2. Power-law index and penetration depth of (NdxSmxGd1−2x)Ba2Cu3O7−δ films studied by AC susceptibility

    DEFF Research Database (Denmark)

    Li, Xiaofen; He, Dong; Grivel, Jean-Claude

    2012-01-01

    Superconducting (NdxSmxGd1−2x)Ba2Cu3O7−δ films with x=0, 0.1, 0.25, 0.33 were grown by PLD on STO single crystal substrates. The power-law index n and penetration depth λ are studied by AC susceptibility. During cooling, n in films with x ≠ 0 increases much slower compared with the films with x =....... The films with x ≠ 0 also tend to have a longer penetration depth. These properties might be related to the higher possibility for disorder in the mixed (Nd,Sm,Gd)BCO films....

  3. Analytical research of vibration and far-field acoustic radiation of cylindrical shell immersed at finite depth

    Directory of Open Access Journals (Sweden)

    GUO Wenjie

    2017-08-01

    Full Text Available Aiming at the current lack of analytical research concerning the cylindrical shell-flow field coupling vibration and sound radiation system under the influence of a free surface, this paper proposes an analytical method which solves the vibration response and far-field acoustic radiation of a finite cylindrical shell immersed at a finite depth. Based on the image method and Graf addition theorem, the analytical expression of the fluid velocity potential can be obtained, then combined with the energy functional of the variation method to deduce the shell-liquid coupling vibration equation, which can in turn solve the forced vibration response. The research shows that, compared with an infinite fluid, a free surface can increase at the same order of resonance frequency; but as the depth of immersion gradually increases, the mean square vibration velocity tends to become the same as that in an infinite fluid. Compared with numerical results from Nastran software, this shows that the present method is accurate and reliable, and has such advantages as a simple method and a small amount of calculation. The far-field radiated pressure can be obtained by the vibration response using the Fourier transformation and stationary phase method. The results indicate that the directivity and volatility of the far-field acoustic pressure of a cylindrical shell is similar to that of an acoustical dipole due to the free surface. However, the far-field acoustic pressure is very different from the vibration characteristics, and will not tend to an infinite fluid as the submerging depth increases. Compared with the numerical method, the method in this paper is simpler and has a higher computational efficiency. It enables the far-field acoustic radiation of an underwater cylindrical shell to be predicted quickly under the influence of external incentives and the free surface, providing guiding significance for acoustic research into the half space structure vibration

  4. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2017-02-01

    Full Text Available A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  5. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.

    Science.gov (United States)

    Richmond-Bryant, Jennifer; Hahn, Intaek; Fortune, Christopher R; Rodes, Charles E; Portzer, Jeffrey W; Lee, Sangdon; Wiener, Russell W; Smith, Luther A; Wheeler, Michael; Seagraves, Jeremy; Stein, Mark; Eisner, Alfred D; Brixey, Laurie A; Drake-Richman, Zora E; Brouwer, Lydia H; Ellenson, William D; Baldauf, Richard

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) field study examined indoor and outdoor exposure to traffic-generated air pollution by studying the individual processes of generation of traffic emissions, transport and dispersion of air contaminants along a roadway, and infiltration of the contaminants into a residence. Real-time instrumentation was used to obtain highly resolved time-series concentration profiles for a number of air pollutants. The B-TRAPPED field study was conducted in the residential Sunset Park neighborhood of Brooklyn, NY, USA, in May 2005. The neighborhood contained the Gowanus Expressway (Interstate 278), a major arterial road (4(th) Avenue), and residential side streets running perpendicular to the Gowanus Expressway and 4(th) Avenue. Synchronized measurements were obtained inside a test house, just outside the test house façade, and along the urban residential street canyon on which the house was located. A trailer containing Federal Reference Method (FRM) and real-time monitors was located next to the Gowanus Expressway to assess the source. Ultrafine particulate matter (PM), PM(2.5), nitrogen oxides (NO(x)), sulfur dioxide (SO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), temperature, relative humidity, and wind speed and direction were monitored. Different sampling schemes were devised to focus on dispersion along the street canyon or infiltration into the test house. Results were obtained for ultrafine PM, PM(2.5), criteria gases, and wind conditions from sampling schemes focused on street canyon dispersion and infiltration. For comparison, the ultrafine PM and PM(2.5) results were compared with an existing data set from the Los Angeles area, and the criteria gas data were compared with measurements from a Vancouver epidemiologic study. Measured ultrafine PM and PM(2.5) concentration levels along the residential urban street canyon and at the test house façade in Sunset Park

  6. Cortical depth dependent population receptive field attraction by spatial attention in human V1

    NARCIS (Netherlands)

    Klein, Barrie P.; Fracasso, Alessio; van Dijk, Jelle A.; Paffen, Chris L.E.; te Pas, Susan F.; Dumoulin, Serge O.

    2018-01-01

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could

  7. Conception of a course for professional training and education in the field of computer and mobile forensics, part III: network forensics and penetration testing

    Science.gov (United States)

    Kröger, Knut; Creutzburg, Reiner

    2014-02-01

    IT security and computer forensics are important components in the information technology. From year to year, incidents and crimes increase that target IT systems or were done with their help. More and more companies and authorities have security problems in their own IT infrastructure. To respond to these incidents professionally, it is important to have well trained staff. The fact that many agencies and companies work with very sensitive data make it necessary to further train the own employees in the field of network forensics and penetration testing. Motivated by these facts, this paper - a continuation of a paper of January 2012 [1], which showed the conception of a course for professional training and education in the field of computer and mobile forensics - addresses the practical implementation important relationships of network forensic and penetration testing.

  8. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, Hasan [Ondokuz Mayis University, Department of Physics, Faculty of Sciences and Arts, Samsun (Turkey); Bentabet, Abdelouahab [Bordj Bou Arreridj University, LCVRN, SNVSTU Faculty, El Anasser (Algeria)

    2017-05-15

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C{sub 2}H{sub 6} (ethane), C{sub 4}H{sub 10} (butane), C{sub 6}H{sub 14} (hexane) C{sub 8}H{sub 18} (octane), C{sub 5}H{sub 5}N{sub 5} (adenine) and C{sub 5}H{sub 5}N{sub 5}O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date. (orig.)

  9. Time-depth and velocity trend analysis of the Wasagu field ...

    African Journals Online (AJOL)

    From this study of data sets from Wasagu field in the Niger Delta, it has been found ... relief) cause big difference in bed velocities or where anisotropy is severe. ... of seismic data and checkshot data sets, which lie three wells, a relationship ...

  10. Molecules in strong laser fields. In depth study of H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Manohar

    2009-10-29

    A method for solving the time-dependent Schroedinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like H{sub 2}, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. The H{sub 2} molecule is the testing ground for the implementation of both the methods. The reliability of the configuration interaction (CI) based method for the solution of TDSE (CI-TDSE) is tested by comparing results in the low-intensity regime to the prediction of lowest-order perturbation theory. Another test for the CI-TDSE method is in the united atom limit for the H{sub 2} molecule. By selecting a very small value of the internuclear distance close to zero for the H{sub 2} molecule, Helium atom is obtained. Once the functionality and the reliability of the method is established, it is used for obtaining accurate results for molecular hydrogen exposed to intense laser fields. The results for the standard 800 nm Titanium-Sapphire laser and its harmonics at 400 nm and 266 nm are shown. The results for a scan over a wide range of incident photon energies as well as dependence on the internuclear distance are presented. The photoelectron spectra including

  11. Molecules in strong laser fields. In depth study of H2 molecule

    International Nuclear Information System (INIS)

    Awasthi, Manohar

    2009-01-01

    A method for solving the time-dependent Schroedinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like H 2 , fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. The H 2 molecule is the testing ground for the implementation of both the methods. The reliability of the configuration interaction (CI) based method for the solution of TDSE (CI-TDSE) is tested by comparing results in the low-intensity regime to the prediction of lowest-order perturbation theory. Another test for the CI-TDSE method is in the united atom limit for the H 2 molecule. By selecting a very small value of the internuclear distance close to zero for the H 2 molecule, Helium atom is obtained. Once the functionality and the reliability of the method is established, it is used for obtaining accurate results for molecular hydrogen exposed to intense laser fields. The results for the standard 800 nm Titanium-Sapphire laser and its harmonics at 400 nm and 266 nm are shown. The results for a scan over a wide range of incident photon energies as well as dependence on the internuclear distance are presented. The photoelectron spectra including above

  12. Eddy current testing with high penetration

    International Nuclear Information System (INIS)

    Becker, R.; Kroening, M.

    1999-01-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de

  13. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.

    Science.gov (United States)

    Kwon, Ki-Chul; Lim, Young-Tae; Shin, Chang-Won; Erdenebat, Munkh-Uchral; Hwang, Jae-Moon; Kim, Nam

    2017-08-15

    We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded. The experimental results confirm that the DoF of the integral imaging microscopy system is extended successfully by using the bifocal MLA.

  14. Spatiotemporal Dynamics of Soil Penetration Resistance of Recultivated Soil

    Directory of Open Access Journals (Sweden)

    Zadorozhnaya Galina

    2018-03-01

    Full Text Available This article examines changes in the spatial distribution of soil penetration resistance in ordinary chernozem (Calcic Chernozem and in the recultivated soil in 2012 and 2014. The measurements were carried out in the field using an Eijkelkamp penetrometer on a regular grid. The depth of measurement was 50 cm, the interval was 5 cm. The indices of variation of soil penetration resistance in space and time have been determined. The degree of spatial dependence of soil penetration resistance has been determined layer by layer. The nature of temporal dynamics of soil penetration resistance of chernozem and technical soil has been described. A significant positive relationship of the structure of chernozem in the two years of the research has been shown. Significant correlations between the data of different years in the technical soil were found to be mostly negative.

  15. About microlensing optical depth and rates for free-floating planets towards the Kepler's field of view

    International Nuclear Information System (INIS)

    Hafizi, M; Hamolli, L

    2012-01-01

    In this work we examine the possibility of observing microlensing events in the Kepler space observatory field of view, caused by brown dwarfs or free-floating planets. We calculate the optical depth towards the field of view of the Kepler satellite and the rate of these events based on latest results about mass distribution of astrophysical objects from brown dwarf down to Earth mass order. With the current data, the probability of such events is insignificant, due to the small number of stars observed by this instrument compared to other experiments devoted to the microlensing method. Nevertheless, this probability may increase significantly in the case of a higher presence of free-floating planets, whose number is poorly defined so far.

  16. Gravity Field Interpretation for Major Fault Depth Detection in a Region Located SW- Qa’im / Iraq

    Directory of Open Access Journals (Sweden)

    Wadhah Mahmood Shakir Al-Khafaji

    2017-09-01

    Full Text Available This research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-SW. This fault is mentioned by previous studies as undefined subsurface fault depth within the sedimentary cover rocks. The results of this research that were obtained by gravity quantitative interpretation find that the depth to this major fault plane center is about 2.4 Km.

  17. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  18. Toward 1-mm depth precision with a solid state full-field range imaging system

    Science.gov (United States)

    Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.

    2006-02-01

    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.

  19. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  20. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  1. Influence of jet thrust on penetrator penetration when studying the structure of space object blanket

    Directory of Open Access Journals (Sweden)

    N. A. Fedorova

    2014-01-01

    Full Text Available The article presents the calculation-and-theory-based research results to examine the possibility for using the jet thrust impulse to increase a penetration depth of high-velocity penetrator modules. Such devices can be used for studies of Earth surface layer composition, and in the nearest future for other Solar system bodies too. Research equipment (sensors and different instruments is housed inside a metal body of the penetrator with a sharpened nose that decreases drag force in soil. It was assumed, that this penetrator is additionally equipped with the pulse jet engine, which is fired at a certain stage of penetrator motion into target.The penetrator is considered as a rigid body of variable mass, which is subjected to drag force and reactive force applied at the moment the engine fires. A drag force was represented with a binomial empirical law, and penetrator nose part was considered to be conical. The jet thrust force was supposed to be constant during its application time. It was in accordance with assumption that mass flow and flow rate of solid propellant combustion products were constant. The amount of propellant in the penetrator was characterized by Tsiolkovsky number Z, which specifies the ratio between the fuel mass and the penetrator structure mass with no fuel.The system of equations to describe the penetrator dynamics was given in dimensionless form using the values aligned with penetration of an equivalent inert penetrator as the time and penetration depth scales. Penetration dynamics of penetrator represented in this form allowed to eliminate the influence of penetrator initial mass and its cross-section diameter on the solution results. The lack of such dependency is convenient for comparing the calculation results since they hold for penetrators of various initial masses and cross-sections.To calculate the penetration a lunar regolith was taken as a soil material. Calculations were carried out for initial velocities of

  2. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  3. Developing an Efficient and Cost Effective Ground-Penetrating Radar Field Methodology for Subsurface Exploration and Mapping of Cultural Resources on Public Lands

    National Research Council Canada - National Science Library

    Conyers, Lawrence B

    2006-01-01

    .... A new, emerging technology is the use of ground penetrating radar (GPR). However, in using this device due to the number of variables that can impact energy penetration and resolution, researchers are often not guaranteed a successful survey...

  4. Ballistic-type field penetration into metals illustrated by high- and low-frequency size-effect measurements in silver

    DEFF Research Database (Denmark)

    Gantmakher, V. F.; Lebech, Jens; Bak, Christen Kjeldahl

    1979-01-01

    Radio-frequency size-effect experiments were performed on silver plane-parallel plates at high, 45 GHz, and low, 3 MHz, frequencies. By investigation of size-effect structures we show the influence of frequency on the field distribution inside the metal. When the frequency increases, the splash...

  5. Antibody tumor penetration

    Science.gov (United States)

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue. PMID:18541331

  6. Python penetration testing essentials

    CERN Document Server

    Mohit

    2015-01-01

    If you are a Python programmer or a security researcher who has basic knowledge of Python programming and want to learn about penetration testing with the help of Python, this book is ideal for you. Even if you are new to the field of ethical hacking, this book can help you find the vulnerabilities in your system so that you are ready to tackle any kind of attack or intrusion.

  7. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields

    Science.gov (United States)

    Ernesto Trujillo; Jorge A. Ramirez; Kelly J. Elder

    2007-01-01

    In this study, LIDAR snow depths, bare ground elevations (topography), and elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas are used to determine whether the spatial distribution of snow depth exhibits scale invariance, and the control that vegetation, topography, and winds exert on such behavior. The one-dimensional and mean...

  8. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Science.gov (United States)

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    Science.gov (United States)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  10. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained......, partially or fully drained. However, lowering the penetration rate in silty soils has a great significance because of the soil permeability, and only a small change in penetration rate will result in changed cone penetration measurements. In this paper, analyses will be done on data from 15 field cone...

  11. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings

    Directory of Open Access Journals (Sweden)

    Henry Finlay Godson

    2016-01-01

    Full Text Available The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS, depth of dose maximum (Dmax, percentage dose at 10 cm (D10, penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1% with photon field diode in parallel orientation was higher than electron field diode (EFD (27.9% values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.

  12. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  13. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  14. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  15. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Miranda, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rosario, M. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Costantino, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  16. Effects of Optical Combiner and IPD Change for Convergence on Near-Field Depth Perception in an Optical See-Through HMD.

    Science.gov (United States)

    Lee, Sangyoon; Hu, Xinda; Hua, Hong

    2016-05-01

    Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.

  17. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propaga- tion in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. The hydrological simu- lator HYDRUS-1D was used with a two layer single- and dual-porosity model. The radar model was coupled to the hydrodynamic model, such that the soil electrical properties (permitivity and conductivity) that serve as input to the GPR model become a function of the hydrodynamic model output (water content), thereby permiting estimation of the soil hydraulic parameters from the GPR data in an inversion loop. To monitor the soil water con- tent dynamics, time-lapse GPR and time domain reflectometry (TDR) measurements were performed, whereby only GPR data was used in the inversion. Significant effects of water dynamics were observed in the time-lapse GPR data and in particular precipitation and evaporation events were clearly visible. The dual porosity model provided betier results compared to the single porosity model for describing the soil water dynamics, which is sup- ported by field observations of macropores. Furthermore, the GPR-derived water content profiles reconstructed from the integrated hydrogeophysical inversion were in good agree- ment with TDR observations. These results suggest that the proposed method is promising for non-invasive characterization of the shallow subsurface hydraulic properties and moni- toring water dynamics at the field scale. © Soil Science Society of America.

  18. Ethical hacking and penetration testing guide

    CERN Document Server

    Baloch, Rafay

    2014-01-01

    Requiring no prior hacking experience, Ethical Hacking and Penetration Testing Guide supplies a complete introduction to the steps required to complete a penetration test, or ethical hack, from beginning to end. You will learn how to properly utilize and interpret the results of modern-day hacking tools, which are required to complete a penetration test. The book covers a wide range of tools, including Backtrack Linux, Google reconnaissance, MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker Defender rootkit. Supplying a simple and clean explanation of how to effectively utilize these tools, it details a four-step methodology for conducting an effective penetration test or hack.Providing an accessible introduction to penetration testing and hacking, the book supplies you with a fundamental understanding of offensive security. After completing the book you will be prepared to take on in-depth and advanced topics in hacking and penetration testing. The book walks you through each ...

  19. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  20. Overview of the Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study: theoretical background and model for design of field experiments.

    Science.gov (United States)

    Hahn, Intaek; Wiener, Russell W; Richmond-Bryant, Jennifer; Brixey, Laurie A; Henkle, Stacy W

    2009-12-01

    The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study was a multidisciplinary field research project that investigated the transport, dispersion, and infiltration processes of traffic emission particulate matter (PM) pollutants in a near-highway urban residential area. The urban PM transport, dispersion, and infiltration processes were described mathematically in a theoretical model that was constructed to develop the experimental objectives of the B-TRAPPED study. In the study, simultaneous and continuous time-series PM concentration and meteorological data collected at multiple outdoor and indoor monitoring locations were used to characterize both temporal and spatial patterns of the PM concentration movements within microscale distances (street canyon; (2) investigating the effects of urban structures such as a tall building or an intersection on the transport and dispersion of PM; (3) studying the influence of meteorological variables on the transport, dispersion, and infiltration processes; (4) characterizing the relationships between the building parameters and the infiltration mechanisms; (5) establishing a cause-and-effect relationship between outdoor-released PM and indoor PM concentrations and identifying the dominant mechanisms involved in the infiltration process; (6) evaluating the effectiveness of a shelter-in-place area for protection against outdoor-released PM pollutants; and (7) understanding the predominant airflow and pollutant dispersion patterns within the neighborhood using wind tunnel and CFD simulations. The 10 papers in this first set of papers presenting the results from the B-TRAPPED study address these objectives. This paper describes the theoretical background and models representing the interrelated processes of transport, dispersion, and infiltration. The theoretical solution for the relationship between the time-dependent indoor PM concentration and the initial PM concentration

  1. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    Science.gov (United States)

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  2. Dependence of some transmission factors on field size and treatment depth in external beam radiation therapy (EBRT) using the theratron equinox 100 cobalt 60 machine

    International Nuclear Information System (INIS)

    Odonkor, P.

    2015-07-01

    The use of beam modifiers in today’s radiotherapy is very important as it attenuates the beam and reduces the dose to the patient; therefore the need to know the amount of attenuation (in terms of a transmission factor) they provide during treatment. The purpose of this research work is to evaluate the variation (or dependence) of the transmission factors (TFs) of block tray and physical wedges (of different angles) as a function of treatment depth and field size using both iso-centric setups, SAD and SSD; and thus compare the results from the two setup techniques. Wedge and tray TF measurements were performed in a full scatter, large water phantom using a 0.04cc ionization chamber and an average photon energy of 1.25MV from a cobalt-60 unit at an SAD/SSD of 100cm at various depths and field sizes with gantry and collimator angles fixed at 0°. From the measurements carried out, the wedge TF of the 15°, 30°, 45°, and 60°, wedges were found to be 0.775±0.005, 0.650±0.010, 0.505±0.015, and 0.280±0.015 respectively; and the tray TF was found to be 0.960±0.003. Also, the results obtained showed that both the wedge TF and the tray TF has a strong linear dependence on treatment depth; however, the variation of the 15°, wedge TF and the tray TF with depth is less significant (less than 2%). Maximum percentage variation for the 15°, wedge for the SAD setup was 1.1% and 1.59% for the SSD setup; and that for the tray was 0.60% for the SAD setup and 0.12% for the SSD setup. Also, the variation of the 15°, 30°, and 45°, wedge TF with field size was less significant (less than 2%); and a weaker dependence was observed with field size as compared to the treatment depth. However, the 60°, wedge showed a significant variation (maximum of 2.22% and 2.88% for the SAD and SSD setups respectively) as an increase in field size was accompanied by an increase in its wedge TF. Also though the tray TF graphically showed a strong linear dependence on field size the

  3. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  4. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  5. Quantifying spatial variability of depth of peat burn in wetlands in relation to antecedent characteristics using field data, multi-temporal and multi-spectral LiDAR

    Science.gov (United States)

    Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.

    2017-12-01

    Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface

  6. FAA Fluorescent Penetrant Laboratory Inspections

    Energy Technology Data Exchange (ETDEWEB)

    WINDES,CONNOR L.; MOORE,DAVID G.

    2000-08-02

    The Federal Aviation Administration Airworthiness Assurance NDI Validation Center currently assesses the capability of various non-destructive inspection (NDI) methods used for analyzing aircraft components. The focus of one such exercise is to evaluate the sensitivity of fluorescent liquid penetrant inspection. A baseline procedure using the water-washable fluorescent penetrant method defines a foundation for comparing the brightness of low cycle fatigue cracks in titanium test panels. The analysis of deviations in the baseline procedure will determine an acceptable range of operation for the steps in the inspection process. The data also gives insight into the depth of each crack and which step(s) of the inspection process most affect penetrant sensitivities. A set of six low cycle fatigue cracks produced in 6.35-mm thick Ti-6Al-4V specimens was used to conduct the experiments to produce sensitivity data. The results will document the consistency of the crack readings and compare previous experiments to find the best parameters for water-washable penetrant.

  7. The oxygen-isotope effect on the in-plane penetration depth in underdoped Y{sub 1-x} Pr{sub x} Ba{sub 2} Cu{sub 3} O{sub 7-{delta}} as revealed by muon-spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Morenzoni, E [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Yugoslavia); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2003-01-22

    The oxygen-isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane penetration depth {lambda}{sub ab} (0) in underdoped Y{sub 1-x} Pr{sub x} Ba{sub 2} Cu{sub 3} O{sub 7-{delta}} was studied by means of muon-spin rotation. A pronounced OIE on {lambda}{sub ab}{sup -2} (0) was observed with a relative isotope shift of {delta}{lambda}{sub ab}{sup -2} /{lambda} {sub ab}{sup -2} = -5(2)% for x=0.3 and -9(2)% for x=0.4. The OIE exponents of T{sub c} and of {lambda}{sub ab}{sup -2} (0) exhibit a relation that appears to be generic for cuprate superconductors. (letter to the editor)

  8. Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi nuclear power plant in different agricultural fields and forests

    International Nuclear Information System (INIS)

    Ohno, Takeshi; Muramatsu, Yasuyuki; Oda, Kazumasa; Inagawa, Naoya; Ogawa, Hiromu; Yamazaki, Atsuko; Toyama, Chiaki; Miura, Yoshinori; Sato, Mutsuto

    2012-01-01

    In order to understand the behavior of radionuclides released from the Fukushima Daiichi nuclear power plant, the depth distributions of radiocesium and radioiodine were investigated in a wheat field, a rice paddy, an orchard, and a cedar forest in Koriyama, Fukushima Prefecture. Our results demonstrate that, following the nuclear power plant disaster, more than 90% of the radionuclides were distributed in the upper 6 cm of the soil column in the wheat field and within 4 cm of the surface in the rice paddy, orchard, and cedar forest. According to the measurement of radionuclides in the three adjacent agricultural fields, the variation of deposition densities in the wheat field was smaller than that of the orchard and rice paddy, suggesting that the low permeability of the orchard and paddy soils may cause horizontal migration of radionuclides during the initial deposition. This result indicates that the deposition densities in the wheat field should be appropriate for estimating the amount of fallout in the area. The deposition densities of 134 Cs, 137 Cs, and 131 I in this area were estimated to be 512 ± 76 (SD, n = 5), 522 ± 80 (SD, n = 5), and 608 ± 79 (SD, n = 5) kBq/m 2 (decay corrected to April 1, 2011), respectively. A comparison of the deposition density between the wheat field and the cedar forest suggests that more than half of the radionuclides are distributed in the tree canopies of the evergreen forestland. (author)

  9. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  10. Penetration tests to study the mechanical tribological properties of chisel type knife

    Science.gov (United States)

    Vlăduţoiu, L.; Chişiu, G.; Andrei, T.; Predescu, A.; Muraru, C.; Vlăduţ, V.

    2017-02-01

    The goal of this study was to analyze the behaviour of chisel knife type penetration in a certain type of sand. A series of penetration tests were carried out with chisel knife type, the answer to penetration depending mainly on nature, shape, size of knife and operating parameters such as speed, depth and working conditions. Tests were conducted in work conditions with wet sand and dry sand and determined force of resistance to penetration of the chisel knife type to a certain depth.

  11. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    International Nuclear Information System (INIS)

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D.; Elser, Veit; Muller, David A.

    2014-01-01

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography

  12. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  13. The Basics of Hacking and Penetration Testing Ethical Hacking and Penetration Testing Made Easy

    CERN Document Server

    Engebretson, Patrick

    2011-01-01

    The Basics of Hacking and Penetration Testing serves as an introduction to the steps required to complete a penetration test or perform an ethical hack. You learn how to properly utilize and interpret the results of modern day hacking tools; which are required to complete a penetration test. Tool coverage will include, Backtrack Linux, Google, Whois, Nmap, Nessus, Metasploit, Netcat, Netbus, and more. A simple and clean explanation of how to utilize these tools will allow you  to gain a solid understanding of each of the four phases and prepare them to take on more in-depth texts and topi

  14. New Professional Profiles and Skills in the Journalistic Field: A Scoping Review and In-Depth Interviews with Professionals in Spain

    Directory of Open Access Journals (Sweden)

    Paula Marques-Hayasaki

    2016-12-01

    Full Text Available The professional profiles and skills related to journalism are adapting to a new paradigm as a consequence of the advent of new technologies - the web 2.0, the end of the monopoly of news production by mass media, etc. This study aims to provide a comprehensive critical mapping of new professional profiles and skills demanded in the field of journalism, based on a scoping review and in-depth interviews with professionals and academics in Spain. The results show a great variety of new profiles and nomenclatures. This is in part because of a significant overlapping in the functions emphasized by them. With regards to skills, the traditional ones are still the most valued by the market, although new competencies are becoming more and more important.

  15. Munition Penetration Depth Prediction: SERDP SEED Project MR 2629

    Science.gov (United States)

    2017-08-01

    25 10 Time trace of impact forces estimated from the DEM simulation of the projectile- drop test. The time evolution of...and a Coulomb friction cap on the tangential force. The force components depend on the overlap between dilated grains. The overlap δ between a pair of...2 subject to ∈ (1,2, 1) and 1,2 ∈ [−1,1] (22) where z is the norm square distance between a point y on the coupling sur

  16. Influence of soil parameters on depth of oil waste penetration

    Directory of Open Access Journals (Sweden)

    Rychlicki Stanislaw

    2004-09-01

    Full Text Available A measurement post for testing propagation of hydrocarbon contamination in a model of a near-surface soil layer and its remediation, are characterized in the paper. Generalized results of laboratory observations require meeting similarity criteria of the laboratory and actual processes. These requirements were used when designing the measurement post. A successful attempt to match a theoretical model describing oil products filtration necessitates certain conditions, e.g. homogeneity of the physical model of soil and characteristic of the course of the analyzed processes.

  17. Simulation of depth of penetration during ballistic impact on thick ...

    Indian Academy of Sciences (India)

    One-dimensional discrete element model for the ballistic impact is used ... Simulation of ballistic impact process has been done using several ..... MATLAB 7.0 platform is used to simulate impact process using 1-D DEM and to perform the.

  18. Spectrometric kidney depth measurement method

    International Nuclear Information System (INIS)

    George, P.; Soussaline, F.; Raynaud, C.

    1976-01-01

    The method proposed uses the single posterior surface measurement of the kidney radioactivity distribution. The ratio C/P of the number of scattered photons to the number of primary photons, which is a function of the tissue depth penetrated, is calculated for a given region. The parameters on which the C/P value depends are determined from studies on phantoms. On the basis of these results the kidney depth was measured on a series of 13 patients and a correlation was established between the value thus calculated and that obtained by the profile method. The reproducibility of the method is satisfactory [fr

  19. Controlling Force and Depth in Friction Stir Welding

    Science.gov (United States)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  20. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    Science.gov (United States)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  1. Metasploit penetration testing cookbook

    CERN Document Server

    Agarwal, Monika

    2013-01-01

    This book follows a Cookbook style with recipes explaining the steps for penetration testing with WLAN, VOIP, and even cloud computing. There is plenty of code and commands used to make your learning curve easy and quick.This book targets both professional penetration testers as well as new users of Metasploit, who wish to gain expertise over the framework and learn an additional skill of penetration testing, not limited to a particular OS. The book requires basic knowledge of scanning, exploitation, and the Ruby language.

  2. Development of coring, consolidating, subterrene penetrators

    International Nuclear Information System (INIS)

    Murphy, H.D.; Neudecker, J.W.; Cort, G.E.; Turner, W.C.; McFarland, R.D.; Griggs, J.E.

    1976-02-01

    Coring penetrators offer two advantages over full face-melting penetrators, i.e., formation of larger boreholes with no increase in power and the production of glass-lined, structurally undisturbed cores which can be recovered with conventional core-retrieval systems. These cores are of significant value in geological exploratory drilling programs. The initial design details and fabrication features of a 114-mm-diam coring penetrator are discussed; significant factors for design optimization are also presented. Results of laboratory testing are reported and compared with performance predictions, and an initial field trial is described

  3. An analysis of depth dose characteristics of photon in water

    International Nuclear Information System (INIS)

    Buzdar, S.A.; Rao, M.A.; Nazir, A.

    2009-01-01

    Photon beam is most widely being used for radiation therapy. Biological effect of radiation is concerned with the evaluation of energy absorbed in the tissues. It was aimed to analyse the depth dose characteristics of x-ray beams of diverse energies to enhance the quality of radiotherapy treatment planning. Depth dose characteristics of different energy photon beams in water have been analysed. Photon beam is attenuated by the medium and the transmitted beam with less intensity causes lesser absorbed dose as depth increases. Relative attenuation on certain points on the beam axis and certain percentage of doses on different depths for available energies has been investigated. Photon beam depth dose characteristics do not show identical attributes as interaction of x-ray with matter is mainly governed by beam quality. Attenuation and penetration parameters of photon show variation with dosimetric parameters like field size due to scattering and Source to Surface Distance due to inverse square law, but the major parameter in photon interactions is its energy. Detailed analysis of photon Depth Dose characteristics helps to select appropriate beam for radiotherapy treatment when variety of beam energies available. Evaluation of this type of characteristics will help to establish theoretical relationships between dosimetric parameters to confirm measured values of dosimetric quantities, and hence to increase accuracy in radiotherapy treatment. (author)

  4. Penetration testing with Perl

    CERN Document Server

    Berdeaux, Douglas

    2014-01-01

    If you are an expert Perl programmer interested in penetration testing or information security, this guide is designed for you. However, it will also be helpful for you even if you have little or no Linux shell experience.

  5. penetrating abdominal trauma

    African Journals Online (AJOL)

    gender, mechanism of injury, injury severity scores (ISS), penetrating ... ileus, reduced pulmonary function and loss of muscle mass and function, all of .... pathophysiology and rehabilitation. ... quality of life after surgery for colorectal cancer.

  6. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  7. Low Force Penetration of Icy Regolith

    Science.gov (United States)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  8. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions.

    Science.gov (United States)

    Fernández-Baca, Cristina P; Truhlar, Allison M; Omar, Amir-Eldin H; Rahm, Brian G; Walter, M Todd; Richardson, Ruth E

    2018-05-31

    Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH 4 ) and nitrous oxide (N 2 O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH 4 and N 2 O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH 4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N 2 O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH 4 emissions (mcrA:pmoA, p  0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N 2 O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH 4 flux and N 2 O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH 4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system. Copyright © 2018 Elsevier B

  9. Evaluation of depth of field in SEM images in terms of the information-passing capacity (IPC) and contrast gradient in SEM image

    International Nuclear Information System (INIS)

    Sato, Mitsugu; Ishitani, Tohru; Watanabe, Shunya; Nakagawa, Mine

    2004-01-01

    The depth of field (DoF) in scanning electron microscope (SEM) images has been determined by estimating the change of image sharpness or resolution near the exact focus position. The image sharpness or resolution along the optical axis is determined by calculating the information-passing capacity (IPC) of an optical system taking into account the effect of pixel size of the image. The change of image sharpness near the exact focus position is determined by measuring the slope gradient of the line profile in SEM images obtained at various focal positions of beam. The change of image sharpness along the optical axis determined by the IPC agrees well with those determined by the slope gradient of line profiles in SEM images when a Gaussian distribution having radius 0.86L p (L p : pixel size in image) at which the intensity has fallen to 1/e of the maximum is applied to the IPC calculation for each pixel intensity. The change of image sharpness near the exact focus position has also been compared with those determined by the CG (Contrast-to-Gradient) method. The CG method slightly underestimates the change of image sharpness compared with those determined by the IPC method

  10. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging

    Directory of Open Access Journals (Sweden)

    Bernhard Ströbel

    2018-05-01

    Full Text Available Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light. The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective. The images can be used to generate a calibrated and real color texturized 3Dmodel by ‘structure from motion’ with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology.

  11. Penetrating eye injury in war.

    Science.gov (United States)

    Biehl, J W; Valdez, J; Hemady, R K; Steidl, S M; Bourke, D L

    1999-11-01

    The percentage of penetrating eye injuries in war has increased significantly in this century compared with the total number of combat injuries. With the increasing use of fragmentation weapons and possibly laser weapons on the battle-field in the future, the rate of eye injuries may exceed the 13% of the total military injuries found in Operations Desert Storm/Shield. During the Iran-Iraq War (1980-1988), eye injuries revealed that retained foreign bodies and posterior segment injuries have an improved prognosis in future military ophthalmic surgery as a result of modern diagnostic and treatment modalities. Compared with the increasing penetrating eye injuries on the battlefield, advances in ophthalmic surgery are insignificant. Eye armor, such as visors that flip up and down and protect the eyes from laser injury, needs to be developed. Similar eye protection is being developed in civilian sportswear. Penetrating eye injury in the civilian sector is becoming much closer to the military model and is now comparable for several reasons.

  12. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.

    Science.gov (United States)

    Sander, Ulrich; Lubbe, Nils

    2018-06-01

    Car occupants account for one third of all junction fatalities in the European Union. Driver warning can reduce intersection accidents by up to 50 percent; adding Autonomous Emergency Braking (AEB) delivers a reduction of up to 70 percent. However, these findings are based on an assumed 100 percent equipment rate, which may take decades to achieve. Our study investigates the relationship between intersection AEB market penetration rates and avoidance of accidents and injuries in order to guide implementation strategies. Additionally, residual accident characteristics (impact configurations and severity) are analyzed to provide a basis for future in-crash protection requirements. We determined which accidents would have been avoided through the use of an Intersection AEB system with different sensor field-of-views (180° and 120°) by means of re-simulating the pre-crash phase of 792 straight crossing path (SCP) car-to-car accidents recorded in the German In-Depth Accident Study (GIDAS) and the associated Pre-Crash Matrix (PCM). Intersection AEB was activated when neither of the conflict opponents could avoid the crash through reasonable braking or steering reactions. For not-avoided accidents, we used the Kudlich-Slibar rigid body impulse model to calculate the change of velocity during the impact as a measure of impact severity and the principal direction of force. Accident avoidance over market penetration is not linear but exponential, with higher gains at low penetration rates and lower gains at higher rates. A wide field-of-view sensor (180°) substantially increased accident avoidance and injury mitigation rates compared to a 120° field-of-view sensor. For a 180° field-of-view sensor at 100 percent market penetration, about 80 percent of the accidents and 90 percent of the MAIS2 + F injuries could be avoided. For the remaining accidents, AEB intervention rarely affected side of impact. The median change of velocity (delta-V) of the remaining crashes

  13. Spatio-temporal dynamics of the penetration resistance of recultivated soils formed after open cast mining

    Directory of Open Access Journals (Sweden)

    A. V. Zhukov

    2016-01-01

    Full Text Available On the basis of studying the spatio-temporal dynamics of soil penetration resistance we proved the existence of the technozem ecomorphs as above horizon soil formations. Research was carried out at a research center for study of recultivation processes in Ordzhonikidze city. Measurement of soils penetration was made in field conditions using an Eijkelkamp penetrometer on a regular grid at depths of up to50 cmwith intervals of5 cm. Calculation of average values and degrees of variation was performed by means of descriptive statistical tools. The extent of soil penetration spatial dependence was assessed and the existence of ecomorphs was proved by means of geostatistical analysis. The degree of associativity of spatial distribution of indicators of a soil body in different years of research was established by means of correlation analysis. The level of variation in space and in time of  technozem penetration generated on loess-like loams, grey-green, red-brown clays, and also pedozems was revealed. The degree of spatial dependence of  technozem penetration within soil layers and also the linear sizes of ecomorphs as above horizon soil structures was established. The time dynamics of  penetration of various recultozems were described. As a result of research into the spatio-temporal dynamics of penetration of technozems, data confirming the hypothesis of the existence of ecomorphs as above horizon morphological soil formations were obtained. An ecomorphic approach to the study of the morphological structure of technozems is proposed. The comparative characteristics of ecomorphs from various types of technozem are presented. The results obtained solve the problem of combining the higher and lowest levels in the hierarchical system of soil organisation as a natural body, which should raise the efficiency of the analysis of relations of morphological elements as a basis for detailed reconstruction of recultivation processes, soil formation, and

  14. Study on Penetration Characteristics of Tungsten Cylindrical Penetrator

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Hyun; Lee, Young Shin; Kim, Jae Hoon [Chungnam Nat' l Univ., Daejeon (Korea, Republic of); Bae, Yong Woon [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The design of missile require extremely small warheads that must be highly efficient and lethal. The penetration characteristics of each penetrator and the total number of penetrators on the warhead are obvious key factors that influence warhead lethality. The design of the penetrator shape and size are directly related to the space and weight of the warhead. The design of the penetrator L/D was directly related to the space and weight of the warhead. L and D are the length and the diameter of the projectile, respectively. The AUTODYN-3a code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, obliquity angle and L/D of penetrator. The residual velocity and residual mass were decreased with increasing initial impact velocity under L/D{<=}4.

  15. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  16. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  17. Skull penetrating wound

    International Nuclear Information System (INIS)

    Gonzalez Orlandi, Yvei; Junco Martin, Reinel; Rojas Manresa, Jorge; Duboy Limonta, Victor; Matos Herrera, Omar; Saez Corvo, Yunet

    2011-01-01

    The cranioencephalic trauma is common in the emergence centers to care for patients with multiple traumata and it becames in a health problem in many countries. Skull penetrating trauma is located in a special place due to its low frequency. In present paper a case of male patient aged 52 severely skull-injured with penetrating wound caused by a cold steel that remained introduced into the left frontotemporal region. After an imaging study the emergence surgical treatment was applied and patient evolves adequately after 25 days of hospitalization. Nowadays, she is under rehabilitation treatment due to a residual right hemiparesis.(author)

  18. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  19. Pseudomonas aeruginosa endophthalmitis after penetrating keratoplasty transmitted from the same donor to two recipients confirmed by pulsed-field gel electrophoresis.

    Science.gov (United States)

    Oguido, Ana Paula Miyagusko Taba; Casella, Antonio Marcelo Barbante; Hofling-Lima, Ana Luisa; Pacheco, Sergio Arruda; Bispo, Paulo José Martins; Marques, Fernanda

    2011-09-01

    Two devastating cases of multidrug-resistant Pseudomonas aeruginosa endophthalmitis after keratoplasty as the result of transmission from the same donor were confirmed by pulsed-field gel electrophoresis. Strategies for preventing donor-to-host transmission, such as the use of antimicrobial agents of greater efficacy and better methods for detecting microorganisms in preservation medium, could minimize this type of transmission.

  20. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  1. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    Science.gov (United States)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  2. How has Mobile Phone Penetration Stimulated Financial Development in Africa?

    OpenAIRE

    Simplice A, Asongu

    2012-01-01

    In the first macroeconomic empirical assessment of the relationship between mobile phones and finance, this paper examines the correlations between mobile phone penetration and financial development using two conflicting definitions of the financial system in the financial development literature. With the traditional IFS (2008) definition, mobile phone penetration has a negative correlation with traditional financial intermediary dynamics of depth, activity and size. However, when a previous...

  3. Percutaneous penetration studies for risk assessment

    DEFF Research Database (Denmark)

    Sartorelli, Vittorio; Andersen, Helle Raun; Angerer, Jürgen

    2000-01-01

    experiences, literature data and guidelines already in existence. During the meetings of Percutaneous Penetration Subgroup they presented a number of short papers of up to date information on the key issues. The objective was to focus the existing knowledge and the gaps in the knowledge in the field...

  4. Ion-beam-induced topography and compositional changes in depth profiling

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.

    1992-01-01

    When energetic ions penetrate and stop in solids they not only add a new atomic constituent to the matrix but they also create atomic recoils and defects. The fluxes of these entities can give rise to spatial redistribution of atomic components, which may be partly or completely balanced by reordering and relaxation processes. These latter, in turn, may be influenced by fields and gradients induced by the primary relocation processes and by the energy deposited. These will include quasi-thermal, concentration (or chemical potential) and electrostatic gradients and may act to enhance or suppress atomic redistribution. Some, or all, of these processes will operate, depending upon the system under study, when energetic ions are employed to sputter erode a substrate for depth sectioning and, quite generally, can perturb the atomic depth profile that it is intended to evaluate. Theoretical and computational approaches to modelling such processes will be outlined and experimental examples shown which illustrate specific phenomena. In particular the accumulation of implant species and defect generation or redistribution can modify, with increasing ion fluence, the local sputtering mechanism and create further problems in depth profile analysis as a changing surface topography penetrates the solid. Examples of such topographic evolution and its influence on depth profiling analysis will be given and models to explain general and specific behaviour will be outlined. The commonality of models which examine both depth-dependent composition modification and surface topography evolution will be stressed. (author)

  5. Avaliação da microinfiltração marginal e profundidade de penetração dos cimentos de ionômero de vidro utilizados como selantes oclusais Evaluation of marginal microleakage and depth of penetration of glass ionomer cements used as occlusal sealants

    Directory of Open Access Journals (Sweden)

    Marina de Lourdes Calvo Fracasso

    2005-09-01

    Full Text Available OBJETIVE: the aim of this study was to conduct an in vitro comparison of marginal microleakage (MM and the depth of penetration (DP of glass ionomer cements (GIC and a resin sealant (RS into occlusal pit and fissures. METHODS: for that purpose, 60 intact third molars were equally distributed to 5 groups: G1 - 37% phosphoric acid / Delton; G2 - 40% polyacrylic acid / Ketac-Molar / nail varnish; G3 - Fuji Plus conditioner / Fuji Plus/ nail varnish; G4 -37% phosphoric acid / Vitremer / Finishing gloss; G5 -37% phosphoric acid / Vitremer prepared with a 1:4 ratio of powder / Finishing gloss. The teeth were submitted to a thermal treatment corresponding to 300 cycles (15 sec, 5/55(0C, followed by complete coating with nail varnish, except for 1mm beyond the contour of the sealant. Afterwards, the teeth were immersed in 0.5% basic fuchsine for 24 hours. Thereafter, the teeth were sectioned in buccolingual direction and microscopically analyzed (150x magnification by means of predetermined scores. The results were subject to the Kruskal-Wallis test. RESULTS: there was no statistical difference between the materials tested in relation to the DP, being that all groups displayed nearly complete filling of the fissures. No sealant material was able to prevent dye penetration; however, the GICs provided better results of MM, with significant difference when compared to the RS. CONCLUSION: all materials investigated presented a satisfactory degree of penetration into the fissures; however, the glass ionomer cements displayed better performance in the marginal microleakage test compared to the resin sealant.OBJETIVO: o objetivo deste estudo foi comparar in vitro a microinfiltração marginal (MM e o grau de profundidade de penetração (DP de cimentos de ionômero de vidro (CIV e um selante resinoso (SR em fossas e fissuras oclusais. MATERIAIS E MÉTODOS: para tanto, 60 terceiros molares hígidos foram igualmente distribuídos em 5 grupos: G1- ácido fosf

  6. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, Nadia; Thoroddsen, Sigurdur T; Marston, J. O.

    2016-01-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  7. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  8. Determination of linear defect depths from eddy currents disturbances

    Science.gov (United States)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  9. Long-rod penetration: the transition zone between rigid and hydrodynamic penetration modes

    Directory of Open Access Journals (Sweden)

    Jian-feng Lou

    2014-06-01

    Full Text Available Long-rod penetration in a wide range of velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second. The long rods maintain rigid state when the impact velocity is low, the nose of rod deforms and even is blunted when the velocity gets higher, and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high due to instantaneous high pressure. That is, from low velocity to high velocity, the projectile undergoes rigid rods, deforming non-erosive rods, and erosive rods. Because of the complicated changes of the projectile, no well-established theoretical model and numerical simulation have been used to study the transition zone. Based on the analysis of penetration behavior in the transition zone, a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed, and a method to obtain the boundary velocity of transition zone is determined. A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions. The penetration depth predicted by this combined model is in good agreement with experimental result.

  10. An explosive acoustic telemetry system for seabed penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  11. Penetrating power of resonant electromagnetic induction imaging

    Directory of Open Access Journals (Sweden)

    Roberta Guilizzoni

    2016-09-01

    Full Text Available The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm−1 concealed behind them.

  12. Cable Braid Electromagnetic Penetration Model.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  13. Penetrating ureteral trauma

    Directory of Open Access Journals (Sweden)

    Gustavo P. Fraga

    2007-04-01

    Full Text Available OBJECTIVE: The purpose of this series is to report our experience in managing ureteral trauma, focusing on the importance of early diagnosis, correct treatment, and the impact of associated injuries on the management and morbid-mortality. MATERIALS AND METHODS: From January 1994 to December 2002, 1487 laparotomies for abdominal trauma were performed and 20 patients with ureteral lesions were identified, all of them secondary to penetrating injury. Medical charts were analyzed as well as information about trauma mechanisms, diagnostic routine, treatment and outcome. RESULTS: All patients were men. Mean age was 27 years. The mechanisms of injury were gunshot wounds in 18 cases (90% and stab wounds in two (10%. All penetrating abdominal injuries had primary indication of laparotomy, and neither excretory urography nor computed tomography were used in any case before surgery. The diagnosis of ureteric injury was made intra-operatively in 17 cases (85%. Two ureteral injuries (10% were initially missed. All patients had associated injuries. The treatment was dictated by the location, extension and time necessary to identify the injury. The overall incidence of complications was 55%. The presence of shock on admission, delayed diagnosis, Abdominal Trauma Index > 25, Injury Severity Score > 25 and colon injuries were associated to a high complication rate, however, there was no statistically significant difference. There were no mortalities in this group. CONCLUSIONS: A high index of suspicion is required for diagnosis of ureteral injuries. A thorough exploration of all retroperitoneal hematoma after penetrating trauma should be an accurate method of diagnosis; even though it failed in 10% of our cases.

  14. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  15. Study of Penetration Technology

    Science.gov (United States)

    1976-11-01

    srecimens fabricated at the AFATL, AISI-01 oil quenched bar stock was used. Three of the projectiles used in the Eglin penetration experiments are shown...in the Mathema- tical Laboratory at Eglin AFB, is essencially a fourth order Runge-Kutta numerical method for solving simultaneous differential...C9G. VEL. X-COMPo (M4/5): d!10. I oil 140. 107. 82. RmCC~kr’ED TIME OF MAXIftjM/MINIM94U COIL VOLTAGE tSI MAX 0040 A 55 *.03J04A 0 0 05ji6 .000634 MIN

  16. Deep penetration calculations

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deutsch, O.L.; Booth, T.E.

    1980-04-01

    Several Monte Carlo techniques are compared in the transport of neutrons of different source energies through two different deep-penetration problems each with two parts. The first problem involves transmission through a 200-cm concrete slab. The second problem is a 90 0 bent pipe jacketed by concrete. In one case the pipe is void, and in the other it is filled with liquid sodium. Calculations are made with two different Los Alamos Monte Carlo codes: the continuous-energy code MCNP and the multigroup code MCMG

  17. Development Of The Nuclear Optical Penetration

    Science.gov (United States)

    Inoue, K.; Koike, K.; Imada, Y.

    1984-10-01

    We have developed the nuclear optical penetration to be incorporated in the wall penetration of the shell to introduce a data transmission system using optical fibers into a nuclear power plant with a pressurized water reactor. Radiation-induced coloration in optical glass seriously affects transmission characteristics of optical fibers, whereas it has been revealed that the pure-silica core optical fiber without any dopant in the core has wide applicability in radiation fields thanks to its very low radiation-induced attenuation. The wall penetration of the shell should have airtightness and resistivity to heat, vibration, and pressure, let alone radiation, excellent enough to be invariable in data transmission efficiency even when subjected to severe environmental tests. The sealing modules of this newly developed nuclear optical penetration are hermetically sealed. The gap between the optical fiber rod (100 pm in core diameter and 5 mm in rod diameter) and stainless steel tube is sealed with lamingted glass layer. As the result of He gas leakage test, high airtightness of less than 10 cc/sec was achieved. No thermal deformation of the core was caused by sealing with laminated glass layer, nor was observed transmission loss. Then the sealiing modules were subjected to the irradiation test using 60 Co gamma ray exposure of 2 x 10 rads. Though silica glass layer supporting the fiber rod and sealing glass portion turned blackish purple, transparency of the fiber was not affected. Only less than 0.5 dB of connecting loss was observed at the connecting point with the optical fiber cable. The sealing modules were also found to have resistivity to vibration and pressure as excellent as that of existing nuclear electric penetrations. We expect the nuclear optical fiber penetration will be much effective in improving reliability of data transmission systems using optical fibers in radiation fields.

  18. Small field depth dose profile of 6 MV photon beam in a simple air-water heterogeneity combination: A comparison between anisotropic analytical algorithm dose estimation with thermoluminescent dosimeter dose measurement.

    Science.gov (United States)

    Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin

    2017-01-01

    To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.

  19. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available 1. All the radargrams were processed by applying basic GPR processing steps, which included a time zero correction, a dewow filter and the application of an automatic gain control (AGC) function. No migration was applied so as to preserve.... Suitable automatic detection algorithm could potentially be employed if target responses with specific characteristics are being sought. The results from this experiment are likely to be frequency independent. If so, a low frequency GPR system – say...

  20. Investigation of the spatio-temporal variability of atmospheric boundary layer depths over mountainous terrain observed with a suite of ground-based and airborne instruments during the MATERHORN field experiment

    Science.gov (United States)

    Pal, S.; De Wekker, S.; Emmitt, G. D.

    2013-12-01

    We present first results of the spatio-temporal variability of atmospheric boundary layer depths obtained with a suite of ground-based and airborne instruments deployed during the first field phase of The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program (http://www3.nd.edu/~dynamics/materhorn/index.php) at Dugway Proving Ground (DPG, Utah, USA) in Fall 2012. We mainly use high-resolution data collected on selected intensive observation periods obtained by Doppler lidars, ceilometer, and in-situ measurements from an unmanned aerial vehicle for the measurements of atmospheric boundary layer (ABL) depths. In particular, a Navy Twin Otter aircraft flew 6 missions of about 5 hours each during the daytime, collecting remotely sensed (Doppler lidar, TODWL) wind data in addition to in-situ turbulence measurements which allowed a detailed investigation of the spatial heterogeneity of the convective boundary layer turbulence features over a steep isolated mountain of a horizontal and vertical scale of about 10 km and 1 km, respectively. Additionally, we use data collected by (1) radiosonde systems at two sites of Granite Mountain area in DPG (Playa and Sagebrush), (2) sonic anemometers (CSAT-3D) for high resolution turbulence flux measurements near ground, (3) Pyranometer for incoming solar radiation, and (4) standard meteorological measurements (PTU) obtained near the surface. In this contribution, we discuss and address (1) composites obtained with lidar, ceilometer, micro-meteorological measurements, and radiosonde observations to determine the quasi-continuous regime of ABL depths, growth rates, maximum convective boundary layer (CBL) depths, etc., (2) the temporal variability in the ABL depths during entire diurnal cycle and the spatial heterogeneity in the daytime ABL depths triggered by the underlying orography in the experimental area to investigate the most possible mechanisms (e.g. combined effect of diurnal cycle and orographic trigger

  1. Biogenic Aerosols – Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Niple, E. R. [Aerodyne Research, Inc., Billerica, MA (United States); Scott, H. E. [Aerodyne Research, Inc., Billerica, MA (United States)

    2016-04-01

    This report describes the data collected by the Three-Waveband Spectrally-agile Technique (TWST) sensor deployed at Hyytiälä, Finland from 16 July to 31 August 2014 as a guest on the Biogenic Aerosols Effects on Climate and Clouds (BAECC) campaign. These data are currently available from the Atmospheric Radiation Measurement (ARM) Data Archive website and consists of Cloud Optical Depth (COD) measurements for the clouds directly overhead approximately every second (with some dropouts described below) during the daylight periods. A good range of cloud conditions were observed from clear sky to heavy rainfall.

  2. Penetrating abdominal trauma.

    Science.gov (United States)

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  3. Penetrating cardiothoracic war wounds.

    Science.gov (United States)

    Biocina, B; Sutlić, Z; Husedzinović, I; Rudez, I; Ugljen, R; Letica, D; Slobodnjak, Z; Karadza, J; Brida, V; Vladović-Relja, T; Jelić, I

    1997-03-01

    Penetrating cardiothoracic war wounds are very common among war casualties. Those injuries require prompt and specific treatment in an aim to decrease mortality and late morbidity. There are a few controversies about the best modality of treatment for such injuries, and there are not many large series of such patients in recent literature. We analysed a group of 259 patients with penetrating cardiothoracic war wounds admitted to our institutions between May 1991 and October 1992. There were 235 (90.7%) patients with thoracic wounds, 14 (5.4%) patients with cardiac, wounds and in 10 (3.7%) patients both heart and lungs were injured. The cause of injury was shrapnel in 174 patients (67%), bullets in 25 patients (9.7%), cluster bomb particles in 45 patients (17.3%) and other (blast etc.) in 15 patients (6%). Patients, 69, had concomitant injuries of various organs. The initial treatment in 164 operated patients was chest drainage in 76 (46.3%) patients, thoracotomy and suture of the lung in 71 (43.2%) patients, lobectomy in 12 (7.3%) patients and pneumonectomy in 5 (3%) patients. Complications include pleural empyema and/or lung abscess in 20 patients (8.4%), incomplete reexpansion of the lung in 10 patients (4.2%), osteomyelitis of the rib in 5 patients (2.1%) and bronchopleural fistula in 1 patient (0.4%). Secondary procedures were decortication in 12 patients, rib resection in 5 patients, lobectomy in 2 patients, pneumonectomy in 4 patients, reconstruction of the chest wall in 2 patients and closure of the bronchopleural fistula in 1 patient. The cardiac chamber involved was right ventricle in 12 patients, left ventricular in 6 patients, right atrium in 7 patients, left atrium in 3 patients, ascending aorta in 2 patients and 1 patient which involved descending aorta, right ventricle and coronary artery (left anterior descending) and inferior vena cava, respectively. The primary procedure was suture in 17 patients (in 10 patients with the additional suture of the

  4. Penetration Tester's Open Source Toolkit

    CERN Document Server

    Faircloth, Jeremy

    2011-01-01

    Great commercial penetration testing tools can be very expensive and sometimes hard to use or of questionable accuracy. This book helps solve both of these problems. The open source, no-cost penetration testing tools presented do a great job and can be modified by the user for each situation. Many tools, even ones that cost thousands of dollars, do not come with any type of instruction on how and in which situations the penetration tester can best use them. Penetration Tester's Open Source Toolkit, Third Edition, expands upon existing instructions so that a professional can get the most accura

  5. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  6. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  7. Effect of skin tumor properties on laser penetration

    CSIR Research Space (South Africa)

    Karsten, AE

    2009-06-01

    Full Text Available Computer modeling can be a valuable tool to determine the absorption of laser light in different skin layers. For this study, the optical properties of three different skin tumors were used in the model to evaluate the effect on penetration depth...

  8. Ink Penetration of Uncoated Inkjet Paper and Impact on Printing Quality

    Directory of Open Access Journals (Sweden)

    Ren'ai Li

    2015-10-01

    Full Text Available This study investigated ink penetration through imaging technology, first by gray and contour mapping and then calculating the ink penetration depth by programing. Next, a series of further analyses were carried out, including average ink permeability, ink distributions, and printability of different uncoated inkjet paper with different parameters. The impact on ink penetration of the microstructure and hydrophilicity of the uncoated paper was also studied. The experimental results indicated that paper specimens with sizing agent were resistant to the ink, resulting in a slow and shallow ink penetration. Paper containing filler had a more hydrophilic surface and porous structure, leading to a faster and deeper ink penetration. However, the calendering operation could make the paper structure more compact and reduce the porosity and penetration depth. When an appropriate combination of sizing agent, filler content, and the calendering process was utilized, a more stable hue could be produced with improvements in optical density, saturation, and color.

  9. Deep penetration of light into biotissue

    Science.gov (United States)

    Bearden, Edward D.; Wilson, James D.; Zharov, Vladimir P.; Lowery, Curtis L.

    2001-07-01

    The results of a study of deep (several centimeters) light penetration into biological tissue are presented in order to estimate its significance to potentially photosensitive structures and processes including the fetal eyes. In order to accomplish this goal, samples of various tissues (fat, muscle, and uterus) from surgical patients and autopsies were examined with a double integrating sphere arrangement to determine their optical properties. The results were implemented in a Monte Carlo modeling program. Next, optical fiber probes were inserted into the uterus and abdominal wall of patients undergoing laparoscopic procedures. The fibers were couples to a photomultiplier tube with intervening filters allowing measurements of light penetration at various wavelengths. To determine the feasibility of stimulation in utero, a xenon lamp and waveguide were used to transilluminate the abdomen of several labor patients. Light in the range of 630 to 670 nm where the eye sensitivity and penetration depth are well matched, will likely provide the best chance of visual stimulation. Fetal heart rate, fetal movement, and fetal magnetoencephalography (SQUID) and electroencephalography (EEG) were observed in different studies to determine if stimulation has occurred. Since internal organs and the fetus are completely dark adapted, the amount of light required to simulate in our opinion could be on the order of 10(superscript -8 Watts.

  10. Physical Penetration Testing: A Whole New Story in Penetration Testing

    NARCIS (Netherlands)

    Dimkov, T.; Pieters, Wolter

    2011-01-01

    Physical penetration testing plays an important role in assuring a company that the security policies are properly enforced and that the security awareness of the employees is on the appropriate level. In physical penetration tests the tester physically enters restricted locations and directly

  11. The Beryllium 7 Depth Distribution Study

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi

    2014-01-01

    The aim of this paper is to study the evolution of 7Be depth distribution in a soil profile. The soil samples have been collected by using plastic core in bare area in Bangi, Malaysia. Each of the soil core samples has been sectioned into 2 mm increments to a depth of 4 cm and the samples are subsequently oven dried at 45°C and gently disaggregated. The sample is passed through a < 2 mm sieve and packed into plastic pot for 7Be analysis using gamma spectrometry with a 24 hour count time. From the findings, show the 7Be depth penetration from this study decreases exponentially with depth and is confined within the top few centimeters and similar with other works been reported. The further discussion for this findings will be presented in full paper. (author)

  12. The Effect of the Different Frequency on Skin Depth of GPR Detection

    Directory of Open Access Journals (Sweden)

    Mohammed Mejbel Salih

    2017-05-01

    Full Text Available Today the utilization of Ground Penetration Radar are increasing with development civil works , the requirement is increase a low cost technique, time and accuracy, all these should be founded in same time to achieve the project with fullest. In this study will use GPR instrument with three frequency(500,800,1000 MHz,and applying the experiments in various medium with different object's materials for pipe that expected founded object underground for the purpose of extract the fixed data that serve who work interest in this field. This technique will help in solve problem of underground detection ,such as water leakage in underground pipe for different depth that considered complex and expensive problem in same time in urban life .The study contribute in solve issue of utilizing the suitable frequency with penetration for detection, this is clarify through the result gotten that refer to excellent outcome.

  13. Unusually Deep Bonin Earthquake (M7.9) of May 30, 2015 Suggests that Stagnant Slab Transforms into Penetration Stage

    Science.gov (United States)

    Obayashi, M.; Fukao, Y.; Yoshimitsu, J.

    2015-12-01

    A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.

  14. A numerical study on the disturbance of explosive reactive armors to jet penetration

    Directory of Open Access Journals (Sweden)

    Xiang-dong Li

    2014-03-01

    Full Text Available The disturbance of flat and V-shaped sandwich reactive armor configurations to shaped-charge jet is studied by a numerical approach. The disturbing and cutting effects of the two reactive armor configurations to the jet are successfully captured. The predicted disturbance characteristics and patterns are in fairly good agreement with the X-ray photographic observations. The residual depth of penetration into a semi-infinitive homogeneous steel target behind the reactive armor is computed for a series of jet/armor parameters. For the flat configuration, it is demonstrated that the residual penetration depth is not significantly reduced for a normal impact while it is reduced up to 75% for an oblique impact. In comparison, the V-shaped configuration reduces the penetration depth of the jet to 90%, and it is observed that the penetration depth is not sensitive to the V-shaped angle.

  15. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes

    DEFF Research Database (Denmark)

    Trauer, S.; Richter, H.; Kuntsche, Judith

    2014-01-01

    Liposomes are frequently described as drug delivery systems for dermal and transdermal applications. Recently, it has been shown that particulate substances penetrate effectively into hair follicles and that the follicular penetration depth can be increased by massaging the skin, which simulates...

  16. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  17. Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection

    Science.gov (United States)

    Woodard, Martin F.

    2017-08-01

    A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.

  18. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected by...... in relation to final phosphorus uptake and dry-matter production, and it is proposed that a relatively low soil-phosphorus availability was counterbalanced, to some extent, by a well-developed VAM infection....

  19. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  20. A Study of Crystalline Mechanism of Penetration Sealer Materials.

    Science.gov (United States)

    Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi

    2014-01-14

    It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.

  1. A Study of Crystalline Mechanism of Penetration Sealer Materials

    Directory of Open Access Journals (Sweden)

    Li-Wei Teng

    2014-01-01

    Full Text Available It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO3. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0–10 mm of sealer layer beneath the concrete surface.

  2. In-Depth Investigation of Statistical and Physicochemical Properties on the Field Study of the Intermittent Filling of Large Water Tanks

    Directory of Open Access Journals (Sweden)

    Do-Hwan Kim

    2017-01-01

    Full Text Available Large-demand customers, generally high-density dwellings and buildings, have dedicated ground or elevated water tanks to consistently supply drinking water to residents. Online field measurement for Nonsan-2 district meter area demonstrated that intermittent replenishment from large-demand customers could disrupt the normal operation of a water distribution system by taking large quantities of water in short times when filling the tanks from distribution mains. Based on the previous results of field measurement for hydraulic and water quality parameters, statistical analysis is performed for measured data in terms of autocorrelation, power spectral density, and cross-correlation. The statistical results show that the intermittent filling interval of 6.7 h and diurnal demand pattern of 23.3 h are detected through autocorrelation analyses, the similarities of the flow-pressure and the turbidity-particle count data are confirmed as a function of frequency through power spectral density analyses, and a strong cross-correlation is observed in the flow-pressure and turbidity-particle count analyses. In addition, physicochemical results show that the intermittent refill of storage tank from large-demand customers induces abnormal flow and pressure fluctuations and results in transient-induced turbid flow mainly composed of fine particles ranging within 2–4 μm and constituting Fe, Si, and Al.

  3. Pulsed lower-hybrid wave penetration in reactor plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  4. Europa Kinetic Ice Penetrator (EKIP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed work is to validate an initial design for a Europa penetrator that can withstand the high g load associated with the expected hypervelocity...

  5. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  6. Weighted halfspace depth

    Czech Academy of Sciences Publication Activity Database

    Kotík, Lukáš; Hlubinka, D.; Vencálek, O.

    Vol. 46, č. 1 (2010), s. 125-148 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : data depth * nonparametric multivariate analysis * strong consistency of depth * mixture of distributions Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/kotik-weighted halfspace depth.pdf

  7. Effect of snow cover on soil frost penetration

    Science.gov (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  8. Estimating Penetration Resistance in Agricultural Soils of Ardabil Plain Using Artificial Neural Network and Regression Methods

    Directory of Open Access Journals (Sweden)

    Gholam Reza Sheykhzadeh

    2017-02-01

    Full Text Available Introduction: Penetration resistance is one of the criteria for evaluating soil compaction. It correlates with several soil properties such as vehicle trafficability, resistance to root penetration, seedling emergence, and soil compaction by farm machinery. Direct measurement of penetration resistance is time consuming and difficult because of high temporal and spatial variability. Therefore, many different regressions and artificial neural network pedotransfer functions have been proposed to estimate penetration resistance from readily available soil variables such as particle size distribution, bulk density (Db and gravimetric water content (θm. The lands of Ardabil Province are one of the main production regions of potato in Iran, thus, obtaining the soil penetration resistance in these regions help with the management of potato production. The objective of this research was to derive pedotransfer functions by using regression and artificial neural network to predict penetration resistance from some soil variations in the agricultural soils of Ardabil plain and to compare the performance of artificial neural network with regression models. Materials and methods: Disturbed and undisturbed soil samples (n= 105 were systematically taken from 0-10 cm soil depth with nearly 3000 m distance in the agricultural lands of the Ardabil plain ((lat 38°15' to 38°40' N, long 48°16' to 48°61' E. The contents of sand, silt and clay (hydrometer method, CaCO3 (titration method, bulk density (cylinder method, particle density (Dp (pychnometer method, organic carbon (wet oxidation method, total porosity(calculating from Db and Dp, saturated (θs and field soil water (θf using the gravimetric method were measured in the laboratory. Mean geometric diameter (dg and standard deviation (σg of soil particles were computed using the percentages of sand, silt and clay. Penetration resistance was measured in situ using cone penetrometer (analog model at 10

  9. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    Science.gov (United States)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  10. Statistical analysis of cone penetration resistance of railway ballast

    Directory of Open Access Journals (Sweden)

    Saussine Gilles

    2017-01-01

    Full Text Available Dynamic penetrometer tests are widely used in geotechnical studies for soils characterization but their implementation tends to be difficult. The light penetrometer test is able to give information about a cone resistance useful in the field of geotechnics and recently validated as a parameter for the case of coarse granular materials. In order to characterize directly the railway ballast on track and sublayers of ballast, a huge test campaign has been carried out for more than 5 years in order to build up a database composed of 19,000 penetration tests including endoscopic video record on the French railway network. The main objective of this work is to give a first statistical analysis of cone resistance in the coarse granular layer which represents a major component of railway track: the ballast. The results show that the cone resistance (qd increases with depth and presents strong variations corresponding to layers of different natures identified using the endoscopic records. In the first zone corresponding to the top 30cm, (qd increases linearly with a slope of around 1MPa/cm for fresh ballast and fouled ballast. In the second zone below 30cm deep, (qd increases more slowly with a slope of around 0,3MPa/cm and decreases below 50cm. These results show that there is no clear difference between fresh and fouled ballast. Hence, the (qd sensitivity is important and increases with depth. The (qd distribution for a set of tests does not follow a normal distribution. In the upper 30cm layer of ballast of track, data statistical treatment shows that train load and speed do not have any significant impact on the (qd distribution for clean ballast; they increase by 50% the average value of (qd for fouled ballast and increase the thickness as well. Below the 30cm upper layer, train load and speed have a clear impact on the (qd distribution.

  11. Penetrating chest wound of the foetus

    Directory of Open Access Journals (Sweden)

    Albert Wandaogo

    2016-01-01

    Full Text Available Traumas of the foetus caused by stabbings are rare but actually life-threatening for both the foetus and the mother. We report a case of penetrating chest wound on a baby taken from the obstetrics unit to the paediatric surgical department. His mother was assaulted by his father, a mentally sick person with no appropriate follow-up. The foetus did not show any sign of vital distress. Surgical exploration of the wound has revealed a section of the 10 th rib, a laceration of the pleura and a tearing of the diaphragm. A phrenorraphy and a pleural drainage were performed. The new-born and its mother were released from hospital after 5 days and the clinical control and X-ray checks 6 months later showed nothing abnormal. We insisted a medical, psychiatric follow-up be initiated for the father. As regards pregnant women with penetrating wounds, the mortality rate of the foetus is 80%. The odds are good for our newborn due to the mild injuries and good professional collaboration of the medical staff. Penetrating transuterine wounds of the foetus can be very serious. The health care needed should include many fields due to the mother and the foetus′ lesions extreme polymorphism. In our case, it could have prevented by a good psychiatric followed up of the offender.

  12. Capillaric penetration of etchant solution into swift heavy ion-irradiated silicone rubber

    International Nuclear Information System (INIS)

    Fink, D.; Mueller, M.

    2000-01-01

    There is growing evidence that etchants penetrate into latent ion tracks in polymers from the very beginning, i.e., even during the so-called 'incubation time' when no visible etchant attack is observed. The model of capillaric penetration of viscous liquids into sponge-like matter agrees with experimental values both in their parametric dependence as in the absolute values. Our experiments are based on LiOH etching of both pristine and swift heavy ion-irradiated silicone rubber foils. About five times more etchant penetrates into irradiated than into pristine silicone rubber. The overall etchant penetration is highest in tracks parallel to the surface normal, and decreases with increasing ion track tilt angle towards the surface normal. The etchant penetration into the tracks proceeds relatively slowly with an effective viscosity comparable to that of heavy machine oil. When swelling starts to predominate, the maximum etchant penetration depth comes to saturation, with the total etchant uptake even decreasing

  13. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  14. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  15. Conditions for plasmoid penetration across abrupt magnetic barriers

    International Nuclear Information System (INIS)

    Brenning, Nils; Hurtig, Tomas; Raadu, Michael A.

    2005-01-01

    The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from detailed experimental and computer simulation investigations of a case study, is generalized into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n e , v 0 , B perpendicular , m i , T i , and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma which is a generalization of the earlier laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere

  16. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  17. Perception and cognition of depth of field

    NARCIS (Netherlands)

    Zhang, T.

    2015-01-01

    A common way to present 3D materials to human observers nowadays is by stereoscopic displaying on 3D TVs or head-mounted displays such as the Oculus Rift. However, not everyone can see three-dimensional solid shape from stereoscopic viewing and the three-dimensional images remain two-dimensional

  18. Penetration shielding applications of CYLSEC

    International Nuclear Information System (INIS)

    Dexheimer, D.T.; Hathaway, J.M.

    1985-01-01

    Evaluation of penetration and discontinuity shielding is necessary to meet 10CFR20 regulations for ensuring personnel exposures are as low as reasonably achievable (ALARA). Historically, those shielding evaluations have been done to some degree on all projects. However, many early plants used conservative methods due to lack of an economical computer code, resulting in costly penetration shielding programs. With the increased industry interest in cost effectively reducing personnel exposures to meet ALARA regulations and with the development of the CYLSEC gamma transport computer code at Bechtel, a comprehensive effort was initiated to reduce penetration and discontinuity shielding but still provide a prudent degree of protection for plant personnel from radiation streaming. This effort was more comprehensive than previous programs due to advances in shielding analysis technology and increased interest in controlling project costs while maintaining personnel exposures ALARA. Methodology and resulting cost savings are discussed

  19. Integrated computation model of lithium-ion battery subject to nail penetration

    International Nuclear Information System (INIS)

    Liu, Binghe; Yin, Sha; Xu, Jun

    2016-01-01

    Highlights: • A coupling model to predict battery penetration process is established. • Penetration test is designed and validates the computational model. • Governing factors of the penetration induced short-circuit is discussed. • Critical safety battery design guidance is suggested. - Abstract: The nail penetration of lithium-ion batteries (LIBs) has become a standard battery safety evaluation method to mimic the potential penetration of a foreign object into LIB, which can lead to internal short circuit with catastrophic consequences, such as thermal runaway, fire, and explosion. To provide a safe, time-efficient, and cost-effective method for studying the nail penetration problem, an integrated computational method that considers the mechanical, electrochemical, and thermal behaviors of the jellyroll was developed using a coupled 3D mechanical model, a 1D battery model, and a short circuit model. The integrated model, along with the sub-models, was validated to agree reasonably well with experimental test data. In addition, a comprehensive quantitative analysis of governing factors, e.g., shapes, sizes, and displacements of nails, states of charge, and penetration speeds, was conducted. The proposed computational framework for LIB nail penetration was first introduced. This framework can provide an accurate prediction of the time history profile of battery voltage, temperature, and mechanical behavior. The factors that affected the behavior of the jellyroll under nail penetration were discussed systematically. Results provide a solid foundation for future in-depth studies on LIB nail penetration mechanisms and safety design.

  20. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  1. Penetration of ASM 981 in canine skin: a comparative study.

    Science.gov (United States)

    Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J

    2006-01-01

    ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.

  2. Estimating residual life of alloy 600 RPV penetrations

    International Nuclear Information System (INIS)

    Hunt, E.S.; White, G.A.; Pathania, R.; Arey, M.L.; Whitaker, D.E.

    1996-01-01

    Primary water stress corrosion cracking (PWSCC) of Alloy 600 penetrations PWR in reactor pressure vessel (RPV) heads has become a significant economic concern worldwide. PWSCC of these penetrations has led to extended maintenance outages, expensive inspections and repairs, and in some cases, replacement of the entire vessel head. This paper describes methodology developed to predict the remaining life of Alloy 600 penetrations in reactor vessel heads. Predictions of remaining life are an important input to planning models used by utilities to select a strategy for responding to the PWSCC issue at the lowest life cycle cost with an acceptably low risk of leakage. The remaining life of RPV penetrations is determined using the results of inspections of penetrations and statistical methods to predict future degradation. The analysis takes into account the effects of material properties, welding residual stresses, and operating temperature on PWSCC initiation and growth. The probability of developing cracks of various depths is assessed using Monte Carlo methods which provide for uncertainties in the input assumptions. For plants which have not yet performed inspections, remaining life predictions are based on inspection results from similar plants which have performed inspections with corrections made for known differences in design details, material properties and operating conditions

  3. About the information depth of backscattered electron imaging

    Czech Academy of Sciences Publication Activity Database

    Piňos, Jakub; Mikmeková, Šárka; Frank, Luděk

    2017-01-01

    Roč. 266, č. 3 (2017), s. 335-342 ISSN 0022-2720 Institutional support: RVO:68081731 Keywords : backscattered electrons * information depth * penetration of electrons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Materials engineering Impact factor: 1.692, year: 2016

  4. Motivation with Depth.

    Science.gov (United States)

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  5. Spatially Extensive Ground-Penetrating Radar Observations during NASA's 2017 SnowEx campaign

    Science.gov (United States)

    McGrath, D.; Webb, R.; Marshall, H. P.; Hale, K.; Molotch, N. P.

    2017-12-01

    Quantifying snow water equivalent (SWE) from space remains a significant challenge, particularly in regions of forest cover or complex topography that result in high spatial variability and present difficulties for existing remote sensing techniques. Here we use extensive ground-penetrating radar (GPR) surveys during the NASA SnowEx 2017 campaign to characterize snow depth, density, and SWE across the Grand Mesa field site with a wide range of varying canopy and topographical conditions. GPR surveys, which are sensitive to snow density and microstructure, provide independent information that can effectively constrain leading airborne and spaceborne SWE retrieval approaches. We find good agreement between GPR observations and a suite of supporting in situ measurements, including snowpits, probe lines, and terrestrial LiDAR. Preliminary results illustrate the role of vegetation in controlling SWE variability, with the greatest variability found in dense forests and lowest variability found in open meadows.

  6. Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rongmei, E-mail: luorm_1999@126.com [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China); Huang, Dewu; Yang, Mingchuan; Tang, Enling; Wang, Meng; He, Liping [College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China)

    2016-10-15

    Rod penetrators with 95W–3.75Ni–1.25Fe fine-grained tungsten heavy alloy (fine-grained 95W) and conventional tungsten heavy alloy rod penetrators with the same chemical composition (conventional 95W) were subjected to ballistic impact to compare their penetration performance. “Self-sharpening” behavior and an average 10.5% increase in penetration depth compared to conventional 95W penetrators. An acute head remained on the fine-grained 95W rod with SEM results revealing many micro-cracks and small debris on surface layer of the rod head. The stress-strain curves collected in the Split Hopkinson Pressure Bar (SHPB) experiment showed that critical failure strain values of the fine-grained 95W were 0.12 and 0.39 at strain rate of 2×10{sup 3} s{sup −1} and 3.9×10{sup 3} s{sup −1}, respectively, approximately 40% and 10% lower than those of the conventional 95W. The dynamic strength values of fine-grained 95W were 2100 MPa and 2520 MPa, respectively, which were 500 MPa and 520 MPa higher than those of the conventional 95W. The relationship among microstructure, mechanical property and “self-sharpening” behavior of fine-grained 95W is discussed in this work.

  7. Prediction of electric vehicle penetration.

    Science.gov (United States)

    2017-05-01

    The object of this report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. : markets. The sales values for 2016 show a strong year of PEV sales both in the...

  8. Industrial Penetration and Internet Intensity

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2016-01-01

    textabstractThis paper investigates the effect of industrial penetration and internet intensity for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on 153,081 manufacturing plants, and covers 26 two-digit industry

  9. Import market penetration in services

    OpenAIRE

    Langhammer, Rolf J.

    1991-01-01

    The EC-1992 programme foresees the complete liberalization of trade in services among member countries. To what extent has import market penetration in the Community already begun in selected service industries? Which EC member countries have been the forerunners to date? The following paper uses a new data base released recently by EUROSTAT in an attempt to answer these and other related questions.

  10. Mass transfer from penetrations in waste containers

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1987-01-01

    Recent studies have indicated that localized corrosion of a relatively small area of a waste container may impair the containment function to such an extent that larger releases may be possible than from the bare waste form. This would take place when a large number of holes coexist on the container while their concentration fields do not interact significantly with each other. After performing a steady state analysis of the release from a hole, it is shown that much fewer independent holes can coexist on a container surface than previously estimated. The calculated radionuclide release from multiple independent holes must be changed accordingly. Previous analyses did not proceed to a correct application of the linear superposition principle. This resulted in unacceptable physical conclusions and undue strain on the performance assessment necessary for a container licensing procedure. The paper also analyzes the steady state release from penetrations of finite length and whose concentration fields interact with one another. The predicted release from these penetrations is lower than the previously calculated release from holes of zero thickness. It is concluded here that the steady-state release from multiple holes on a waste container can not exceed the release from the bare waste form and that multiple perforations need not be a serious liability to container performance. 8 refs., 3 figs., 1 tab

  11. Prestack depth migration

    International Nuclear Information System (INIS)

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  12. [Professor WU Zhongchao's experience of penetration needling].

    Science.gov (United States)

    Zhang, Ning; Wang, Bing; Zhou, Yu

    2016-08-12

    Professor WU Zhongchao has unique application of penetration needling in clinical treatment. Professor WU applies penetration needling along meridians, and the methods of penetration needling include self-meridian penetration, exterior-interior meridian penetration, identical-name meridian penetration, different meridian penetration. The meridian differentiation is performed according to different TCM syndromes, locations and natures of diseases and acupoint nature, so as to make a comprehensive assessment. The qi movement during acupuncture is focused. In addition, attention is paid on anatomy and long-needle penetration; the sequence and direction of acupuncture is essential, and the reinforcing and reducing methods have great originality, presented with holding, waiting, pressing and vibrating. Based on classical acupoint, the acupoint of penetration needling is flexible, forming unique combination of acupoints.

  13. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  14. Control of penetration zone GMAW

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-11-01

    Full Text Available Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop

  15. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  16. Akon - A Penetrator for Europa

    Science.gov (United States)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  17. Criteria to determine the depth of the production interval in wells of the Cerro Prieto geothermal field, Mexico; Criterios para determinar la profundidad del intervalo productor en pozos del campo geotermico de Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vivar, Jesus Saul de [Comision Federal de Electricidad, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)]. E-mail: jesus.deleon@cfe.gob.mx

    2006-07-15

    Ways to select the depth of the production interval or to complete wells in the Cerro Prieto geothermal field have changed during the development of the field. From 1961 when drilling began to the middle of 2005, a total of 325 wells were drilled. The paper compares the approaches used in the past with those of the last ten years. The Cerro Prieto system has been classified as being of liquid-dominated and high-temperature. Today, after 33 years of commercial exploitation, it has experienced a series of thermal and geochemical fluid changes making it necessary to modify the ways to select the depth of the well production intervals, according to the observed behavior of the reservoir. The new criteria include the thermal approach, the geological approach, the geochemical approach and a comparative approach with neighboring wells. If most of these criteria are interpreted correctly, the success of a well is ensured. [Spanish] Los criterios para seleccionar la profundidad del intervalo productor o la terminacion de los pozos en el campo geotermico de Cerro Prieto han cambiado durante el desarrollo del mismo. De 1961, cuando se perforaron los primeros pozos, hasta mediados del 2005 se han perforado un total de 325 pozos. En el presente articulo se hara una breve revision de cuales han sido los criterios usados en el pasado y los que se han venido empleando en los ultimos diez anos. El yacimiento de Cerro Prieto ha sido clasificado como de liquido dominante, de alta temperatura, pero actualmente, despues de 33 anos de explotacion comercial, ha sufrido una serie de cambios termicos y geoquimicos en sus fluidos, por lo que ha sido necesario modificar los criterios para seleccionar la profundidad del intervalo productor de los pozos de acuerdo al comportamiento observado en el yacimiento. Los criterios actuales se dividen en cuatro: 1. Criterio termico, 2. Criterio geologico, 3. Criterio geoquimico y 4. Criterio comparativo de los pozos vecinos. Cuando la mayoria de estos

  18. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  19. Forestry applications of ground-penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  20. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  1. An Investigation of Consolidants Penetration in Wood. Part 2: FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina TIMAR

    2011-03-01

    Full Text Available FTIR spectroscopy was used in this work for studying the penetration of some consolidants frequentlyused in old wood conservation into test pieces of sound spruce wood (Picea abies wood. Thin microsections(30-60 μm of control and treated wood were analysed in reflectance mode using an ATR system. Theconsolidation products investigated were Paraloid B72, bee wax, a mixture of bee wax / linseed oil and twotypes of paraffins. These products presented FTIR spectra with characteristic common and specific bands,allowing their identification in the treated wood with no impediments coming from their colour, transparencyor the percent of cell lumena filling. The treatment of wood with these products brought about alterations ofthe spectra aspect by the appearance or intensification of some characteristic bands and the modification ofthe ratio between the areas of some characteristic absorption bands so that a qualitative and semiquantitativeevaluation of the presence and penetration depth and distribution of these consolidationproducts in wood was possible, proving the adopted method as valuable and useful for further research inthis field.

  2. Influence of planar macrodefects on the anisotropy of magnetic-flux penetration in YBa 2Cu 3O 7-δ

    Science.gov (United States)

    Cuche, E.; Indenbom, M. V.; André, M.-O.; Richard, P.; Benoit, W.; Wolf, Th.

    1996-02-01

    The magnetic flux penetration in a high-quality YBa 2Cu 3O 7-δ single crystal with an external field applied perpendicular to the crystalline c axis is directly visualized by means of the magneto-optical technique. The observations show that the field penetrates preferentially along the ab planes. Scanning acoustic microscopy reveals macrodefects along ab planes which strongly affect this anisotropy of the field penetration.

  3. Performance of kevlar fibre-reinforced rubber composite armour against shaped-charge jet penetration

    OpenAIRE

    Zu,Xu-dong; Huang,Zheng-xiang; Zhai,Wen

    2015-01-01

    AbstractThe protective capability of the Kevlar fibre-reinforced rubber composite armour (KFRRCA) at different obliquities is studied using depth-of-penetration experiments method against a 56 mm-diameter standard-shaped charge. Efficiency factors are calculated to evaluate the protection capability of the KFRRCA at different obliquities. Meanwhile, an X-ray experiment is used to observe the deformation, fracture, and scatter of the shaped-charge jet as it penetrates the composite armour. Fin...

  4. Why bother about depth?

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  5. Defining depth of anesthesia.

    Science.gov (United States)

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  6. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  7. Mobile Termination and Mobile Penetration

    OpenAIRE

    Hurkens, Sjaak; Jeon, Doh-Shin

    2009-01-01

    In this paper, we study how access pricing affects network competition when subscription demand is elastic and each network uses non-linear prices and can apply termination-based price discrimination. In the case of a fixed per minute termination charge, we find that a reduction of the termination charge below cost has two oppos- ing effects: it softens competition but helps to internalize network externalities. The former reduces mobile penetration while the latter boosts it. We find that fi...

  8. Mobile termination and mobile penetration

    OpenAIRE

    Hurkens, Sjaak

    2009-01-01

    In this paper, we study how access pricing affects network competition when subscription demand is elastic and each network uses non-linear prices and can apply termination-based price discrimination. In the case of a fixed per minute termination charge, we find that a reduction of the termination charge below cost has two opposing effects: it softens competition but helps to internalize network externalities. The former reduces mobile penetration while the latter boosts it. We find that firm...

  9. Fluorescent penetration crack testing method

    International Nuclear Information System (INIS)

    Roth, A.

    1979-01-01

    The same cleaning, penetration, washing, development and evaluation agents are used in this method as for known methods. In order to accelerate or shorten the testing, the drying process is performed only to optical dryness of the material surface by blowing on it with pressurized air, the development by simple pressing into or dusting of the material with the developer and the temperature of the washing water is selected within room temperature range. (RW) [de

  10. HMO penetration and physicians' earnings.

    Science.gov (United States)

    Hadley, J; Mitchell, J M

    1999-11-01

    The goal of this study is to estimate whether cross-sectional variations in enrollment in health maintenance organizations (HMOs) affected physicians' earnings and hourly income in 1990. Using data from a nationally representative sample of 4,577 younger physicians (penetration is endogenous and used the instrumental variables approach to obtain unbiased estimates. HMO penetration had a negative and statistically significant impact on physicians earnings in 1990. A doubling of the average level of HMO penetration in the market is estimated to reduce annual earnings by 7% to 10.7%, and hourly earnings by approximately 6% to 9%. It appears that HMOs were successful in reducing physicians' annual and per hour earnings in 1990, presumably through a combination of fewer visits and lower payment rates for people covered by HMOs. Although these results cannot be generalized to all physicians, the experience of a younger cohort of physicians may still be a good indicator of the future effects of HMOs because younger physicians may be more susceptible to market forces than older and more established physicians. Moreover, these results may be somewhat conservative because they reflect market behavior in 1990, several years before the rapid growth and more aggressive market behavior of HMOs in recent years.

  11. Defence in depth perspectives

    International Nuclear Information System (INIS)

    Veneau, Tania; Ferrier, Agnes; Barbaud, Jean

    2017-01-01

    The Defence in Depth (DiD) concept was introduced to the field of nuclear safety in the sixties and early seventies. Even though it was not well developed at the beginning, the principles rapidly became close to those currently used. The concept was then composed of 3 levels, and was already associated with operating conditions. These principles have progressed over time and now there are five levels, including progressively situations issued from design extension conditions, to cope with severe accidents and dealing with accident management off-site. Indeed, human and organizational features are considered as a part of the safety provisions at all levels in an integrated approach that is not just related to reactor design. That's the current vision from IAEA, addressed first in INSAG 3 then in INSAG 10, and in the IAEA standards requirements currently addressed by SSR-2/1 superseding NS-R-1). These five levels of DiD are also referred to in other texts including WENRA documents in Europe, but also in the national requirements from different countries. Thus, the application of DiD principle has become a recognized international practice. The 2011 Fukushima Daiichi accidents, even if they raised many questions on nuclear safety issues, confirmed the merits of the DiD concept. Indeed, lessons learned from the accidents have reinforced the use of the DiD concept to ensure adequate safety. The discussions focused more on the implementation of the concept (how it has been or can be used in practice) than the concept itself, and in particular on the following subjects: the notion of level robustness, generally addressed separately from the levels definition, but playing an important role for the efficiency of the concept; the notion of levels independence and the need for strengthening them; the role of diversity to achieve levels independence. However, a prescription of additional diversity and independence across all safety levels could result in inappropriately

  12. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  13. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  14. Real-Time Penetrating Particle Analyzer (PAN)

    Science.gov (United States)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  15. Storage Conditions of Skin Affect Tissue Structure and Subsequent in vitro Percutaneous Penetration

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Plasencia Gil, Maria Inés; Sørensen, Jens Ahm

    2011-01-01

    fluorescence microscopy) and in vitro percutaneous penetration of caffeine under four different storage conditions using skin samples from the same donors: fresh skin, skin kept at -20°C for 3 weeks (with or without the use of polyethylene glycol) and at -80°C. Our results show a correlation between increasing...... permeation of caffeine and tissue structural damage caused by the storage conditions, most so after skin storage at -80°C. The presented approach, which combines imaging techniques with studies on percutaneous penetration, enables the link between tissue damage at selected depths and penetration...

  16. Influence of the mole penetrator on measurements of heat flow in lunar subsurface layers

    Science.gov (United States)

    Wawrzaszek, Roman; Drogosz, Michal; Seweryn, Karol; Banaszkiewicz, Marek; Grygorczuk, Jerzy

    Measuring the thermal gradient in subsurface layers is a basic method of determination the heat flux from the interior of a planetary body to its surface. In case of the Moon, such measurements complemented with the results of theoretical analysis and modeling can significantly improve our understanding of the thermal and geological evolution of the Moon. In practice, temperature gradient measurements are performed by at least two sensors located at different depths under the surface. These sensors will be attached to a penetrator [1] or to a cable pulled behind the penetrator. In both cases the object that carries the sensors, e.g. penetrator, perturb temperature measurements. In our study we analyze a case of two thermal sensors attached to the ends of 350mm long penetrator made of a composite material. In agreement with the studies of other authors we have found that the penetrator should be placed at the depth of 2-3 meters, where periodic changes of the temperature due to variation of solar flux at the surface are significantly smaller than the error of temperature measurement. The most important result of our analysis is to show how to deconvolve the real gradient of the temperature from the measurements perturbed by the penetrator body. In this way it will be possible to more accurately determine heat flux in the lunar regolith. [1] Grygorczuk J., Seweryn K., Wawrzaszek R., Banaszkiewicz M., Insertion of a Mole Pene-trator -Experimental Results, /39th Lunar and Planetary Science Conference /League City, Texas 2008

  17. Network Penetration Testing and Research

    Science.gov (United States)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  18. Ethical Dilemmas and Dimensions in Penetration Testing

    OpenAIRE

    Faily, Shamal; McAlaney, John; Iacob, C.

    2015-01-01

    Penetration testers are required to attack systems to evaluate their security, but without engaging in unethical behaviour while doing so. Despite work on hacker values and studies into security practice, there is little literature devoted to the ethical pressures associated with penetration testing. This paper presents several ethical dilemmas and dimensions associated with penetration testing;\\ud these shed light on the ethical positions taken by Penetration testers, and help identify poten...

  19. A study of the penetration of projectiles into marine sediments

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1985-01-01

    The work described in this document consists of three main parts: - Application, after having reviewed calculation methods and known codes, of a dynamic plasticity model based on the upper bound-method (with dissipated energy calculations by plastic deformations). The soil model used for this calculation is the Cambridge Clay Model. - Carrying out a programme of tests with instrumented small scale penetrators in centrifuge on a consolidated clay-target. The trials are done under 50 g, with projectiles, fired with an airgun at high impact velocity (50 m/s). The penetrators' instrumentation consists of either measuring acceleration, or tip force with strain gauges. - The mounting of a small instrumented penetrator for shallow water depth experimentations, with an accelerometer, and a local cell for tip resistance. A rapid electronic data acquisition system has been developed for these experimentations. The preliminary tests are done in a large tank filled with clay. The geotechnical characteristics of the clay are perfectly controlled. The tests performed under these conditions have shown the following observations: the rapid electronic data acquisition system works perfectly and could be used as a basic component for a deep water instrumentated penetrator; the results, obtained in these particular test conditions, are in a perfect agreement with the predictions of the model developed in the frame of this contract

  20. Through the looking glass: Applications of ground-penetrating radar in archaeology

    Science.gov (United States)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  1. Kali Linux wireless penetration testing essentials

    CERN Document Server

    Alamanni, Marco

    2015-01-01

    This book is targeted at information security professionals, penetration testers and network/system administrators who want to get started with wireless penetration testing. No prior experience with Kali Linux and wireless penetration testing is required, but familiarity with Linux and basic networking concepts is recommended.

  2. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  3. Development of penetrant materials from used oil

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Azhar Azmi

    2014-01-01

    This paper described the results of experiment to produce penetrant for nondestructive testing using used engine oil. The used engine oil was obtained from motor vehicle. It was mixed with kerosene at several mix proportion. The penetrability of these mixing were measured and compared with the penetrant available on the market. The results of measurement were explained and discussed. (author)

  4. The impact of gyre dynamics on the mid-depth salinity signature of the eastern North Atlantic

    Science.gov (United States)

    Burkholder, K. C.; Lozier, M. S.

    2009-04-01

    The Mediterranean Overflow Water (MOW) is widely recognized for its role in establishing the mid-depth salinity signature of the subtropical North Atlantic. However, recent work has revealed an intermittent impact of MOW on the salinity signature of the eastern subpolar basin. This impact results from a temporally variable penetration of the northward flowing branch of the MOW past Porcupine Bank into the eastern subpolar basin. It has been shown that the salinity signature of the eastern subpolar basin, in particular the Rockall Trough, varies with the state of the North Atlantic Oscillation (NAO): during persistent periods of strong winds (high NAO index), when the subpolar front moves eastward, waters in the subpolar gyre block the northward flowing MOW, preventing its entry into the subpolar gyre. Conversely, during persistent periods of weak winds (low NAO index), the front moves westward, allowing MOW to penetrate north of Porcupine Bank and into the subpolar gyre. Here, we investigate the manner in which the spatial and temporal variability in the northward penetration of the MOW and the position of the eastern limb of the subpolar front affect the mid-depth property fields not only in the subpolar gyre, but in the subtropical gyre as well. Using approximately 55 years of historical hydrographic data and output from the 1/12° FLAME model, we analyze the temporal variability of salinity along the eastern boundary and compare this variability to the position of the subpolar front in both the observational record and the FLAME model. We conclude that when the zonal position of the subpolar front moves relatively far offshore and the MOW is able to penetrate to the north, high salinity anomalies are observed at high latitudes and low salinity anomalies are observed at low latitudes. Conversely, when the frontal position shifts to the east, the MOW (and thus, the high salinity signature) is blocked, resulting in a drop in salinity anomalies at high latitudes

  5. A constrained approximation for nuclear barrier penetration and fission

    International Nuclear Information System (INIS)

    Tang, H.H.K.; Negele, J.W.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1983-01-01

    An approximation to the time-dependent mean-field theory for barrier penetration by a nucleus is obtained in terms of constrained Hartree-Fock wave functions and a coherent velocity field. A discrete approximation to the continuum theory suitable for practical numerical calculations is presented and applied to three illustrative models. Potential application of the theory to the study of nuclear fission is discussed. (orig.)

  6. U.S. Industry Activities on Inspection of CRDM Penetrations

    International Nuclear Information System (INIS)

    Alley, Tom; Kietzman, Kim; Ammirato, Frank

    2002-01-01

    The discovery of primary water stress corrosion cracking (PWSCC) in control rod drive mechanisms (CRDM) penetrations in U.S. and European plants prompted the U.S. nuclear industry to focus considerable effort on development and implementation of effective inspection methods. In particular, cracking was discovered in butt welds connecting reactor vessel nozzles to main coolant piping and in control rod drive mechanism (CRDM) head penetration base material and attachment welds. The EPRI Materials Reliability Program (EPRI-MRP) formed an Inspection Committee to address development of industry guidance for inspection of these components, development of effective non-destructive examination (NDE) methods, and demonstration of inspection processes. This paper discusses the MRP activities pertaining to inspection of CRDM penetrations. Results of demonstrations and field inspections conducted will also be summarized. (authors)

  7. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    Science.gov (United States)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  8. FAA Fluorescent Penetrant Activities - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.

    1998-10-20

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently characterizing low cycle fatigue specimens that will support the needs of penetrant manufacturers, commercial airline industry and the Federal Aviation Administration. The main focus of this characterization is to maintain and enhance the evaluation of penetrant inspection materials and apply resources to support the aircraft community needs. This paper discusses efforts to-date to document the Wright Laboratory penetrant evaluation process and characterize penetrant brightness readings in the initial set of sample calibration panels using Type 1 penetrant.

  9. Web penetration testing with Kali Linux

    CERN Document Server

    Muniz, Joseph

    2013-01-01

    Web Penetration Testing with Kali Linux contains various penetration testing methods using BackTrack that will be used by the reader. It contains clear step-by-step instructions with lot of screenshots. It is written in an easy to understand language which will further simplify the understanding for the user.""Web Penetration Testing with Kali Linux"" is ideal for anyone who is interested in learning how to become a penetration tester. It will also help the users who are new to Kali Linux and want to learn the features and differences in Kali versus Backtrack, and seasoned penetration testers

  10. An integrated approach to fire penetration seal program management

    International Nuclear Information System (INIS)

    Rispoli, R.D.

    1996-01-01

    This paper discusses the utilization of a P.C. based program to facilitate the management of Entergy Operations Arkansas Nuclear One (ANO) fire barrier penetration seal program. The computer program was developed as part of a streamlining process to consolidate all aspects of the ANO Penetration Seal Program under one system. The program tracks historical information related to each seal such as maintenance activities, design modifications and evaluations. The program is integrated with approved penetration seal design details which have been substantiated by full scale fire tests. This control feature is intended to prevent the inadvertent utilization of an unacceptable penetration detail in a field application which may exceed the parameters tested. The system is also capable of controlling the scope of the periodic surveillance of penetration seals by randomly selecting the inspection population and generating associated inspection forms. Inputs to the data base are required throughout the modification and maintenance process to ensure configuration control and maintain accurate data base information. These inputs are verified and procedurally controlled by Fire Protection Engineering (FPE) personnel. The implementation of this system has resulted in significant cost savings and has minimized the allocation of resources necessary to ensure long term program viability

  11. Penetration through the Skin Barrier

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates......-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous...

  12. Penetrating abdominal injuries: management controversies

    Science.gov (United States)

    Butt, Muhammad U; Zacharias, Nikolaos; Velmahos, George C

    2009-01-01

    Penetrating abdominal injuries have been traditionally managed by routine laparotomy. New understanding of trajectories, potential for organ injury, and correlation with advanced radiographic imaging has allowed a shift towards non-operative management of appropriate cases. Although a selective approach has been established for stab wounds, the management of abdominal gunshot wounds remains a matter of controversy. In this chapter we describe the rationale and methodology of selecting patients for non-operative management. We also discuss additional controversial issues, as related to antibiotic prophylaxis, management of asymptomatic thoracoabdominal injuries, and the use of colostomy vs. primary repair for colon injuries. PMID:19374761

  13. Penetrating abdominal injuries: management controversies

    Directory of Open Access Journals (Sweden)

    Velmahos George C

    2009-04-01

    Full Text Available Abstract Penetrating abdominal injuries have been traditionally managed by routine laparotomy. New understanding of trajectories, potential for organ injury, and correlation with advanced radiographic imaging has allowed a shift towards non-operative management of appropriate cases. Although a selective approach has been established for stab wounds, the management of abdominal gunshot wounds remains a matter of controversy. In this chapter we describe the rationale and methodology of selecting patients for non-operative management. We also discuss additional controversial issues, as related to antibiotic prophylaxis, management of asymptomatic thoracoabdominal injuries, and the use of colostomy vs. primary repair for colon injuries.

  14. Penetration testing with Raspberry Pi

    CERN Document Server

    Muniz, Joseph

    2015-01-01

    If you are looking for a low budget, small form-factor remotely accessible hacking tool, then the concepts in this book are ideal for you. If you are a penetration tester who wants to save on travel costs by placing a low-cost node on a target network, you will save thousands by using the methods covered in this book. You do not have to be a skilled hacker or programmer to use this book. It will be beneficial to have some networking experience; however, it is not required to follow the concepts covered in this book.

  15. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  16. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  17. Quantitative wood–adhesive penetration with X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Jesse L.; Kamke, Frederick A. (Oregon State U.); (Willamette Valley)

    2015-09-01

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximately 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  18. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  19. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  20. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  1. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  2. Linguistic Intuitions and Cognitive Penetrability

    Directory of Open Access Journals (Sweden)

    Michael Devitt

    2014-12-01

    Full Text Available Metalinguistic intuitions play a very large evidential role in both linguistics and philosophy. Linguists think that these intuitions are products of underlying linguistic competence. I call this view “the voice of competence” (“VoC”. Although many philosophers seem to think that metalinguistic intuitions are a priori many may implicitly hold the more scientifically respectable VoC. According to VoC, I argue, these intuitions can be cognitively penetrated by the central processor. But, I have argued elsewhere, VoC is false. Instead, we should hold “the modest explanation” (“ME” according to which these intuitions are fairly unreflective empirical theory-laden central-processor responses to phenomena. On ME, no question of cognitive penetration arises. ME has great methodological significance for the study of language. Insofar as we rely on intuitions as evidence we should prefer those of linguists and philosophers because they are more expert. But, more importantly, we should be seeking other evidence in linguistic usage.

  3. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  4. INFLUENCE OF USUAL AND DUAL WHEELS ON SOIL PENETRATION RESISTANCE: THE GIS-APPROACH

    Directory of Open Access Journals (Sweden)

    Zhukov A. V.

    2015-12-01

    Full Text Available GIS-APPROACH application has allowed establishing that usual wheels of machine-tractor units carry out considerable influence on soil which exceeds visible borders of a track of wheels on the dimensions. This influence shows in augmentation of soil penetration resistance at 100-155 % in comparison with the control on depth of 0-10 cm and on 20-30 % on depth of 45-50 %. It is impossible to exclude that influence of wheels proceeds more deeply, than tests have been conducted. Critical for cultivated plants value of soil penetration resistance in 3 MPa under the influence of usual wheels of agricultural machinery comes nearer practically to a surface. Character of profile changes of hardness in various regions influences of wheels allows assuming the long season of a relaxation of soil for achievement of background values of soil penetration resistance. The further researches are necessary for an establishment of concrete indicators of dynamics. Negative influence of an overstocking does not confine only deterioration of conditions of growth of assemblages of rootlets of plants. Infringement of processes of moving of moisture in the soil, the accelerated evaporation and the slowed down processes of a filtration and an infiltration, destruction of modular frame, activization of erosive processes is possible. The understanding of these processes will give the chance volume understanding of real influence of running systems of machine-tractor devices on bedrock. Region intensive influence of dual wheels is circumscribed by the top soil layers (0-15 cm. The major feature of influence of dual wheels is absence of an overstocking above critical levels. It is impossible to exclude possible positive influence of moderate inspissations of soil under the influence of dual wheels for growth of agricultural crops and moisture conservation in soil. The cumulative negative effect on soil crossed vehicles traces is probable. The long season of a relaxation of

  5. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  6. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  7. Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics

    Directory of Open Access Journals (Sweden)

    J.D. Clayton

    2016-08-01

    Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.

  8. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  9. Eddy current testing with high penetration; WS-Pruefungen mit grosser Eindringtiefe

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Kroening, M. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1999-08-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [Deutsch] Das Niederfrequenz(NF)-Wirbelstrom(WS)-Verfahren wird eingesetzt, um eine grosse Eindringtiefe zu erzielen. Die erreichbare Tiefenreichweite wird u.a. durch die niedrigste Prueffrequenz bestimmt, die zusammen mit dem Wirbelstrom-Sensor realisiert werden kann. Bei Einsatz von induktiven Sensoren geht mit abnehmender Prueffrequenz der Messeffekt proportional zurueck (Induktionswirkung). Eine weitere Absenkung der Prueffrequenzen macht den Einsatz von andersartigen Sensoren notwendig, z.B. den GMR (Giant Magnetic Resistance), der eine gleichmaessige Messempfindlichkeit bis zum Gleichfeld besitzt. Das eingesetzte Mehrfrequenz-Wirbelstrom-Pruefverfahren MFEC 3 des IZFP arbeitet mit drei gleichzeitig eingespeisten Prueffrequenzen. Dabei werden zwei Varianten von WS-Sensoren eingesetzt. Beide besitzen auf der Senderseite eine induktive Wicklung in der Art einer Tastsonde. Die Empfaengerseite ist entweder ebenfalls eine induktive Wicklung oder ein magnetfeldempfindlicher Widerstand (GMR). (orig./DGE)

  10. Bodily action penetrates affective perception

    Science.gov (United States)

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  11. Bodily action penetrates affective perception

    Directory of Open Access Journals (Sweden)

    Carlo Fantoni

    2016-02-01

    Full Text Available Fantoni & Gerbino (2014 showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP, they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015 would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions, in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top

  12. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  13. Varieties of cognitive penetration in visual perception.

    Science.gov (United States)

    Vetter, Petra; Newen, Albert

    2014-07-01

    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Percutaneous penetration studies for risk assessment

    DEFF Research Database (Denmark)

    Sartorelli, Vittorio; Andersen, Helle Raun; Angerer, Jürgen

    2000-01-01

    . In order to predict the systemic risk of dermally absorbed chemicals and to enable agencies to set safety standards, data is needed on the rates of percutaneous penetration of important chemicals. Standardization of in vitro tests and comparison of their results with the in vivo data could produce...... internationally accepted penetration rates and/or absorption percentages very useful for regulatory toxicology. The work of the Percutaneous Penetration Subgroup of EC Dermal Exposure Network has been focussed on the standardization and validation of in vitro experiments, necessary to obtain internationally...... accepted penetration rates for regulatory purposes. The members of the Subgroup analyzed the guidelines on percutaneous penetration in vitro studies presented by various organizations and suggested a standardization of in vitro models for percutaneous penetration taking into account their individual...

  15. Time-dependent behavior of magnetic fields confined by conducting walls

    International Nuclear Information System (INIS)

    Kidder, R.E.; Cecil, A.B.

    1983-01-01

    An equation is derived which describes the total current flowing in a moving conducting surface surrounding a magnetic field, where diffusion of the field into the conductor is taken into account. Analytic and numerical solutions of the current equation are obtained for the cases of exponential and linear compression of the magnetic field with time, respectively. It is assumed that the electrical conductivity is constant, that the conducting surfaces are axially symmetric, and that the thickness and radius of curvature of the conducting walls is large compared with the effective depth of penetration of the field

  16. Initial response of a rock penetrator

    International Nuclear Information System (INIS)

    Longcope, D.B.; Grady, D.E.

    1977-12-01

    An analysis based on elastic rod theory is given for the early-time axisymmetric response of pointed penetrators. Results of measurements by laser interferometry of the back surface particle velocity of laboratory scale penetrators impacted by sandstone targets are presented. Values of the initial pressure on the penetrator tip are determined which give good agreement between the analytical and experimental results. These initial tip pressures are found to be approximated by the stress-particle velocity Hugoniot for the target material

  17. In-place HEPA filter penetration test

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical

  18. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  19. In-place HEPA filter penetration test

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Elliott, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  20. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  1. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  2. Adsorption of polymer chains at penetrable interfaces

    International Nuclear Information System (INIS)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-01-01

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  3. PENETRATION OF CONICAL INDENTER INTO FOUNDATION MATERIAL AT COMBINED PERCUSSION AND SUBSEQUENT ULTRASONIC IMPACTS

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2012-01-01

    Full Text Available The aim of this paper is theoretical and experimental studys of a percussion and subsequent ultrasonic impacts on the indenter depth penetration into material of rigid-plastic foundation.The obtained results allow us to estimate an influence of percussion (low-frequency and ultrasound (high-frequency component parameters on a charging process.

  4. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms

    NARCIS (Netherlands)

    Liu, Yong; Busscher, Henk J; Zhao, Bingran; Li, Yuanfeng; Zhang, Zhenkun; van der Mei, Henny C; Ren, Yijin; Shi, Linqi

    Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of

  5. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  6. Penetration Evaluation of Explosively Formed Projectiles Through Air and Water Using Insensitive Munition: Simulative and Experimental Studies

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2016-02-01

    Full Text Available The process of formation, flying, penetration of explosively-formed projectiles (EFP and the effect of water on performance of the charge for underwater applications is simulated by Ansysis Autodyn 2D-Hydro code. The main objective of an explosively formed projectile designed for underwater applications is to disintegrate the target at longer standoff distances. In this paper we have simulated the explosively formed projectile from OFHC-Copper liner for 1200 conical angle. The Affect of water on the penetration of EFP is determined by simulations from Ansysis Autodyn 2-D Hydrocode and by varying depth of water from 1CD-5CD. The depth of penetration against steel target is measured experimentally. Flash X-Ray Radiography (FXR is used to capture EFP jet formation and its penetration against target is measured by depth of penetration experiments. Simulation results are compared with experimental results. The difference in simulated and experimental results for depth of penetration is about 7 mm, which lies within favorable range of error. The jet formation captured from FXR is quite clear and jet velocity determined from Flash X-ray radiography is the same as the ones obtained by using other high explosives. Therefore, it is indicated that Insensitive Munition (8701 can be utilized instead of Polymer Bonded Explosives (PBX for air and underwater environments with great reliability and without any hazard.

  7. Measurement of penetration depths of plutonium and americium in sediment from the ocean floor

    International Nuclear Information System (INIS)

    Fried, S.; Friedman, A.; Hines, J.; Sjoblom, R.; Schmitz, G.; Schreiner, F.

    1979-01-01

    The clay-like sediment covering the ocean floor constitutes the last barrier that shields the biosphere from contamination by radionuclides stemming from the nuclear wastes of a subseabed repository. In the event of a failure of the engineered barriers the mobility of the released radionuclides in the sediment determines the rate and the extent of entry into the water of the ocean. The initial results of measurements designed to determine the mobility of transuranium elements in sediment from the ocean floor are presented. Data indicate very low migration rates and imply strong chemisorptive interaction with the sediment

  8. Comparison of pellet acceleration model results to experimentally observed penetration depths

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, T., E-mail: szepesi.tamas@gmail.co [KFKI - Research Institute for Particle and Nuclear Physics, EURATOM Association, MTA KFKI-RMKI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Kalvin, S.; Kocsis, G. [KFKI - Research Institute for Particle and Nuclear Physics, EURATOM Association, MTA KFKI-RMKI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Lang, P.T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Senichenkov, I. [Saint Petersburg State Polytechnical University, Polytehnicheskaya 29, 195251 St. Petersburg (Russian Federation)

    2009-06-15

    Cryogenic hydrogen isotope fuelling pellets were observed to undergo strong radial acceleration in the confined plasma. The reason for pellet acceleration is believed to originate from drift effects: the ionised part of pellet cloud is affected by the grad-B drift, therefore, the cloud becomes polarised. The E x B drift then deforms the pellet cloud so that it can no longer follow the original flux bundle - this results in a less efficient shielding on the pellet's HFS region, where the subsequently enhanced ablation pushes the pellet towards LFS, like a rocket. In order to study this effect, a simple and a comprehensive ablation model was developed. Results from both models show quantitatively acceptable agreement with ASDEX-Upgrade experiments concerning trajectory curvature, corresponding to radial acceleration in the range of 10{sup 4}-10{sup 7} m/s{sup 2}.

  9. Residual stress measurement by x-ray under the consideration of its penetration depth

    International Nuclear Information System (INIS)

    Doi, Osamu; Ukai, Takayoshi

    1983-01-01

    The authors derived the fundamental relations between the measured stress by X-ray and the residual stress distribution from the consideration of the contribution of internal stress in definite subsurface layer of metal to X-ray diffraction and proposed the exact formulas and their applications of residual stress measurements by successive thin layer removal in a plate, a hollow cylinder and a hollow sphere. (author)

  10. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  11. Analysis of Reactor Vessel Lower Head Penetration Tube Failure

    International Nuclear Information System (INIS)

    Stempniewicz, Marek

    1999-01-01

    This paper presents results of two studies, performed to investigate the behavior of the reactor vessel penetration tubes in case of relocation of molten material into the tubes. The first study is on the CORVIS drain line experiment 03/1. Results of pre-test calculations are presented, and compared to the later obtained experimental data. The timing of the drain line melting and the velocity of the debris flowing inside the drain line were predicted correctly, but the penetration depth was clearly underestimated. If the calculations are done using different correlation for the melt-to-wall convective heat transfer, the results are closer to the experiment. It cannot however be concluded that the alternative correlation is more appropriate until other uncertainties are clarified. The second study presents calculations performed for GKN Dodewaard CRD, instrument tubes and drain line. Calculations were performed to estimate whether the tubes have a chance to withstand the first attack of the melt and thus postpone vessel failure until the water in the lower plenum evaporates. Calculations were performed assuming that the melt can move into the tubes without any resistance, e.g. presence of water in the tubes was not taken into account. The results indicate that the critical penetration of the GKN vessel, which is most likely to fail, is the drain line. Results also indicate that external flooding should prevent early tube failure, at least in case of low vessel pressure. (author)

  12. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  13. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be

  14. Introduction to ground penetrating radar inverse scattering and data processing

    CERN Document Server

    Persico, Raffaele

    2014-01-01

    This book presents a comprehensive treatment of ground penetrating radar using both forward and inverse scattering mathematical techniques. Use of field data instead of laboratory data enables readers to envision real-life underground imaging; a full color insert further clarifies understanding. Along with considering the practical problem of achieving interpretable underground images, this book also features significant coverage of the problem's mathematical background. This twofold approach provides a resource that will appeal both to application oriented geologists and testing specialists,

  15. Current uses of ground penetrating radar in groundwater-dependent ecosystems research.

    Science.gov (United States)

    Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís

    2017-10-01

    Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

    Directory of Open Access Journals (Sweden)

    Christian N. Koyama

    2017-06-01

    Full Text Available At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

  17. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  18. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Pieters, W.; Arnold, F.; Stoelinga, M.I.A.

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Therefore, penetration testing has thus far been used as a qualitative research method. To enable quantitative approaches to security risk management,

  19. Generic penetration in the retail antidepressant market.

    Science.gov (United States)

    Ventimiglia, Jeffrey; Kalali, Amir H

    2010-06-01

    In this article, we explore the accelerated penetration of generic antidepressants in the United States market following the availability of generic citalopram and sertraline. Analysis suggests that overall, generic penetration into the antidepressant market has grown from approximately 41 percent in January 2004 to over 73 percent in January 2010. Similar trends are uncovered when branded and generic prescriptions are analyzed by specialty.

  20. Quantitative Penetration Testing with Item Response Theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle Ida Antoinette

    2014-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  1. Quantitative penetration testing with item response theory

    NARCIS (Netherlands)

    Arnold, Florian; Pieters, Wolter; Stoelinga, Mariëlle

    2013-01-01

    Existing penetration testing approaches assess the vulnerability of a system by determining whether certain attack paths are possible in practice. Thus, penetration testing has so far been used as a qualitative research method. To enable quantitative approaches to security risk management, including

  2. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  3. Evaluating methods for controlling depth perception in stereoscopic cinematography

    Science.gov (United States)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography

  4. An energy approach study of the penetration of concrete by rigid missiles

    International Nuclear Information System (INIS)

    Guirgis, Sameh; Guirguis, Ehab

    2009-01-01

    This paper presents an energy approach for investigating the penetration of concrete by rigid missiles and the associated phenomena. However, the principal assumptions made here must be validated experimentally before giving the proposed subject further considerations. In the following, a new measure for concrete resistance to penetration by hard missiles is presented. The suggested term for this measure is 'the Volumetric Crushing Energy Density' of concrete which can be described as the energy required for converting a unit volume of concrete to separate particles under compressive loading so that the particles of the crushed volume meet certain gradation criteria. Using this quantity, an explanation of the scale effect is postulated. Moreover, a dimensionless semi-analytical formula for the penetration depth of a rigid missile in a concrete target is proposed which includes a large number of the variables of the problem. The formula assumes that the penetration incident may include several successive phases where the set of variables that governs the impact is different during each phase, and the variables that characterize the impact during each phase correlate in a different manner as well. Furthermore, many of the penetration depth formulae available in the literature are rewritten according to the formula proposed here where the concrete penetration resistance of any incident is estimated by modifying the resistance of 'reference impact incidents.' The rewritten formulae show the wide variation of the values of concrete resistance which are implicitly included in the original formulae. Finally, the proposed formula is applied using data of penetration experiments presented by Forrestal et al. [Forrestal, M.J., Altman, B.S., Cargile, J.D., Hanchak, S.J., 1994. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 15(4), 395-405; Forrestal, M.J., Frew, D.J., Hickerson, J.P., Rohwer, T.A., 2003

  5. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  6. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  7. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy.

    Science.gov (United States)

    Binding, Jonas; Ben Arous, Juliette; Léger, Jean-François; Gigan, Sylvain; Boccara, Claude; Bourdieu, Laurent

    2011-03-14

    Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

  8. The Beryllium-7 Depth Study in Different Land Use

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi; Noor Fadzilah Yusof; Mohd Tarmizi Ishak

    2015-01-01

    The main objective for this study is to evaluate the evolution of 7 Be depth distribution in soil profile at Tasoh Catchment area, Perlis, Malaysia which area has been different land use. The soil samples for this study have been carried out in Timah surroundings by different agricultural land use. Therefore, three different types of soil samples from different land use have been collected by using metal core and have been sectioned into 2 mm increments to a depth of 4 cm. The samples were brought to Radiochemistry and Environment Group Laboratory (RAS), Bangi for further treatment. The samples subsequently oven dried at 45-60 degree Celsius and gently desegregated. The sample is passed through a < 2 mm sieve and packed into geometry plastic container for 7 Be analysis by using gamma spectrometry with a 24-hour count time. From the findings show that the 7 Be soil samples are penetrated with decreases exponentially with depth and is confined within the top few centimeters at most and similar with other works been reported (Blake et al., 2000 and Walling et al., 2008). , the 7 Be from mixed land use also shows more deeper penetration into the soil depth than from two others land use due to a several factors. Therefore, further and detailed discussion for these findings will be described in full paper. (author)

  9. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    Science.gov (United States)

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C

    2017-07-01

    The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection and delineation of underground septic tanks in sandy terrain using ground penetrating radar

    Science.gov (United States)

    Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.

    2010-09-01

    A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.

  12. Assembly for detecting penetrating radiation

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1978-01-01

    The detector to pick up the X-rays emitted from a cross-sectional plane of a patient (computer tomography) consists of a cadmium sulfide monocrystal, an ultrasonic transmitter, and an ultrasonic receiver. The X-rays hit the crystal at right angle to a d.c. drift field applied on the electrons generated by the X-radiation. The ultrasonic field may strike the crystal parallel or at some angle with respect to this d.c. drift field. The energefically changed sound wave picked up by the ultrasonic receiver respectively its amplitude is a measure for the intensity of the X-radiation. (DG) [de

  13. Photodegradation of wood and depth profile analysis

    International Nuclear Information System (INIS)

    Kataoka, Y.

    2008-01-01

    Photochemical degradation is a key process of the weathering that occurs when wood is exposed outdoors. It is also a major cause of the discoloration of wood in indoor applications. The effects of sunlight on the chemical composition of wood are superficial in nature, but estimates of the depth at which photodegradation occurs in wood vary greatly from 80 microm to as much as 2540 mic rom. Better understanding of the photodegradation of wood through depth profile analysis is desirable because it would allow the development of more effective photo-protective treatments that target the surface layers of wood most susceptible to photodegradation. This paper briefly describes fundamental aspects of photodegradation of wood and reviews progress made in the field of depth profile study on the photodegradation of wood. (author)

  14. Submillimeter and far infrared line observations of M17 SW: A clumpy molecular cloud penetrated by UV radiation

    Science.gov (United States)

    Stutzki, J.; Stacey, G. J.; Genzel, R.; Harris, A. I.; Jaffe, d. T.; Lugten, J. B.

    1987-01-01

    Millimeter, submillimeter, and far infrared spectroscopic observations of the M17 SW star formation region are discussed. The results require the molecular cloud near the interface to be clumpy or filamentary. As a consequence, far ultraviolet radiation from the central OB stellar cluster can penetrate into the dense molecular cloud to a depth of several pc, thus creating bright and extended (CII) emission from the photodissociated surfaces of dense atomic and molecular clumps or sheets. The extended (CII) emission throughout the molecular cloud SW of the M17 complex has a level 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. This suggests that the molecular cloud as a whole is penetrated by ultraviolet radiation and has a clumpy or filamentary structure. The number of B stars expected to be embedded in the M17 molecular cloud probably can provide the UV radiation necessary for the extended (CII) emission. Alternatively, the UV radiation could be external, if the interstellar radiation in the vicinity of M17 is higher than in the solar neighborhood.

  15. Determination of the neutralization depth of concrete under the aggressive environment influence

    Science.gov (United States)

    Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena

    2018-03-01

    Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.

  16. Transconjunctival penetration of mitomycin C

    Directory of Open Access Journals (Sweden)

    Velpandian T

    2008-01-01

    Full Text Available Aims: The study was performed to estimate transconjunctival penetration of mitomycin C (MMC to Tenon′s tissue following application over the intact conjunctiva before routine trabeculectomy. Settings and Design: Institution-based case series. Materials and Methods: In 41 eyes of 41 patients, MMC (0.4 mg/ml for 3 min was applied over the intact conjunctiva before beginning trabeculectomy. Tenon′s capsule directly beneath the site of application was excised during trabeculectomy and was homogenized, centrifuged and MMC concentrations were analyzed using high-performance liquid chromatography (HPLC. Statistical Analysis Used: Statistical analysis was performed using stata0 8.0 version software (STATA Corporation, Houston, TX, USA. In this study, P -values less than 0.05 were considered as statistically significant. Results: The average weight of the sample of Tenon′s tissue excised was 5.51 ± 4.42 mg (range: 0.9-17.1 and the average estimated MMC concentration found to be present in Tenon′s tissue using HPLC was 18.67 ± 32.36 x 10−6 moles/kg of the tissue (range: 0.38-197.05 x 10−6 . In 36 of the 41 patients (87.80%, the MMC concentration reached above 2 x 10−6 moles/kg of the tissue concentration required to inhibit human conjunctival fibroblasts. Conclusions: Mitomycin C does permeate into the subconjunctival tissue after supraconjunctival application for 3 min. Application of MMC over the conjunctiva may be a useful alternative to subconjunctival or subscleral application during routine trabeculectomy and as an adjunct for failing blebs.

  17. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  18. Spontaneous wound dehiscence after penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Alireza Foroutan

    2014-10-01

    Full Text Available Spontaneous wound separation may be developed even months after suture removal especially in the context of long-term corticosteroid therapy. A 68-year-old Caucasian woman presented to our cornea clinic with spontaneous wound dehiscence after her third penetrating keratoplasty (PKP which was performed three years ago. An Ahmed glaucoma valve (New World Medical, Ranchos Cucamonga, CA was inserted ten months after the third PKP, which successfully controlled intraocular pressure (IOP. At the examination, the last sutures were removed eight months ago and she was using flourometholone 0.1 % (Sina Darou, Tehran, Iran with a dose of once a day. There was one quadrant of wound dehiscence from 8 to 11 o`clock associated with anterior wound gape and severe corneal edema. Resuturing was performed for the patient. At the one month examination, the corneal edema was resolved and best corrected visual acuity was 20/200 mainly due to previous glaucomatous optic neuropathy. Caution about the prolonged use of corticosteroids is necessary. Topical immunosuppressives could be a promising choice in this field.

  19. Detecting and characterizing unroofed caves by ground penetrating radar

    Science.gov (United States)

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to

  20. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.